1 /* SCTP kernel implementation
2 * (C) Copyright 2007 Hewlett-Packard Development Company, L.P.
4 * This file is part of the SCTP kernel implementation
6 * This SCTP implementation is free software;
7 * you can redistribute it and/or modify it under the terms of
8 * the GNU General Public License as published by
9 * the Free Software Foundation; either version 2, or (at your option)
12 * This SCTP implementation is distributed in the hope that it
13 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
14 * ************************
15 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
16 * See the GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with GNU CC; see the file COPYING. If not, see
20 * <http://www.gnu.org/licenses/>.
22 * Please send any bug reports or fixes you make to the
24 * lksctp developers <linux-sctp@vger.kernel.org>
26 * Written or modified by:
27 * Vlad Yasevich <vladislav.yasevich@hp.com>
30 #include <linux/slab.h>
31 #include <linux/types.h>
32 #include <linux/crypto.h>
33 #include <linux/scatterlist.h>
34 #include <net/sctp/sctp.h>
35 #include <net/sctp/auth.h>
37 static struct sctp_hmac sctp_hmac_list
[SCTP_AUTH_NUM_HMACS
] = {
39 /* id 0 is reserved. as all 0 */
40 .hmac_id
= SCTP_AUTH_HMAC_ID_RESERVED_0
,
43 .hmac_id
= SCTP_AUTH_HMAC_ID_SHA1
,
44 .hmac_name
= "hmac(sha1)",
45 .hmac_len
= SCTP_SHA1_SIG_SIZE
,
48 /* id 2 is reserved as well */
49 .hmac_id
= SCTP_AUTH_HMAC_ID_RESERVED_2
,
51 #if defined (CONFIG_CRYPTO_SHA256) || defined (CONFIG_CRYPTO_SHA256_MODULE)
53 .hmac_id
= SCTP_AUTH_HMAC_ID_SHA256
,
54 .hmac_name
= "hmac(sha256)",
55 .hmac_len
= SCTP_SHA256_SIG_SIZE
,
61 void sctp_auth_key_put(struct sctp_auth_bytes
*key
)
66 if (atomic_dec_and_test(&key
->refcnt
)) {
68 SCTP_DBG_OBJCNT_DEC(keys
);
72 /* Create a new key structure of a given length */
73 static struct sctp_auth_bytes
*sctp_auth_create_key(__u32 key_len
, gfp_t gfp
)
75 struct sctp_auth_bytes
*key
;
77 /* Verify that we are not going to overflow INT_MAX */
78 if (key_len
> (INT_MAX
- sizeof(struct sctp_auth_bytes
)))
81 /* Allocate the shared key */
82 key
= kmalloc(sizeof(struct sctp_auth_bytes
) + key_len
, gfp
);
87 atomic_set(&key
->refcnt
, 1);
88 SCTP_DBG_OBJCNT_INC(keys
);
93 /* Create a new shared key container with a give key id */
94 struct sctp_shared_key
*sctp_auth_shkey_create(__u16 key_id
, gfp_t gfp
)
96 struct sctp_shared_key
*new;
98 /* Allocate the shared key container */
99 new = kzalloc(sizeof(struct sctp_shared_key
), gfp
);
103 INIT_LIST_HEAD(&new->key_list
);
104 new->key_id
= key_id
;
109 /* Free the shared key structure */
110 static void sctp_auth_shkey_free(struct sctp_shared_key
*sh_key
)
112 BUG_ON(!list_empty(&sh_key
->key_list
));
113 sctp_auth_key_put(sh_key
->key
);
118 /* Destroy the entire key list. This is done during the
119 * associon and endpoint free process.
121 void sctp_auth_destroy_keys(struct list_head
*keys
)
123 struct sctp_shared_key
*ep_key
;
124 struct sctp_shared_key
*tmp
;
126 if (list_empty(keys
))
129 key_for_each_safe(ep_key
, tmp
, keys
) {
130 list_del_init(&ep_key
->key_list
);
131 sctp_auth_shkey_free(ep_key
);
135 /* Compare two byte vectors as numbers. Return values
137 * 0 - vectors are equal
138 * < 0 - vector 1 is smaller than vector2
139 * > 0 - vector 1 is greater than vector2
142 * This is performed by selecting the numerically smaller key vector...
143 * If the key vectors are equal as numbers but differ in length ...
144 * the shorter vector is considered smaller
146 * Examples (with small values):
147 * 000123456789 > 123456789 (first number is longer)
148 * 000123456789 < 234567891 (second number is larger numerically)
149 * 123456789 > 2345678 (first number is both larger & longer)
151 static int sctp_auth_compare_vectors(struct sctp_auth_bytes
*vector1
,
152 struct sctp_auth_bytes
*vector2
)
158 diff
= vector1
->len
- vector2
->len
;
160 longer
= (diff
> 0) ? vector1
->data
: vector2
->data
;
162 /* Check to see if the longer number is
163 * lead-zero padded. If it is not, it
164 * is automatically larger numerically.
166 for (i
= 0; i
< abs(diff
); i
++) {
172 /* lengths are the same, compare numbers */
173 return memcmp(vector1
->data
, vector2
->data
, vector1
->len
);
177 * Create a key vector as described in SCTP-AUTH, Section 6.1
178 * The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
179 * parameter sent by each endpoint are concatenated as byte vectors.
180 * These parameters include the parameter type, parameter length, and
181 * the parameter value, but padding is omitted; all padding MUST be
182 * removed from this concatenation before proceeding with further
183 * computation of keys. Parameters which were not sent are simply
184 * omitted from the concatenation process. The resulting two vectors
185 * are called the two key vectors.
187 static struct sctp_auth_bytes
*sctp_auth_make_key_vector(
188 sctp_random_param_t
*random
,
189 sctp_chunks_param_t
*chunks
,
190 sctp_hmac_algo_param_t
*hmacs
,
193 struct sctp_auth_bytes
*new;
196 __u16 random_len
, hmacs_len
, chunks_len
= 0;
198 random_len
= ntohs(random
->param_hdr
.length
);
199 hmacs_len
= ntohs(hmacs
->param_hdr
.length
);
201 chunks_len
= ntohs(chunks
->param_hdr
.length
);
203 len
= random_len
+ hmacs_len
+ chunks_len
;
205 new = sctp_auth_create_key(len
, gfp
);
209 memcpy(new->data
, random
, random_len
);
210 offset
+= random_len
;
213 memcpy(new->data
+ offset
, chunks
, chunks_len
);
214 offset
+= chunks_len
;
217 memcpy(new->data
+ offset
, hmacs
, hmacs_len
);
223 /* Make a key vector based on our local parameters */
224 static struct sctp_auth_bytes
*sctp_auth_make_local_vector(
225 const struct sctp_association
*asoc
,
228 return sctp_auth_make_key_vector(
229 (sctp_random_param_t
*)asoc
->c
.auth_random
,
230 (sctp_chunks_param_t
*)asoc
->c
.auth_chunks
,
231 (sctp_hmac_algo_param_t
*)asoc
->c
.auth_hmacs
,
235 /* Make a key vector based on peer's parameters */
236 static struct sctp_auth_bytes
*sctp_auth_make_peer_vector(
237 const struct sctp_association
*asoc
,
240 return sctp_auth_make_key_vector(asoc
->peer
.peer_random
,
241 asoc
->peer
.peer_chunks
,
242 asoc
->peer
.peer_hmacs
,
247 /* Set the value of the association shared key base on the parameters
248 * given. The algorithm is:
249 * From the endpoint pair shared keys and the key vectors the
250 * association shared keys are computed. This is performed by selecting
251 * the numerically smaller key vector and concatenating it to the
252 * endpoint pair shared key, and then concatenating the numerically
253 * larger key vector to that. The result of the concatenation is the
254 * association shared key.
256 static struct sctp_auth_bytes
*sctp_auth_asoc_set_secret(
257 struct sctp_shared_key
*ep_key
,
258 struct sctp_auth_bytes
*first_vector
,
259 struct sctp_auth_bytes
*last_vector
,
262 struct sctp_auth_bytes
*secret
;
266 auth_len
= first_vector
->len
+ last_vector
->len
;
268 auth_len
+= ep_key
->key
->len
;
270 secret
= sctp_auth_create_key(auth_len
, gfp
);
275 memcpy(secret
->data
, ep_key
->key
->data
, ep_key
->key
->len
);
276 offset
+= ep_key
->key
->len
;
279 memcpy(secret
->data
+ offset
, first_vector
->data
, first_vector
->len
);
280 offset
+= first_vector
->len
;
282 memcpy(secret
->data
+ offset
, last_vector
->data
, last_vector
->len
);
287 /* Create an association shared key. Follow the algorithm
288 * described in SCTP-AUTH, Section 6.1
290 static struct sctp_auth_bytes
*sctp_auth_asoc_create_secret(
291 const struct sctp_association
*asoc
,
292 struct sctp_shared_key
*ep_key
,
295 struct sctp_auth_bytes
*local_key_vector
;
296 struct sctp_auth_bytes
*peer_key_vector
;
297 struct sctp_auth_bytes
*first_vector
,
299 struct sctp_auth_bytes
*secret
= NULL
;
303 /* Now we need to build the key vectors
304 * SCTP-AUTH , Section 6.1
305 * The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
306 * parameter sent by each endpoint are concatenated as byte vectors.
307 * These parameters include the parameter type, parameter length, and
308 * the parameter value, but padding is omitted; all padding MUST be
309 * removed from this concatenation before proceeding with further
310 * computation of keys. Parameters which were not sent are simply
311 * omitted from the concatenation process. The resulting two vectors
312 * are called the two key vectors.
315 local_key_vector
= sctp_auth_make_local_vector(asoc
, gfp
);
316 peer_key_vector
= sctp_auth_make_peer_vector(asoc
, gfp
);
318 if (!peer_key_vector
|| !local_key_vector
)
321 /* Figure out the order in which the key_vectors will be
322 * added to the endpoint shared key.
323 * SCTP-AUTH, Section 6.1:
324 * This is performed by selecting the numerically smaller key
325 * vector and concatenating it to the endpoint pair shared
326 * key, and then concatenating the numerically larger key
327 * vector to that. If the key vectors are equal as numbers
328 * but differ in length, then the concatenation order is the
329 * endpoint shared key, followed by the shorter key vector,
330 * followed by the longer key vector. Otherwise, the key
331 * vectors are identical, and may be concatenated to the
332 * endpoint pair key in any order.
334 cmp
= sctp_auth_compare_vectors(local_key_vector
,
337 first_vector
= local_key_vector
;
338 last_vector
= peer_key_vector
;
340 first_vector
= peer_key_vector
;
341 last_vector
= local_key_vector
;
344 secret
= sctp_auth_asoc_set_secret(ep_key
, first_vector
, last_vector
,
347 sctp_auth_key_put(local_key_vector
);
348 sctp_auth_key_put(peer_key_vector
);
354 * Populate the association overlay list with the list
357 int sctp_auth_asoc_copy_shkeys(const struct sctp_endpoint
*ep
,
358 struct sctp_association
*asoc
,
361 struct sctp_shared_key
*sh_key
;
362 struct sctp_shared_key
*new;
364 BUG_ON(!list_empty(&asoc
->endpoint_shared_keys
));
366 key_for_each(sh_key
, &ep
->endpoint_shared_keys
) {
367 new = sctp_auth_shkey_create(sh_key
->key_id
, gfp
);
371 new->key
= sh_key
->key
;
372 sctp_auth_key_hold(new->key
);
373 list_add(&new->key_list
, &asoc
->endpoint_shared_keys
);
379 sctp_auth_destroy_keys(&asoc
->endpoint_shared_keys
);
384 /* Public interface to creat the association shared key.
385 * See code above for the algorithm.
387 int sctp_auth_asoc_init_active_key(struct sctp_association
*asoc
, gfp_t gfp
)
389 struct sctp_auth_bytes
*secret
;
390 struct sctp_shared_key
*ep_key
;
392 /* If we don't support AUTH, or peer is not capable
393 * we don't need to do anything.
395 if (!asoc
->ep
->auth_enable
|| !asoc
->peer
.auth_capable
)
398 /* If the key_id is non-zero and we couldn't find an
399 * endpoint pair shared key, we can't compute the
401 * For key_id 0, endpoint pair shared key is a NULL key.
403 ep_key
= sctp_auth_get_shkey(asoc
, asoc
->active_key_id
);
406 secret
= sctp_auth_asoc_create_secret(asoc
, ep_key
, gfp
);
410 sctp_auth_key_put(asoc
->asoc_shared_key
);
411 asoc
->asoc_shared_key
= secret
;
417 /* Find the endpoint pair shared key based on the key_id */
418 struct sctp_shared_key
*sctp_auth_get_shkey(
419 const struct sctp_association
*asoc
,
422 struct sctp_shared_key
*key
;
424 /* First search associations set of endpoint pair shared keys */
425 key_for_each(key
, &asoc
->endpoint_shared_keys
) {
426 if (key
->key_id
== key_id
)
434 * Initialize all the possible digest transforms that we can use. Right now
435 * now, the supported digests are SHA1 and SHA256. We do this here once
436 * because of the restrictiong that transforms may only be allocated in
437 * user context. This forces us to pre-allocated all possible transforms
438 * at the endpoint init time.
440 int sctp_auth_init_hmacs(struct sctp_endpoint
*ep
, gfp_t gfp
)
442 struct crypto_hash
*tfm
= NULL
;
445 /* If AUTH extension is disabled, we are done */
446 if (!ep
->auth_enable
) {
447 ep
->auth_hmacs
= NULL
;
451 /* If the transforms are already allocated, we are done */
455 /* Allocated the array of pointers to transorms */
456 ep
->auth_hmacs
= kzalloc(
457 sizeof(struct crypto_hash
*) * SCTP_AUTH_NUM_HMACS
,
462 for (id
= 0; id
< SCTP_AUTH_NUM_HMACS
; id
++) {
464 /* See is we support the id. Supported IDs have name and
465 * length fields set, so that we can allocated and use
466 * them. We can safely just check for name, for without the
467 * name, we can't allocate the TFM.
469 if (!sctp_hmac_list
[id
].hmac_name
)
472 /* If this TFM has been allocated, we are all set */
473 if (ep
->auth_hmacs
[id
])
476 /* Allocate the ID */
477 tfm
= crypto_alloc_hash(sctp_hmac_list
[id
].hmac_name
, 0,
482 ep
->auth_hmacs
[id
] = tfm
;
488 /* Clean up any successful allocations */
489 sctp_auth_destroy_hmacs(ep
->auth_hmacs
);
493 /* Destroy the hmac tfm array */
494 void sctp_auth_destroy_hmacs(struct crypto_hash
*auth_hmacs
[])
501 for (i
= 0; i
< SCTP_AUTH_NUM_HMACS
; i
++) {
503 crypto_free_hash(auth_hmacs
[i
]);
509 struct sctp_hmac
*sctp_auth_get_hmac(__u16 hmac_id
)
511 return &sctp_hmac_list
[hmac_id
];
514 /* Get an hmac description information that we can use to build
517 struct sctp_hmac
*sctp_auth_asoc_get_hmac(const struct sctp_association
*asoc
)
519 struct sctp_hmac_algo_param
*hmacs
;
524 /* If we have a default entry, use it */
525 if (asoc
->default_hmac_id
)
526 return &sctp_hmac_list
[asoc
->default_hmac_id
];
528 /* Since we do not have a default entry, find the first entry
529 * we support and return that. Do not cache that id.
531 hmacs
= asoc
->peer
.peer_hmacs
;
535 n_elt
= (ntohs(hmacs
->param_hdr
.length
) - sizeof(sctp_paramhdr_t
)) >> 1;
536 for (i
= 0; i
< n_elt
; i
++) {
537 id
= ntohs(hmacs
->hmac_ids
[i
]);
539 /* Check the id is in the supported range. And
540 * see if we support the id. Supported IDs have name and
541 * length fields set, so that we can allocate and use
542 * them. We can safely just check for name, for without the
543 * name, we can't allocate the TFM.
545 if (id
> SCTP_AUTH_HMAC_ID_MAX
||
546 !sctp_hmac_list
[id
].hmac_name
) {
557 return &sctp_hmac_list
[id
];
560 static int __sctp_auth_find_hmacid(__be16
*hmacs
, int n_elts
, __be16 hmac_id
)
565 for (i
= 0; i
< n_elts
; i
++) {
566 if (hmac_id
== hmacs
[i
]) {
575 /* See if the HMAC_ID is one that we claim as supported */
576 int sctp_auth_asoc_verify_hmac_id(const struct sctp_association
*asoc
,
579 struct sctp_hmac_algo_param
*hmacs
;
585 hmacs
= (struct sctp_hmac_algo_param
*)asoc
->c
.auth_hmacs
;
586 n_elt
= (ntohs(hmacs
->param_hdr
.length
) - sizeof(sctp_paramhdr_t
)) >> 1;
588 return __sctp_auth_find_hmacid(hmacs
->hmac_ids
, n_elt
, hmac_id
);
592 /* Cache the default HMAC id. This to follow this text from SCTP-AUTH:
594 * The receiver of a HMAC-ALGO parameter SHOULD use the first listed
595 * algorithm it supports.
597 void sctp_auth_asoc_set_default_hmac(struct sctp_association
*asoc
,
598 struct sctp_hmac_algo_param
*hmacs
)
600 struct sctp_endpoint
*ep
;
605 /* if the default id is already set, use it */
606 if (asoc
->default_hmac_id
)
609 n_params
= (ntohs(hmacs
->param_hdr
.length
)
610 - sizeof(sctp_paramhdr_t
)) >> 1;
612 for (i
= 0; i
< n_params
; i
++) {
613 id
= ntohs(hmacs
->hmac_ids
[i
]);
615 /* Check the id is in the supported range */
616 if (id
> SCTP_AUTH_HMAC_ID_MAX
)
619 /* If this TFM has been allocated, use this id */
620 if (ep
->auth_hmacs
[id
]) {
621 asoc
->default_hmac_id
= id
;
628 /* Check to see if the given chunk is supposed to be authenticated */
629 static int __sctp_auth_cid(sctp_cid_t chunk
, struct sctp_chunks_param
*param
)
635 if (!param
|| param
->param_hdr
.length
== 0)
638 len
= ntohs(param
->param_hdr
.length
) - sizeof(sctp_paramhdr_t
);
640 /* SCTP-AUTH, Section 3.2
641 * The chunk types for INIT, INIT-ACK, SHUTDOWN-COMPLETE and AUTH
642 * chunks MUST NOT be listed in the CHUNKS parameter. However, if
643 * a CHUNKS parameter is received then the types for INIT, INIT-ACK,
644 * SHUTDOWN-COMPLETE and AUTH chunks MUST be ignored.
646 for (i
= 0; !found
&& i
< len
; i
++) {
647 switch (param
->chunks
[i
]) {
649 case SCTP_CID_INIT_ACK
:
650 case SCTP_CID_SHUTDOWN_COMPLETE
:
655 if (param
->chunks
[i
] == chunk
)
664 /* Check if peer requested that this chunk is authenticated */
665 int sctp_auth_send_cid(sctp_cid_t chunk
, const struct sctp_association
*asoc
)
670 if (!asoc
->ep
->auth_enable
|| !asoc
->peer
.auth_capable
)
673 return __sctp_auth_cid(chunk
, asoc
->peer
.peer_chunks
);
676 /* Check if we requested that peer authenticate this chunk. */
677 int sctp_auth_recv_cid(sctp_cid_t chunk
, const struct sctp_association
*asoc
)
682 if (!asoc
->ep
->auth_enable
)
685 return __sctp_auth_cid(chunk
,
686 (struct sctp_chunks_param
*)asoc
->c
.auth_chunks
);
689 /* SCTP-AUTH: Section 6.2:
690 * The sender MUST calculate the MAC as described in RFC2104 [2] using
691 * the hash function H as described by the MAC Identifier and the shared
692 * association key K based on the endpoint pair shared key described by
693 * the shared key identifier. The 'data' used for the computation of
694 * the AUTH-chunk is given by the AUTH chunk with its HMAC field set to
695 * zero (as shown in Figure 6) followed by all chunks that are placed
696 * after the AUTH chunk in the SCTP packet.
698 void sctp_auth_calculate_hmac(const struct sctp_association
*asoc
,
700 struct sctp_auth_chunk
*auth
,
703 struct scatterlist sg
;
704 struct hash_desc desc
;
705 struct sctp_auth_bytes
*asoc_key
;
706 __u16 key_id
, hmac_id
;
711 /* Extract the info we need:
715 key_id
= ntohs(auth
->auth_hdr
.shkey_id
);
716 hmac_id
= ntohs(auth
->auth_hdr
.hmac_id
);
718 if (key_id
== asoc
->active_key_id
)
719 asoc_key
= asoc
->asoc_shared_key
;
721 struct sctp_shared_key
*ep_key
;
723 ep_key
= sctp_auth_get_shkey(asoc
, key_id
);
727 asoc_key
= sctp_auth_asoc_create_secret(asoc
, ep_key
, gfp
);
734 /* set up scatter list */
735 end
= skb_tail_pointer(skb
);
736 sg_init_one(&sg
, auth
, end
- (unsigned char *)auth
);
738 desc
.tfm
= asoc
->ep
->auth_hmacs
[hmac_id
];
741 digest
= auth
->auth_hdr
.hmac
;
742 if (crypto_hash_setkey(desc
.tfm
, &asoc_key
->data
[0], asoc_key
->len
))
745 crypto_hash_digest(&desc
, &sg
, sg
.length
, digest
);
749 sctp_auth_key_put(asoc_key
);
754 /* Add a chunk to the endpoint authenticated chunk list */
755 int sctp_auth_ep_add_chunkid(struct sctp_endpoint
*ep
, __u8 chunk_id
)
757 struct sctp_chunks_param
*p
= ep
->auth_chunk_list
;
761 /* If this chunk is already specified, we are done */
762 if (__sctp_auth_cid(chunk_id
, p
))
765 /* Check if we can add this chunk to the array */
766 param_len
= ntohs(p
->param_hdr
.length
);
767 nchunks
= param_len
- sizeof(sctp_paramhdr_t
);
768 if (nchunks
== SCTP_NUM_CHUNK_TYPES
)
771 p
->chunks
[nchunks
] = chunk_id
;
772 p
->param_hdr
.length
= htons(param_len
+ 1);
776 /* Add hmac identifires to the endpoint list of supported hmac ids */
777 int sctp_auth_ep_set_hmacs(struct sctp_endpoint
*ep
,
778 struct sctp_hmacalgo
*hmacs
)
784 /* Scan the list looking for unsupported id. Also make sure that
787 for (i
= 0; i
< hmacs
->shmac_num_idents
; i
++) {
788 id
= hmacs
->shmac_idents
[i
];
790 if (id
> SCTP_AUTH_HMAC_ID_MAX
)
793 if (SCTP_AUTH_HMAC_ID_SHA1
== id
)
796 if (!sctp_hmac_list
[id
].hmac_name
)
803 memcpy(ep
->auth_hmacs_list
->hmac_ids
, &hmacs
->shmac_idents
[0],
804 hmacs
->shmac_num_idents
* sizeof(__u16
));
805 ep
->auth_hmacs_list
->param_hdr
.length
= htons(sizeof(sctp_paramhdr_t
) +
806 hmacs
->shmac_num_idents
* sizeof(__u16
));
810 /* Set a new shared key on either endpoint or association. If the
811 * the key with a same ID already exists, replace the key (remove the
812 * old key and add a new one).
814 int sctp_auth_set_key(struct sctp_endpoint
*ep
,
815 struct sctp_association
*asoc
,
816 struct sctp_authkey
*auth_key
)
818 struct sctp_shared_key
*cur_key
= NULL
;
819 struct sctp_auth_bytes
*key
;
820 struct list_head
*sh_keys
;
823 /* Try to find the given key id to see if
824 * we are doing a replace, or adding a new key
827 sh_keys
= &asoc
->endpoint_shared_keys
;
829 sh_keys
= &ep
->endpoint_shared_keys
;
831 key_for_each(cur_key
, sh_keys
) {
832 if (cur_key
->key_id
== auth_key
->sca_keynumber
) {
838 /* If we are not replacing a key id, we need to allocate
842 cur_key
= sctp_auth_shkey_create(auth_key
->sca_keynumber
,
848 /* Create a new key data based on the info passed in */
849 key
= sctp_auth_create_key(auth_key
->sca_keylength
, GFP_KERNEL
);
853 memcpy(key
->data
, &auth_key
->sca_key
[0], auth_key
->sca_keylength
);
855 /* If we are replacing, remove the old keys data from the
856 * key id. If we are adding new key id, add it to the
860 sctp_auth_key_put(cur_key
->key
);
862 list_add(&cur_key
->key_list
, sh_keys
);
868 sctp_auth_shkey_free(cur_key
);
873 int sctp_auth_set_active_key(struct sctp_endpoint
*ep
,
874 struct sctp_association
*asoc
,
877 struct sctp_shared_key
*key
;
878 struct list_head
*sh_keys
;
881 /* The key identifier MUST correst to an existing key */
883 sh_keys
= &asoc
->endpoint_shared_keys
;
885 sh_keys
= &ep
->endpoint_shared_keys
;
887 key_for_each(key
, sh_keys
) {
888 if (key
->key_id
== key_id
) {
898 asoc
->active_key_id
= key_id
;
899 sctp_auth_asoc_init_active_key(asoc
, GFP_KERNEL
);
901 ep
->active_key_id
= key_id
;
906 int sctp_auth_del_key_id(struct sctp_endpoint
*ep
,
907 struct sctp_association
*asoc
,
910 struct sctp_shared_key
*key
;
911 struct list_head
*sh_keys
;
914 /* The key identifier MUST NOT be the current active key
915 * The key identifier MUST correst to an existing key
918 if (asoc
->active_key_id
== key_id
)
921 sh_keys
= &asoc
->endpoint_shared_keys
;
923 if (ep
->active_key_id
== key_id
)
926 sh_keys
= &ep
->endpoint_shared_keys
;
929 key_for_each(key
, sh_keys
) {
930 if (key
->key_id
== key_id
) {
939 /* Delete the shared key */
940 list_del_init(&key
->key_list
);
941 sctp_auth_shkey_free(key
);