1 /*******************************************************************************
2 * Filename: target_core_transport.c
4 * This file contains the Generic Target Engine Core.
6 * (c) Copyright 2002-2013 Datera, Inc.
8 * Nicholas A. Bellinger <nab@kernel.org>
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
24 ******************************************************************************/
26 #include <linux/net.h>
27 #include <linux/delay.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/slab.h>
31 #include <linux/spinlock.h>
32 #include <linux/kthread.h>
34 #include <linux/cdrom.h>
35 #include <linux/module.h>
36 #include <linux/ratelimit.h>
37 #include <linux/vmalloc.h>
38 #include <asm/unaligned.h>
41 #include <scsi/scsi_proto.h>
42 #include <scsi/scsi_common.h>
44 #include <target/target_core_base.h>
45 #include <target/target_core_backend.h>
46 #include <target/target_core_fabric.h>
48 #include "target_core_internal.h"
49 #include "target_core_alua.h"
50 #include "target_core_pr.h"
51 #include "target_core_ua.h"
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/target.h>
56 static struct workqueue_struct
*target_completion_wq
;
57 static struct kmem_cache
*se_sess_cache
;
58 struct kmem_cache
*se_ua_cache
;
59 struct kmem_cache
*t10_pr_reg_cache
;
60 struct kmem_cache
*t10_alua_lu_gp_cache
;
61 struct kmem_cache
*t10_alua_lu_gp_mem_cache
;
62 struct kmem_cache
*t10_alua_tg_pt_gp_cache
;
63 struct kmem_cache
*t10_alua_lba_map_cache
;
64 struct kmem_cache
*t10_alua_lba_map_mem_cache
;
66 static void transport_complete_task_attr(struct se_cmd
*cmd
);
67 static void transport_handle_queue_full(struct se_cmd
*cmd
,
68 struct se_device
*dev
);
69 static int transport_put_cmd(struct se_cmd
*cmd
);
70 static void target_complete_ok_work(struct work_struct
*work
);
72 int init_se_kmem_caches(void)
74 se_sess_cache
= kmem_cache_create("se_sess_cache",
75 sizeof(struct se_session
), __alignof__(struct se_session
),
78 pr_err("kmem_cache_create() for struct se_session"
82 se_ua_cache
= kmem_cache_create("se_ua_cache",
83 sizeof(struct se_ua
), __alignof__(struct se_ua
),
86 pr_err("kmem_cache_create() for struct se_ua failed\n");
87 goto out_free_sess_cache
;
89 t10_pr_reg_cache
= kmem_cache_create("t10_pr_reg_cache",
90 sizeof(struct t10_pr_registration
),
91 __alignof__(struct t10_pr_registration
), 0, NULL
);
92 if (!t10_pr_reg_cache
) {
93 pr_err("kmem_cache_create() for struct t10_pr_registration"
95 goto out_free_ua_cache
;
97 t10_alua_lu_gp_cache
= kmem_cache_create("t10_alua_lu_gp_cache",
98 sizeof(struct t10_alua_lu_gp
), __alignof__(struct t10_alua_lu_gp
),
100 if (!t10_alua_lu_gp_cache
) {
101 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
103 goto out_free_pr_reg_cache
;
105 t10_alua_lu_gp_mem_cache
= kmem_cache_create("t10_alua_lu_gp_mem_cache",
106 sizeof(struct t10_alua_lu_gp_member
),
107 __alignof__(struct t10_alua_lu_gp_member
), 0, NULL
);
108 if (!t10_alua_lu_gp_mem_cache
) {
109 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
111 goto out_free_lu_gp_cache
;
113 t10_alua_tg_pt_gp_cache
= kmem_cache_create("t10_alua_tg_pt_gp_cache",
114 sizeof(struct t10_alua_tg_pt_gp
),
115 __alignof__(struct t10_alua_tg_pt_gp
), 0, NULL
);
116 if (!t10_alua_tg_pt_gp_cache
) {
117 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
119 goto out_free_lu_gp_mem_cache
;
121 t10_alua_lba_map_cache
= kmem_cache_create(
122 "t10_alua_lba_map_cache",
123 sizeof(struct t10_alua_lba_map
),
124 __alignof__(struct t10_alua_lba_map
), 0, NULL
);
125 if (!t10_alua_lba_map_cache
) {
126 pr_err("kmem_cache_create() for t10_alua_lba_map_"
128 goto out_free_tg_pt_gp_cache
;
130 t10_alua_lba_map_mem_cache
= kmem_cache_create(
131 "t10_alua_lba_map_mem_cache",
132 sizeof(struct t10_alua_lba_map_member
),
133 __alignof__(struct t10_alua_lba_map_member
), 0, NULL
);
134 if (!t10_alua_lba_map_mem_cache
) {
135 pr_err("kmem_cache_create() for t10_alua_lba_map_mem_"
137 goto out_free_lba_map_cache
;
140 target_completion_wq
= alloc_workqueue("target_completion",
142 if (!target_completion_wq
)
143 goto out_free_lba_map_mem_cache
;
147 out_free_lba_map_mem_cache
:
148 kmem_cache_destroy(t10_alua_lba_map_mem_cache
);
149 out_free_lba_map_cache
:
150 kmem_cache_destroy(t10_alua_lba_map_cache
);
151 out_free_tg_pt_gp_cache
:
152 kmem_cache_destroy(t10_alua_tg_pt_gp_cache
);
153 out_free_lu_gp_mem_cache
:
154 kmem_cache_destroy(t10_alua_lu_gp_mem_cache
);
155 out_free_lu_gp_cache
:
156 kmem_cache_destroy(t10_alua_lu_gp_cache
);
157 out_free_pr_reg_cache
:
158 kmem_cache_destroy(t10_pr_reg_cache
);
160 kmem_cache_destroy(se_ua_cache
);
162 kmem_cache_destroy(se_sess_cache
);
167 void release_se_kmem_caches(void)
169 destroy_workqueue(target_completion_wq
);
170 kmem_cache_destroy(se_sess_cache
);
171 kmem_cache_destroy(se_ua_cache
);
172 kmem_cache_destroy(t10_pr_reg_cache
);
173 kmem_cache_destroy(t10_alua_lu_gp_cache
);
174 kmem_cache_destroy(t10_alua_lu_gp_mem_cache
);
175 kmem_cache_destroy(t10_alua_tg_pt_gp_cache
);
176 kmem_cache_destroy(t10_alua_lba_map_cache
);
177 kmem_cache_destroy(t10_alua_lba_map_mem_cache
);
180 /* This code ensures unique mib indexes are handed out. */
181 static DEFINE_SPINLOCK(scsi_mib_index_lock
);
182 static u32 scsi_mib_index
[SCSI_INDEX_TYPE_MAX
];
185 * Allocate a new row index for the entry type specified
187 u32
scsi_get_new_index(scsi_index_t type
)
191 BUG_ON((type
< 0) || (type
>= SCSI_INDEX_TYPE_MAX
));
193 spin_lock(&scsi_mib_index_lock
);
194 new_index
= ++scsi_mib_index
[type
];
195 spin_unlock(&scsi_mib_index_lock
);
200 void transport_subsystem_check_init(void)
203 static int sub_api_initialized
;
205 if (sub_api_initialized
)
208 ret
= request_module("target_core_iblock");
210 pr_err("Unable to load target_core_iblock\n");
212 ret
= request_module("target_core_file");
214 pr_err("Unable to load target_core_file\n");
216 ret
= request_module("target_core_pscsi");
218 pr_err("Unable to load target_core_pscsi\n");
220 ret
= request_module("target_core_user");
222 pr_err("Unable to load target_core_user\n");
224 sub_api_initialized
= 1;
227 struct se_session
*transport_init_session(enum target_prot_op sup_prot_ops
)
229 struct se_session
*se_sess
;
231 se_sess
= kmem_cache_zalloc(se_sess_cache
, GFP_KERNEL
);
233 pr_err("Unable to allocate struct se_session from"
235 return ERR_PTR(-ENOMEM
);
237 INIT_LIST_HEAD(&se_sess
->sess_list
);
238 INIT_LIST_HEAD(&se_sess
->sess_acl_list
);
239 INIT_LIST_HEAD(&se_sess
->sess_cmd_list
);
240 INIT_LIST_HEAD(&se_sess
->sess_wait_list
);
241 spin_lock_init(&se_sess
->sess_cmd_lock
);
242 kref_init(&se_sess
->sess_kref
);
243 se_sess
->sup_prot_ops
= sup_prot_ops
;
247 EXPORT_SYMBOL(transport_init_session
);
249 int transport_alloc_session_tags(struct se_session
*se_sess
,
250 unsigned int tag_num
, unsigned int tag_size
)
254 se_sess
->sess_cmd_map
= kzalloc(tag_num
* tag_size
,
255 GFP_KERNEL
| __GFP_NOWARN
| __GFP_REPEAT
);
256 if (!se_sess
->sess_cmd_map
) {
257 se_sess
->sess_cmd_map
= vzalloc(tag_num
* tag_size
);
258 if (!se_sess
->sess_cmd_map
) {
259 pr_err("Unable to allocate se_sess->sess_cmd_map\n");
264 rc
= percpu_ida_init(&se_sess
->sess_tag_pool
, tag_num
);
266 pr_err("Unable to init se_sess->sess_tag_pool,"
267 " tag_num: %u\n", tag_num
);
268 kvfree(se_sess
->sess_cmd_map
);
269 se_sess
->sess_cmd_map
= NULL
;
275 EXPORT_SYMBOL(transport_alloc_session_tags
);
277 struct se_session
*transport_init_session_tags(unsigned int tag_num
,
278 unsigned int tag_size
,
279 enum target_prot_op sup_prot_ops
)
281 struct se_session
*se_sess
;
284 se_sess
= transport_init_session(sup_prot_ops
);
288 rc
= transport_alloc_session_tags(se_sess
, tag_num
, tag_size
);
290 transport_free_session(se_sess
);
291 return ERR_PTR(-ENOMEM
);
296 EXPORT_SYMBOL(transport_init_session_tags
);
299 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
301 void __transport_register_session(
302 struct se_portal_group
*se_tpg
,
303 struct se_node_acl
*se_nacl
,
304 struct se_session
*se_sess
,
305 void *fabric_sess_ptr
)
307 const struct target_core_fabric_ops
*tfo
= se_tpg
->se_tpg_tfo
;
308 unsigned char buf
[PR_REG_ISID_LEN
];
310 se_sess
->se_tpg
= se_tpg
;
311 se_sess
->fabric_sess_ptr
= fabric_sess_ptr
;
313 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
315 * Only set for struct se_session's that will actually be moving I/O.
316 * eg: *NOT* discovery sessions.
321 * Determine if fabric allows for T10-PI feature bits exposed to
322 * initiators for device backends with !dev->dev_attrib.pi_prot_type.
324 * If so, then always save prot_type on a per se_node_acl node
325 * basis and re-instate the previous sess_prot_type to avoid
326 * disabling PI from below any previously initiator side
329 if (se_nacl
->saved_prot_type
)
330 se_sess
->sess_prot_type
= se_nacl
->saved_prot_type
;
331 else if (tfo
->tpg_check_prot_fabric_only
)
332 se_sess
->sess_prot_type
= se_nacl
->saved_prot_type
=
333 tfo
->tpg_check_prot_fabric_only(se_tpg
);
335 * If the fabric module supports an ISID based TransportID,
336 * save this value in binary from the fabric I_T Nexus now.
338 if (se_tpg
->se_tpg_tfo
->sess_get_initiator_sid
!= NULL
) {
339 memset(&buf
[0], 0, PR_REG_ISID_LEN
);
340 se_tpg
->se_tpg_tfo
->sess_get_initiator_sid(se_sess
,
341 &buf
[0], PR_REG_ISID_LEN
);
342 se_sess
->sess_bin_isid
= get_unaligned_be64(&buf
[0]);
345 spin_lock_irq(&se_nacl
->nacl_sess_lock
);
347 * The se_nacl->nacl_sess pointer will be set to the
348 * last active I_T Nexus for each struct se_node_acl.
350 se_nacl
->nacl_sess
= se_sess
;
352 list_add_tail(&se_sess
->sess_acl_list
,
353 &se_nacl
->acl_sess_list
);
354 spin_unlock_irq(&se_nacl
->nacl_sess_lock
);
356 list_add_tail(&se_sess
->sess_list
, &se_tpg
->tpg_sess_list
);
358 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
359 se_tpg
->se_tpg_tfo
->get_fabric_name(), se_sess
->fabric_sess_ptr
);
361 EXPORT_SYMBOL(__transport_register_session
);
363 void transport_register_session(
364 struct se_portal_group
*se_tpg
,
365 struct se_node_acl
*se_nacl
,
366 struct se_session
*se_sess
,
367 void *fabric_sess_ptr
)
371 spin_lock_irqsave(&se_tpg
->session_lock
, flags
);
372 __transport_register_session(se_tpg
, se_nacl
, se_sess
, fabric_sess_ptr
);
373 spin_unlock_irqrestore(&se_tpg
->session_lock
, flags
);
375 EXPORT_SYMBOL(transport_register_session
);
377 static void target_release_session(struct kref
*kref
)
379 struct se_session
*se_sess
= container_of(kref
,
380 struct se_session
, sess_kref
);
381 struct se_portal_group
*se_tpg
= se_sess
->se_tpg
;
383 se_tpg
->se_tpg_tfo
->close_session(se_sess
);
386 int target_get_session(struct se_session
*se_sess
)
388 return kref_get_unless_zero(&se_sess
->sess_kref
);
390 EXPORT_SYMBOL(target_get_session
);
392 void target_put_session(struct se_session
*se_sess
)
394 kref_put(&se_sess
->sess_kref
, target_release_session
);
396 EXPORT_SYMBOL(target_put_session
);
398 ssize_t
target_show_dynamic_sessions(struct se_portal_group
*se_tpg
, char *page
)
400 struct se_session
*se_sess
;
403 spin_lock_bh(&se_tpg
->session_lock
);
404 list_for_each_entry(se_sess
, &se_tpg
->tpg_sess_list
, sess_list
) {
405 if (!se_sess
->se_node_acl
)
407 if (!se_sess
->se_node_acl
->dynamic_node_acl
)
409 if (strlen(se_sess
->se_node_acl
->initiatorname
) + 1 + len
> PAGE_SIZE
)
412 len
+= snprintf(page
+ len
, PAGE_SIZE
- len
, "%s\n",
413 se_sess
->se_node_acl
->initiatorname
);
414 len
+= 1; /* Include NULL terminator */
416 spin_unlock_bh(&se_tpg
->session_lock
);
420 EXPORT_SYMBOL(target_show_dynamic_sessions
);
422 static void target_complete_nacl(struct kref
*kref
)
424 struct se_node_acl
*nacl
= container_of(kref
,
425 struct se_node_acl
, acl_kref
);
427 complete(&nacl
->acl_free_comp
);
430 void target_put_nacl(struct se_node_acl
*nacl
)
432 kref_put(&nacl
->acl_kref
, target_complete_nacl
);
434 EXPORT_SYMBOL(target_put_nacl
);
436 void transport_deregister_session_configfs(struct se_session
*se_sess
)
438 struct se_node_acl
*se_nacl
;
441 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
443 se_nacl
= se_sess
->se_node_acl
;
445 spin_lock_irqsave(&se_nacl
->nacl_sess_lock
, flags
);
446 if (se_nacl
->acl_stop
== 0)
447 list_del(&se_sess
->sess_acl_list
);
449 * If the session list is empty, then clear the pointer.
450 * Otherwise, set the struct se_session pointer from the tail
451 * element of the per struct se_node_acl active session list.
453 if (list_empty(&se_nacl
->acl_sess_list
))
454 se_nacl
->nacl_sess
= NULL
;
456 se_nacl
->nacl_sess
= container_of(
457 se_nacl
->acl_sess_list
.prev
,
458 struct se_session
, sess_acl_list
);
460 spin_unlock_irqrestore(&se_nacl
->nacl_sess_lock
, flags
);
463 EXPORT_SYMBOL(transport_deregister_session_configfs
);
465 void transport_free_session(struct se_session
*se_sess
)
467 struct se_node_acl
*se_nacl
= se_sess
->se_node_acl
;
469 * Drop the se_node_acl->nacl_kref obtained from within
470 * core_tpg_get_initiator_node_acl().
473 se_sess
->se_node_acl
= NULL
;
474 target_put_nacl(se_nacl
);
476 if (se_sess
->sess_cmd_map
) {
477 percpu_ida_destroy(&se_sess
->sess_tag_pool
);
478 kvfree(se_sess
->sess_cmd_map
);
480 kmem_cache_free(se_sess_cache
, se_sess
);
482 EXPORT_SYMBOL(transport_free_session
);
484 void transport_deregister_session(struct se_session
*se_sess
)
486 struct se_portal_group
*se_tpg
= se_sess
->se_tpg
;
487 const struct target_core_fabric_ops
*se_tfo
;
488 struct se_node_acl
*se_nacl
;
490 bool drop_nacl
= false;
493 transport_free_session(se_sess
);
496 se_tfo
= se_tpg
->se_tpg_tfo
;
498 spin_lock_irqsave(&se_tpg
->session_lock
, flags
);
499 list_del(&se_sess
->sess_list
);
500 se_sess
->se_tpg
= NULL
;
501 se_sess
->fabric_sess_ptr
= NULL
;
502 spin_unlock_irqrestore(&se_tpg
->session_lock
, flags
);
505 * Determine if we need to do extra work for this initiator node's
506 * struct se_node_acl if it had been previously dynamically generated.
508 se_nacl
= se_sess
->se_node_acl
;
510 mutex_lock(&se_tpg
->acl_node_mutex
);
511 if (se_nacl
&& se_nacl
->dynamic_node_acl
) {
512 if (!se_tfo
->tpg_check_demo_mode_cache(se_tpg
)) {
513 list_del(&se_nacl
->acl_list
);
517 mutex_unlock(&se_tpg
->acl_node_mutex
);
520 core_tpg_wait_for_nacl_pr_ref(se_nacl
);
521 core_free_device_list_for_node(se_nacl
, se_tpg
);
522 se_sess
->se_node_acl
= NULL
;
525 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
526 se_tpg
->se_tpg_tfo
->get_fabric_name());
528 * If last kref is dropping now for an explicit NodeACL, awake sleeping
529 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
530 * removal context from within transport_free_session() code.
533 transport_free_session(se_sess
);
535 EXPORT_SYMBOL(transport_deregister_session
);
537 static void target_remove_from_state_list(struct se_cmd
*cmd
)
539 struct se_device
*dev
= cmd
->se_dev
;
545 if (cmd
->transport_state
& CMD_T_BUSY
)
548 spin_lock_irqsave(&dev
->execute_task_lock
, flags
);
549 if (cmd
->state_active
) {
550 list_del(&cmd
->state_list
);
551 cmd
->state_active
= false;
553 spin_unlock_irqrestore(&dev
->execute_task_lock
, flags
);
556 static int transport_cmd_check_stop(struct se_cmd
*cmd
, bool remove_from_lists
,
561 if (remove_from_lists
) {
562 target_remove_from_state_list(cmd
);
565 * Clear struct se_cmd->se_lun before the handoff to FE.
570 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
572 cmd
->t_state
= TRANSPORT_WRITE_PENDING
;
575 * Determine if frontend context caller is requesting the stopping of
576 * this command for frontend exceptions.
578 if (cmd
->transport_state
& CMD_T_STOP
) {
579 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
580 __func__
, __LINE__
, cmd
->tag
);
582 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
584 complete_all(&cmd
->t_transport_stop_comp
);
588 cmd
->transport_state
&= ~CMD_T_ACTIVE
;
589 if (remove_from_lists
) {
591 * Some fabric modules like tcm_loop can release
592 * their internally allocated I/O reference now and
595 * Fabric modules are expected to return '1' here if the
596 * se_cmd being passed is released at this point,
597 * or zero if not being released.
599 if (cmd
->se_tfo
->check_stop_free
!= NULL
) {
600 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
601 return cmd
->se_tfo
->check_stop_free(cmd
);
605 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
609 static int transport_cmd_check_stop_to_fabric(struct se_cmd
*cmd
)
611 return transport_cmd_check_stop(cmd
, true, false);
614 static void transport_lun_remove_cmd(struct se_cmd
*cmd
)
616 struct se_lun
*lun
= cmd
->se_lun
;
621 if (cmpxchg(&cmd
->lun_ref_active
, true, false))
622 percpu_ref_put(&lun
->lun_ref
);
625 void transport_cmd_finish_abort(struct se_cmd
*cmd
, int remove
)
627 bool ack_kref
= (cmd
->se_cmd_flags
& SCF_ACK_KREF
);
629 if (cmd
->se_cmd_flags
& SCF_SE_LUN_CMD
)
630 transport_lun_remove_cmd(cmd
);
632 * Allow the fabric driver to unmap any resources before
633 * releasing the descriptor via TFO->release_cmd()
636 cmd
->se_tfo
->aborted_task(cmd
);
638 if (transport_cmd_check_stop_to_fabric(cmd
))
640 if (remove
&& ack_kref
)
641 transport_put_cmd(cmd
);
644 static void target_complete_failure_work(struct work_struct
*work
)
646 struct se_cmd
*cmd
= container_of(work
, struct se_cmd
, work
);
648 transport_generic_request_failure(cmd
,
649 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
);
653 * Used when asking transport to copy Sense Data from the underlying
654 * Linux/SCSI struct scsi_cmnd
656 static unsigned char *transport_get_sense_buffer(struct se_cmd
*cmd
)
658 struct se_device
*dev
= cmd
->se_dev
;
660 WARN_ON(!cmd
->se_lun
);
665 if (cmd
->se_cmd_flags
& SCF_SENT_CHECK_CONDITION
)
668 cmd
->scsi_sense_length
= TRANSPORT_SENSE_BUFFER
;
670 pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
671 dev
->se_hba
->hba_id
, dev
->transport
->name
, cmd
->scsi_status
);
672 return cmd
->sense_buffer
;
675 void target_complete_cmd(struct se_cmd
*cmd
, u8 scsi_status
)
677 struct se_device
*dev
= cmd
->se_dev
;
678 int success
= scsi_status
== GOOD
;
681 cmd
->scsi_status
= scsi_status
;
684 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
685 cmd
->transport_state
&= ~CMD_T_BUSY
;
687 if (dev
&& dev
->transport
->transport_complete
) {
688 dev
->transport
->transport_complete(cmd
,
690 transport_get_sense_buffer(cmd
));
691 if (cmd
->se_cmd_flags
& SCF_TRANSPORT_TASK_SENSE
)
696 * Check for case where an explicit ABORT_TASK has been received
697 * and transport_wait_for_tasks() will be waiting for completion..
699 if (cmd
->transport_state
& CMD_T_ABORTED
||
700 cmd
->transport_state
& CMD_T_STOP
) {
701 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
702 complete_all(&cmd
->t_transport_stop_comp
);
704 } else if (!success
) {
705 INIT_WORK(&cmd
->work
, target_complete_failure_work
);
707 INIT_WORK(&cmd
->work
, target_complete_ok_work
);
710 cmd
->t_state
= TRANSPORT_COMPLETE
;
711 cmd
->transport_state
|= (CMD_T_COMPLETE
| CMD_T_ACTIVE
);
712 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
714 if (cmd
->se_cmd_flags
& SCF_USE_CPUID
)
715 queue_work_on(cmd
->cpuid
, target_completion_wq
, &cmd
->work
);
717 queue_work(target_completion_wq
, &cmd
->work
);
719 EXPORT_SYMBOL(target_complete_cmd
);
721 void target_complete_cmd_with_length(struct se_cmd
*cmd
, u8 scsi_status
, int length
)
723 if (scsi_status
== SAM_STAT_GOOD
&& length
< cmd
->data_length
) {
724 if (cmd
->se_cmd_flags
& SCF_UNDERFLOW_BIT
) {
725 cmd
->residual_count
+= cmd
->data_length
- length
;
727 cmd
->se_cmd_flags
|= SCF_UNDERFLOW_BIT
;
728 cmd
->residual_count
= cmd
->data_length
- length
;
731 cmd
->data_length
= length
;
734 target_complete_cmd(cmd
, scsi_status
);
736 EXPORT_SYMBOL(target_complete_cmd_with_length
);
738 static void target_add_to_state_list(struct se_cmd
*cmd
)
740 struct se_device
*dev
= cmd
->se_dev
;
743 spin_lock_irqsave(&dev
->execute_task_lock
, flags
);
744 if (!cmd
->state_active
) {
745 list_add_tail(&cmd
->state_list
, &dev
->state_list
);
746 cmd
->state_active
= true;
748 spin_unlock_irqrestore(&dev
->execute_task_lock
, flags
);
752 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
754 static void transport_write_pending_qf(struct se_cmd
*cmd
);
755 static void transport_complete_qf(struct se_cmd
*cmd
);
757 void target_qf_do_work(struct work_struct
*work
)
759 struct se_device
*dev
= container_of(work
, struct se_device
,
761 LIST_HEAD(qf_cmd_list
);
762 struct se_cmd
*cmd
, *cmd_tmp
;
764 spin_lock_irq(&dev
->qf_cmd_lock
);
765 list_splice_init(&dev
->qf_cmd_list
, &qf_cmd_list
);
766 spin_unlock_irq(&dev
->qf_cmd_lock
);
768 list_for_each_entry_safe(cmd
, cmd_tmp
, &qf_cmd_list
, se_qf_node
) {
769 list_del(&cmd
->se_qf_node
);
770 atomic_dec_mb(&dev
->dev_qf_count
);
772 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
773 " context: %s\n", cmd
->se_tfo
->get_fabric_name(), cmd
,
774 (cmd
->t_state
== TRANSPORT_COMPLETE_QF_OK
) ? "COMPLETE_OK" :
775 (cmd
->t_state
== TRANSPORT_COMPLETE_QF_WP
) ? "WRITE_PENDING"
778 if (cmd
->t_state
== TRANSPORT_COMPLETE_QF_WP
)
779 transport_write_pending_qf(cmd
);
780 else if (cmd
->t_state
== TRANSPORT_COMPLETE_QF_OK
)
781 transport_complete_qf(cmd
);
785 unsigned char *transport_dump_cmd_direction(struct se_cmd
*cmd
)
787 switch (cmd
->data_direction
) {
790 case DMA_FROM_DEVICE
:
794 case DMA_BIDIRECTIONAL
:
803 void transport_dump_dev_state(
804 struct se_device
*dev
,
808 *bl
+= sprintf(b
+ *bl
, "Status: ");
809 if (dev
->export_count
)
810 *bl
+= sprintf(b
+ *bl
, "ACTIVATED");
812 *bl
+= sprintf(b
+ *bl
, "DEACTIVATED");
814 *bl
+= sprintf(b
+ *bl
, " Max Queue Depth: %d", dev
->queue_depth
);
815 *bl
+= sprintf(b
+ *bl
, " SectorSize: %u HwMaxSectors: %u\n",
816 dev
->dev_attrib
.block_size
,
817 dev
->dev_attrib
.hw_max_sectors
);
818 *bl
+= sprintf(b
+ *bl
, " ");
821 void transport_dump_vpd_proto_id(
823 unsigned char *p_buf
,
826 unsigned char buf
[VPD_TMP_BUF_SIZE
];
829 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
830 len
= sprintf(buf
, "T10 VPD Protocol Identifier: ");
832 switch (vpd
->protocol_identifier
) {
834 sprintf(buf
+len
, "Fibre Channel\n");
837 sprintf(buf
+len
, "Parallel SCSI\n");
840 sprintf(buf
+len
, "SSA\n");
843 sprintf(buf
+len
, "IEEE 1394\n");
846 sprintf(buf
+len
, "SCSI Remote Direct Memory Access"
850 sprintf(buf
+len
, "Internet SCSI (iSCSI)\n");
853 sprintf(buf
+len
, "SAS Serial SCSI Protocol\n");
856 sprintf(buf
+len
, "Automation/Drive Interface Transport"
860 sprintf(buf
+len
, "AT Attachment Interface ATA/ATAPI\n");
863 sprintf(buf
+len
, "Unknown 0x%02x\n",
864 vpd
->protocol_identifier
);
869 strncpy(p_buf
, buf
, p_buf_len
);
875 transport_set_vpd_proto_id(struct t10_vpd
*vpd
, unsigned char *page_83
)
878 * Check if the Protocol Identifier Valid (PIV) bit is set..
880 * from spc3r23.pdf section 7.5.1
882 if (page_83
[1] & 0x80) {
883 vpd
->protocol_identifier
= (page_83
[0] & 0xf0);
884 vpd
->protocol_identifier_set
= 1;
885 transport_dump_vpd_proto_id(vpd
, NULL
, 0);
888 EXPORT_SYMBOL(transport_set_vpd_proto_id
);
890 int transport_dump_vpd_assoc(
892 unsigned char *p_buf
,
895 unsigned char buf
[VPD_TMP_BUF_SIZE
];
899 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
900 len
= sprintf(buf
, "T10 VPD Identifier Association: ");
902 switch (vpd
->association
) {
904 sprintf(buf
+len
, "addressed logical unit\n");
907 sprintf(buf
+len
, "target port\n");
910 sprintf(buf
+len
, "SCSI target device\n");
913 sprintf(buf
+len
, "Unknown 0x%02x\n", vpd
->association
);
919 strncpy(p_buf
, buf
, p_buf_len
);
926 int transport_set_vpd_assoc(struct t10_vpd
*vpd
, unsigned char *page_83
)
929 * The VPD identification association..
931 * from spc3r23.pdf Section 7.6.3.1 Table 297
933 vpd
->association
= (page_83
[1] & 0x30);
934 return transport_dump_vpd_assoc(vpd
, NULL
, 0);
936 EXPORT_SYMBOL(transport_set_vpd_assoc
);
938 int transport_dump_vpd_ident_type(
940 unsigned char *p_buf
,
943 unsigned char buf
[VPD_TMP_BUF_SIZE
];
947 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
948 len
= sprintf(buf
, "T10 VPD Identifier Type: ");
950 switch (vpd
->device_identifier_type
) {
952 sprintf(buf
+len
, "Vendor specific\n");
955 sprintf(buf
+len
, "T10 Vendor ID based\n");
958 sprintf(buf
+len
, "EUI-64 based\n");
961 sprintf(buf
+len
, "NAA\n");
964 sprintf(buf
+len
, "Relative target port identifier\n");
967 sprintf(buf
+len
, "SCSI name string\n");
970 sprintf(buf
+len
, "Unsupported: 0x%02x\n",
971 vpd
->device_identifier_type
);
977 if (p_buf_len
< strlen(buf
)+1)
979 strncpy(p_buf
, buf
, p_buf_len
);
987 int transport_set_vpd_ident_type(struct t10_vpd
*vpd
, unsigned char *page_83
)
990 * The VPD identifier type..
992 * from spc3r23.pdf Section 7.6.3.1 Table 298
994 vpd
->device_identifier_type
= (page_83
[1] & 0x0f);
995 return transport_dump_vpd_ident_type(vpd
, NULL
, 0);
997 EXPORT_SYMBOL(transport_set_vpd_ident_type
);
999 int transport_dump_vpd_ident(
1000 struct t10_vpd
*vpd
,
1001 unsigned char *p_buf
,
1004 unsigned char buf
[VPD_TMP_BUF_SIZE
];
1007 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
1009 switch (vpd
->device_identifier_code_set
) {
1010 case 0x01: /* Binary */
1011 snprintf(buf
, sizeof(buf
),
1012 "T10 VPD Binary Device Identifier: %s\n",
1013 &vpd
->device_identifier
[0]);
1015 case 0x02: /* ASCII */
1016 snprintf(buf
, sizeof(buf
),
1017 "T10 VPD ASCII Device Identifier: %s\n",
1018 &vpd
->device_identifier
[0]);
1020 case 0x03: /* UTF-8 */
1021 snprintf(buf
, sizeof(buf
),
1022 "T10 VPD UTF-8 Device Identifier: %s\n",
1023 &vpd
->device_identifier
[0]);
1026 sprintf(buf
, "T10 VPD Device Identifier encoding unsupported:"
1027 " 0x%02x", vpd
->device_identifier_code_set
);
1033 strncpy(p_buf
, buf
, p_buf_len
);
1035 pr_debug("%s", buf
);
1041 transport_set_vpd_ident(struct t10_vpd
*vpd
, unsigned char *page_83
)
1043 static const char hex_str
[] = "0123456789abcdef";
1044 int j
= 0, i
= 4; /* offset to start of the identifier */
1047 * The VPD Code Set (encoding)
1049 * from spc3r23.pdf Section 7.6.3.1 Table 296
1051 vpd
->device_identifier_code_set
= (page_83
[0] & 0x0f);
1052 switch (vpd
->device_identifier_code_set
) {
1053 case 0x01: /* Binary */
1054 vpd
->device_identifier
[j
++] =
1055 hex_str
[vpd
->device_identifier_type
];
1056 while (i
< (4 + page_83
[3])) {
1057 vpd
->device_identifier
[j
++] =
1058 hex_str
[(page_83
[i
] & 0xf0) >> 4];
1059 vpd
->device_identifier
[j
++] =
1060 hex_str
[page_83
[i
] & 0x0f];
1064 case 0x02: /* ASCII */
1065 case 0x03: /* UTF-8 */
1066 while (i
< (4 + page_83
[3]))
1067 vpd
->device_identifier
[j
++] = page_83
[i
++];
1073 return transport_dump_vpd_ident(vpd
, NULL
, 0);
1075 EXPORT_SYMBOL(transport_set_vpd_ident
);
1077 static sense_reason_t
1078 target_check_max_data_sg_nents(struct se_cmd
*cmd
, struct se_device
*dev
,
1083 if (!cmd
->se_tfo
->max_data_sg_nents
)
1084 return TCM_NO_SENSE
;
1086 * Check if fabric enforced maximum SGL entries per I/O descriptor
1087 * exceeds se_cmd->data_length. If true, set SCF_UNDERFLOW_BIT +
1088 * residual_count and reduce original cmd->data_length to maximum
1089 * length based on single PAGE_SIZE entry scatter-lists.
1091 mtl
= (cmd
->se_tfo
->max_data_sg_nents
* PAGE_SIZE
);
1092 if (cmd
->data_length
> mtl
) {
1094 * If an existing CDB overflow is present, calculate new residual
1095 * based on CDB size minus fabric maximum transfer length.
1097 * If an existing CDB underflow is present, calculate new residual
1098 * based on original cmd->data_length minus fabric maximum transfer
1101 * Otherwise, set the underflow residual based on cmd->data_length
1102 * minus fabric maximum transfer length.
1104 if (cmd
->se_cmd_flags
& SCF_OVERFLOW_BIT
) {
1105 cmd
->residual_count
= (size
- mtl
);
1106 } else if (cmd
->se_cmd_flags
& SCF_UNDERFLOW_BIT
) {
1107 u32 orig_dl
= size
+ cmd
->residual_count
;
1108 cmd
->residual_count
= (orig_dl
- mtl
);
1110 cmd
->se_cmd_flags
|= SCF_UNDERFLOW_BIT
;
1111 cmd
->residual_count
= (cmd
->data_length
- mtl
);
1113 cmd
->data_length
= mtl
;
1115 * Reset sbc_check_prot() calculated protection payload
1116 * length based upon the new smaller MTL.
1118 if (cmd
->prot_length
) {
1119 u32 sectors
= (mtl
/ dev
->dev_attrib
.block_size
);
1120 cmd
->prot_length
= dev
->prot_length
* sectors
;
1123 return TCM_NO_SENSE
;
1127 target_cmd_size_check(struct se_cmd
*cmd
, unsigned int size
)
1129 struct se_device
*dev
= cmd
->se_dev
;
1131 if (cmd
->unknown_data_length
) {
1132 cmd
->data_length
= size
;
1133 } else if (size
!= cmd
->data_length
) {
1134 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
1135 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
1136 " 0x%02x\n", cmd
->se_tfo
->get_fabric_name(),
1137 cmd
->data_length
, size
, cmd
->t_task_cdb
[0]);
1139 if (cmd
->data_direction
== DMA_TO_DEVICE
&&
1140 cmd
->se_cmd_flags
& SCF_SCSI_DATA_CDB
) {
1141 pr_err("Rejecting underflow/overflow WRITE data\n");
1142 return TCM_INVALID_CDB_FIELD
;
1145 * Reject READ_* or WRITE_* with overflow/underflow for
1146 * type SCF_SCSI_DATA_CDB.
1148 if (dev
->dev_attrib
.block_size
!= 512) {
1149 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
1150 " CDB on non 512-byte sector setup subsystem"
1151 " plugin: %s\n", dev
->transport
->name
);
1152 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
1153 return TCM_INVALID_CDB_FIELD
;
1156 * For the overflow case keep the existing fabric provided
1157 * ->data_length. Otherwise for the underflow case, reset
1158 * ->data_length to the smaller SCSI expected data transfer
1161 if (size
> cmd
->data_length
) {
1162 cmd
->se_cmd_flags
|= SCF_OVERFLOW_BIT
;
1163 cmd
->residual_count
= (size
- cmd
->data_length
);
1165 cmd
->se_cmd_flags
|= SCF_UNDERFLOW_BIT
;
1166 cmd
->residual_count
= (cmd
->data_length
- size
);
1167 cmd
->data_length
= size
;
1171 return target_check_max_data_sg_nents(cmd
, dev
, size
);
1176 * Used by fabric modules containing a local struct se_cmd within their
1177 * fabric dependent per I/O descriptor.
1179 * Preserves the value of @cmd->tag.
1181 void transport_init_se_cmd(
1183 const struct target_core_fabric_ops
*tfo
,
1184 struct se_session
*se_sess
,
1188 unsigned char *sense_buffer
)
1190 INIT_LIST_HEAD(&cmd
->se_delayed_node
);
1191 INIT_LIST_HEAD(&cmd
->se_qf_node
);
1192 INIT_LIST_HEAD(&cmd
->se_cmd_list
);
1193 INIT_LIST_HEAD(&cmd
->state_list
);
1194 init_completion(&cmd
->t_transport_stop_comp
);
1195 init_completion(&cmd
->cmd_wait_comp
);
1196 spin_lock_init(&cmd
->t_state_lock
);
1197 kref_init(&cmd
->cmd_kref
);
1198 cmd
->transport_state
= CMD_T_DEV_ACTIVE
;
1201 cmd
->se_sess
= se_sess
;
1202 cmd
->data_length
= data_length
;
1203 cmd
->data_direction
= data_direction
;
1204 cmd
->sam_task_attr
= task_attr
;
1205 cmd
->sense_buffer
= sense_buffer
;
1207 cmd
->state_active
= false;
1209 EXPORT_SYMBOL(transport_init_se_cmd
);
1211 static sense_reason_t
1212 transport_check_alloc_task_attr(struct se_cmd
*cmd
)
1214 struct se_device
*dev
= cmd
->se_dev
;
1217 * Check if SAM Task Attribute emulation is enabled for this
1218 * struct se_device storage object
1220 if (dev
->transport
->transport_flags
& TRANSPORT_FLAG_PASSTHROUGH
)
1223 if (cmd
->sam_task_attr
== TCM_ACA_TAG
) {
1224 pr_debug("SAM Task Attribute ACA"
1225 " emulation is not supported\n");
1226 return TCM_INVALID_CDB_FIELD
;
1233 target_setup_cmd_from_cdb(struct se_cmd
*cmd
, unsigned char *cdb
)
1235 struct se_device
*dev
= cmd
->se_dev
;
1239 * Ensure that the received CDB is less than the max (252 + 8) bytes
1240 * for VARIABLE_LENGTH_CMD
1242 if (scsi_command_size(cdb
) > SCSI_MAX_VARLEN_CDB_SIZE
) {
1243 pr_err("Received SCSI CDB with command_size: %d that"
1244 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1245 scsi_command_size(cdb
), SCSI_MAX_VARLEN_CDB_SIZE
);
1246 return TCM_INVALID_CDB_FIELD
;
1249 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1250 * allocate the additional extended CDB buffer now.. Otherwise
1251 * setup the pointer from __t_task_cdb to t_task_cdb.
1253 if (scsi_command_size(cdb
) > sizeof(cmd
->__t_task_cdb
)) {
1254 cmd
->t_task_cdb
= kzalloc(scsi_command_size(cdb
),
1256 if (!cmd
->t_task_cdb
) {
1257 pr_err("Unable to allocate cmd->t_task_cdb"
1258 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1259 scsi_command_size(cdb
),
1260 (unsigned long)sizeof(cmd
->__t_task_cdb
));
1261 return TCM_OUT_OF_RESOURCES
;
1264 cmd
->t_task_cdb
= &cmd
->__t_task_cdb
[0];
1266 * Copy the original CDB into cmd->
1268 memcpy(cmd
->t_task_cdb
, cdb
, scsi_command_size(cdb
));
1270 trace_target_sequencer_start(cmd
);
1273 * Check for an existing UNIT ATTENTION condition
1275 ret
= target_scsi3_ua_check(cmd
);
1279 ret
= target_alua_state_check(cmd
);
1283 ret
= target_check_reservation(cmd
);
1285 cmd
->scsi_status
= SAM_STAT_RESERVATION_CONFLICT
;
1289 ret
= dev
->transport
->parse_cdb(cmd
);
1290 if (ret
== TCM_UNSUPPORTED_SCSI_OPCODE
)
1291 pr_warn_ratelimited("%s/%s: Unsupported SCSI Opcode 0x%02x, sending CHECK_CONDITION.\n",
1292 cmd
->se_tfo
->get_fabric_name(),
1293 cmd
->se_sess
->se_node_acl
->initiatorname
,
1294 cmd
->t_task_cdb
[0]);
1298 ret
= transport_check_alloc_task_attr(cmd
);
1302 cmd
->se_cmd_flags
|= SCF_SUPPORTED_SAM_OPCODE
;
1303 atomic_long_inc(&cmd
->se_lun
->lun_stats
.cmd_pdus
);
1306 EXPORT_SYMBOL(target_setup_cmd_from_cdb
);
1309 * Used by fabric module frontends to queue tasks directly.
1310 * May only be used from process context.
1312 int transport_handle_cdb_direct(
1319 pr_err("cmd->se_lun is NULL\n");
1322 if (in_interrupt()) {
1324 pr_err("transport_generic_handle_cdb cannot be called"
1325 " from interrupt context\n");
1329 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1330 * outstanding descriptors are handled correctly during shutdown via
1331 * transport_wait_for_tasks()
1333 * Also, we don't take cmd->t_state_lock here as we only expect
1334 * this to be called for initial descriptor submission.
1336 cmd
->t_state
= TRANSPORT_NEW_CMD
;
1337 cmd
->transport_state
|= CMD_T_ACTIVE
;
1340 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1341 * so follow TRANSPORT_NEW_CMD processing thread context usage
1342 * and call transport_generic_request_failure() if necessary..
1344 ret
= transport_generic_new_cmd(cmd
);
1346 transport_generic_request_failure(cmd
, ret
);
1349 EXPORT_SYMBOL(transport_handle_cdb_direct
);
1352 transport_generic_map_mem_to_cmd(struct se_cmd
*cmd
, struct scatterlist
*sgl
,
1353 u32 sgl_count
, struct scatterlist
*sgl_bidi
, u32 sgl_bidi_count
)
1355 if (!sgl
|| !sgl_count
)
1359 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
1360 * scatterlists already have been set to follow what the fabric
1361 * passes for the original expected data transfer length.
1363 if (cmd
->se_cmd_flags
& SCF_OVERFLOW_BIT
) {
1364 pr_warn("Rejecting SCSI DATA overflow for fabric using"
1365 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
1366 return TCM_INVALID_CDB_FIELD
;
1369 cmd
->t_data_sg
= sgl
;
1370 cmd
->t_data_nents
= sgl_count
;
1371 cmd
->t_bidi_data_sg
= sgl_bidi
;
1372 cmd
->t_bidi_data_nents
= sgl_bidi_count
;
1374 cmd
->se_cmd_flags
|= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC
;
1379 * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized
1380 * se_cmd + use pre-allocated SGL memory.
1382 * @se_cmd: command descriptor to submit
1383 * @se_sess: associated se_sess for endpoint
1384 * @cdb: pointer to SCSI CDB
1385 * @sense: pointer to SCSI sense buffer
1386 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1387 * @data_length: fabric expected data transfer length
1388 * @task_addr: SAM task attribute
1389 * @data_dir: DMA data direction
1390 * @flags: flags for command submission from target_sc_flags_tables
1391 * @sgl: struct scatterlist memory for unidirectional mapping
1392 * @sgl_count: scatterlist count for unidirectional mapping
1393 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
1394 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1395 * @sgl_prot: struct scatterlist memory protection information
1396 * @sgl_prot_count: scatterlist count for protection information
1398 * Task tags are supported if the caller has set @se_cmd->tag.
1400 * Returns non zero to signal active I/O shutdown failure. All other
1401 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1402 * but still return zero here.
1404 * This may only be called from process context, and also currently
1405 * assumes internal allocation of fabric payload buffer by target-core.
1407 int target_submit_cmd_map_sgls(struct se_cmd
*se_cmd
, struct se_session
*se_sess
,
1408 unsigned char *cdb
, unsigned char *sense
, u64 unpacked_lun
,
1409 u32 data_length
, int task_attr
, int data_dir
, int flags
,
1410 struct scatterlist
*sgl
, u32 sgl_count
,
1411 struct scatterlist
*sgl_bidi
, u32 sgl_bidi_count
,
1412 struct scatterlist
*sgl_prot
, u32 sgl_prot_count
)
1414 struct se_portal_group
*se_tpg
;
1418 se_tpg
= se_sess
->se_tpg
;
1420 BUG_ON(se_cmd
->se_tfo
|| se_cmd
->se_sess
);
1421 BUG_ON(in_interrupt());
1423 * Initialize se_cmd for target operation. From this point
1424 * exceptions are handled by sending exception status via
1425 * target_core_fabric_ops->queue_status() callback
1427 transport_init_se_cmd(se_cmd
, se_tpg
->se_tpg_tfo
, se_sess
,
1428 data_length
, data_dir
, task_attr
, sense
);
1430 if (flags
& TARGET_SCF_USE_CPUID
)
1431 se_cmd
->se_cmd_flags
|= SCF_USE_CPUID
;
1433 se_cmd
->cpuid
= WORK_CPU_UNBOUND
;
1435 if (flags
& TARGET_SCF_UNKNOWN_SIZE
)
1436 se_cmd
->unknown_data_length
= 1;
1438 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1439 * se_sess->sess_cmd_list. A second kref_get here is necessary
1440 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1441 * kref_put() to happen during fabric packet acknowledgement.
1443 ret
= target_get_sess_cmd(se_cmd
, flags
& TARGET_SCF_ACK_KREF
);
1447 * Signal bidirectional data payloads to target-core
1449 if (flags
& TARGET_SCF_BIDI_OP
)
1450 se_cmd
->se_cmd_flags
|= SCF_BIDI
;
1452 * Locate se_lun pointer and attach it to struct se_cmd
1454 rc
= transport_lookup_cmd_lun(se_cmd
, unpacked_lun
);
1456 transport_send_check_condition_and_sense(se_cmd
, rc
, 0);
1457 target_put_sess_cmd(se_cmd
);
1461 rc
= target_setup_cmd_from_cdb(se_cmd
, cdb
);
1463 transport_generic_request_failure(se_cmd
, rc
);
1468 * Save pointers for SGLs containing protection information,
1471 if (sgl_prot_count
) {
1472 se_cmd
->t_prot_sg
= sgl_prot
;
1473 se_cmd
->t_prot_nents
= sgl_prot_count
;
1474 se_cmd
->se_cmd_flags
|= SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC
;
1478 * When a non zero sgl_count has been passed perform SGL passthrough
1479 * mapping for pre-allocated fabric memory instead of having target
1480 * core perform an internal SGL allocation..
1482 if (sgl_count
!= 0) {
1486 * A work-around for tcm_loop as some userspace code via
1487 * scsi-generic do not memset their associated read buffers,
1488 * so go ahead and do that here for type non-data CDBs. Also
1489 * note that this is currently guaranteed to be a single SGL
1490 * for this case by target core in target_setup_cmd_from_cdb()
1491 * -> transport_generic_cmd_sequencer().
1493 if (!(se_cmd
->se_cmd_flags
& SCF_SCSI_DATA_CDB
) &&
1494 se_cmd
->data_direction
== DMA_FROM_DEVICE
) {
1495 unsigned char *buf
= NULL
;
1498 buf
= kmap(sg_page(sgl
)) + sgl
->offset
;
1501 memset(buf
, 0, sgl
->length
);
1502 kunmap(sg_page(sgl
));
1506 rc
= transport_generic_map_mem_to_cmd(se_cmd
, sgl
, sgl_count
,
1507 sgl_bidi
, sgl_bidi_count
);
1509 transport_generic_request_failure(se_cmd
, rc
);
1515 * Check if we need to delay processing because of ALUA
1516 * Active/NonOptimized primary access state..
1518 core_alua_check_nonop_delay(se_cmd
);
1520 transport_handle_cdb_direct(se_cmd
);
1523 EXPORT_SYMBOL(target_submit_cmd_map_sgls
);
1526 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1528 * @se_cmd: command descriptor to submit
1529 * @se_sess: associated se_sess for endpoint
1530 * @cdb: pointer to SCSI CDB
1531 * @sense: pointer to SCSI sense buffer
1532 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1533 * @data_length: fabric expected data transfer length
1534 * @task_addr: SAM task attribute
1535 * @data_dir: DMA data direction
1536 * @flags: flags for command submission from target_sc_flags_tables
1538 * Task tags are supported if the caller has set @se_cmd->tag.
1540 * Returns non zero to signal active I/O shutdown failure. All other
1541 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1542 * but still return zero here.
1544 * This may only be called from process context, and also currently
1545 * assumes internal allocation of fabric payload buffer by target-core.
1547 * It also assumes interal target core SGL memory allocation.
1549 int target_submit_cmd(struct se_cmd
*se_cmd
, struct se_session
*se_sess
,
1550 unsigned char *cdb
, unsigned char *sense
, u64 unpacked_lun
,
1551 u32 data_length
, int task_attr
, int data_dir
, int flags
)
1553 return target_submit_cmd_map_sgls(se_cmd
, se_sess
, cdb
, sense
,
1554 unpacked_lun
, data_length
, task_attr
, data_dir
,
1555 flags
, NULL
, 0, NULL
, 0, NULL
, 0);
1557 EXPORT_SYMBOL(target_submit_cmd
);
1559 static void target_complete_tmr_failure(struct work_struct
*work
)
1561 struct se_cmd
*se_cmd
= container_of(work
, struct se_cmd
, work
);
1563 se_cmd
->se_tmr_req
->response
= TMR_LUN_DOES_NOT_EXIST
;
1564 se_cmd
->se_tfo
->queue_tm_rsp(se_cmd
);
1566 transport_cmd_check_stop_to_fabric(se_cmd
);
1570 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1573 * @se_cmd: command descriptor to submit
1574 * @se_sess: associated se_sess for endpoint
1575 * @sense: pointer to SCSI sense buffer
1576 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1577 * @fabric_context: fabric context for TMR req
1578 * @tm_type: Type of TM request
1579 * @gfp: gfp type for caller
1580 * @tag: referenced task tag for TMR_ABORT_TASK
1581 * @flags: submit cmd flags
1583 * Callable from all contexts.
1586 int target_submit_tmr(struct se_cmd
*se_cmd
, struct se_session
*se_sess
,
1587 unsigned char *sense
, u64 unpacked_lun
,
1588 void *fabric_tmr_ptr
, unsigned char tm_type
,
1589 gfp_t gfp
, u64 tag
, int flags
)
1591 struct se_portal_group
*se_tpg
;
1594 se_tpg
= se_sess
->se_tpg
;
1597 transport_init_se_cmd(se_cmd
, se_tpg
->se_tpg_tfo
, se_sess
,
1598 0, DMA_NONE
, TCM_SIMPLE_TAG
, sense
);
1600 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1601 * allocation failure.
1603 ret
= core_tmr_alloc_req(se_cmd
, fabric_tmr_ptr
, tm_type
, gfp
);
1607 if (tm_type
== TMR_ABORT_TASK
)
1608 se_cmd
->se_tmr_req
->ref_task_tag
= tag
;
1610 /* See target_submit_cmd for commentary */
1611 ret
= target_get_sess_cmd(se_cmd
, flags
& TARGET_SCF_ACK_KREF
);
1613 core_tmr_release_req(se_cmd
->se_tmr_req
);
1617 ret
= transport_lookup_tmr_lun(se_cmd
, unpacked_lun
);
1620 * For callback during failure handling, push this work off
1621 * to process context with TMR_LUN_DOES_NOT_EXIST status.
1623 INIT_WORK(&se_cmd
->work
, target_complete_tmr_failure
);
1624 schedule_work(&se_cmd
->work
);
1627 transport_generic_handle_tmr(se_cmd
);
1630 EXPORT_SYMBOL(target_submit_tmr
);
1633 * Handle SAM-esque emulation for generic transport request failures.
1635 void transport_generic_request_failure(struct se_cmd
*cmd
,
1636 sense_reason_t sense_reason
)
1638 int ret
= 0, post_ret
= 0;
1640 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08llx"
1641 " CDB: 0x%02x\n", cmd
, cmd
->tag
, cmd
->t_task_cdb
[0]);
1642 pr_debug("-----[ i_state: %d t_state: %d sense_reason: %d\n",
1643 cmd
->se_tfo
->get_cmd_state(cmd
),
1644 cmd
->t_state
, sense_reason
);
1645 pr_debug("-----[ CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n",
1646 (cmd
->transport_state
& CMD_T_ACTIVE
) != 0,
1647 (cmd
->transport_state
& CMD_T_STOP
) != 0,
1648 (cmd
->transport_state
& CMD_T_SENT
) != 0);
1651 * For SAM Task Attribute emulation for failed struct se_cmd
1653 transport_complete_task_attr(cmd
);
1655 * Handle special case for COMPARE_AND_WRITE failure, where the
1656 * callback is expected to drop the per device ->caw_sem.
1658 if ((cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
) &&
1659 cmd
->transport_complete_callback
)
1660 cmd
->transport_complete_callback(cmd
, false, &post_ret
);
1662 switch (sense_reason
) {
1663 case TCM_NON_EXISTENT_LUN
:
1664 case TCM_UNSUPPORTED_SCSI_OPCODE
:
1665 case TCM_INVALID_CDB_FIELD
:
1666 case TCM_INVALID_PARAMETER_LIST
:
1667 case TCM_PARAMETER_LIST_LENGTH_ERROR
:
1668 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
:
1669 case TCM_UNKNOWN_MODE_PAGE
:
1670 case TCM_WRITE_PROTECTED
:
1671 case TCM_ADDRESS_OUT_OF_RANGE
:
1672 case TCM_CHECK_CONDITION_ABORT_CMD
:
1673 case TCM_CHECK_CONDITION_UNIT_ATTENTION
:
1674 case TCM_CHECK_CONDITION_NOT_READY
:
1675 case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED
:
1676 case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED
:
1677 case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED
:
1679 case TCM_OUT_OF_RESOURCES
:
1680 sense_reason
= TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
1682 case TCM_RESERVATION_CONFLICT
:
1684 * No SENSE Data payload for this case, set SCSI Status
1685 * and queue the response to $FABRIC_MOD.
1687 * Uses linux/include/scsi/scsi.h SAM status codes defs
1689 cmd
->scsi_status
= SAM_STAT_RESERVATION_CONFLICT
;
1691 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1692 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1695 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1698 cmd
->se_dev
->dev_attrib
.emulate_ua_intlck_ctrl
== 2) {
1699 target_ua_allocate_lun(cmd
->se_sess
->se_node_acl
,
1700 cmd
->orig_fe_lun
, 0x2C,
1701 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS
);
1703 trace_target_cmd_complete(cmd
);
1704 ret
= cmd
->se_tfo
->queue_status(cmd
);
1705 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
1709 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1710 cmd
->t_task_cdb
[0], sense_reason
);
1711 sense_reason
= TCM_UNSUPPORTED_SCSI_OPCODE
;
1715 ret
= transport_send_check_condition_and_sense(cmd
, sense_reason
, 0);
1716 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
1720 transport_lun_remove_cmd(cmd
);
1721 transport_cmd_check_stop_to_fabric(cmd
);
1725 cmd
->t_state
= TRANSPORT_COMPLETE_QF_OK
;
1726 transport_handle_queue_full(cmd
, cmd
->se_dev
);
1728 EXPORT_SYMBOL(transport_generic_request_failure
);
1730 void __target_execute_cmd(struct se_cmd
*cmd
)
1734 if (cmd
->execute_cmd
) {
1735 ret
= cmd
->execute_cmd(cmd
);
1737 spin_lock_irq(&cmd
->t_state_lock
);
1738 cmd
->transport_state
&= ~(CMD_T_BUSY
|CMD_T_SENT
);
1739 spin_unlock_irq(&cmd
->t_state_lock
);
1741 transport_generic_request_failure(cmd
, ret
);
1746 static int target_write_prot_action(struct se_cmd
*cmd
)
1750 * Perform WRITE_INSERT of PI using software emulation when backend
1751 * device has PI enabled, if the transport has not already generated
1752 * PI using hardware WRITE_INSERT offload.
1754 switch (cmd
->prot_op
) {
1755 case TARGET_PROT_DOUT_INSERT
:
1756 if (!(cmd
->se_sess
->sup_prot_ops
& TARGET_PROT_DOUT_INSERT
))
1757 sbc_dif_generate(cmd
);
1759 case TARGET_PROT_DOUT_STRIP
:
1760 if (cmd
->se_sess
->sup_prot_ops
& TARGET_PROT_DOUT_STRIP
)
1763 sectors
= cmd
->data_length
>> ilog2(cmd
->se_dev
->dev_attrib
.block_size
);
1764 cmd
->pi_err
= sbc_dif_verify(cmd
, cmd
->t_task_lba
,
1765 sectors
, 0, cmd
->t_prot_sg
, 0);
1766 if (unlikely(cmd
->pi_err
)) {
1767 spin_lock_irq(&cmd
->t_state_lock
);
1768 cmd
->transport_state
&= ~(CMD_T_BUSY
|CMD_T_SENT
);
1769 spin_unlock_irq(&cmd
->t_state_lock
);
1770 transport_generic_request_failure(cmd
, cmd
->pi_err
);
1781 static bool target_handle_task_attr(struct se_cmd
*cmd
)
1783 struct se_device
*dev
= cmd
->se_dev
;
1785 if (dev
->transport
->transport_flags
& TRANSPORT_FLAG_PASSTHROUGH
)
1789 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1790 * to allow the passed struct se_cmd list of tasks to the front of the list.
1792 switch (cmd
->sam_task_attr
) {
1794 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x\n",
1795 cmd
->t_task_cdb
[0]);
1797 case TCM_ORDERED_TAG
:
1798 atomic_inc_mb(&dev
->dev_ordered_sync
);
1800 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list\n",
1801 cmd
->t_task_cdb
[0]);
1804 * Execute an ORDERED command if no other older commands
1805 * exist that need to be completed first.
1807 if (!atomic_read(&dev
->simple_cmds
))
1812 * For SIMPLE and UNTAGGED Task Attribute commands
1814 atomic_inc_mb(&dev
->simple_cmds
);
1818 if (atomic_read(&dev
->dev_ordered_sync
) == 0)
1821 spin_lock(&dev
->delayed_cmd_lock
);
1822 list_add_tail(&cmd
->se_delayed_node
, &dev
->delayed_cmd_list
);
1823 spin_unlock(&dev
->delayed_cmd_lock
);
1825 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to delayed CMD listn",
1826 cmd
->t_task_cdb
[0], cmd
->sam_task_attr
);
1830 static int __transport_check_aborted_status(struct se_cmd
*, int);
1832 void target_execute_cmd(struct se_cmd
*cmd
)
1835 * Determine if frontend context caller is requesting the stopping of
1836 * this command for frontend exceptions.
1838 * If the received CDB has aleady been aborted stop processing it here.
1840 spin_lock_irq(&cmd
->t_state_lock
);
1841 if (__transport_check_aborted_status(cmd
, 1)) {
1842 spin_unlock_irq(&cmd
->t_state_lock
);
1845 if (cmd
->transport_state
& CMD_T_STOP
) {
1846 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
1847 __func__
, __LINE__
, cmd
->tag
);
1849 spin_unlock_irq(&cmd
->t_state_lock
);
1850 complete_all(&cmd
->t_transport_stop_comp
);
1854 cmd
->t_state
= TRANSPORT_PROCESSING
;
1855 cmd
->transport_state
|= CMD_T_ACTIVE
|CMD_T_BUSY
|CMD_T_SENT
;
1856 spin_unlock_irq(&cmd
->t_state_lock
);
1858 if (target_write_prot_action(cmd
))
1861 if (target_handle_task_attr(cmd
)) {
1862 spin_lock_irq(&cmd
->t_state_lock
);
1863 cmd
->transport_state
&= ~(CMD_T_BUSY
| CMD_T_SENT
);
1864 spin_unlock_irq(&cmd
->t_state_lock
);
1868 __target_execute_cmd(cmd
);
1870 EXPORT_SYMBOL(target_execute_cmd
);
1873 * Process all commands up to the last received ORDERED task attribute which
1874 * requires another blocking boundary
1876 static void target_restart_delayed_cmds(struct se_device
*dev
)
1881 spin_lock(&dev
->delayed_cmd_lock
);
1882 if (list_empty(&dev
->delayed_cmd_list
)) {
1883 spin_unlock(&dev
->delayed_cmd_lock
);
1887 cmd
= list_entry(dev
->delayed_cmd_list
.next
,
1888 struct se_cmd
, se_delayed_node
);
1889 list_del(&cmd
->se_delayed_node
);
1890 spin_unlock(&dev
->delayed_cmd_lock
);
1892 __target_execute_cmd(cmd
);
1894 if (cmd
->sam_task_attr
== TCM_ORDERED_TAG
)
1900 * Called from I/O completion to determine which dormant/delayed
1901 * and ordered cmds need to have their tasks added to the execution queue.
1903 static void transport_complete_task_attr(struct se_cmd
*cmd
)
1905 struct se_device
*dev
= cmd
->se_dev
;
1907 if (dev
->transport
->transport_flags
& TRANSPORT_FLAG_PASSTHROUGH
)
1910 if (cmd
->sam_task_attr
== TCM_SIMPLE_TAG
) {
1911 atomic_dec_mb(&dev
->simple_cmds
);
1912 dev
->dev_cur_ordered_id
++;
1913 pr_debug("Incremented dev->dev_cur_ordered_id: %u for SIMPLE\n",
1914 dev
->dev_cur_ordered_id
);
1915 } else if (cmd
->sam_task_attr
== TCM_HEAD_TAG
) {
1916 dev
->dev_cur_ordered_id
++;
1917 pr_debug("Incremented dev_cur_ordered_id: %u for HEAD_OF_QUEUE\n",
1918 dev
->dev_cur_ordered_id
);
1919 } else if (cmd
->sam_task_attr
== TCM_ORDERED_TAG
) {
1920 atomic_dec_mb(&dev
->dev_ordered_sync
);
1922 dev
->dev_cur_ordered_id
++;
1923 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED\n",
1924 dev
->dev_cur_ordered_id
);
1927 target_restart_delayed_cmds(dev
);
1930 static void transport_complete_qf(struct se_cmd
*cmd
)
1934 transport_complete_task_attr(cmd
);
1936 if (cmd
->se_cmd_flags
& SCF_TRANSPORT_TASK_SENSE
) {
1937 trace_target_cmd_complete(cmd
);
1938 ret
= cmd
->se_tfo
->queue_status(cmd
);
1942 switch (cmd
->data_direction
) {
1943 case DMA_FROM_DEVICE
:
1944 trace_target_cmd_complete(cmd
);
1945 ret
= cmd
->se_tfo
->queue_data_in(cmd
);
1948 if (cmd
->se_cmd_flags
& SCF_BIDI
) {
1949 ret
= cmd
->se_tfo
->queue_data_in(cmd
);
1952 /* Fall through for DMA_TO_DEVICE */
1954 trace_target_cmd_complete(cmd
);
1955 ret
= cmd
->se_tfo
->queue_status(cmd
);
1963 transport_handle_queue_full(cmd
, cmd
->se_dev
);
1966 transport_lun_remove_cmd(cmd
);
1967 transport_cmd_check_stop_to_fabric(cmd
);
1970 static void transport_handle_queue_full(
1972 struct se_device
*dev
)
1974 spin_lock_irq(&dev
->qf_cmd_lock
);
1975 list_add_tail(&cmd
->se_qf_node
, &cmd
->se_dev
->qf_cmd_list
);
1976 atomic_inc_mb(&dev
->dev_qf_count
);
1977 spin_unlock_irq(&cmd
->se_dev
->qf_cmd_lock
);
1979 schedule_work(&cmd
->se_dev
->qf_work_queue
);
1982 static bool target_read_prot_action(struct se_cmd
*cmd
)
1984 switch (cmd
->prot_op
) {
1985 case TARGET_PROT_DIN_STRIP
:
1986 if (!(cmd
->se_sess
->sup_prot_ops
& TARGET_PROT_DIN_STRIP
)) {
1987 u32 sectors
= cmd
->data_length
>>
1988 ilog2(cmd
->se_dev
->dev_attrib
.block_size
);
1990 cmd
->pi_err
= sbc_dif_verify(cmd
, cmd
->t_task_lba
,
1991 sectors
, 0, cmd
->t_prot_sg
,
1997 case TARGET_PROT_DIN_INSERT
:
1998 if (cmd
->se_sess
->sup_prot_ops
& TARGET_PROT_DIN_INSERT
)
2001 sbc_dif_generate(cmd
);
2010 static void target_complete_ok_work(struct work_struct
*work
)
2012 struct se_cmd
*cmd
= container_of(work
, struct se_cmd
, work
);
2016 * Check if we need to move delayed/dormant tasks from cmds on the
2017 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
2020 transport_complete_task_attr(cmd
);
2023 * Check to schedule QUEUE_FULL work, or execute an existing
2024 * cmd->transport_qf_callback()
2026 if (atomic_read(&cmd
->se_dev
->dev_qf_count
) != 0)
2027 schedule_work(&cmd
->se_dev
->qf_work_queue
);
2030 * Check if we need to send a sense buffer from
2031 * the struct se_cmd in question.
2033 if (cmd
->se_cmd_flags
& SCF_TRANSPORT_TASK_SENSE
) {
2034 WARN_ON(!cmd
->scsi_status
);
2035 ret
= transport_send_check_condition_and_sense(
2037 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
2040 transport_lun_remove_cmd(cmd
);
2041 transport_cmd_check_stop_to_fabric(cmd
);
2045 * Check for a callback, used by amongst other things
2046 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
2048 if (cmd
->transport_complete_callback
) {
2050 bool caw
= (cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
);
2051 bool zero_dl
= !(cmd
->data_length
);
2054 rc
= cmd
->transport_complete_callback(cmd
, true, &post_ret
);
2055 if (!rc
&& !post_ret
) {
2061 ret
= transport_send_check_condition_and_sense(cmd
,
2063 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
2066 transport_lun_remove_cmd(cmd
);
2067 transport_cmd_check_stop_to_fabric(cmd
);
2073 switch (cmd
->data_direction
) {
2074 case DMA_FROM_DEVICE
:
2075 atomic_long_add(cmd
->data_length
,
2076 &cmd
->se_lun
->lun_stats
.tx_data_octets
);
2078 * Perform READ_STRIP of PI using software emulation when
2079 * backend had PI enabled, if the transport will not be
2080 * performing hardware READ_STRIP offload.
2082 if (target_read_prot_action(cmd
)) {
2083 ret
= transport_send_check_condition_and_sense(cmd
,
2085 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
2088 transport_lun_remove_cmd(cmd
);
2089 transport_cmd_check_stop_to_fabric(cmd
);
2093 trace_target_cmd_complete(cmd
);
2094 ret
= cmd
->se_tfo
->queue_data_in(cmd
);
2095 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
2099 atomic_long_add(cmd
->data_length
,
2100 &cmd
->se_lun
->lun_stats
.rx_data_octets
);
2102 * Check if we need to send READ payload for BIDI-COMMAND
2104 if (cmd
->se_cmd_flags
& SCF_BIDI
) {
2105 atomic_long_add(cmd
->data_length
,
2106 &cmd
->se_lun
->lun_stats
.tx_data_octets
);
2107 ret
= cmd
->se_tfo
->queue_data_in(cmd
);
2108 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
2112 /* Fall through for DMA_TO_DEVICE */
2114 trace_target_cmd_complete(cmd
);
2115 ret
= cmd
->se_tfo
->queue_status(cmd
);
2116 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
2123 transport_lun_remove_cmd(cmd
);
2124 transport_cmd_check_stop_to_fabric(cmd
);
2128 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
2129 " data_direction: %d\n", cmd
, cmd
->data_direction
);
2130 cmd
->t_state
= TRANSPORT_COMPLETE_QF_OK
;
2131 transport_handle_queue_full(cmd
, cmd
->se_dev
);
2134 static inline void transport_free_sgl(struct scatterlist
*sgl
, int nents
)
2136 struct scatterlist
*sg
;
2139 for_each_sg(sgl
, sg
, nents
, count
)
2140 __free_page(sg_page(sg
));
2145 static inline void transport_reset_sgl_orig(struct se_cmd
*cmd
)
2148 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
2149 * emulation, and free + reset pointers if necessary..
2151 if (!cmd
->t_data_sg_orig
)
2154 kfree(cmd
->t_data_sg
);
2155 cmd
->t_data_sg
= cmd
->t_data_sg_orig
;
2156 cmd
->t_data_sg_orig
= NULL
;
2157 cmd
->t_data_nents
= cmd
->t_data_nents_orig
;
2158 cmd
->t_data_nents_orig
= 0;
2161 static inline void transport_free_pages(struct se_cmd
*cmd
)
2163 if (!(cmd
->se_cmd_flags
& SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC
)) {
2164 transport_free_sgl(cmd
->t_prot_sg
, cmd
->t_prot_nents
);
2165 cmd
->t_prot_sg
= NULL
;
2166 cmd
->t_prot_nents
= 0;
2169 if (cmd
->se_cmd_flags
& SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC
) {
2171 * Release special case READ buffer payload required for
2172 * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE
2174 if (cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
) {
2175 transport_free_sgl(cmd
->t_bidi_data_sg
,
2176 cmd
->t_bidi_data_nents
);
2177 cmd
->t_bidi_data_sg
= NULL
;
2178 cmd
->t_bidi_data_nents
= 0;
2180 transport_reset_sgl_orig(cmd
);
2183 transport_reset_sgl_orig(cmd
);
2185 transport_free_sgl(cmd
->t_data_sg
, cmd
->t_data_nents
);
2186 cmd
->t_data_sg
= NULL
;
2187 cmd
->t_data_nents
= 0;
2189 transport_free_sgl(cmd
->t_bidi_data_sg
, cmd
->t_bidi_data_nents
);
2190 cmd
->t_bidi_data_sg
= NULL
;
2191 cmd
->t_bidi_data_nents
= 0;
2195 * transport_put_cmd - release a reference to a command
2196 * @cmd: command to release
2198 * This routine releases our reference to the command and frees it if possible.
2200 static int transport_put_cmd(struct se_cmd
*cmd
)
2202 BUG_ON(!cmd
->se_tfo
);
2204 * If this cmd has been setup with target_get_sess_cmd(), drop
2205 * the kref and call ->release_cmd() in kref callback.
2207 return target_put_sess_cmd(cmd
);
2210 void *transport_kmap_data_sg(struct se_cmd
*cmd
)
2212 struct scatterlist
*sg
= cmd
->t_data_sg
;
2213 struct page
**pages
;
2217 * We need to take into account a possible offset here for fabrics like
2218 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
2219 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2221 if (!cmd
->t_data_nents
)
2225 if (cmd
->t_data_nents
== 1)
2226 return kmap(sg_page(sg
)) + sg
->offset
;
2228 /* >1 page. use vmap */
2229 pages
= kmalloc(sizeof(*pages
) * cmd
->t_data_nents
, GFP_KERNEL
);
2233 /* convert sg[] to pages[] */
2234 for_each_sg(cmd
->t_data_sg
, sg
, cmd
->t_data_nents
, i
) {
2235 pages
[i
] = sg_page(sg
);
2238 cmd
->t_data_vmap
= vmap(pages
, cmd
->t_data_nents
, VM_MAP
, PAGE_KERNEL
);
2240 if (!cmd
->t_data_vmap
)
2243 return cmd
->t_data_vmap
+ cmd
->t_data_sg
[0].offset
;
2245 EXPORT_SYMBOL(transport_kmap_data_sg
);
2247 void transport_kunmap_data_sg(struct se_cmd
*cmd
)
2249 if (!cmd
->t_data_nents
) {
2251 } else if (cmd
->t_data_nents
== 1) {
2252 kunmap(sg_page(cmd
->t_data_sg
));
2256 vunmap(cmd
->t_data_vmap
);
2257 cmd
->t_data_vmap
= NULL
;
2259 EXPORT_SYMBOL(transport_kunmap_data_sg
);
2262 target_alloc_sgl(struct scatterlist
**sgl
, unsigned int *nents
, u32 length
,
2265 struct scatterlist
*sg
;
2267 gfp_t zero_flag
= (zero_page
) ? __GFP_ZERO
: 0;
2271 nent
= DIV_ROUND_UP(length
, PAGE_SIZE
);
2272 sg
= kmalloc(sizeof(struct scatterlist
) * nent
, GFP_KERNEL
);
2276 sg_init_table(sg
, nent
);
2279 u32 page_len
= min_t(u32
, length
, PAGE_SIZE
);
2280 page
= alloc_page(GFP_KERNEL
| zero_flag
);
2284 sg_set_page(&sg
[i
], page
, page_len
, 0);
2295 __free_page(sg_page(&sg
[i
]));
2302 * Allocate any required resources to execute the command. For writes we
2303 * might not have the payload yet, so notify the fabric via a call to
2304 * ->write_pending instead. Otherwise place it on the execution queue.
2307 transport_generic_new_cmd(struct se_cmd
*cmd
)
2310 bool zero_flag
= !(cmd
->se_cmd_flags
& SCF_SCSI_DATA_CDB
);
2312 if (cmd
->prot_op
!= TARGET_PROT_NORMAL
&&
2313 !(cmd
->se_cmd_flags
& SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC
)) {
2314 ret
= target_alloc_sgl(&cmd
->t_prot_sg
, &cmd
->t_prot_nents
,
2315 cmd
->prot_length
, true);
2317 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
2321 * Determine is the TCM fabric module has already allocated physical
2322 * memory, and is directly calling transport_generic_map_mem_to_cmd()
2325 if (!(cmd
->se_cmd_flags
& SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC
) &&
2328 if ((cmd
->se_cmd_flags
& SCF_BIDI
) ||
2329 (cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
)) {
2332 if (cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
)
2333 bidi_length
= cmd
->t_task_nolb
*
2334 cmd
->se_dev
->dev_attrib
.block_size
;
2336 bidi_length
= cmd
->data_length
;
2338 ret
= target_alloc_sgl(&cmd
->t_bidi_data_sg
,
2339 &cmd
->t_bidi_data_nents
,
2340 bidi_length
, zero_flag
);
2342 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
2345 ret
= target_alloc_sgl(&cmd
->t_data_sg
, &cmd
->t_data_nents
,
2346 cmd
->data_length
, zero_flag
);
2348 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
2349 } else if ((cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
) &&
2352 * Special case for COMPARE_AND_WRITE with fabrics
2353 * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC.
2355 u32 caw_length
= cmd
->t_task_nolb
*
2356 cmd
->se_dev
->dev_attrib
.block_size
;
2358 ret
= target_alloc_sgl(&cmd
->t_bidi_data_sg
,
2359 &cmd
->t_bidi_data_nents
,
2360 caw_length
, zero_flag
);
2362 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
2365 * If this command is not a write we can execute it right here,
2366 * for write buffers we need to notify the fabric driver first
2367 * and let it call back once the write buffers are ready.
2369 target_add_to_state_list(cmd
);
2370 if (cmd
->data_direction
!= DMA_TO_DEVICE
|| cmd
->data_length
== 0) {
2371 target_execute_cmd(cmd
);
2374 transport_cmd_check_stop(cmd
, false, true);
2376 ret
= cmd
->se_tfo
->write_pending(cmd
);
2377 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
2380 /* fabric drivers should only return -EAGAIN or -ENOMEM as error */
2383 return (!ret
) ? 0 : TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
2386 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd
);
2387 cmd
->t_state
= TRANSPORT_COMPLETE_QF_WP
;
2388 transport_handle_queue_full(cmd
, cmd
->se_dev
);
2391 EXPORT_SYMBOL(transport_generic_new_cmd
);
2393 static void transport_write_pending_qf(struct se_cmd
*cmd
)
2397 ret
= cmd
->se_tfo
->write_pending(cmd
);
2398 if (ret
== -EAGAIN
|| ret
== -ENOMEM
) {
2399 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2401 transport_handle_queue_full(cmd
, cmd
->se_dev
);
2406 __transport_wait_for_tasks(struct se_cmd
*, bool, bool *, bool *,
2407 unsigned long *flags
);
2409 static void target_wait_free_cmd(struct se_cmd
*cmd
, bool *aborted
, bool *tas
)
2411 unsigned long flags
;
2413 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
2414 __transport_wait_for_tasks(cmd
, true, aborted
, tas
, &flags
);
2415 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2418 int transport_generic_free_cmd(struct se_cmd
*cmd
, int wait_for_tasks
)
2421 bool aborted
= false, tas
= false;
2423 if (!(cmd
->se_cmd_flags
& SCF_SE_LUN_CMD
)) {
2424 if (wait_for_tasks
&& (cmd
->se_cmd_flags
& SCF_SCSI_TMR_CDB
))
2425 target_wait_free_cmd(cmd
, &aborted
, &tas
);
2427 if (!aborted
|| tas
)
2428 ret
= transport_put_cmd(cmd
);
2431 target_wait_free_cmd(cmd
, &aborted
, &tas
);
2433 * Handle WRITE failure case where transport_generic_new_cmd()
2434 * has already added se_cmd to state_list, but fabric has
2435 * failed command before I/O submission.
2437 if (cmd
->state_active
)
2438 target_remove_from_state_list(cmd
);
2441 transport_lun_remove_cmd(cmd
);
2443 if (!aborted
|| tas
)
2444 ret
= transport_put_cmd(cmd
);
2447 * If the task has been internally aborted due to TMR ABORT_TASK
2448 * or LUN_RESET, target_core_tmr.c is responsible for performing
2449 * the remaining calls to target_put_sess_cmd(), and not the
2450 * callers of this function.
2453 pr_debug("Detected CMD_T_ABORTED for ITT: %llu\n", cmd
->tag
);
2454 wait_for_completion(&cmd
->cmd_wait_comp
);
2455 cmd
->se_tfo
->release_cmd(cmd
);
2460 EXPORT_SYMBOL(transport_generic_free_cmd
);
2462 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
2463 * @se_cmd: command descriptor to add
2464 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd()
2466 int target_get_sess_cmd(struct se_cmd
*se_cmd
, bool ack_kref
)
2468 struct se_session
*se_sess
= se_cmd
->se_sess
;
2469 unsigned long flags
;
2473 * Add a second kref if the fabric caller is expecting to handle
2474 * fabric acknowledgement that requires two target_put_sess_cmd()
2475 * invocations before se_cmd descriptor release.
2478 kref_get(&se_cmd
->cmd_kref
);
2480 spin_lock_irqsave(&se_sess
->sess_cmd_lock
, flags
);
2481 if (se_sess
->sess_tearing_down
) {
2485 list_add_tail(&se_cmd
->se_cmd_list
, &se_sess
->sess_cmd_list
);
2487 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
2489 if (ret
&& ack_kref
)
2490 target_put_sess_cmd(se_cmd
);
2494 EXPORT_SYMBOL(target_get_sess_cmd
);
2496 static void target_free_cmd_mem(struct se_cmd
*cmd
)
2498 transport_free_pages(cmd
);
2500 if (cmd
->se_cmd_flags
& SCF_SCSI_TMR_CDB
)
2501 core_tmr_release_req(cmd
->se_tmr_req
);
2502 if (cmd
->t_task_cdb
!= cmd
->__t_task_cdb
)
2503 kfree(cmd
->t_task_cdb
);
2506 static void target_release_cmd_kref(struct kref
*kref
)
2508 struct se_cmd
*se_cmd
= container_of(kref
, struct se_cmd
, cmd_kref
);
2509 struct se_session
*se_sess
= se_cmd
->se_sess
;
2510 unsigned long flags
;
2513 spin_lock_irqsave(&se_sess
->sess_cmd_lock
, flags
);
2514 if (list_empty(&se_cmd
->se_cmd_list
)) {
2515 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
2516 target_free_cmd_mem(se_cmd
);
2517 se_cmd
->se_tfo
->release_cmd(se_cmd
);
2521 spin_lock(&se_cmd
->t_state_lock
);
2522 fabric_stop
= (se_cmd
->transport_state
& CMD_T_FABRIC_STOP
);
2523 spin_unlock(&se_cmd
->t_state_lock
);
2525 if (se_cmd
->cmd_wait_set
|| fabric_stop
) {
2526 list_del_init(&se_cmd
->se_cmd_list
);
2527 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
2528 target_free_cmd_mem(se_cmd
);
2529 complete(&se_cmd
->cmd_wait_comp
);
2532 list_del_init(&se_cmd
->se_cmd_list
);
2533 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
2535 target_free_cmd_mem(se_cmd
);
2536 se_cmd
->se_tfo
->release_cmd(se_cmd
);
2539 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put
2540 * @se_cmd: command descriptor to drop
2542 int target_put_sess_cmd(struct se_cmd
*se_cmd
)
2544 struct se_session
*se_sess
= se_cmd
->se_sess
;
2547 target_free_cmd_mem(se_cmd
);
2548 se_cmd
->se_tfo
->release_cmd(se_cmd
);
2551 return kref_put(&se_cmd
->cmd_kref
, target_release_cmd_kref
);
2553 EXPORT_SYMBOL(target_put_sess_cmd
);
2555 /* target_sess_cmd_list_set_waiting - Flag all commands in
2556 * sess_cmd_list to complete cmd_wait_comp. Set
2557 * sess_tearing_down so no more commands are queued.
2558 * @se_sess: session to flag
2560 void target_sess_cmd_list_set_waiting(struct se_session
*se_sess
)
2562 struct se_cmd
*se_cmd
;
2563 unsigned long flags
;
2566 spin_lock_irqsave(&se_sess
->sess_cmd_lock
, flags
);
2567 if (se_sess
->sess_tearing_down
) {
2568 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
2571 se_sess
->sess_tearing_down
= 1;
2572 list_splice_init(&se_sess
->sess_cmd_list
, &se_sess
->sess_wait_list
);
2574 list_for_each_entry(se_cmd
, &se_sess
->sess_wait_list
, se_cmd_list
) {
2575 rc
= kref_get_unless_zero(&se_cmd
->cmd_kref
);
2577 se_cmd
->cmd_wait_set
= 1;
2578 spin_lock(&se_cmd
->t_state_lock
);
2579 se_cmd
->transport_state
|= CMD_T_FABRIC_STOP
;
2580 spin_unlock(&se_cmd
->t_state_lock
);
2584 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
2586 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting
);
2588 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
2589 * @se_sess: session to wait for active I/O
2591 void target_wait_for_sess_cmds(struct se_session
*se_sess
)
2593 struct se_cmd
*se_cmd
, *tmp_cmd
;
2594 unsigned long flags
;
2597 list_for_each_entry_safe(se_cmd
, tmp_cmd
,
2598 &se_sess
->sess_wait_list
, se_cmd_list
) {
2599 list_del_init(&se_cmd
->se_cmd_list
);
2601 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
2602 " %d\n", se_cmd
, se_cmd
->t_state
,
2603 se_cmd
->se_tfo
->get_cmd_state(se_cmd
));
2605 spin_lock_irqsave(&se_cmd
->t_state_lock
, flags
);
2606 tas
= (se_cmd
->transport_state
& CMD_T_TAS
);
2607 spin_unlock_irqrestore(&se_cmd
->t_state_lock
, flags
);
2609 if (!target_put_sess_cmd(se_cmd
)) {
2611 target_put_sess_cmd(se_cmd
);
2614 wait_for_completion(&se_cmd
->cmd_wait_comp
);
2615 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
2616 " fabric state: %d\n", se_cmd
, se_cmd
->t_state
,
2617 se_cmd
->se_tfo
->get_cmd_state(se_cmd
));
2619 se_cmd
->se_tfo
->release_cmd(se_cmd
);
2622 spin_lock_irqsave(&se_sess
->sess_cmd_lock
, flags
);
2623 WARN_ON(!list_empty(&se_sess
->sess_cmd_list
));
2624 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
2627 EXPORT_SYMBOL(target_wait_for_sess_cmds
);
2629 void transport_clear_lun_ref(struct se_lun
*lun
)
2631 percpu_ref_kill(&lun
->lun_ref
);
2632 wait_for_completion(&lun
->lun_ref_comp
);
2636 __transport_wait_for_tasks(struct se_cmd
*cmd
, bool fabric_stop
,
2637 bool *aborted
, bool *tas
, unsigned long *flags
)
2638 __releases(&cmd
->t_state_lock
)
2639 __acquires(&cmd
->t_state_lock
)
2642 assert_spin_locked(&cmd
->t_state_lock
);
2643 WARN_ON_ONCE(!irqs_disabled());
2646 cmd
->transport_state
|= CMD_T_FABRIC_STOP
;
2648 if (cmd
->transport_state
& CMD_T_ABORTED
)
2651 if (cmd
->transport_state
& CMD_T_TAS
)
2654 if (!(cmd
->se_cmd_flags
& SCF_SE_LUN_CMD
) &&
2655 !(cmd
->se_cmd_flags
& SCF_SCSI_TMR_CDB
))
2658 if (!(cmd
->se_cmd_flags
& SCF_SUPPORTED_SAM_OPCODE
) &&
2659 !(cmd
->se_cmd_flags
& SCF_SCSI_TMR_CDB
))
2662 if (!(cmd
->transport_state
& CMD_T_ACTIVE
))
2665 if (fabric_stop
&& *aborted
)
2668 cmd
->transport_state
|= CMD_T_STOP
;
2670 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08llx i_state: %d,"
2671 " t_state: %d, CMD_T_STOP\n", cmd
, cmd
->tag
,
2672 cmd
->se_tfo
->get_cmd_state(cmd
), cmd
->t_state
);
2674 spin_unlock_irqrestore(&cmd
->t_state_lock
, *flags
);
2676 wait_for_completion(&cmd
->t_transport_stop_comp
);
2678 spin_lock_irqsave(&cmd
->t_state_lock
, *flags
);
2679 cmd
->transport_state
&= ~(CMD_T_ACTIVE
| CMD_T_STOP
);
2681 pr_debug("wait_for_tasks: Stopped wait_for_completion(&cmd->"
2682 "t_transport_stop_comp) for ITT: 0x%08llx\n", cmd
->tag
);
2688 * transport_wait_for_tasks - wait for completion to occur
2689 * @cmd: command to wait
2691 * Called from frontend fabric context to wait for storage engine
2692 * to pause and/or release frontend generated struct se_cmd.
2694 bool transport_wait_for_tasks(struct se_cmd
*cmd
)
2696 unsigned long flags
;
2697 bool ret
, aborted
= false, tas
= false;
2699 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
2700 ret
= __transport_wait_for_tasks(cmd
, false, &aborted
, &tas
, &flags
);
2701 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2705 EXPORT_SYMBOL(transport_wait_for_tasks
);
2711 bool add_sector_info
;
2714 static const struct sense_info sense_info_table
[] = {
2718 [TCM_NON_EXISTENT_LUN
] = {
2719 .key
= ILLEGAL_REQUEST
,
2720 .asc
= 0x25 /* LOGICAL UNIT NOT SUPPORTED */
2722 [TCM_UNSUPPORTED_SCSI_OPCODE
] = {
2723 .key
= ILLEGAL_REQUEST
,
2724 .asc
= 0x20, /* INVALID COMMAND OPERATION CODE */
2726 [TCM_SECTOR_COUNT_TOO_MANY
] = {
2727 .key
= ILLEGAL_REQUEST
,
2728 .asc
= 0x20, /* INVALID COMMAND OPERATION CODE */
2730 [TCM_UNKNOWN_MODE_PAGE
] = {
2731 .key
= ILLEGAL_REQUEST
,
2732 .asc
= 0x24, /* INVALID FIELD IN CDB */
2734 [TCM_CHECK_CONDITION_ABORT_CMD
] = {
2735 .key
= ABORTED_COMMAND
,
2736 .asc
= 0x29, /* BUS DEVICE RESET FUNCTION OCCURRED */
2739 [TCM_INCORRECT_AMOUNT_OF_DATA
] = {
2740 .key
= ABORTED_COMMAND
,
2741 .asc
= 0x0c, /* WRITE ERROR */
2742 .ascq
= 0x0d, /* NOT ENOUGH UNSOLICITED DATA */
2744 [TCM_INVALID_CDB_FIELD
] = {
2745 .key
= ILLEGAL_REQUEST
,
2746 .asc
= 0x24, /* INVALID FIELD IN CDB */
2748 [TCM_INVALID_PARAMETER_LIST
] = {
2749 .key
= ILLEGAL_REQUEST
,
2750 .asc
= 0x26, /* INVALID FIELD IN PARAMETER LIST */
2752 [TCM_PARAMETER_LIST_LENGTH_ERROR
] = {
2753 .key
= ILLEGAL_REQUEST
,
2754 .asc
= 0x1a, /* PARAMETER LIST LENGTH ERROR */
2756 [TCM_UNEXPECTED_UNSOLICITED_DATA
] = {
2757 .key
= ILLEGAL_REQUEST
,
2758 .asc
= 0x0c, /* WRITE ERROR */
2759 .ascq
= 0x0c, /* UNEXPECTED_UNSOLICITED_DATA */
2761 [TCM_SERVICE_CRC_ERROR
] = {
2762 .key
= ABORTED_COMMAND
,
2763 .asc
= 0x47, /* PROTOCOL SERVICE CRC ERROR */
2764 .ascq
= 0x05, /* N/A */
2766 [TCM_SNACK_REJECTED
] = {
2767 .key
= ABORTED_COMMAND
,
2768 .asc
= 0x11, /* READ ERROR */
2769 .ascq
= 0x13, /* FAILED RETRANSMISSION REQUEST */
2771 [TCM_WRITE_PROTECTED
] = {
2772 .key
= DATA_PROTECT
,
2773 .asc
= 0x27, /* WRITE PROTECTED */
2775 [TCM_ADDRESS_OUT_OF_RANGE
] = {
2776 .key
= ILLEGAL_REQUEST
,
2777 .asc
= 0x21, /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
2779 [TCM_CHECK_CONDITION_UNIT_ATTENTION
] = {
2780 .key
= UNIT_ATTENTION
,
2782 [TCM_CHECK_CONDITION_NOT_READY
] = {
2785 [TCM_MISCOMPARE_VERIFY
] = {
2787 .asc
= 0x1d, /* MISCOMPARE DURING VERIFY OPERATION */
2790 [TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED
] = {
2791 .key
= ABORTED_COMMAND
,
2793 .ascq
= 0x01, /* LOGICAL BLOCK GUARD CHECK FAILED */
2794 .add_sector_info
= true,
2796 [TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED
] = {
2797 .key
= ABORTED_COMMAND
,
2799 .ascq
= 0x02, /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */
2800 .add_sector_info
= true,
2802 [TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED
] = {
2803 .key
= ABORTED_COMMAND
,
2805 .ascq
= 0x03, /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */
2806 .add_sector_info
= true,
2808 [TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
] = {
2810 * Returning ILLEGAL REQUEST would cause immediate IO errors on
2811 * Solaris initiators. Returning NOT READY instead means the
2812 * operations will be retried a finite number of times and we
2813 * can survive intermittent errors.
2816 .asc
= 0x08, /* LOGICAL UNIT COMMUNICATION FAILURE */
2820 static int translate_sense_reason(struct se_cmd
*cmd
, sense_reason_t reason
)
2822 const struct sense_info
*si
;
2823 u8
*buffer
= cmd
->sense_buffer
;
2824 int r
= (__force
int)reason
;
2826 bool desc_format
= target_sense_desc_format(cmd
->se_dev
);
2828 if (r
< ARRAY_SIZE(sense_info_table
) && sense_info_table
[r
].key
)
2829 si
= &sense_info_table
[r
];
2831 si
= &sense_info_table
[(__force
int)
2832 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
];
2834 if (reason
== TCM_CHECK_CONDITION_UNIT_ATTENTION
) {
2835 core_scsi3_ua_for_check_condition(cmd
, &asc
, &ascq
);
2836 WARN_ON_ONCE(asc
== 0);
2837 } else if (si
->asc
== 0) {
2838 WARN_ON_ONCE(cmd
->scsi_asc
== 0);
2839 asc
= cmd
->scsi_asc
;
2840 ascq
= cmd
->scsi_ascq
;
2846 scsi_build_sense_buffer(desc_format
, buffer
, si
->key
, asc
, ascq
);
2847 if (si
->add_sector_info
)
2848 return scsi_set_sense_information(buffer
,
2849 cmd
->scsi_sense_length
,
2856 transport_send_check_condition_and_sense(struct se_cmd
*cmd
,
2857 sense_reason_t reason
, int from_transport
)
2859 unsigned long flags
;
2861 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
2862 if (cmd
->se_cmd_flags
& SCF_SENT_CHECK_CONDITION
) {
2863 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2866 cmd
->se_cmd_flags
|= SCF_SENT_CHECK_CONDITION
;
2867 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2869 if (!from_transport
) {
2872 cmd
->se_cmd_flags
|= SCF_EMULATED_TASK_SENSE
;
2873 cmd
->scsi_status
= SAM_STAT_CHECK_CONDITION
;
2874 cmd
->scsi_sense_length
= TRANSPORT_SENSE_BUFFER
;
2875 rc
= translate_sense_reason(cmd
, reason
);
2880 trace_target_cmd_complete(cmd
);
2881 return cmd
->se_tfo
->queue_status(cmd
);
2883 EXPORT_SYMBOL(transport_send_check_condition_and_sense
);
2885 static int __transport_check_aborted_status(struct se_cmd
*cmd
, int send_status
)
2886 __releases(&cmd
->t_state_lock
)
2887 __acquires(&cmd
->t_state_lock
)
2889 assert_spin_locked(&cmd
->t_state_lock
);
2890 WARN_ON_ONCE(!irqs_disabled());
2892 if (!(cmd
->transport_state
& CMD_T_ABORTED
))
2895 * If cmd has been aborted but either no status is to be sent or it has
2896 * already been sent, just return
2898 if (!send_status
|| !(cmd
->se_cmd_flags
& SCF_SEND_DELAYED_TAS
)) {
2900 cmd
->se_cmd_flags
|= SCF_SEND_DELAYED_TAS
;
2904 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB:"
2905 " 0x%02x ITT: 0x%08llx\n", cmd
->t_task_cdb
[0], cmd
->tag
);
2907 cmd
->se_cmd_flags
&= ~SCF_SEND_DELAYED_TAS
;
2908 cmd
->scsi_status
= SAM_STAT_TASK_ABORTED
;
2909 trace_target_cmd_complete(cmd
);
2911 spin_unlock_irq(&cmd
->t_state_lock
);
2912 cmd
->se_tfo
->queue_status(cmd
);
2913 spin_lock_irq(&cmd
->t_state_lock
);
2918 int transport_check_aborted_status(struct se_cmd
*cmd
, int send_status
)
2922 spin_lock_irq(&cmd
->t_state_lock
);
2923 ret
= __transport_check_aborted_status(cmd
, send_status
);
2924 spin_unlock_irq(&cmd
->t_state_lock
);
2928 EXPORT_SYMBOL(transport_check_aborted_status
);
2930 void transport_send_task_abort(struct se_cmd
*cmd
)
2932 unsigned long flags
;
2934 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
2935 if (cmd
->se_cmd_flags
& (SCF_SENT_CHECK_CONDITION
)) {
2936 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2939 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2942 * If there are still expected incoming fabric WRITEs, we wait
2943 * until until they have completed before sending a TASK_ABORTED
2944 * response. This response with TASK_ABORTED status will be
2945 * queued back to fabric module by transport_check_aborted_status().
2947 if (cmd
->data_direction
== DMA_TO_DEVICE
) {
2948 if (cmd
->se_tfo
->write_pending_status(cmd
) != 0) {
2949 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
2950 if (cmd
->se_cmd_flags
& SCF_SEND_DELAYED_TAS
) {
2951 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2954 cmd
->se_cmd_flags
|= SCF_SEND_DELAYED_TAS
;
2955 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2960 cmd
->scsi_status
= SAM_STAT_TASK_ABORTED
;
2962 transport_lun_remove_cmd(cmd
);
2964 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x, ITT: 0x%08llx\n",
2965 cmd
->t_task_cdb
[0], cmd
->tag
);
2967 trace_target_cmd_complete(cmd
);
2968 cmd
->se_tfo
->queue_status(cmd
);
2971 static void target_tmr_work(struct work_struct
*work
)
2973 struct se_cmd
*cmd
= container_of(work
, struct se_cmd
, work
);
2974 struct se_device
*dev
= cmd
->se_dev
;
2975 struct se_tmr_req
*tmr
= cmd
->se_tmr_req
;
2976 unsigned long flags
;
2979 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
2980 if (cmd
->transport_state
& CMD_T_ABORTED
) {
2981 tmr
->response
= TMR_FUNCTION_REJECTED
;
2982 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2985 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2987 switch (tmr
->function
) {
2988 case TMR_ABORT_TASK
:
2989 core_tmr_abort_task(dev
, tmr
, cmd
->se_sess
);
2991 case TMR_ABORT_TASK_SET
:
2993 case TMR_CLEAR_TASK_SET
:
2994 tmr
->response
= TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED
;
2997 ret
= core_tmr_lun_reset(dev
, tmr
, NULL
, NULL
);
2998 tmr
->response
= (!ret
) ? TMR_FUNCTION_COMPLETE
:
2999 TMR_FUNCTION_REJECTED
;
3000 if (tmr
->response
== TMR_FUNCTION_COMPLETE
) {
3001 target_ua_allocate_lun(cmd
->se_sess
->se_node_acl
,
3002 cmd
->orig_fe_lun
, 0x29,
3003 ASCQ_29H_BUS_DEVICE_RESET_FUNCTION_OCCURRED
);
3006 case TMR_TARGET_WARM_RESET
:
3007 tmr
->response
= TMR_FUNCTION_REJECTED
;
3009 case TMR_TARGET_COLD_RESET
:
3010 tmr
->response
= TMR_FUNCTION_REJECTED
;
3013 pr_err("Uknown TMR function: 0x%02x.\n",
3015 tmr
->response
= TMR_FUNCTION_REJECTED
;
3019 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3020 if (cmd
->transport_state
& CMD_T_ABORTED
) {
3021 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3024 cmd
->t_state
= TRANSPORT_ISTATE_PROCESSING
;
3025 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3027 cmd
->se_tfo
->queue_tm_rsp(cmd
);
3030 transport_cmd_check_stop_to_fabric(cmd
);
3033 int transport_generic_handle_tmr(
3036 unsigned long flags
;
3038 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3039 cmd
->transport_state
|= CMD_T_ACTIVE
;
3040 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3042 INIT_WORK(&cmd
->work
, target_tmr_work
);
3043 queue_work(cmd
->se_dev
->tmr_wq
, &cmd
->work
);
3046 EXPORT_SYMBOL(transport_generic_handle_tmr
);
3049 target_check_wce(struct se_device
*dev
)
3053 if (dev
->transport
->get_write_cache
)
3054 wce
= dev
->transport
->get_write_cache(dev
);
3055 else if (dev
->dev_attrib
.emulate_write_cache
> 0)
3062 target_check_fua(struct se_device
*dev
)
3064 return target_check_wce(dev
) && dev
->dev_attrib
.emulate_fua_write
> 0;