4 * ARM performance counter support.
6 * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
7 * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
9 * This code is based on the sparc64 perf event code, which is in turn based
12 #define pr_fmt(fmt) "hw perfevents: " fmt
14 #include <linux/bitmap.h>
15 #include <linux/cpumask.h>
16 #include <linux/export.h>
17 #include <linux/kernel.h>
18 #include <linux/of_device.h>
19 #include <linux/perf/arm_pmu.h>
20 #include <linux/platform_device.h>
21 #include <linux/slab.h>
22 #include <linux/spinlock.h>
23 #include <linux/irq.h>
24 #include <linux/irqdesc.h>
26 #include <asm/cputype.h>
27 #include <asm/irq_regs.h>
30 armpmu_map_cache_event(const unsigned (*cache_map
)
31 [PERF_COUNT_HW_CACHE_MAX
]
32 [PERF_COUNT_HW_CACHE_OP_MAX
]
33 [PERF_COUNT_HW_CACHE_RESULT_MAX
],
36 unsigned int cache_type
, cache_op
, cache_result
, ret
;
38 cache_type
= (config
>> 0) & 0xff;
39 if (cache_type
>= PERF_COUNT_HW_CACHE_MAX
)
42 cache_op
= (config
>> 8) & 0xff;
43 if (cache_op
>= PERF_COUNT_HW_CACHE_OP_MAX
)
46 cache_result
= (config
>> 16) & 0xff;
47 if (cache_result
>= PERF_COUNT_HW_CACHE_RESULT_MAX
)
50 ret
= (int)(*cache_map
)[cache_type
][cache_op
][cache_result
];
52 if (ret
== CACHE_OP_UNSUPPORTED
)
59 armpmu_map_hw_event(const unsigned (*event_map
)[PERF_COUNT_HW_MAX
], u64 config
)
63 if (config
>= PERF_COUNT_HW_MAX
)
66 mapping
= (*event_map
)[config
];
67 return mapping
== HW_OP_UNSUPPORTED
? -ENOENT
: mapping
;
71 armpmu_map_raw_event(u32 raw_event_mask
, u64 config
)
73 return (int)(config
& raw_event_mask
);
77 armpmu_map_event(struct perf_event
*event
,
78 const unsigned (*event_map
)[PERF_COUNT_HW_MAX
],
79 const unsigned (*cache_map
)
80 [PERF_COUNT_HW_CACHE_MAX
]
81 [PERF_COUNT_HW_CACHE_OP_MAX
]
82 [PERF_COUNT_HW_CACHE_RESULT_MAX
],
85 u64 config
= event
->attr
.config
;
86 int type
= event
->attr
.type
;
88 if (type
== event
->pmu
->type
)
89 return armpmu_map_raw_event(raw_event_mask
, config
);
92 case PERF_TYPE_HARDWARE
:
93 return armpmu_map_hw_event(event_map
, config
);
94 case PERF_TYPE_HW_CACHE
:
95 return armpmu_map_cache_event(cache_map
, config
);
97 return armpmu_map_raw_event(raw_event_mask
, config
);
103 int armpmu_event_set_period(struct perf_event
*event
)
105 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
106 struct hw_perf_event
*hwc
= &event
->hw
;
107 s64 left
= local64_read(&hwc
->period_left
);
108 s64 period
= hwc
->sample_period
;
111 if (unlikely(left
<= -period
)) {
113 local64_set(&hwc
->period_left
, left
);
114 hwc
->last_period
= period
;
118 if (unlikely(left
<= 0)) {
120 local64_set(&hwc
->period_left
, left
);
121 hwc
->last_period
= period
;
126 * Limit the maximum period to prevent the counter value
127 * from overtaking the one we are about to program. In
128 * effect we are reducing max_period to account for
129 * interrupt latency (and we are being very conservative).
131 if (left
> (armpmu
->max_period
>> 1))
132 left
= armpmu
->max_period
>> 1;
134 local64_set(&hwc
->prev_count
, (u64
)-left
);
136 armpmu
->write_counter(event
, (u64
)(-left
) & 0xffffffff);
138 perf_event_update_userpage(event
);
143 u64
armpmu_event_update(struct perf_event
*event
)
145 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
146 struct hw_perf_event
*hwc
= &event
->hw
;
147 u64 delta
, prev_raw_count
, new_raw_count
;
150 prev_raw_count
= local64_read(&hwc
->prev_count
);
151 new_raw_count
= armpmu
->read_counter(event
);
153 if (local64_cmpxchg(&hwc
->prev_count
, prev_raw_count
,
154 new_raw_count
) != prev_raw_count
)
157 delta
= (new_raw_count
- prev_raw_count
) & armpmu
->max_period
;
159 local64_add(delta
, &event
->count
);
160 local64_sub(delta
, &hwc
->period_left
);
162 return new_raw_count
;
166 armpmu_read(struct perf_event
*event
)
168 armpmu_event_update(event
);
172 armpmu_stop(struct perf_event
*event
, int flags
)
174 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
175 struct hw_perf_event
*hwc
= &event
->hw
;
178 * ARM pmu always has to update the counter, so ignore
179 * PERF_EF_UPDATE, see comments in armpmu_start().
181 if (!(hwc
->state
& PERF_HES_STOPPED
)) {
182 armpmu
->disable(event
);
183 armpmu_event_update(event
);
184 hwc
->state
|= PERF_HES_STOPPED
| PERF_HES_UPTODATE
;
188 static void armpmu_start(struct perf_event
*event
, int flags
)
190 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
191 struct hw_perf_event
*hwc
= &event
->hw
;
194 * ARM pmu always has to reprogram the period, so ignore
195 * PERF_EF_RELOAD, see the comment below.
197 if (flags
& PERF_EF_RELOAD
)
198 WARN_ON_ONCE(!(hwc
->state
& PERF_HES_UPTODATE
));
202 * Set the period again. Some counters can't be stopped, so when we
203 * were stopped we simply disabled the IRQ source and the counter
204 * may have been left counting. If we don't do this step then we may
205 * get an interrupt too soon or *way* too late if the overflow has
206 * happened since disabling.
208 armpmu_event_set_period(event
);
209 armpmu
->enable(event
);
213 armpmu_del(struct perf_event
*event
, int flags
)
215 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
216 struct pmu_hw_events
*hw_events
= this_cpu_ptr(armpmu
->hw_events
);
217 struct hw_perf_event
*hwc
= &event
->hw
;
220 armpmu_stop(event
, PERF_EF_UPDATE
);
221 hw_events
->events
[idx
] = NULL
;
222 clear_bit(idx
, hw_events
->used_mask
);
223 if (armpmu
->clear_event_idx
)
224 armpmu
->clear_event_idx(hw_events
, event
);
226 perf_event_update_userpage(event
);
230 armpmu_add(struct perf_event
*event
, int flags
)
232 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
233 struct pmu_hw_events
*hw_events
= this_cpu_ptr(armpmu
->hw_events
);
234 struct hw_perf_event
*hwc
= &event
->hw
;
238 /* An event following a process won't be stopped earlier */
239 if (!cpumask_test_cpu(smp_processor_id(), &armpmu
->supported_cpus
))
242 perf_pmu_disable(event
->pmu
);
244 /* If we don't have a space for the counter then finish early. */
245 idx
= armpmu
->get_event_idx(hw_events
, event
);
252 * If there is an event in the counter we are going to use then make
253 * sure it is disabled.
256 armpmu
->disable(event
);
257 hw_events
->events
[idx
] = event
;
259 hwc
->state
= PERF_HES_STOPPED
| PERF_HES_UPTODATE
;
260 if (flags
& PERF_EF_START
)
261 armpmu_start(event
, PERF_EF_RELOAD
);
263 /* Propagate our changes to the userspace mapping. */
264 perf_event_update_userpage(event
);
267 perf_pmu_enable(event
->pmu
);
272 validate_event(struct pmu
*pmu
, struct pmu_hw_events
*hw_events
,
273 struct perf_event
*event
)
275 struct arm_pmu
*armpmu
;
277 if (is_software_event(event
))
281 * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
282 * core perf code won't check that the pmu->ctx == leader->ctx
283 * until after pmu->event_init(event).
285 if (event
->pmu
!= pmu
)
288 if (event
->state
< PERF_EVENT_STATE_OFF
)
291 if (event
->state
== PERF_EVENT_STATE_OFF
&& !event
->attr
.enable_on_exec
)
294 armpmu
= to_arm_pmu(event
->pmu
);
295 return armpmu
->get_event_idx(hw_events
, event
) >= 0;
299 validate_group(struct perf_event
*event
)
301 struct perf_event
*sibling
, *leader
= event
->group_leader
;
302 struct pmu_hw_events fake_pmu
;
305 * Initialise the fake PMU. We only need to populate the
306 * used_mask for the purposes of validation.
308 memset(&fake_pmu
.used_mask
, 0, sizeof(fake_pmu
.used_mask
));
310 if (!validate_event(event
->pmu
, &fake_pmu
, leader
))
313 list_for_each_entry(sibling
, &leader
->sibling_list
, group_entry
) {
314 if (!validate_event(event
->pmu
, &fake_pmu
, sibling
))
318 if (!validate_event(event
->pmu
, &fake_pmu
, event
))
324 static irqreturn_t
armpmu_dispatch_irq(int irq
, void *dev
)
326 struct arm_pmu
*armpmu
;
327 struct platform_device
*plat_device
;
328 struct arm_pmu_platdata
*plat
;
330 u64 start_clock
, finish_clock
;
333 * we request the IRQ with a (possibly percpu) struct arm_pmu**, but
334 * the handlers expect a struct arm_pmu*. The percpu_irq framework will
335 * do any necessary shifting, we just need to perform the first
338 armpmu
= *(void **)dev
;
339 plat_device
= armpmu
->plat_device
;
340 plat
= dev_get_platdata(&plat_device
->dev
);
342 start_clock
= sched_clock();
343 if (plat
&& plat
->handle_irq
)
344 ret
= plat
->handle_irq(irq
, armpmu
, armpmu
->handle_irq
);
346 ret
= armpmu
->handle_irq(irq
, armpmu
);
347 finish_clock
= sched_clock();
349 perf_sample_event_took(finish_clock
- start_clock
);
354 armpmu_release_hardware(struct arm_pmu
*armpmu
)
356 armpmu
->free_irq(armpmu
);
360 armpmu_reserve_hardware(struct arm_pmu
*armpmu
)
362 int err
= armpmu
->request_irq(armpmu
, armpmu_dispatch_irq
);
364 armpmu_release_hardware(armpmu
);
372 hw_perf_event_destroy(struct perf_event
*event
)
374 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
375 atomic_t
*active_events
= &armpmu
->active_events
;
376 struct mutex
*pmu_reserve_mutex
= &armpmu
->reserve_mutex
;
378 if (atomic_dec_and_mutex_lock(active_events
, pmu_reserve_mutex
)) {
379 armpmu_release_hardware(armpmu
);
380 mutex_unlock(pmu_reserve_mutex
);
385 event_requires_mode_exclusion(struct perf_event_attr
*attr
)
387 return attr
->exclude_idle
|| attr
->exclude_user
||
388 attr
->exclude_kernel
|| attr
->exclude_hv
;
392 __hw_perf_event_init(struct perf_event
*event
)
394 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
395 struct hw_perf_event
*hwc
= &event
->hw
;
398 mapping
= armpmu
->map_event(event
);
401 pr_debug("event %x:%llx not supported\n", event
->attr
.type
,
407 * We don't assign an index until we actually place the event onto
408 * hardware. Use -1 to signify that we haven't decided where to put it
409 * yet. For SMP systems, each core has it's own PMU so we can't do any
410 * clever allocation or constraints checking at this point.
413 hwc
->config_base
= 0;
418 * Check whether we need to exclude the counter from certain modes.
420 if ((!armpmu
->set_event_filter
||
421 armpmu
->set_event_filter(hwc
, &event
->attr
)) &&
422 event_requires_mode_exclusion(&event
->attr
)) {
423 pr_debug("ARM performance counters do not support "
429 * Store the event encoding into the config_base field.
431 hwc
->config_base
|= (unsigned long)mapping
;
433 if (!is_sampling_event(event
)) {
435 * For non-sampling runs, limit the sample_period to half
436 * of the counter width. That way, the new counter value
437 * is far less likely to overtake the previous one unless
438 * you have some serious IRQ latency issues.
440 hwc
->sample_period
= armpmu
->max_period
>> 1;
441 hwc
->last_period
= hwc
->sample_period
;
442 local64_set(&hwc
->period_left
, hwc
->sample_period
);
445 if (event
->group_leader
!= event
) {
446 if (validate_group(event
) != 0)
453 static int armpmu_event_init(struct perf_event
*event
)
455 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
457 atomic_t
*active_events
= &armpmu
->active_events
;
460 * Reject CPU-affine events for CPUs that are of a different class to
461 * that which this PMU handles. Process-following events (where
462 * event->cpu == -1) can be migrated between CPUs, and thus we have to
463 * reject them later (in armpmu_add) if they're scheduled on a
464 * different class of CPU.
466 if (event
->cpu
!= -1 &&
467 !cpumask_test_cpu(event
->cpu
, &armpmu
->supported_cpus
))
470 /* does not support taken branch sampling */
471 if (has_branch_stack(event
))
474 if (armpmu
->map_event(event
) == -ENOENT
)
477 event
->destroy
= hw_perf_event_destroy
;
479 if (!atomic_inc_not_zero(active_events
)) {
480 mutex_lock(&armpmu
->reserve_mutex
);
481 if (atomic_read(active_events
) == 0)
482 err
= armpmu_reserve_hardware(armpmu
);
485 atomic_inc(active_events
);
486 mutex_unlock(&armpmu
->reserve_mutex
);
492 err
= __hw_perf_event_init(event
);
494 hw_perf_event_destroy(event
);
499 static void armpmu_enable(struct pmu
*pmu
)
501 struct arm_pmu
*armpmu
= to_arm_pmu(pmu
);
502 struct pmu_hw_events
*hw_events
= this_cpu_ptr(armpmu
->hw_events
);
503 int enabled
= bitmap_weight(hw_events
->used_mask
, armpmu
->num_events
);
505 /* For task-bound events we may be called on other CPUs */
506 if (!cpumask_test_cpu(smp_processor_id(), &armpmu
->supported_cpus
))
510 armpmu
->start(armpmu
);
513 static void armpmu_disable(struct pmu
*pmu
)
515 struct arm_pmu
*armpmu
= to_arm_pmu(pmu
);
517 /* For task-bound events we may be called on other CPUs */
518 if (!cpumask_test_cpu(smp_processor_id(), &armpmu
->supported_cpus
))
521 armpmu
->stop(armpmu
);
525 * In heterogeneous systems, events are specific to a particular
526 * microarchitecture, and aren't suitable for another. Thus, only match CPUs of
527 * the same microarchitecture.
529 static int armpmu_filter_match(struct perf_event
*event
)
531 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
532 unsigned int cpu
= smp_processor_id();
533 return cpumask_test_cpu(cpu
, &armpmu
->supported_cpus
);
536 static void armpmu_init(struct arm_pmu
*armpmu
)
538 atomic_set(&armpmu
->active_events
, 0);
539 mutex_init(&armpmu
->reserve_mutex
);
541 armpmu
->pmu
= (struct pmu
) {
542 .pmu_enable
= armpmu_enable
,
543 .pmu_disable
= armpmu_disable
,
544 .event_init
= armpmu_event_init
,
547 .start
= armpmu_start
,
550 .filter_match
= armpmu_filter_match
,
554 /* Set at runtime when we know what CPU type we are. */
555 static struct arm_pmu
*__oprofile_cpu_pmu
;
558 * Despite the names, these two functions are CPU-specific and are used
559 * by the OProfile/perf code.
561 const char *perf_pmu_name(void)
563 if (!__oprofile_cpu_pmu
)
566 return __oprofile_cpu_pmu
->name
;
568 EXPORT_SYMBOL_GPL(perf_pmu_name
);
570 int perf_num_counters(void)
574 if (__oprofile_cpu_pmu
!= NULL
)
575 max_events
= __oprofile_cpu_pmu
->num_events
;
579 EXPORT_SYMBOL_GPL(perf_num_counters
);
581 static void cpu_pmu_enable_percpu_irq(void *data
)
583 int irq
= *(int *)data
;
585 enable_percpu_irq(irq
, IRQ_TYPE_NONE
);
588 static void cpu_pmu_disable_percpu_irq(void *data
)
590 int irq
= *(int *)data
;
592 disable_percpu_irq(irq
);
595 static void cpu_pmu_free_irq(struct arm_pmu
*cpu_pmu
)
598 struct platform_device
*pmu_device
= cpu_pmu
->plat_device
;
599 struct pmu_hw_events __percpu
*hw_events
= cpu_pmu
->hw_events
;
601 irqs
= min(pmu_device
->num_resources
, num_possible_cpus());
603 irq
= platform_get_irq(pmu_device
, 0);
604 if (irq
>= 0 && irq_is_percpu(irq
)) {
605 on_each_cpu(cpu_pmu_disable_percpu_irq
, &irq
, 1);
606 free_percpu_irq(irq
, &hw_events
->percpu_pmu
);
608 for (i
= 0; i
< irqs
; ++i
) {
611 if (cpu_pmu
->irq_affinity
)
612 cpu
= cpu_pmu
->irq_affinity
[i
];
614 if (!cpumask_test_and_clear_cpu(cpu
, &cpu_pmu
->active_irqs
))
616 irq
= platform_get_irq(pmu_device
, i
);
618 free_irq(irq
, per_cpu_ptr(&hw_events
->percpu_pmu
, cpu
));
623 static int cpu_pmu_request_irq(struct arm_pmu
*cpu_pmu
, irq_handler_t handler
)
625 int i
, err
, irq
, irqs
;
626 struct platform_device
*pmu_device
= cpu_pmu
->plat_device
;
627 struct pmu_hw_events __percpu
*hw_events
= cpu_pmu
->hw_events
;
632 irqs
= min(pmu_device
->num_resources
, num_possible_cpus());
634 pr_warn_once("perf/ARM: No irqs for PMU defined, sampling events not supported\n");
638 irq
= platform_get_irq(pmu_device
, 0);
639 if (irq
>= 0 && irq_is_percpu(irq
)) {
640 err
= request_percpu_irq(irq
, handler
, "arm-pmu",
641 &hw_events
->percpu_pmu
);
643 pr_err("unable to request IRQ%d for ARM PMU counters\n",
647 on_each_cpu(cpu_pmu_enable_percpu_irq
, &irq
, 1);
649 for (i
= 0; i
< irqs
; ++i
) {
653 irq
= platform_get_irq(pmu_device
, i
);
657 if (cpu_pmu
->irq_affinity
)
658 cpu
= cpu_pmu
->irq_affinity
[i
];
661 * If we have a single PMU interrupt that we can't shift,
662 * assume that we're running on a uniprocessor machine and
663 * continue. Otherwise, continue without this interrupt.
665 if (irq_set_affinity(irq
, cpumask_of(cpu
)) && irqs
> 1) {
666 pr_warn("unable to set irq affinity (irq=%d, cpu=%u)\n",
671 err
= request_irq(irq
, handler
,
672 IRQF_NOBALANCING
| IRQF_NO_THREAD
, "arm-pmu",
673 per_cpu_ptr(&hw_events
->percpu_pmu
, cpu
));
675 pr_err("unable to request IRQ%d for ARM PMU counters\n",
680 cpumask_set_cpu(cpu
, &cpu_pmu
->active_irqs
);
688 * PMU hardware loses all context when a CPU goes offline.
689 * When a CPU is hotplugged back in, since some hardware registers are
690 * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading
691 * junk values out of them.
693 static int cpu_pmu_notify(struct notifier_block
*b
, unsigned long action
,
696 int cpu
= (unsigned long)hcpu
;
697 struct arm_pmu
*pmu
= container_of(b
, struct arm_pmu
, hotplug_nb
);
699 if ((action
& ~CPU_TASKS_FROZEN
) != CPU_STARTING
)
702 if (!cpumask_test_cpu(cpu
, &pmu
->supported_cpus
))
713 static int cpu_pmu_init(struct arm_pmu
*cpu_pmu
)
717 struct pmu_hw_events __percpu
*cpu_hw_events
;
719 cpu_hw_events
= alloc_percpu(struct pmu_hw_events
);
723 cpu_pmu
->hotplug_nb
.notifier_call
= cpu_pmu_notify
;
724 err
= register_cpu_notifier(&cpu_pmu
->hotplug_nb
);
728 for_each_possible_cpu(cpu
) {
729 struct pmu_hw_events
*events
= per_cpu_ptr(cpu_hw_events
, cpu
);
730 raw_spin_lock_init(&events
->pmu_lock
);
731 events
->percpu_pmu
= cpu_pmu
;
734 cpu_pmu
->hw_events
= cpu_hw_events
;
735 cpu_pmu
->request_irq
= cpu_pmu_request_irq
;
736 cpu_pmu
->free_irq
= cpu_pmu_free_irq
;
738 /* Ensure the PMU has sane values out of reset. */
740 on_each_cpu_mask(&cpu_pmu
->supported_cpus
, cpu_pmu
->reset
,
743 /* If no interrupts available, set the corresponding capability flag */
744 if (!platform_get_irq(cpu_pmu
->plat_device
, 0))
745 cpu_pmu
->pmu
.capabilities
|= PERF_PMU_CAP_NO_INTERRUPT
;
750 free_percpu(cpu_hw_events
);
754 static void cpu_pmu_destroy(struct arm_pmu
*cpu_pmu
)
756 unregister_cpu_notifier(&cpu_pmu
->hotplug_nb
);
757 free_percpu(cpu_pmu
->hw_events
);
761 * CPU PMU identification and probing.
763 static int probe_current_pmu(struct arm_pmu
*pmu
,
764 const struct pmu_probe_info
*info
)
767 unsigned int cpuid
= read_cpuid_id();
770 pr_info("probing PMU on CPU %d\n", cpu
);
772 for (; info
->init
!= NULL
; info
++) {
773 if ((cpuid
& info
->mask
) != info
->cpuid
)
775 ret
= info
->init(pmu
);
783 static int of_pmu_irq_cfg(struct arm_pmu
*pmu
)
786 bool using_spi
= false;
787 struct platform_device
*pdev
= pmu
->plat_device
;
789 irqs
= kcalloc(pdev
->num_resources
, sizeof(*irqs
), GFP_KERNEL
);
794 struct device_node
*dn
;
797 /* See if we have an affinity entry */
798 dn
= of_parse_phandle(pdev
->dev
.of_node
, "interrupt-affinity", i
);
802 /* Check the IRQ type and prohibit a mix of PPIs and SPIs */
803 irq
= platform_get_irq(pdev
, i
);
805 bool spi
= !irq_is_percpu(irq
);
807 if (i
> 0 && spi
!= using_spi
) {
808 pr_err("PPI/SPI IRQ type mismatch for %s!\n",
817 /* Now look up the logical CPU number */
818 for_each_possible_cpu(cpu
) {
819 struct device_node
*cpu_dn
;
821 cpu_dn
= of_cpu_device_node_get(cpu
);
828 if (cpu
>= nr_cpu_ids
) {
829 pr_warn("Failed to find logical CPU for %s\n",
832 cpumask_setall(&pmu
->supported_cpus
);
837 /* For SPIs, we need to track the affinity per IRQ */
839 if (i
>= pdev
->num_resources
) {
847 /* Keep track of the CPUs containing this PMU type */
848 cpumask_set_cpu(cpu
, &pmu
->supported_cpus
);
853 /* If we didn't manage to parse anything, claim to support all CPUs */
854 if (cpumask_weight(&pmu
->supported_cpus
) == 0)
855 cpumask_setall(&pmu
->supported_cpus
);
857 /* If we matched up the IRQ affinities, use them to route the SPIs */
858 if (using_spi
&& i
== pdev
->num_resources
)
859 pmu
->irq_affinity
= irqs
;
866 int arm_pmu_device_probe(struct platform_device
*pdev
,
867 const struct of_device_id
*of_table
,
868 const struct pmu_probe_info
*probe_table
)
870 const struct of_device_id
*of_id
;
871 const int (*init_fn
)(struct arm_pmu
*);
872 struct device_node
*node
= pdev
->dev
.of_node
;
876 pmu
= kzalloc(sizeof(struct arm_pmu
), GFP_KERNEL
);
878 pr_info("failed to allocate PMU device!\n");
884 if (!__oprofile_cpu_pmu
)
885 __oprofile_cpu_pmu
= pmu
;
887 pmu
->plat_device
= pdev
;
889 if (node
&& (of_id
= of_match_node(of_table
, pdev
->dev
.of_node
))) {
890 init_fn
= of_id
->data
;
892 ret
= of_pmu_irq_cfg(pmu
);
896 ret
= probe_current_pmu(pmu
, probe_table
);
897 cpumask_setall(&pmu
->supported_cpus
);
901 pr_info("failed to probe PMU!\n");
905 ret
= cpu_pmu_init(pmu
);
909 ret
= perf_pmu_register(&pmu
->pmu
, pmu
->name
, -1);
913 pr_info("enabled with %s PMU driver, %d counters available\n",
914 pmu
->name
, pmu
->num_events
);
919 cpu_pmu_destroy(pmu
);
921 pr_info("failed to register PMU devices!\n");