2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_types.h"
24 #include "xfs_trans.h"
25 #include "xfs_trans_priv.h"
29 #include "xfs_mount.h"
30 #include "xfs_bmap_btree.h"
31 #include "xfs_alloc_btree.h"
32 #include "xfs_ialloc_btree.h"
33 #include "xfs_dinode.h"
34 #include "xfs_inode.h"
35 #include "xfs_btree.h"
36 #include "xfs_ialloc.h"
37 #include "xfs_alloc.h"
38 #include "xfs_rtalloc.h"
40 #include "xfs_error.h"
41 #include "xfs_quota.h"
42 #include "xfs_fsops.h"
43 #include "xfs_utils.h"
44 #include "xfs_trace.h"
48 STATIC
void xfs_icsb_balance_counter(xfs_mount_t
*, xfs_sb_field_t
,
50 STATIC
void xfs_icsb_balance_counter_locked(xfs_mount_t
*, xfs_sb_field_t
,
52 STATIC
void xfs_icsb_disable_counter(xfs_mount_t
*, xfs_sb_field_t
);
55 #define xfs_icsb_balance_counter(mp, a, b) do { } while (0)
56 #define xfs_icsb_balance_counter_locked(mp, a, b) do { } while (0)
61 short type
; /* 0 = integer
62 * 1 = binary / string (no translation)
65 { offsetof(xfs_sb_t
, sb_magicnum
), 0 },
66 { offsetof(xfs_sb_t
, sb_blocksize
), 0 },
67 { offsetof(xfs_sb_t
, sb_dblocks
), 0 },
68 { offsetof(xfs_sb_t
, sb_rblocks
), 0 },
69 { offsetof(xfs_sb_t
, sb_rextents
), 0 },
70 { offsetof(xfs_sb_t
, sb_uuid
), 1 },
71 { offsetof(xfs_sb_t
, sb_logstart
), 0 },
72 { offsetof(xfs_sb_t
, sb_rootino
), 0 },
73 { offsetof(xfs_sb_t
, sb_rbmino
), 0 },
74 { offsetof(xfs_sb_t
, sb_rsumino
), 0 },
75 { offsetof(xfs_sb_t
, sb_rextsize
), 0 },
76 { offsetof(xfs_sb_t
, sb_agblocks
), 0 },
77 { offsetof(xfs_sb_t
, sb_agcount
), 0 },
78 { offsetof(xfs_sb_t
, sb_rbmblocks
), 0 },
79 { offsetof(xfs_sb_t
, sb_logblocks
), 0 },
80 { offsetof(xfs_sb_t
, sb_versionnum
), 0 },
81 { offsetof(xfs_sb_t
, sb_sectsize
), 0 },
82 { offsetof(xfs_sb_t
, sb_inodesize
), 0 },
83 { offsetof(xfs_sb_t
, sb_inopblock
), 0 },
84 { offsetof(xfs_sb_t
, sb_fname
[0]), 1 },
85 { offsetof(xfs_sb_t
, sb_blocklog
), 0 },
86 { offsetof(xfs_sb_t
, sb_sectlog
), 0 },
87 { offsetof(xfs_sb_t
, sb_inodelog
), 0 },
88 { offsetof(xfs_sb_t
, sb_inopblog
), 0 },
89 { offsetof(xfs_sb_t
, sb_agblklog
), 0 },
90 { offsetof(xfs_sb_t
, sb_rextslog
), 0 },
91 { offsetof(xfs_sb_t
, sb_inprogress
), 0 },
92 { offsetof(xfs_sb_t
, sb_imax_pct
), 0 },
93 { offsetof(xfs_sb_t
, sb_icount
), 0 },
94 { offsetof(xfs_sb_t
, sb_ifree
), 0 },
95 { offsetof(xfs_sb_t
, sb_fdblocks
), 0 },
96 { offsetof(xfs_sb_t
, sb_frextents
), 0 },
97 { offsetof(xfs_sb_t
, sb_uquotino
), 0 },
98 { offsetof(xfs_sb_t
, sb_gquotino
), 0 },
99 { offsetof(xfs_sb_t
, sb_qflags
), 0 },
100 { offsetof(xfs_sb_t
, sb_flags
), 0 },
101 { offsetof(xfs_sb_t
, sb_shared_vn
), 0 },
102 { offsetof(xfs_sb_t
, sb_inoalignmt
), 0 },
103 { offsetof(xfs_sb_t
, sb_unit
), 0 },
104 { offsetof(xfs_sb_t
, sb_width
), 0 },
105 { offsetof(xfs_sb_t
, sb_dirblklog
), 0 },
106 { offsetof(xfs_sb_t
, sb_logsectlog
), 0 },
107 { offsetof(xfs_sb_t
, sb_logsectsize
),0 },
108 { offsetof(xfs_sb_t
, sb_logsunit
), 0 },
109 { offsetof(xfs_sb_t
, sb_features2
), 0 },
110 { offsetof(xfs_sb_t
, sb_bad_features2
), 0 },
111 { sizeof(xfs_sb_t
), 0 }
114 static DEFINE_MUTEX(xfs_uuid_table_mutex
);
115 static int xfs_uuid_table_size
;
116 static uuid_t
*xfs_uuid_table
;
119 * See if the UUID is unique among mounted XFS filesystems.
120 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
124 struct xfs_mount
*mp
)
126 uuid_t
*uuid
= &mp
->m_sb
.sb_uuid
;
129 if (mp
->m_flags
& XFS_MOUNT_NOUUID
)
132 if (uuid_is_nil(uuid
)) {
133 xfs_warn(mp
, "Filesystem has nil UUID - can't mount");
134 return XFS_ERROR(EINVAL
);
137 mutex_lock(&xfs_uuid_table_mutex
);
138 for (i
= 0, hole
= -1; i
< xfs_uuid_table_size
; i
++) {
139 if (uuid_is_nil(&xfs_uuid_table
[i
])) {
143 if (uuid_equal(uuid
, &xfs_uuid_table
[i
]))
148 xfs_uuid_table
= kmem_realloc(xfs_uuid_table
,
149 (xfs_uuid_table_size
+ 1) * sizeof(*xfs_uuid_table
),
150 xfs_uuid_table_size
* sizeof(*xfs_uuid_table
),
152 hole
= xfs_uuid_table_size
++;
154 xfs_uuid_table
[hole
] = *uuid
;
155 mutex_unlock(&xfs_uuid_table_mutex
);
160 mutex_unlock(&xfs_uuid_table_mutex
);
161 xfs_warn(mp
, "Filesystem has duplicate UUID %pU - can't mount", uuid
);
162 return XFS_ERROR(EINVAL
);
167 struct xfs_mount
*mp
)
169 uuid_t
*uuid
= &mp
->m_sb
.sb_uuid
;
172 if (mp
->m_flags
& XFS_MOUNT_NOUUID
)
175 mutex_lock(&xfs_uuid_table_mutex
);
176 for (i
= 0; i
< xfs_uuid_table_size
; i
++) {
177 if (uuid_is_nil(&xfs_uuid_table
[i
]))
179 if (!uuid_equal(uuid
, &xfs_uuid_table
[i
]))
181 memset(&xfs_uuid_table
[i
], 0, sizeof(uuid_t
));
184 ASSERT(i
< xfs_uuid_table_size
);
185 mutex_unlock(&xfs_uuid_table_mutex
);
190 * Reference counting access wrappers to the perag structures.
191 * Because we never free per-ag structures, the only thing we
192 * have to protect against changes is the tree structure itself.
195 xfs_perag_get(struct xfs_mount
*mp
, xfs_agnumber_t agno
)
197 struct xfs_perag
*pag
;
201 pag
= radix_tree_lookup(&mp
->m_perag_tree
, agno
);
203 ASSERT(atomic_read(&pag
->pag_ref
) >= 0);
204 ref
= atomic_inc_return(&pag
->pag_ref
);
207 trace_xfs_perag_get(mp
, agno
, ref
, _RET_IP_
);
212 * search from @first to find the next perag with the given tag set.
216 struct xfs_mount
*mp
,
217 xfs_agnumber_t first
,
220 struct xfs_perag
*pag
;
225 found
= radix_tree_gang_lookup_tag(&mp
->m_perag_tree
,
226 (void **)&pag
, first
, 1, tag
);
231 ref
= atomic_inc_return(&pag
->pag_ref
);
233 trace_xfs_perag_get_tag(mp
, pag
->pag_agno
, ref
, _RET_IP_
);
238 xfs_perag_put(struct xfs_perag
*pag
)
242 ASSERT(atomic_read(&pag
->pag_ref
) > 0);
243 ref
= atomic_dec_return(&pag
->pag_ref
);
244 trace_xfs_perag_put(pag
->pag_mount
, pag
->pag_agno
, ref
, _RET_IP_
);
249 struct rcu_head
*head
)
251 struct xfs_perag
*pag
= container_of(head
, struct xfs_perag
, rcu_head
);
253 ASSERT(atomic_read(&pag
->pag_ref
) == 0);
258 * Free up the per-ag resources associated with the mount structure.
265 struct xfs_perag
*pag
;
267 for (agno
= 0; agno
< mp
->m_sb
.sb_agcount
; agno
++) {
268 spin_lock(&mp
->m_perag_lock
);
269 pag
= radix_tree_delete(&mp
->m_perag_tree
, agno
);
270 spin_unlock(&mp
->m_perag_lock
);
272 ASSERT(atomic_read(&pag
->pag_ref
) == 0);
273 call_rcu(&pag
->rcu_head
, __xfs_free_perag
);
278 * Check size of device based on the (data/realtime) block count.
279 * Note: this check is used by the growfs code as well as mount.
282 xfs_sb_validate_fsb_count(
286 ASSERT(PAGE_SHIFT
>= sbp
->sb_blocklog
);
287 ASSERT(sbp
->sb_blocklog
>= BBSHIFT
);
289 #if XFS_BIG_BLKNOS /* Limited by ULONG_MAX of page cache index */
290 if (nblocks
>> (PAGE_CACHE_SHIFT
- sbp
->sb_blocklog
) > ULONG_MAX
)
292 #else /* Limited by UINT_MAX of sectors */
293 if (nblocks
<< (sbp
->sb_blocklog
- BBSHIFT
) > UINT_MAX
)
300 * Check the validity of the SB found.
303 xfs_mount_validate_sb(
308 int loud
= !(flags
& XFS_MFSI_QUIET
);
311 * If the log device and data device have the
312 * same device number, the log is internal.
313 * Consequently, the sb_logstart should be non-zero. If
314 * we have a zero sb_logstart in this case, we may be trying to mount
315 * a volume filesystem in a non-volume manner.
317 if (sbp
->sb_magicnum
!= XFS_SB_MAGIC
) {
319 xfs_warn(mp
, "bad magic number");
320 return XFS_ERROR(EWRONGFS
);
323 if (!xfs_sb_good_version(sbp
)) {
325 xfs_warn(mp
, "bad version");
326 return XFS_ERROR(EWRONGFS
);
330 sbp
->sb_logstart
== 0 && mp
->m_logdev_targp
== mp
->m_ddev_targp
)) {
333 "filesystem is marked as having an external log; "
334 "specify logdev on the mount command line.");
335 return XFS_ERROR(EINVAL
);
339 sbp
->sb_logstart
!= 0 && mp
->m_logdev_targp
!= mp
->m_ddev_targp
)) {
342 "filesystem is marked as having an internal log; "
343 "do not specify logdev on the mount command line.");
344 return XFS_ERROR(EINVAL
);
348 * More sanity checking. Most of these were stolen directly from
352 sbp
->sb_agcount
<= 0 ||
353 sbp
->sb_sectsize
< XFS_MIN_SECTORSIZE
||
354 sbp
->sb_sectsize
> XFS_MAX_SECTORSIZE
||
355 sbp
->sb_sectlog
< XFS_MIN_SECTORSIZE_LOG
||
356 sbp
->sb_sectlog
> XFS_MAX_SECTORSIZE_LOG
||
357 sbp
->sb_sectsize
!= (1 << sbp
->sb_sectlog
) ||
358 sbp
->sb_blocksize
< XFS_MIN_BLOCKSIZE
||
359 sbp
->sb_blocksize
> XFS_MAX_BLOCKSIZE
||
360 sbp
->sb_blocklog
< XFS_MIN_BLOCKSIZE_LOG
||
361 sbp
->sb_blocklog
> XFS_MAX_BLOCKSIZE_LOG
||
362 sbp
->sb_blocksize
!= (1 << sbp
->sb_blocklog
) ||
363 sbp
->sb_inodesize
< XFS_DINODE_MIN_SIZE
||
364 sbp
->sb_inodesize
> XFS_DINODE_MAX_SIZE
||
365 sbp
->sb_inodelog
< XFS_DINODE_MIN_LOG
||
366 sbp
->sb_inodelog
> XFS_DINODE_MAX_LOG
||
367 sbp
->sb_inodesize
!= (1 << sbp
->sb_inodelog
) ||
368 (sbp
->sb_blocklog
- sbp
->sb_inodelog
!= sbp
->sb_inopblog
) ||
369 (sbp
->sb_rextsize
* sbp
->sb_blocksize
> XFS_MAX_RTEXTSIZE
) ||
370 (sbp
->sb_rextsize
* sbp
->sb_blocksize
< XFS_MIN_RTEXTSIZE
) ||
371 (sbp
->sb_imax_pct
> 100 /* zero sb_imax_pct is valid */) ||
372 sbp
->sb_dblocks
== 0 ||
373 sbp
->sb_dblocks
> XFS_MAX_DBLOCKS(sbp
) ||
374 sbp
->sb_dblocks
< XFS_MIN_DBLOCKS(sbp
))) {
376 XFS_CORRUPTION_ERROR("SB sanity check failed",
377 XFS_ERRLEVEL_LOW
, mp
, sbp
);
378 return XFS_ERROR(EFSCORRUPTED
);
382 * Until this is fixed only page-sized or smaller data blocks work.
384 if (unlikely(sbp
->sb_blocksize
> PAGE_SIZE
)) {
387 "File system with blocksize %d bytes. "
388 "Only pagesize (%ld) or less will currently work.",
389 sbp
->sb_blocksize
, PAGE_SIZE
);
391 return XFS_ERROR(ENOSYS
);
395 * Currently only very few inode sizes are supported.
397 switch (sbp
->sb_inodesize
) {
405 xfs_warn(mp
, "inode size of %d bytes not supported",
407 return XFS_ERROR(ENOSYS
);
410 if (xfs_sb_validate_fsb_count(sbp
, sbp
->sb_dblocks
) ||
411 xfs_sb_validate_fsb_count(sbp
, sbp
->sb_rblocks
)) {
414 "file system too large to be mounted on this system.");
415 return XFS_ERROR(EFBIG
);
418 if (unlikely(sbp
->sb_inprogress
)) {
420 xfs_warn(mp
, "file system busy");
421 return XFS_ERROR(EFSCORRUPTED
);
425 * Version 1 directory format has never worked on Linux.
427 if (unlikely(!xfs_sb_version_hasdirv2(sbp
))) {
430 "file system using version 1 directory format");
431 return XFS_ERROR(ENOSYS
);
438 xfs_initialize_perag(
440 xfs_agnumber_t agcount
,
441 xfs_agnumber_t
*maxagi
)
443 xfs_agnumber_t index
, max_metadata
;
444 xfs_agnumber_t first_initialised
= 0;
448 xfs_sb_t
*sbp
= &mp
->m_sb
;
452 * Walk the current per-ag tree so we don't try to initialise AGs
453 * that already exist (growfs case). Allocate and insert all the
454 * AGs we don't find ready for initialisation.
456 for (index
= 0; index
< agcount
; index
++) {
457 pag
= xfs_perag_get(mp
, index
);
462 if (!first_initialised
)
463 first_initialised
= index
;
465 pag
= kmem_zalloc(sizeof(*pag
), KM_MAYFAIL
);
468 pag
->pag_agno
= index
;
470 spin_lock_init(&pag
->pag_ici_lock
);
471 mutex_init(&pag
->pag_ici_reclaim_lock
);
472 INIT_RADIX_TREE(&pag
->pag_ici_root
, GFP_ATOMIC
);
473 spin_lock_init(&pag
->pag_buf_lock
);
474 pag
->pag_buf_tree
= RB_ROOT
;
476 if (radix_tree_preload(GFP_NOFS
))
479 spin_lock(&mp
->m_perag_lock
);
480 if (radix_tree_insert(&mp
->m_perag_tree
, index
, pag
)) {
482 spin_unlock(&mp
->m_perag_lock
);
483 radix_tree_preload_end();
487 spin_unlock(&mp
->m_perag_lock
);
488 radix_tree_preload_end();
492 * If we mount with the inode64 option, or no inode overflows
493 * the legacy 32-bit address space clear the inode32 option.
495 agino
= XFS_OFFBNO_TO_AGINO(mp
, sbp
->sb_agblocks
- 1, 0);
496 ino
= XFS_AGINO_TO_INO(mp
, agcount
- 1, agino
);
498 if ((mp
->m_flags
& XFS_MOUNT_SMALL_INUMS
) && ino
> XFS_MAXINUMBER_32
)
499 mp
->m_flags
|= XFS_MOUNT_32BITINODES
;
501 mp
->m_flags
&= ~XFS_MOUNT_32BITINODES
;
503 if (mp
->m_flags
& XFS_MOUNT_32BITINODES
) {
505 * Calculate how much should be reserved for inodes to meet
506 * the max inode percentage.
508 if (mp
->m_maxicount
) {
511 icount
= sbp
->sb_dblocks
* sbp
->sb_imax_pct
;
513 icount
+= sbp
->sb_agblocks
- 1;
514 do_div(icount
, sbp
->sb_agblocks
);
515 max_metadata
= icount
;
517 max_metadata
= agcount
;
520 for (index
= 0; index
< agcount
; index
++) {
521 ino
= XFS_AGINO_TO_INO(mp
, index
, agino
);
522 if (ino
> XFS_MAXINUMBER_32
) {
527 pag
= xfs_perag_get(mp
, index
);
528 pag
->pagi_inodeok
= 1;
529 if (index
< max_metadata
)
530 pag
->pagf_metadata
= 1;
534 for (index
= 0; index
< agcount
; index
++) {
535 pag
= xfs_perag_get(mp
, index
);
536 pag
->pagi_inodeok
= 1;
547 for (; index
> first_initialised
; index
--) {
548 pag
= radix_tree_delete(&mp
->m_perag_tree
, index
);
556 struct xfs_mount
*mp
,
559 struct xfs_sb
*to
= &mp
->m_sb
;
561 to
->sb_magicnum
= be32_to_cpu(from
->sb_magicnum
);
562 to
->sb_blocksize
= be32_to_cpu(from
->sb_blocksize
);
563 to
->sb_dblocks
= be64_to_cpu(from
->sb_dblocks
);
564 to
->sb_rblocks
= be64_to_cpu(from
->sb_rblocks
);
565 to
->sb_rextents
= be64_to_cpu(from
->sb_rextents
);
566 memcpy(&to
->sb_uuid
, &from
->sb_uuid
, sizeof(to
->sb_uuid
));
567 to
->sb_logstart
= be64_to_cpu(from
->sb_logstart
);
568 to
->sb_rootino
= be64_to_cpu(from
->sb_rootino
);
569 to
->sb_rbmino
= be64_to_cpu(from
->sb_rbmino
);
570 to
->sb_rsumino
= be64_to_cpu(from
->sb_rsumino
);
571 to
->sb_rextsize
= be32_to_cpu(from
->sb_rextsize
);
572 to
->sb_agblocks
= be32_to_cpu(from
->sb_agblocks
);
573 to
->sb_agcount
= be32_to_cpu(from
->sb_agcount
);
574 to
->sb_rbmblocks
= be32_to_cpu(from
->sb_rbmblocks
);
575 to
->sb_logblocks
= be32_to_cpu(from
->sb_logblocks
);
576 to
->sb_versionnum
= be16_to_cpu(from
->sb_versionnum
);
577 to
->sb_sectsize
= be16_to_cpu(from
->sb_sectsize
);
578 to
->sb_inodesize
= be16_to_cpu(from
->sb_inodesize
);
579 to
->sb_inopblock
= be16_to_cpu(from
->sb_inopblock
);
580 memcpy(&to
->sb_fname
, &from
->sb_fname
, sizeof(to
->sb_fname
));
581 to
->sb_blocklog
= from
->sb_blocklog
;
582 to
->sb_sectlog
= from
->sb_sectlog
;
583 to
->sb_inodelog
= from
->sb_inodelog
;
584 to
->sb_inopblog
= from
->sb_inopblog
;
585 to
->sb_agblklog
= from
->sb_agblklog
;
586 to
->sb_rextslog
= from
->sb_rextslog
;
587 to
->sb_inprogress
= from
->sb_inprogress
;
588 to
->sb_imax_pct
= from
->sb_imax_pct
;
589 to
->sb_icount
= be64_to_cpu(from
->sb_icount
);
590 to
->sb_ifree
= be64_to_cpu(from
->sb_ifree
);
591 to
->sb_fdblocks
= be64_to_cpu(from
->sb_fdblocks
);
592 to
->sb_frextents
= be64_to_cpu(from
->sb_frextents
);
593 to
->sb_uquotino
= be64_to_cpu(from
->sb_uquotino
);
594 to
->sb_gquotino
= be64_to_cpu(from
->sb_gquotino
);
595 to
->sb_qflags
= be16_to_cpu(from
->sb_qflags
);
596 to
->sb_flags
= from
->sb_flags
;
597 to
->sb_shared_vn
= from
->sb_shared_vn
;
598 to
->sb_inoalignmt
= be32_to_cpu(from
->sb_inoalignmt
);
599 to
->sb_unit
= be32_to_cpu(from
->sb_unit
);
600 to
->sb_width
= be32_to_cpu(from
->sb_width
);
601 to
->sb_dirblklog
= from
->sb_dirblklog
;
602 to
->sb_logsectlog
= from
->sb_logsectlog
;
603 to
->sb_logsectsize
= be16_to_cpu(from
->sb_logsectsize
);
604 to
->sb_logsunit
= be32_to_cpu(from
->sb_logsunit
);
605 to
->sb_features2
= be32_to_cpu(from
->sb_features2
);
606 to
->sb_bad_features2
= be32_to_cpu(from
->sb_bad_features2
);
610 * Copy in core superblock to ondisk one.
612 * The fields argument is mask of superblock fields to copy.
620 xfs_caddr_t to_ptr
= (xfs_caddr_t
)to
;
621 xfs_caddr_t from_ptr
= (xfs_caddr_t
)from
;
631 f
= (xfs_sb_field_t
)xfs_lowbit64((__uint64_t
)fields
);
632 first
= xfs_sb_info
[f
].offset
;
633 size
= xfs_sb_info
[f
+ 1].offset
- first
;
635 ASSERT(xfs_sb_info
[f
].type
== 0 || xfs_sb_info
[f
].type
== 1);
637 if (size
== 1 || xfs_sb_info
[f
].type
== 1) {
638 memcpy(to_ptr
+ first
, from_ptr
+ first
, size
);
642 *(__be16
*)(to_ptr
+ first
) =
643 cpu_to_be16(*(__u16
*)(from_ptr
+ first
));
646 *(__be32
*)(to_ptr
+ first
) =
647 cpu_to_be32(*(__u32
*)(from_ptr
+ first
));
650 *(__be64
*)(to_ptr
+ first
) =
651 cpu_to_be64(*(__u64
*)(from_ptr
+ first
));
658 fields
&= ~(1LL << f
);
665 * Does the initial read of the superblock.
668 xfs_readsb(xfs_mount_t
*mp
, int flags
)
670 unsigned int sector_size
;
673 int loud
= !(flags
& XFS_MFSI_QUIET
);
675 ASSERT(mp
->m_sb_bp
== NULL
);
676 ASSERT(mp
->m_ddev_targp
!= NULL
);
679 * Allocate a (locked) buffer to hold the superblock.
680 * This will be kept around at all times to optimize
681 * access to the superblock.
683 sector_size
= xfs_getsize_buftarg(mp
->m_ddev_targp
);
686 bp
= xfs_buf_read_uncached(mp
->m_ddev_targp
, XFS_SB_DADDR
,
687 BTOBB(sector_size
), 0);
690 xfs_warn(mp
, "SB buffer read failed");
695 * Initialize the mount structure from the superblock.
696 * But first do some basic consistency checking.
698 xfs_sb_from_disk(mp
, XFS_BUF_TO_SBP(bp
));
699 error
= xfs_mount_validate_sb(mp
, &(mp
->m_sb
), flags
);
702 xfs_warn(mp
, "SB validate failed");
707 * We must be able to do sector-sized and sector-aligned IO.
709 if (sector_size
> mp
->m_sb
.sb_sectsize
) {
711 xfs_warn(mp
, "device supports %u byte sectors (not %u)",
712 sector_size
, mp
->m_sb
.sb_sectsize
);
718 * If device sector size is smaller than the superblock size,
719 * re-read the superblock so the buffer is correctly sized.
721 if (sector_size
< mp
->m_sb
.sb_sectsize
) {
723 sector_size
= mp
->m_sb
.sb_sectsize
;
727 /* Initialize per-cpu counters */
728 xfs_icsb_reinit_counters(mp
);
743 * Mount initialization code establishing various mount
744 * fields from the superblock associated with the given
748 xfs_mount_common(xfs_mount_t
*mp
, xfs_sb_t
*sbp
)
750 mp
->m_agfrotor
= mp
->m_agirotor
= 0;
751 spin_lock_init(&mp
->m_agirotor_lock
);
752 mp
->m_maxagi
= mp
->m_sb
.sb_agcount
;
753 mp
->m_blkbit_log
= sbp
->sb_blocklog
+ XFS_NBBYLOG
;
754 mp
->m_blkbb_log
= sbp
->sb_blocklog
- BBSHIFT
;
755 mp
->m_sectbb_log
= sbp
->sb_sectlog
- BBSHIFT
;
756 mp
->m_agno_log
= xfs_highbit32(sbp
->sb_agcount
- 1) + 1;
757 mp
->m_agino_log
= sbp
->sb_inopblog
+ sbp
->sb_agblklog
;
758 mp
->m_blockmask
= sbp
->sb_blocksize
- 1;
759 mp
->m_blockwsize
= sbp
->sb_blocksize
>> XFS_WORDLOG
;
760 mp
->m_blockwmask
= mp
->m_blockwsize
- 1;
762 mp
->m_alloc_mxr
[0] = xfs_allocbt_maxrecs(mp
, sbp
->sb_blocksize
, 1);
763 mp
->m_alloc_mxr
[1] = xfs_allocbt_maxrecs(mp
, sbp
->sb_blocksize
, 0);
764 mp
->m_alloc_mnr
[0] = mp
->m_alloc_mxr
[0] / 2;
765 mp
->m_alloc_mnr
[1] = mp
->m_alloc_mxr
[1] / 2;
767 mp
->m_inobt_mxr
[0] = xfs_inobt_maxrecs(mp
, sbp
->sb_blocksize
, 1);
768 mp
->m_inobt_mxr
[1] = xfs_inobt_maxrecs(mp
, sbp
->sb_blocksize
, 0);
769 mp
->m_inobt_mnr
[0] = mp
->m_inobt_mxr
[0] / 2;
770 mp
->m_inobt_mnr
[1] = mp
->m_inobt_mxr
[1] / 2;
772 mp
->m_bmap_dmxr
[0] = xfs_bmbt_maxrecs(mp
, sbp
->sb_blocksize
, 1);
773 mp
->m_bmap_dmxr
[1] = xfs_bmbt_maxrecs(mp
, sbp
->sb_blocksize
, 0);
774 mp
->m_bmap_dmnr
[0] = mp
->m_bmap_dmxr
[0] / 2;
775 mp
->m_bmap_dmnr
[1] = mp
->m_bmap_dmxr
[1] / 2;
777 mp
->m_bsize
= XFS_FSB_TO_BB(mp
, 1);
778 mp
->m_ialloc_inos
= (int)MAX((__uint16_t
)XFS_INODES_PER_CHUNK
,
780 mp
->m_ialloc_blks
= mp
->m_ialloc_inos
>> sbp
->sb_inopblog
;
784 * xfs_initialize_perag_data
786 * Read in each per-ag structure so we can count up the number of
787 * allocated inodes, free inodes and used filesystem blocks as this
788 * information is no longer persistent in the superblock. Once we have
789 * this information, write it into the in-core superblock structure.
792 xfs_initialize_perag_data(xfs_mount_t
*mp
, xfs_agnumber_t agcount
)
794 xfs_agnumber_t index
;
796 xfs_sb_t
*sbp
= &mp
->m_sb
;
800 uint64_t bfreelst
= 0;
804 for (index
= 0; index
< agcount
; index
++) {
806 * read the agf, then the agi. This gets us
807 * all the information we need and populates the
808 * per-ag structures for us.
810 error
= xfs_alloc_pagf_init(mp
, NULL
, index
, 0);
814 error
= xfs_ialloc_pagi_init(mp
, NULL
, index
);
817 pag
= xfs_perag_get(mp
, index
);
818 ifree
+= pag
->pagi_freecount
;
819 ialloc
+= pag
->pagi_count
;
820 bfree
+= pag
->pagf_freeblks
;
821 bfreelst
+= pag
->pagf_flcount
;
822 btree
+= pag
->pagf_btreeblks
;
826 * Overwrite incore superblock counters with just-read data
828 spin_lock(&mp
->m_sb_lock
);
829 sbp
->sb_ifree
= ifree
;
830 sbp
->sb_icount
= ialloc
;
831 sbp
->sb_fdblocks
= bfree
+ bfreelst
+ btree
;
832 spin_unlock(&mp
->m_sb_lock
);
834 /* Fixup the per-cpu counters as well. */
835 xfs_icsb_reinit_counters(mp
);
841 * Update alignment values based on mount options and sb values
844 xfs_update_alignment(xfs_mount_t
*mp
)
846 xfs_sb_t
*sbp
= &(mp
->m_sb
);
850 * If stripe unit and stripe width are not multiples
851 * of the fs blocksize turn off alignment.
853 if ((BBTOB(mp
->m_dalign
) & mp
->m_blockmask
) ||
854 (BBTOB(mp
->m_swidth
) & mp
->m_blockmask
)) {
855 if (mp
->m_flags
& XFS_MOUNT_RETERR
) {
856 xfs_warn(mp
, "alignment check failed: "
857 "(sunit/swidth vs. blocksize)");
858 return XFS_ERROR(EINVAL
);
860 mp
->m_dalign
= mp
->m_swidth
= 0;
863 * Convert the stripe unit and width to FSBs.
865 mp
->m_dalign
= XFS_BB_TO_FSBT(mp
, mp
->m_dalign
);
866 if (mp
->m_dalign
&& (sbp
->sb_agblocks
% mp
->m_dalign
)) {
867 if (mp
->m_flags
& XFS_MOUNT_RETERR
) {
868 xfs_warn(mp
, "alignment check failed: "
869 "(sunit/swidth vs. ag size)");
870 return XFS_ERROR(EINVAL
);
873 "stripe alignment turned off: sunit(%d)/swidth(%d) "
874 "incompatible with agsize(%d)",
875 mp
->m_dalign
, mp
->m_swidth
,
880 } else if (mp
->m_dalign
) {
881 mp
->m_swidth
= XFS_BB_TO_FSBT(mp
, mp
->m_swidth
);
883 if (mp
->m_flags
& XFS_MOUNT_RETERR
) {
884 xfs_warn(mp
, "alignment check failed: "
885 "sunit(%d) less than bsize(%d)",
888 return XFS_ERROR(EINVAL
);
895 * Update superblock with new values
898 if (xfs_sb_version_hasdalign(sbp
)) {
899 if (sbp
->sb_unit
!= mp
->m_dalign
) {
900 sbp
->sb_unit
= mp
->m_dalign
;
901 mp
->m_update_flags
|= XFS_SB_UNIT
;
903 if (sbp
->sb_width
!= mp
->m_swidth
) {
904 sbp
->sb_width
= mp
->m_swidth
;
905 mp
->m_update_flags
|= XFS_SB_WIDTH
;
908 } else if ((mp
->m_flags
& XFS_MOUNT_NOALIGN
) != XFS_MOUNT_NOALIGN
&&
909 xfs_sb_version_hasdalign(&mp
->m_sb
)) {
910 mp
->m_dalign
= sbp
->sb_unit
;
911 mp
->m_swidth
= sbp
->sb_width
;
918 * Set the maximum inode count for this filesystem
921 xfs_set_maxicount(xfs_mount_t
*mp
)
923 xfs_sb_t
*sbp
= &(mp
->m_sb
);
926 if (sbp
->sb_imax_pct
) {
928 * Make sure the maximum inode count is a multiple
929 * of the units we allocate inodes in.
931 icount
= sbp
->sb_dblocks
* sbp
->sb_imax_pct
;
933 do_div(icount
, mp
->m_ialloc_blks
);
934 mp
->m_maxicount
= (icount
* mp
->m_ialloc_blks
) <<
942 * Set the default minimum read and write sizes unless
943 * already specified in a mount option.
944 * We use smaller I/O sizes when the file system
945 * is being used for NFS service (wsync mount option).
948 xfs_set_rw_sizes(xfs_mount_t
*mp
)
950 xfs_sb_t
*sbp
= &(mp
->m_sb
);
951 int readio_log
, writeio_log
;
953 if (!(mp
->m_flags
& XFS_MOUNT_DFLT_IOSIZE
)) {
954 if (mp
->m_flags
& XFS_MOUNT_WSYNC
) {
955 readio_log
= XFS_WSYNC_READIO_LOG
;
956 writeio_log
= XFS_WSYNC_WRITEIO_LOG
;
958 readio_log
= XFS_READIO_LOG_LARGE
;
959 writeio_log
= XFS_WRITEIO_LOG_LARGE
;
962 readio_log
= mp
->m_readio_log
;
963 writeio_log
= mp
->m_writeio_log
;
966 if (sbp
->sb_blocklog
> readio_log
) {
967 mp
->m_readio_log
= sbp
->sb_blocklog
;
969 mp
->m_readio_log
= readio_log
;
971 mp
->m_readio_blocks
= 1 << (mp
->m_readio_log
- sbp
->sb_blocklog
);
972 if (sbp
->sb_blocklog
> writeio_log
) {
973 mp
->m_writeio_log
= sbp
->sb_blocklog
;
975 mp
->m_writeio_log
= writeio_log
;
977 mp
->m_writeio_blocks
= 1 << (mp
->m_writeio_log
- sbp
->sb_blocklog
);
981 * precalculate the low space thresholds for dynamic speculative preallocation.
984 xfs_set_low_space_thresholds(
985 struct xfs_mount
*mp
)
989 for (i
= 0; i
< XFS_LOWSP_MAX
; i
++) {
990 __uint64_t space
= mp
->m_sb
.sb_dblocks
;
993 mp
->m_low_space
[i
] = space
* (i
+ 1);
999 * Set whether we're using inode alignment.
1002 xfs_set_inoalignment(xfs_mount_t
*mp
)
1004 if (xfs_sb_version_hasalign(&mp
->m_sb
) &&
1005 mp
->m_sb
.sb_inoalignmt
>=
1006 XFS_B_TO_FSBT(mp
, mp
->m_inode_cluster_size
))
1007 mp
->m_inoalign_mask
= mp
->m_sb
.sb_inoalignmt
- 1;
1009 mp
->m_inoalign_mask
= 0;
1011 * If we are using stripe alignment, check whether
1012 * the stripe unit is a multiple of the inode alignment
1014 if (mp
->m_dalign
&& mp
->m_inoalign_mask
&&
1015 !(mp
->m_dalign
& mp
->m_inoalign_mask
))
1016 mp
->m_sinoalign
= mp
->m_dalign
;
1018 mp
->m_sinoalign
= 0;
1022 * Check that the data (and log if separate) are an ok size.
1025 xfs_check_sizes(xfs_mount_t
*mp
)
1030 d
= (xfs_daddr_t
)XFS_FSB_TO_BB(mp
, mp
->m_sb
.sb_dblocks
);
1031 if (XFS_BB_TO_FSB(mp
, d
) != mp
->m_sb
.sb_dblocks
) {
1032 xfs_warn(mp
, "filesystem size mismatch detected");
1033 return XFS_ERROR(EFBIG
);
1035 bp
= xfs_buf_read_uncached(mp
->m_ddev_targp
,
1036 d
- XFS_FSS_TO_BB(mp
, 1),
1037 XFS_FSS_TO_BB(mp
, 1), 0);
1039 xfs_warn(mp
, "last sector read failed");
1044 if (mp
->m_logdev_targp
!= mp
->m_ddev_targp
) {
1045 d
= (xfs_daddr_t
)XFS_FSB_TO_BB(mp
, mp
->m_sb
.sb_logblocks
);
1046 if (XFS_BB_TO_FSB(mp
, d
) != mp
->m_sb
.sb_logblocks
) {
1047 xfs_warn(mp
, "log size mismatch detected");
1048 return XFS_ERROR(EFBIG
);
1050 bp
= xfs_buf_read_uncached(mp
->m_logdev_targp
,
1051 d
- XFS_FSB_TO_BB(mp
, 1),
1052 XFS_FSB_TO_BB(mp
, 1), 0);
1054 xfs_warn(mp
, "log device read failed");
1063 * Clear the quotaflags in memory and in the superblock.
1066 xfs_mount_reset_sbqflags(
1067 struct xfs_mount
*mp
)
1070 struct xfs_trans
*tp
;
1075 * It is OK to look at sb_qflags here in mount path,
1076 * without m_sb_lock.
1078 if (mp
->m_sb
.sb_qflags
== 0)
1080 spin_lock(&mp
->m_sb_lock
);
1081 mp
->m_sb
.sb_qflags
= 0;
1082 spin_unlock(&mp
->m_sb_lock
);
1085 * If the fs is readonly, let the incore superblock run
1086 * with quotas off but don't flush the update out to disk
1088 if (mp
->m_flags
& XFS_MOUNT_RDONLY
)
1091 tp
= xfs_trans_alloc(mp
, XFS_TRANS_QM_SBCHANGE
);
1092 error
= xfs_trans_reserve(tp
, 0, mp
->m_sb
.sb_sectsize
+ 128, 0, 0,
1093 XFS_DEFAULT_LOG_COUNT
);
1095 xfs_trans_cancel(tp
, 0);
1096 xfs_alert(mp
, "%s: Superblock update failed!", __func__
);
1100 xfs_mod_sb(tp
, XFS_SB_QFLAGS
);
1101 return xfs_trans_commit(tp
, 0);
1105 xfs_default_resblks(xfs_mount_t
*mp
)
1110 * We default to 5% or 8192 fsbs of space reserved, whichever is
1111 * smaller. This is intended to cover concurrent allocation
1112 * transactions when we initially hit enospc. These each require a 4
1113 * block reservation. Hence by default we cover roughly 2000 concurrent
1114 * allocation reservations.
1116 resblks
= mp
->m_sb
.sb_dblocks
;
1117 do_div(resblks
, 20);
1118 resblks
= min_t(__uint64_t
, resblks
, 8192);
1123 * This function does the following on an initial mount of a file system:
1124 * - reads the superblock from disk and init the mount struct
1125 * - if we're a 32-bit kernel, do a size check on the superblock
1126 * so we don't mount terabyte filesystems
1127 * - init mount struct realtime fields
1128 * - allocate inode hash table for fs
1129 * - init directory manager
1130 * - perform recovery and init the log manager
1136 xfs_sb_t
*sbp
= &(mp
->m_sb
);
1139 uint quotamount
= 0;
1140 uint quotaflags
= 0;
1143 xfs_mount_common(mp
, sbp
);
1146 * Check for a mismatched features2 values. Older kernels
1147 * read & wrote into the wrong sb offset for sb_features2
1148 * on some platforms due to xfs_sb_t not being 64bit size aligned
1149 * when sb_features2 was added, which made older superblock
1150 * reading/writing routines swap it as a 64-bit value.
1152 * For backwards compatibility, we make both slots equal.
1154 * If we detect a mismatched field, we OR the set bits into the
1155 * existing features2 field in case it has already been modified; we
1156 * don't want to lose any features. We then update the bad location
1157 * with the ORed value so that older kernels will see any features2
1158 * flags, and mark the two fields as needing updates once the
1159 * transaction subsystem is online.
1161 if (xfs_sb_has_mismatched_features2(sbp
)) {
1162 xfs_warn(mp
, "correcting sb_features alignment problem");
1163 sbp
->sb_features2
|= sbp
->sb_bad_features2
;
1164 sbp
->sb_bad_features2
= sbp
->sb_features2
;
1165 mp
->m_update_flags
|= XFS_SB_FEATURES2
| XFS_SB_BAD_FEATURES2
;
1168 * Re-check for ATTR2 in case it was found in bad_features2
1171 if (xfs_sb_version_hasattr2(&mp
->m_sb
) &&
1172 !(mp
->m_flags
& XFS_MOUNT_NOATTR2
))
1173 mp
->m_flags
|= XFS_MOUNT_ATTR2
;
1176 if (xfs_sb_version_hasattr2(&mp
->m_sb
) &&
1177 (mp
->m_flags
& XFS_MOUNT_NOATTR2
)) {
1178 xfs_sb_version_removeattr2(&mp
->m_sb
);
1179 mp
->m_update_flags
|= XFS_SB_FEATURES2
;
1181 /* update sb_versionnum for the clearing of the morebits */
1182 if (!sbp
->sb_features2
)
1183 mp
->m_update_flags
|= XFS_SB_VERSIONNUM
;
1187 * Check if sb_agblocks is aligned at stripe boundary
1188 * If sb_agblocks is NOT aligned turn off m_dalign since
1189 * allocator alignment is within an ag, therefore ag has
1190 * to be aligned at stripe boundary.
1192 error
= xfs_update_alignment(mp
);
1196 xfs_alloc_compute_maxlevels(mp
);
1197 xfs_bmap_compute_maxlevels(mp
, XFS_DATA_FORK
);
1198 xfs_bmap_compute_maxlevels(mp
, XFS_ATTR_FORK
);
1199 xfs_ialloc_compute_maxlevels(mp
);
1201 xfs_set_maxicount(mp
);
1203 error
= xfs_uuid_mount(mp
);
1208 * Set the minimum read and write sizes
1210 xfs_set_rw_sizes(mp
);
1212 /* set the low space thresholds for dynamic preallocation */
1213 xfs_set_low_space_thresholds(mp
);
1216 * Set the inode cluster size.
1217 * This may still be overridden by the file system
1218 * block size if it is larger than the chosen cluster size.
1220 mp
->m_inode_cluster_size
= XFS_INODE_BIG_CLUSTER_SIZE
;
1223 * Set inode alignment fields
1225 xfs_set_inoalignment(mp
);
1228 * Check that the data (and log if separate) are an ok size.
1230 error
= xfs_check_sizes(mp
);
1232 goto out_remove_uuid
;
1235 * Initialize realtime fields in the mount structure
1237 error
= xfs_rtmount_init(mp
);
1239 xfs_warn(mp
, "RT mount failed");
1240 goto out_remove_uuid
;
1244 * Copies the low order bits of the timestamp and the randomly
1245 * set "sequence" number out of a UUID.
1247 uuid_getnodeuniq(&sbp
->sb_uuid
, mp
->m_fixedfsid
);
1249 mp
->m_dmevmask
= 0; /* not persistent; set after each mount */
1254 * Initialize the attribute manager's entries.
1256 mp
->m_attr_magicpct
= (mp
->m_sb
.sb_blocksize
* 37) / 100;
1259 * Initialize the precomputed transaction reservations values.
1264 * Allocate and initialize the per-ag data.
1266 spin_lock_init(&mp
->m_perag_lock
);
1267 INIT_RADIX_TREE(&mp
->m_perag_tree
, GFP_ATOMIC
);
1268 error
= xfs_initialize_perag(mp
, sbp
->sb_agcount
, &mp
->m_maxagi
);
1270 xfs_warn(mp
, "Failed per-ag init: %d", error
);
1271 goto out_remove_uuid
;
1274 if (!sbp
->sb_logblocks
) {
1275 xfs_warn(mp
, "no log defined");
1276 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW
, mp
);
1277 error
= XFS_ERROR(EFSCORRUPTED
);
1278 goto out_free_perag
;
1282 * log's mount-time initialization. Perform 1st part recovery if needed
1284 error
= xfs_log_mount(mp
, mp
->m_logdev_targp
,
1285 XFS_FSB_TO_DADDR(mp
, sbp
->sb_logstart
),
1286 XFS_FSB_TO_BB(mp
, sbp
->sb_logblocks
));
1288 xfs_warn(mp
, "log mount failed");
1293 * Now the log is mounted, we know if it was an unclean shutdown or
1294 * not. If it was, with the first phase of recovery has completed, we
1295 * have consistent AG blocks on disk. We have not recovered EFIs yet,
1296 * but they are recovered transactionally in the second recovery phase
1299 * Hence we can safely re-initialise incore superblock counters from
1300 * the per-ag data. These may not be correct if the filesystem was not
1301 * cleanly unmounted, so we need to wait for recovery to finish before
1304 * If the filesystem was cleanly unmounted, then we can trust the
1305 * values in the superblock to be correct and we don't need to do
1308 * If we are currently making the filesystem, the initialisation will
1309 * fail as the perag data is in an undefined state.
1311 if (xfs_sb_version_haslazysbcount(&mp
->m_sb
) &&
1312 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp
) &&
1313 !mp
->m_sb
.sb_inprogress
) {
1314 error
= xfs_initialize_perag_data(mp
, sbp
->sb_agcount
);
1320 * Get and sanity-check the root inode.
1321 * Save the pointer to it in the mount structure.
1323 error
= xfs_iget(mp
, NULL
, sbp
->sb_rootino
, 0, XFS_ILOCK_EXCL
, &rip
);
1325 xfs_warn(mp
, "failed to read root inode");
1326 goto out_log_dealloc
;
1329 ASSERT(rip
!= NULL
);
1331 if (unlikely(!S_ISDIR(rip
->i_d
.di_mode
))) {
1332 xfs_warn(mp
, "corrupted root inode %llu: not a directory",
1333 (unsigned long long)rip
->i_ino
);
1334 xfs_iunlock(rip
, XFS_ILOCK_EXCL
);
1335 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW
,
1337 error
= XFS_ERROR(EFSCORRUPTED
);
1340 mp
->m_rootip
= rip
; /* save it */
1342 xfs_iunlock(rip
, XFS_ILOCK_EXCL
);
1345 * Initialize realtime inode pointers in the mount structure
1347 error
= xfs_rtmount_inodes(mp
);
1350 * Free up the root inode.
1352 xfs_warn(mp
, "failed to read RT inodes");
1357 * If this is a read-only mount defer the superblock updates until
1358 * the next remount into writeable mode. Otherwise we would never
1359 * perform the update e.g. for the root filesystem.
1361 if (mp
->m_update_flags
&& !(mp
->m_flags
& XFS_MOUNT_RDONLY
)) {
1362 error
= xfs_mount_log_sb(mp
, mp
->m_update_flags
);
1364 xfs_warn(mp
, "failed to write sb changes");
1370 * Initialise the XFS quota management subsystem for this mount
1372 if (XFS_IS_QUOTA_RUNNING(mp
)) {
1373 error
= xfs_qm_newmount(mp
, "amount
, "aflags
);
1377 ASSERT(!XFS_IS_QUOTA_ON(mp
));
1380 * If a file system had quotas running earlier, but decided to
1381 * mount without -o uquota/pquota/gquota options, revoke the
1382 * quotachecked license.
1384 if (mp
->m_sb
.sb_qflags
& XFS_ALL_QUOTA_ACCT
) {
1385 xfs_notice(mp
, "resetting quota flags");
1386 error
= xfs_mount_reset_sbqflags(mp
);
1393 * Finish recovering the file system. This part needed to be
1394 * delayed until after the root and real-time bitmap inodes
1395 * were consistently read in.
1397 error
= xfs_log_mount_finish(mp
);
1399 xfs_warn(mp
, "log mount finish failed");
1404 * Complete the quota initialisation, post-log-replay component.
1407 ASSERT(mp
->m_qflags
== 0);
1408 mp
->m_qflags
= quotaflags
;
1410 xfs_qm_mount_quotas(mp
);
1414 * Now we are mounted, reserve a small amount of unused space for
1415 * privileged transactions. This is needed so that transaction
1416 * space required for critical operations can dip into this pool
1417 * when at ENOSPC. This is needed for operations like create with
1418 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
1419 * are not allowed to use this reserved space.
1421 * This may drive us straight to ENOSPC on mount, but that implies
1422 * we were already there on the last unmount. Warn if this occurs.
1424 if (!(mp
->m_flags
& XFS_MOUNT_RDONLY
)) {
1425 resblks
= xfs_default_resblks(mp
);
1426 error
= xfs_reserve_blocks(mp
, &resblks
, NULL
);
1429 "Unable to allocate reserve blocks. Continuing without reserve pool.");
1435 xfs_rtunmount_inodes(mp
);
1439 xfs_log_unmount(mp
);
1441 if (mp
->m_logdev_targp
&& mp
->m_logdev_targp
!= mp
->m_ddev_targp
)
1442 xfs_wait_buftarg(mp
->m_logdev_targp
);
1443 xfs_wait_buftarg(mp
->m_ddev_targp
);
1447 xfs_uuid_unmount(mp
);
1453 * This flushes out the inodes,dquots and the superblock, unmounts the
1454 * log and makes sure that incore structures are freed.
1458 struct xfs_mount
*mp
)
1463 xfs_qm_unmount_quotas(mp
);
1464 xfs_rtunmount_inodes(mp
);
1465 IRELE(mp
->m_rootip
);
1468 * We can potentially deadlock here if we have an inode cluster
1469 * that has been freed has its buffer still pinned in memory because
1470 * the transaction is still sitting in a iclog. The stale inodes
1471 * on that buffer will have their flush locks held until the
1472 * transaction hits the disk and the callbacks run. the inode
1473 * flush takes the flush lock unconditionally and with nothing to
1474 * push out the iclog we will never get that unlocked. hence we
1475 * need to force the log first.
1477 xfs_log_force(mp
, XFS_LOG_SYNC
);
1480 * Flush all pending changes from the AIL.
1482 xfs_ail_push_all_sync(mp
->m_ail
);
1485 * And reclaim all inodes. At this point there should be no dirty
1486 * inode, and none should be pinned or locked, but use synchronous
1487 * reclaim just to be sure.
1489 xfs_reclaim_inodes(mp
, SYNC_WAIT
);
1494 * Flush out the log synchronously so that we know for sure
1495 * that nothing is pinned. This is important because bflush()
1496 * will skip pinned buffers.
1498 xfs_log_force(mp
, XFS_LOG_SYNC
);
1501 * Unreserve any blocks we have so that when we unmount we don't account
1502 * the reserved free space as used. This is really only necessary for
1503 * lazy superblock counting because it trusts the incore superblock
1504 * counters to be absolutely correct on clean unmount.
1506 * We don't bother correcting this elsewhere for lazy superblock
1507 * counting because on mount of an unclean filesystem we reconstruct the
1508 * correct counter value and this is irrelevant.
1510 * For non-lazy counter filesystems, this doesn't matter at all because
1511 * we only every apply deltas to the superblock and hence the incore
1512 * value does not matter....
1515 error
= xfs_reserve_blocks(mp
, &resblks
, NULL
);
1517 xfs_warn(mp
, "Unable to free reserved block pool. "
1518 "Freespace may not be correct on next mount.");
1520 error
= xfs_log_sbcount(mp
);
1522 xfs_warn(mp
, "Unable to update superblock counters. "
1523 "Freespace may not be correct on next mount.");
1526 * At this point we might have modified the superblock again and thus
1527 * added an item to the AIL, thus flush it again.
1529 xfs_ail_push_all_sync(mp
->m_ail
);
1530 xfs_wait_buftarg(mp
->m_ddev_targp
);
1533 * The superblock buffer is uncached and xfsaild_push() will lock and
1534 * set the XBF_ASYNC flag on the buffer. We cannot do xfs_buf_iowait()
1535 * here but a lock on the superblock buffer will block until iodone()
1538 xfs_buf_lock(mp
->m_sb_bp
);
1539 xfs_buf_unlock(mp
->m_sb_bp
);
1541 xfs_log_unmount_write(mp
);
1542 xfs_log_unmount(mp
);
1543 xfs_uuid_unmount(mp
);
1546 xfs_errortag_clearall(mp
, 0);
1552 xfs_fs_writable(xfs_mount_t
*mp
)
1554 return !(mp
->m_super
->s_writers
.frozen
|| XFS_FORCED_SHUTDOWN(mp
) ||
1555 (mp
->m_flags
& XFS_MOUNT_RDONLY
));
1561 * Sync the superblock counters to disk.
1563 * Note this code can be called during the process of freezing, so
1564 * we may need to use the transaction allocator which does not
1565 * block when the transaction subsystem is in its frozen state.
1568 xfs_log_sbcount(xfs_mount_t
*mp
)
1573 if (!xfs_fs_writable(mp
))
1576 xfs_icsb_sync_counters(mp
, 0);
1579 * we don't need to do this if we are updating the superblock
1580 * counters on every modification.
1582 if (!xfs_sb_version_haslazysbcount(&mp
->m_sb
))
1585 tp
= _xfs_trans_alloc(mp
, XFS_TRANS_SB_COUNT
, KM_SLEEP
);
1586 error
= xfs_trans_reserve(tp
, 0, mp
->m_sb
.sb_sectsize
+ 128, 0, 0,
1587 XFS_DEFAULT_LOG_COUNT
);
1589 xfs_trans_cancel(tp
, 0);
1593 xfs_mod_sb(tp
, XFS_SB_IFREE
| XFS_SB_ICOUNT
| XFS_SB_FDBLOCKS
);
1594 xfs_trans_set_sync(tp
);
1595 error
= xfs_trans_commit(tp
, 0);
1600 * xfs_mod_sb() can be used to copy arbitrary changes to the
1601 * in-core superblock into the superblock buffer to be logged.
1602 * It does not provide the higher level of locking that is
1603 * needed to protect the in-core superblock from concurrent
1607 xfs_mod_sb(xfs_trans_t
*tp
, __int64_t fields
)
1619 bp
= xfs_trans_getsb(tp
, mp
, 0);
1620 first
= sizeof(xfs_sb_t
);
1623 /* translate/copy */
1625 xfs_sb_to_disk(XFS_BUF_TO_SBP(bp
), &mp
->m_sb
, fields
);
1627 /* find modified range */
1628 f
= (xfs_sb_field_t
)xfs_highbit64((__uint64_t
)fields
);
1629 ASSERT((1LL << f
) & XFS_SB_MOD_BITS
);
1630 last
= xfs_sb_info
[f
+ 1].offset
- 1;
1632 f
= (xfs_sb_field_t
)xfs_lowbit64((__uint64_t
)fields
);
1633 ASSERT((1LL << f
) & XFS_SB_MOD_BITS
);
1634 first
= xfs_sb_info
[f
].offset
;
1636 xfs_trans_log_buf(tp
, bp
, first
, last
);
1641 * xfs_mod_incore_sb_unlocked() is a utility routine common used to apply
1642 * a delta to a specified field in the in-core superblock. Simply
1643 * switch on the field indicated and apply the delta to that field.
1644 * Fields are not allowed to dip below zero, so if the delta would
1645 * do this do not apply it and return EINVAL.
1647 * The m_sb_lock must be held when this routine is called.
1650 xfs_mod_incore_sb_unlocked(
1652 xfs_sb_field_t field
,
1656 int scounter
; /* short counter for 32 bit fields */
1657 long long lcounter
; /* long counter for 64 bit fields */
1658 long long res_used
, rem
;
1661 * With the in-core superblock spin lock held, switch
1662 * on the indicated field. Apply the delta to the
1663 * proper field. If the fields value would dip below
1664 * 0, then do not apply the delta and return EINVAL.
1667 case XFS_SBS_ICOUNT
:
1668 lcounter
= (long long)mp
->m_sb
.sb_icount
;
1672 return XFS_ERROR(EINVAL
);
1674 mp
->m_sb
.sb_icount
= lcounter
;
1677 lcounter
= (long long)mp
->m_sb
.sb_ifree
;
1681 return XFS_ERROR(EINVAL
);
1683 mp
->m_sb
.sb_ifree
= lcounter
;
1685 case XFS_SBS_FDBLOCKS
:
1686 lcounter
= (long long)
1687 mp
->m_sb
.sb_fdblocks
- XFS_ALLOC_SET_ASIDE(mp
);
1688 res_used
= (long long)(mp
->m_resblks
- mp
->m_resblks_avail
);
1690 if (delta
> 0) { /* Putting blocks back */
1691 if (res_used
> delta
) {
1692 mp
->m_resblks_avail
+= delta
;
1694 rem
= delta
- res_used
;
1695 mp
->m_resblks_avail
= mp
->m_resblks
;
1698 } else { /* Taking blocks away */
1700 if (lcounter
>= 0) {
1701 mp
->m_sb
.sb_fdblocks
= lcounter
+
1702 XFS_ALLOC_SET_ASIDE(mp
);
1707 * We are out of blocks, use any available reserved
1708 * blocks if were allowed to.
1711 return XFS_ERROR(ENOSPC
);
1713 lcounter
= (long long)mp
->m_resblks_avail
+ delta
;
1714 if (lcounter
>= 0) {
1715 mp
->m_resblks_avail
= lcounter
;
1718 printk_once(KERN_WARNING
1719 "Filesystem \"%s\": reserve blocks depleted! "
1720 "Consider increasing reserve pool size.",
1722 return XFS_ERROR(ENOSPC
);
1725 mp
->m_sb
.sb_fdblocks
= lcounter
+ XFS_ALLOC_SET_ASIDE(mp
);
1727 case XFS_SBS_FREXTENTS
:
1728 lcounter
= (long long)mp
->m_sb
.sb_frextents
;
1731 return XFS_ERROR(ENOSPC
);
1733 mp
->m_sb
.sb_frextents
= lcounter
;
1735 case XFS_SBS_DBLOCKS
:
1736 lcounter
= (long long)mp
->m_sb
.sb_dblocks
;
1740 return XFS_ERROR(EINVAL
);
1742 mp
->m_sb
.sb_dblocks
= lcounter
;
1744 case XFS_SBS_AGCOUNT
:
1745 scounter
= mp
->m_sb
.sb_agcount
;
1749 return XFS_ERROR(EINVAL
);
1751 mp
->m_sb
.sb_agcount
= scounter
;
1753 case XFS_SBS_IMAX_PCT
:
1754 scounter
= mp
->m_sb
.sb_imax_pct
;
1758 return XFS_ERROR(EINVAL
);
1760 mp
->m_sb
.sb_imax_pct
= scounter
;
1762 case XFS_SBS_REXTSIZE
:
1763 scounter
= mp
->m_sb
.sb_rextsize
;
1767 return XFS_ERROR(EINVAL
);
1769 mp
->m_sb
.sb_rextsize
= scounter
;
1771 case XFS_SBS_RBMBLOCKS
:
1772 scounter
= mp
->m_sb
.sb_rbmblocks
;
1776 return XFS_ERROR(EINVAL
);
1778 mp
->m_sb
.sb_rbmblocks
= scounter
;
1780 case XFS_SBS_RBLOCKS
:
1781 lcounter
= (long long)mp
->m_sb
.sb_rblocks
;
1785 return XFS_ERROR(EINVAL
);
1787 mp
->m_sb
.sb_rblocks
= lcounter
;
1789 case XFS_SBS_REXTENTS
:
1790 lcounter
= (long long)mp
->m_sb
.sb_rextents
;
1794 return XFS_ERROR(EINVAL
);
1796 mp
->m_sb
.sb_rextents
= lcounter
;
1798 case XFS_SBS_REXTSLOG
:
1799 scounter
= mp
->m_sb
.sb_rextslog
;
1803 return XFS_ERROR(EINVAL
);
1805 mp
->m_sb
.sb_rextslog
= scounter
;
1809 return XFS_ERROR(EINVAL
);
1814 * xfs_mod_incore_sb() is used to change a field in the in-core
1815 * superblock structure by the specified delta. This modification
1816 * is protected by the m_sb_lock. Just use the xfs_mod_incore_sb_unlocked()
1817 * routine to do the work.
1821 struct xfs_mount
*mp
,
1822 xfs_sb_field_t field
,
1828 #ifdef HAVE_PERCPU_SB
1829 ASSERT(field
< XFS_SBS_ICOUNT
|| field
> XFS_SBS_FDBLOCKS
);
1831 spin_lock(&mp
->m_sb_lock
);
1832 status
= xfs_mod_incore_sb_unlocked(mp
, field
, delta
, rsvd
);
1833 spin_unlock(&mp
->m_sb_lock
);
1839 * Change more than one field in the in-core superblock structure at a time.
1841 * The fields and changes to those fields are specified in the array of
1842 * xfs_mod_sb structures passed in. Either all of the specified deltas
1843 * will be applied or none of them will. If any modified field dips below 0,
1844 * then all modifications will be backed out and EINVAL will be returned.
1846 * Note that this function may not be used for the superblock values that
1847 * are tracked with the in-memory per-cpu counters - a direct call to
1848 * xfs_icsb_modify_counters is required for these.
1851 xfs_mod_incore_sb_batch(
1852 struct xfs_mount
*mp
,
1861 * Loop through the array of mod structures and apply each individually.
1862 * If any fail, then back out all those which have already been applied.
1863 * Do all of this within the scope of the m_sb_lock so that all of the
1864 * changes will be atomic.
1866 spin_lock(&mp
->m_sb_lock
);
1867 for (msbp
= msb
; msbp
< (msb
+ nmsb
); msbp
++) {
1868 ASSERT(msbp
->msb_field
< XFS_SBS_ICOUNT
||
1869 msbp
->msb_field
> XFS_SBS_FDBLOCKS
);
1871 error
= xfs_mod_incore_sb_unlocked(mp
, msbp
->msb_field
,
1872 msbp
->msb_delta
, rsvd
);
1876 spin_unlock(&mp
->m_sb_lock
);
1880 while (--msbp
>= msb
) {
1881 error
= xfs_mod_incore_sb_unlocked(mp
, msbp
->msb_field
,
1882 -msbp
->msb_delta
, rsvd
);
1885 spin_unlock(&mp
->m_sb_lock
);
1890 * xfs_getsb() is called to obtain the buffer for the superblock.
1891 * The buffer is returned locked and read in from disk.
1892 * The buffer should be released with a call to xfs_brelse().
1894 * If the flags parameter is BUF_TRYLOCK, then we'll only return
1895 * the superblock buffer if it can be locked without sleeping.
1896 * If it can't then we'll return NULL.
1900 struct xfs_mount
*mp
,
1903 struct xfs_buf
*bp
= mp
->m_sb_bp
;
1905 if (!xfs_buf_trylock(bp
)) {
1906 if (flags
& XBF_TRYLOCK
)
1912 ASSERT(XFS_BUF_ISDONE(bp
));
1917 * Used to free the superblock along various error paths.
1921 struct xfs_mount
*mp
)
1923 struct xfs_buf
*bp
= mp
->m_sb_bp
;
1931 * Used to log changes to the superblock unit and width fields which could
1932 * be altered by the mount options, as well as any potential sb_features2
1933 * fixup. Only the first superblock is updated.
1943 ASSERT(fields
& (XFS_SB_UNIT
| XFS_SB_WIDTH
| XFS_SB_UUID
|
1944 XFS_SB_FEATURES2
| XFS_SB_BAD_FEATURES2
|
1945 XFS_SB_VERSIONNUM
));
1947 tp
= xfs_trans_alloc(mp
, XFS_TRANS_SB_UNIT
);
1948 error
= xfs_trans_reserve(tp
, 0, mp
->m_sb
.sb_sectsize
+ 128, 0, 0,
1949 XFS_DEFAULT_LOG_COUNT
);
1951 xfs_trans_cancel(tp
, 0);
1954 xfs_mod_sb(tp
, fields
);
1955 error
= xfs_trans_commit(tp
, 0);
1960 * If the underlying (data/log/rt) device is readonly, there are some
1961 * operations that cannot proceed.
1964 xfs_dev_is_read_only(
1965 struct xfs_mount
*mp
,
1968 if (xfs_readonly_buftarg(mp
->m_ddev_targp
) ||
1969 xfs_readonly_buftarg(mp
->m_logdev_targp
) ||
1970 (mp
->m_rtdev_targp
&& xfs_readonly_buftarg(mp
->m_rtdev_targp
))) {
1971 xfs_notice(mp
, "%s required on read-only device.", message
);
1972 xfs_notice(mp
, "write access unavailable, cannot proceed.");
1978 #ifdef HAVE_PERCPU_SB
1980 * Per-cpu incore superblock counters
1982 * Simple concept, difficult implementation
1984 * Basically, replace the incore superblock counters with a distributed per cpu
1985 * counter for contended fields (e.g. free block count).
1987 * Difficulties arise in that the incore sb is used for ENOSPC checking, and
1988 * hence needs to be accurately read when we are running low on space. Hence
1989 * there is a method to enable and disable the per-cpu counters based on how
1990 * much "stuff" is available in them.
1992 * Basically, a counter is enabled if there is enough free resource to justify
1993 * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local
1994 * ENOSPC), then we disable the counters to synchronise all callers and
1995 * re-distribute the available resources.
1997 * If, once we redistributed the available resources, we still get a failure,
1998 * we disable the per-cpu counter and go through the slow path.
2000 * The slow path is the current xfs_mod_incore_sb() function. This means that
2001 * when we disable a per-cpu counter, we need to drain its resources back to
2002 * the global superblock. We do this after disabling the counter to prevent
2003 * more threads from queueing up on the counter.
2005 * Essentially, this means that we still need a lock in the fast path to enable
2006 * synchronisation between the global counters and the per-cpu counters. This
2007 * is not a problem because the lock will be local to a CPU almost all the time
2008 * and have little contention except when we get to ENOSPC conditions.
2010 * Basically, this lock becomes a barrier that enables us to lock out the fast
2011 * path while we do things like enabling and disabling counters and
2012 * synchronising the counters.
2016 * 1. m_sb_lock before picking up per-cpu locks
2017 * 2. per-cpu locks always picked up via for_each_online_cpu() order
2018 * 3. accurate counter sync requires m_sb_lock + per cpu locks
2019 * 4. modifying per-cpu counters requires holding per-cpu lock
2020 * 5. modifying global counters requires holding m_sb_lock
2021 * 6. enabling or disabling a counter requires holding the m_sb_lock
2022 * and _none_ of the per-cpu locks.
2024 * Disabled counters are only ever re-enabled by a balance operation
2025 * that results in more free resources per CPU than a given threshold.
2026 * To ensure counters don't remain disabled, they are rebalanced when
2027 * the global resource goes above a higher threshold (i.e. some hysteresis
2028 * is present to prevent thrashing).
2031 #ifdef CONFIG_HOTPLUG_CPU
2033 * hot-plug CPU notifier support.
2035 * We need a notifier per filesystem as we need to be able to identify
2036 * the filesystem to balance the counters out. This is achieved by
2037 * having a notifier block embedded in the xfs_mount_t and doing pointer
2038 * magic to get the mount pointer from the notifier block address.
2041 xfs_icsb_cpu_notify(
2042 struct notifier_block
*nfb
,
2043 unsigned long action
,
2046 xfs_icsb_cnts_t
*cntp
;
2049 mp
= (xfs_mount_t
*)container_of(nfb
, xfs_mount_t
, m_icsb_notifier
);
2050 cntp
= (xfs_icsb_cnts_t
*)
2051 per_cpu_ptr(mp
->m_sb_cnts
, (unsigned long)hcpu
);
2053 case CPU_UP_PREPARE
:
2054 case CPU_UP_PREPARE_FROZEN
:
2055 /* Easy Case - initialize the area and locks, and
2056 * then rebalance when online does everything else for us. */
2057 memset(cntp
, 0, sizeof(xfs_icsb_cnts_t
));
2060 case CPU_ONLINE_FROZEN
:
2062 xfs_icsb_balance_counter(mp
, XFS_SBS_ICOUNT
, 0);
2063 xfs_icsb_balance_counter(mp
, XFS_SBS_IFREE
, 0);
2064 xfs_icsb_balance_counter(mp
, XFS_SBS_FDBLOCKS
, 0);
2065 xfs_icsb_unlock(mp
);
2068 case CPU_DEAD_FROZEN
:
2069 /* Disable all the counters, then fold the dead cpu's
2070 * count into the total on the global superblock and
2071 * re-enable the counters. */
2073 spin_lock(&mp
->m_sb_lock
);
2074 xfs_icsb_disable_counter(mp
, XFS_SBS_ICOUNT
);
2075 xfs_icsb_disable_counter(mp
, XFS_SBS_IFREE
);
2076 xfs_icsb_disable_counter(mp
, XFS_SBS_FDBLOCKS
);
2078 mp
->m_sb
.sb_icount
+= cntp
->icsb_icount
;
2079 mp
->m_sb
.sb_ifree
+= cntp
->icsb_ifree
;
2080 mp
->m_sb
.sb_fdblocks
+= cntp
->icsb_fdblocks
;
2082 memset(cntp
, 0, sizeof(xfs_icsb_cnts_t
));
2084 xfs_icsb_balance_counter_locked(mp
, XFS_SBS_ICOUNT
, 0);
2085 xfs_icsb_balance_counter_locked(mp
, XFS_SBS_IFREE
, 0);
2086 xfs_icsb_balance_counter_locked(mp
, XFS_SBS_FDBLOCKS
, 0);
2087 spin_unlock(&mp
->m_sb_lock
);
2088 xfs_icsb_unlock(mp
);
2094 #endif /* CONFIG_HOTPLUG_CPU */
2097 xfs_icsb_init_counters(
2100 xfs_icsb_cnts_t
*cntp
;
2103 mp
->m_sb_cnts
= alloc_percpu(xfs_icsb_cnts_t
);
2104 if (mp
->m_sb_cnts
== NULL
)
2107 #ifdef CONFIG_HOTPLUG_CPU
2108 mp
->m_icsb_notifier
.notifier_call
= xfs_icsb_cpu_notify
;
2109 mp
->m_icsb_notifier
.priority
= 0;
2110 register_hotcpu_notifier(&mp
->m_icsb_notifier
);
2111 #endif /* CONFIG_HOTPLUG_CPU */
2113 for_each_online_cpu(i
) {
2114 cntp
= (xfs_icsb_cnts_t
*)per_cpu_ptr(mp
->m_sb_cnts
, i
);
2115 memset(cntp
, 0, sizeof(xfs_icsb_cnts_t
));
2118 mutex_init(&mp
->m_icsb_mutex
);
2121 * start with all counters disabled so that the
2122 * initial balance kicks us off correctly
2124 mp
->m_icsb_counters
= -1;
2129 xfs_icsb_reinit_counters(
2134 * start with all counters disabled so that the
2135 * initial balance kicks us off correctly
2137 mp
->m_icsb_counters
= -1;
2138 xfs_icsb_balance_counter(mp
, XFS_SBS_ICOUNT
, 0);
2139 xfs_icsb_balance_counter(mp
, XFS_SBS_IFREE
, 0);
2140 xfs_icsb_balance_counter(mp
, XFS_SBS_FDBLOCKS
, 0);
2141 xfs_icsb_unlock(mp
);
2145 xfs_icsb_destroy_counters(
2148 if (mp
->m_sb_cnts
) {
2149 unregister_hotcpu_notifier(&mp
->m_icsb_notifier
);
2150 free_percpu(mp
->m_sb_cnts
);
2152 mutex_destroy(&mp
->m_icsb_mutex
);
2157 xfs_icsb_cnts_t
*icsbp
)
2159 while (test_and_set_bit(XFS_ICSB_FLAG_LOCK
, &icsbp
->icsb_flags
)) {
2165 xfs_icsb_unlock_cntr(
2166 xfs_icsb_cnts_t
*icsbp
)
2168 clear_bit(XFS_ICSB_FLAG_LOCK
, &icsbp
->icsb_flags
);
2173 xfs_icsb_lock_all_counters(
2176 xfs_icsb_cnts_t
*cntp
;
2179 for_each_online_cpu(i
) {
2180 cntp
= (xfs_icsb_cnts_t
*)per_cpu_ptr(mp
->m_sb_cnts
, i
);
2181 xfs_icsb_lock_cntr(cntp
);
2186 xfs_icsb_unlock_all_counters(
2189 xfs_icsb_cnts_t
*cntp
;
2192 for_each_online_cpu(i
) {
2193 cntp
= (xfs_icsb_cnts_t
*)per_cpu_ptr(mp
->m_sb_cnts
, i
);
2194 xfs_icsb_unlock_cntr(cntp
);
2201 xfs_icsb_cnts_t
*cnt
,
2204 xfs_icsb_cnts_t
*cntp
;
2207 memset(cnt
, 0, sizeof(xfs_icsb_cnts_t
));
2209 if (!(flags
& XFS_ICSB_LAZY_COUNT
))
2210 xfs_icsb_lock_all_counters(mp
);
2212 for_each_online_cpu(i
) {
2213 cntp
= (xfs_icsb_cnts_t
*)per_cpu_ptr(mp
->m_sb_cnts
, i
);
2214 cnt
->icsb_icount
+= cntp
->icsb_icount
;
2215 cnt
->icsb_ifree
+= cntp
->icsb_ifree
;
2216 cnt
->icsb_fdblocks
+= cntp
->icsb_fdblocks
;
2219 if (!(flags
& XFS_ICSB_LAZY_COUNT
))
2220 xfs_icsb_unlock_all_counters(mp
);
2224 xfs_icsb_counter_disabled(
2226 xfs_sb_field_t field
)
2228 ASSERT((field
>= XFS_SBS_ICOUNT
) && (field
<= XFS_SBS_FDBLOCKS
));
2229 return test_bit(field
, &mp
->m_icsb_counters
);
2233 xfs_icsb_disable_counter(
2235 xfs_sb_field_t field
)
2237 xfs_icsb_cnts_t cnt
;
2239 ASSERT((field
>= XFS_SBS_ICOUNT
) && (field
<= XFS_SBS_FDBLOCKS
));
2242 * If we are already disabled, then there is nothing to do
2243 * here. We check before locking all the counters to avoid
2244 * the expensive lock operation when being called in the
2245 * slow path and the counter is already disabled. This is
2246 * safe because the only time we set or clear this state is under
2249 if (xfs_icsb_counter_disabled(mp
, field
))
2252 xfs_icsb_lock_all_counters(mp
);
2253 if (!test_and_set_bit(field
, &mp
->m_icsb_counters
)) {
2254 /* drain back to superblock */
2256 xfs_icsb_count(mp
, &cnt
, XFS_ICSB_LAZY_COUNT
);
2258 case XFS_SBS_ICOUNT
:
2259 mp
->m_sb
.sb_icount
= cnt
.icsb_icount
;
2262 mp
->m_sb
.sb_ifree
= cnt
.icsb_ifree
;
2264 case XFS_SBS_FDBLOCKS
:
2265 mp
->m_sb
.sb_fdblocks
= cnt
.icsb_fdblocks
;
2272 xfs_icsb_unlock_all_counters(mp
);
2276 xfs_icsb_enable_counter(
2278 xfs_sb_field_t field
,
2282 xfs_icsb_cnts_t
*cntp
;
2285 ASSERT((field
>= XFS_SBS_ICOUNT
) && (field
<= XFS_SBS_FDBLOCKS
));
2287 xfs_icsb_lock_all_counters(mp
);
2288 for_each_online_cpu(i
) {
2289 cntp
= per_cpu_ptr(mp
->m_sb_cnts
, i
);
2291 case XFS_SBS_ICOUNT
:
2292 cntp
->icsb_icount
= count
+ resid
;
2295 cntp
->icsb_ifree
= count
+ resid
;
2297 case XFS_SBS_FDBLOCKS
:
2298 cntp
->icsb_fdblocks
= count
+ resid
;
2306 clear_bit(field
, &mp
->m_icsb_counters
);
2307 xfs_icsb_unlock_all_counters(mp
);
2311 xfs_icsb_sync_counters_locked(
2315 xfs_icsb_cnts_t cnt
;
2317 xfs_icsb_count(mp
, &cnt
, flags
);
2319 if (!xfs_icsb_counter_disabled(mp
, XFS_SBS_ICOUNT
))
2320 mp
->m_sb
.sb_icount
= cnt
.icsb_icount
;
2321 if (!xfs_icsb_counter_disabled(mp
, XFS_SBS_IFREE
))
2322 mp
->m_sb
.sb_ifree
= cnt
.icsb_ifree
;
2323 if (!xfs_icsb_counter_disabled(mp
, XFS_SBS_FDBLOCKS
))
2324 mp
->m_sb
.sb_fdblocks
= cnt
.icsb_fdblocks
;
2328 * Accurate update of per-cpu counters to incore superblock
2331 xfs_icsb_sync_counters(
2335 spin_lock(&mp
->m_sb_lock
);
2336 xfs_icsb_sync_counters_locked(mp
, flags
);
2337 spin_unlock(&mp
->m_sb_lock
);
2341 * Balance and enable/disable counters as necessary.
2343 * Thresholds for re-enabling counters are somewhat magic. inode counts are
2344 * chosen to be the same number as single on disk allocation chunk per CPU, and
2345 * free blocks is something far enough zero that we aren't going thrash when we
2346 * get near ENOSPC. We also need to supply a minimum we require per cpu to
2347 * prevent looping endlessly when xfs_alloc_space asks for more than will
2348 * be distributed to a single CPU but each CPU has enough blocks to be
2351 * Note that we can be called when counters are already disabled.
2352 * xfs_icsb_disable_counter() optimises the counter locking in this case to
2353 * prevent locking every per-cpu counter needlessly.
2356 #define XFS_ICSB_INO_CNTR_REENABLE (uint64_t)64
2357 #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \
2358 (uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp))
2360 xfs_icsb_balance_counter_locked(
2362 xfs_sb_field_t field
,
2365 uint64_t count
, resid
;
2366 int weight
= num_online_cpus();
2367 uint64_t min
= (uint64_t)min_per_cpu
;
2369 /* disable counter and sync counter */
2370 xfs_icsb_disable_counter(mp
, field
);
2372 /* update counters - first CPU gets residual*/
2374 case XFS_SBS_ICOUNT
:
2375 count
= mp
->m_sb
.sb_icount
;
2376 resid
= do_div(count
, weight
);
2377 if (count
< max(min
, XFS_ICSB_INO_CNTR_REENABLE
))
2381 count
= mp
->m_sb
.sb_ifree
;
2382 resid
= do_div(count
, weight
);
2383 if (count
< max(min
, XFS_ICSB_INO_CNTR_REENABLE
))
2386 case XFS_SBS_FDBLOCKS
:
2387 count
= mp
->m_sb
.sb_fdblocks
;
2388 resid
= do_div(count
, weight
);
2389 if (count
< max(min
, XFS_ICSB_FDBLK_CNTR_REENABLE(mp
)))
2394 count
= resid
= 0; /* quiet, gcc */
2398 xfs_icsb_enable_counter(mp
, field
, count
, resid
);
2402 xfs_icsb_balance_counter(
2404 xfs_sb_field_t fields
,
2407 spin_lock(&mp
->m_sb_lock
);
2408 xfs_icsb_balance_counter_locked(mp
, fields
, min_per_cpu
);
2409 spin_unlock(&mp
->m_sb_lock
);
2413 xfs_icsb_modify_counters(
2415 xfs_sb_field_t field
,
2419 xfs_icsb_cnts_t
*icsbp
;
2420 long long lcounter
; /* long counter for 64 bit fields */
2426 icsbp
= this_cpu_ptr(mp
->m_sb_cnts
);
2429 * if the counter is disabled, go to slow path
2431 if (unlikely(xfs_icsb_counter_disabled(mp
, field
)))
2433 xfs_icsb_lock_cntr(icsbp
);
2434 if (unlikely(xfs_icsb_counter_disabled(mp
, field
))) {
2435 xfs_icsb_unlock_cntr(icsbp
);
2440 case XFS_SBS_ICOUNT
:
2441 lcounter
= icsbp
->icsb_icount
;
2443 if (unlikely(lcounter
< 0))
2444 goto balance_counter
;
2445 icsbp
->icsb_icount
= lcounter
;
2449 lcounter
= icsbp
->icsb_ifree
;
2451 if (unlikely(lcounter
< 0))
2452 goto balance_counter
;
2453 icsbp
->icsb_ifree
= lcounter
;
2456 case XFS_SBS_FDBLOCKS
:
2457 BUG_ON((mp
->m_resblks
- mp
->m_resblks_avail
) != 0);
2459 lcounter
= icsbp
->icsb_fdblocks
- XFS_ALLOC_SET_ASIDE(mp
);
2461 if (unlikely(lcounter
< 0))
2462 goto balance_counter
;
2463 icsbp
->icsb_fdblocks
= lcounter
+ XFS_ALLOC_SET_ASIDE(mp
);
2469 xfs_icsb_unlock_cntr(icsbp
);
2477 * serialise with a mutex so we don't burn lots of cpu on
2478 * the superblock lock. We still need to hold the superblock
2479 * lock, however, when we modify the global structures.
2484 * Now running atomically.
2486 * If the counter is enabled, someone has beaten us to rebalancing.
2487 * Drop the lock and try again in the fast path....
2489 if (!(xfs_icsb_counter_disabled(mp
, field
))) {
2490 xfs_icsb_unlock(mp
);
2495 * The counter is currently disabled. Because we are
2496 * running atomically here, we know a rebalance cannot
2497 * be in progress. Hence we can go straight to operating
2498 * on the global superblock. We do not call xfs_mod_incore_sb()
2499 * here even though we need to get the m_sb_lock. Doing so
2500 * will cause us to re-enter this function and deadlock.
2501 * Hence we get the m_sb_lock ourselves and then call
2502 * xfs_mod_incore_sb_unlocked() as the unlocked path operates
2503 * directly on the global counters.
2505 spin_lock(&mp
->m_sb_lock
);
2506 ret
= xfs_mod_incore_sb_unlocked(mp
, field
, delta
, rsvd
);
2507 spin_unlock(&mp
->m_sb_lock
);
2510 * Now that we've modified the global superblock, we
2511 * may be able to re-enable the distributed counters
2512 * (e.g. lots of space just got freed). After that
2516 xfs_icsb_balance_counter(mp
, field
, 0);
2517 xfs_icsb_unlock(mp
);
2521 xfs_icsb_unlock_cntr(icsbp
);
2525 * We may have multiple threads here if multiple per-cpu
2526 * counters run dry at the same time. This will mean we can
2527 * do more balances than strictly necessary but it is not
2528 * the common slowpath case.
2533 * running atomically.
2535 * This will leave the counter in the correct state for future
2536 * accesses. After the rebalance, we simply try again and our retry
2537 * will either succeed through the fast path or slow path without
2538 * another balance operation being required.
2540 xfs_icsb_balance_counter(mp
, field
, delta
);
2541 xfs_icsb_unlock(mp
);