4 * Copyright (C) 2012 Texas Instruments, Inc.
6 * Aneesh V <aneesh@ti.com>
7 * Santosh Shilimkar <santosh.shilimkar@ti.com>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 #include <linux/err.h>
14 #include <linux/kernel.h>
15 #include <linux/reboot.h>
16 #include <linux/platform_data/emif_plat.h>
18 #include <linux/device.h>
19 #include <linux/platform_device.h>
20 #include <linux/interrupt.h>
21 #include <linux/slab.h>
23 #include <linux/debugfs.h>
24 #include <linux/seq_file.h>
25 #include <linux/module.h>
26 #include <linux/list.h>
27 #include <linux/spinlock.h>
29 #include <memory/jedec_ddr.h>
31 #include "of_memory.h"
34 * struct emif_data - Per device static data for driver's use
35 * @duplicate: Whether the DDR devices attached to this EMIF
36 * instance are exactly same as that on EMIF1. In
37 * this case we can save some memory and processing
38 * @temperature_level: Maximum temperature of LPDDR2 devices attached
39 * to this EMIF - read from MR4 register. If there
40 * are two devices attached to this EMIF, this
41 * value is the maximum of the two temperature
43 * @node: node in the device list
44 * @base: base address of memory-mapped IO registers.
45 * @dev: device pointer.
46 * @addressing table with addressing information from the spec
47 * @regs_cache: An array of 'struct emif_regs' that stores
48 * calculated register values for different
49 * frequencies, to avoid re-calculating them on
50 * each DVFS transition.
51 * @curr_regs: The set of register values used in the last
52 * frequency change (i.e. corresponding to the
53 * frequency in effect at the moment)
54 * @plat_data: Pointer to saved platform data.
55 * @debugfs_root: dentry to the root folder for EMIF in debugfs
56 * @np_ddr: Pointer to ddr device tree node
62 struct list_head node
;
63 unsigned long irq_state
;
66 const struct lpddr2_addressing
*addressing
;
67 struct emif_regs
*regs_cache
[EMIF_MAX_NUM_FREQUENCIES
];
68 struct emif_regs
*curr_regs
;
69 struct emif_platform_data
*plat_data
;
70 struct dentry
*debugfs_root
;
71 struct device_node
*np_ddr
;
74 static struct emif_data
*emif1
;
75 static spinlock_t emif_lock
;
76 static unsigned long irq_state
;
77 static u32 t_ck
; /* DDR clock period in ps */
78 static LIST_HEAD(device_list
);
80 #ifdef CONFIG_DEBUG_FS
81 static void do_emif_regdump_show(struct seq_file
*s
, struct emif_data
*emif
,
82 struct emif_regs
*regs
)
84 u32 type
= emif
->plat_data
->device_info
->type
;
85 u32 ip_rev
= emif
->plat_data
->ip_rev
;
87 seq_printf(s
, "EMIF register cache dump for %dMHz\n",
90 seq_printf(s
, "ref_ctrl_shdw\t: 0x%08x\n", regs
->ref_ctrl_shdw
);
91 seq_printf(s
, "sdram_tim1_shdw\t: 0x%08x\n", regs
->sdram_tim1_shdw
);
92 seq_printf(s
, "sdram_tim2_shdw\t: 0x%08x\n", regs
->sdram_tim2_shdw
);
93 seq_printf(s
, "sdram_tim3_shdw\t: 0x%08x\n", regs
->sdram_tim3_shdw
);
95 if (ip_rev
== EMIF_4D
) {
96 seq_printf(s
, "read_idle_ctrl_shdw_normal\t: 0x%08x\n",
97 regs
->read_idle_ctrl_shdw_normal
);
98 seq_printf(s
, "read_idle_ctrl_shdw_volt_ramp\t: 0x%08x\n",
99 regs
->read_idle_ctrl_shdw_volt_ramp
);
100 } else if (ip_rev
== EMIF_4D5
) {
101 seq_printf(s
, "dll_calib_ctrl_shdw_normal\t: 0x%08x\n",
102 regs
->dll_calib_ctrl_shdw_normal
);
103 seq_printf(s
, "dll_calib_ctrl_shdw_volt_ramp\t: 0x%08x\n",
104 regs
->dll_calib_ctrl_shdw_volt_ramp
);
107 if (type
== DDR_TYPE_LPDDR2_S2
|| type
== DDR_TYPE_LPDDR2_S4
) {
108 seq_printf(s
, "ref_ctrl_shdw_derated\t: 0x%08x\n",
109 regs
->ref_ctrl_shdw_derated
);
110 seq_printf(s
, "sdram_tim1_shdw_derated\t: 0x%08x\n",
111 regs
->sdram_tim1_shdw_derated
);
112 seq_printf(s
, "sdram_tim3_shdw_derated\t: 0x%08x\n",
113 regs
->sdram_tim3_shdw_derated
);
117 static int emif_regdump_show(struct seq_file
*s
, void *unused
)
119 struct emif_data
*emif
= s
->private;
120 struct emif_regs
**regs_cache
;
124 regs_cache
= emif1
->regs_cache
;
126 regs_cache
= emif
->regs_cache
;
128 for (i
= 0; i
< EMIF_MAX_NUM_FREQUENCIES
&& regs_cache
[i
]; i
++) {
129 do_emif_regdump_show(s
, emif
, regs_cache
[i
]);
136 static int emif_regdump_open(struct inode
*inode
, struct file
*file
)
138 return single_open(file
, emif_regdump_show
, inode
->i_private
);
141 static const struct file_operations emif_regdump_fops
= {
142 .open
= emif_regdump_open
,
144 .release
= single_release
,
147 static int emif_mr4_show(struct seq_file
*s
, void *unused
)
149 struct emif_data
*emif
= s
->private;
151 seq_printf(s
, "MR4=%d\n", emif
->temperature_level
);
155 static int emif_mr4_open(struct inode
*inode
, struct file
*file
)
157 return single_open(file
, emif_mr4_show
, inode
->i_private
);
160 static const struct file_operations emif_mr4_fops
= {
161 .open
= emif_mr4_open
,
163 .release
= single_release
,
166 static int __init_or_module
emif_debugfs_init(struct emif_data
*emif
)
168 struct dentry
*dentry
;
171 dentry
= debugfs_create_dir(dev_name(emif
->dev
), NULL
);
176 emif
->debugfs_root
= dentry
;
178 dentry
= debugfs_create_file("regcache_dump", S_IRUGO
,
179 emif
->debugfs_root
, emif
, &emif_regdump_fops
);
185 dentry
= debugfs_create_file("mr4", S_IRUGO
,
186 emif
->debugfs_root
, emif
, &emif_mr4_fops
);
194 debugfs_remove_recursive(emif
->debugfs_root
);
199 static void __exit
emif_debugfs_exit(struct emif_data
*emif
)
201 debugfs_remove_recursive(emif
->debugfs_root
);
202 emif
->debugfs_root
= NULL
;
205 static inline int __init_or_module
emif_debugfs_init(struct emif_data
*emif
)
210 static inline void __exit
emif_debugfs_exit(struct emif_data
*emif
)
216 * Calculate the period of DDR clock from frequency value
218 static void set_ddr_clk_period(u32 freq
)
220 /* Divide 10^12 by frequency to get period in ps */
221 t_ck
= (u32
)DIV_ROUND_UP_ULL(1000000000000ull, freq
);
225 * Get bus width used by EMIF. Note that this may be different from the
226 * bus width of the DDR devices used. For instance two 16-bit DDR devices
227 * may be connected to a given CS of EMIF. In this case bus width as far
228 * as EMIF is concerned is 32, where as the DDR bus width is 16 bits.
230 static u32
get_emif_bus_width(struct emif_data
*emif
)
233 void __iomem
*base
= emif
->base
;
235 width
= (readl(base
+ EMIF_SDRAM_CONFIG
) & NARROW_MODE_MASK
)
236 >> NARROW_MODE_SHIFT
;
237 width
= width
== 0 ? 32 : 16;
243 * Get the CL from SDRAM_CONFIG register
245 static u32
get_cl(struct emif_data
*emif
)
248 void __iomem
*base
= emif
->base
;
250 cl
= (readl(base
+ EMIF_SDRAM_CONFIG
) & CL_MASK
) >> CL_SHIFT
;
255 static void set_lpmode(struct emif_data
*emif
, u8 lpmode
)
258 void __iomem
*base
= emif
->base
;
261 * Workaround for errata i743 - LPDDR2 Power-Down State is Not
265 * The EMIF supports power-down state for low power. The EMIF
266 * automatically puts the SDRAM into power-down after the memory is
267 * not accessed for a defined number of cycles and the
268 * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set to 0x4.
269 * As the EMIF supports automatic output impedance calibration, a ZQ
270 * calibration long command is issued every time it exits active
271 * power-down and precharge power-down modes. The EMIF waits and
272 * blocks any other command during this calibration.
273 * The EMIF does not allow selective disabling of ZQ calibration upon
274 * exit of power-down mode. Due to very short periods of power-down
275 * cycles, ZQ calibration overhead creates bandwidth issues and
276 * increases overall system power consumption. On the other hand,
277 * issuing ZQ calibration long commands when exiting self-refresh is
281 * Because there is no power consumption benefit of the power-down due
282 * to the calibration and there is a performance risk, the guideline
283 * is to not allow power-down state and, therefore, to not have set
284 * the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field to 0x4.
286 if ((emif
->plat_data
->ip_rev
== EMIF_4D
) &&
287 (EMIF_LP_MODE_PWR_DN
== lpmode
)) {
289 "REG_LP_MODE = LP_MODE_PWR_DN(4) is prohibited by"
290 "erratum i743 switch to LP_MODE_SELF_REFRESH(2)\n");
291 /* rollback LP_MODE to Self-refresh mode */
292 lpmode
= EMIF_LP_MODE_SELF_REFRESH
;
295 temp
= readl(base
+ EMIF_POWER_MANAGEMENT_CONTROL
);
296 temp
&= ~LP_MODE_MASK
;
297 temp
|= (lpmode
<< LP_MODE_SHIFT
);
298 writel(temp
, base
+ EMIF_POWER_MANAGEMENT_CONTROL
);
301 static void do_freq_update(void)
303 struct emif_data
*emif
;
306 * Workaround for errata i728: Disable LPMODE during FREQ_UPDATE
309 * The EMIF automatically puts the SDRAM into self-refresh mode
310 * after the EMIF has not performed accesses during
311 * EMIF_PWR_MGMT_CTRL[7:4] REG_SR_TIM number of DDR clock cycles
312 * and the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set
313 * to 0x2. If during a small window the following three events
315 * - The SR_TIMING counter expires
316 * - And frequency change is requested
317 * - And OCP access is requested
318 * Then it causes instable clock on the DDR interface.
321 * To avoid the occurrence of the three events, the workaround
322 * is to disable the self-refresh when requesting a frequency
323 * change. Before requesting a frequency change the software must
324 * program EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x0. When the
325 * frequency change has been done, the software can reprogram
326 * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x2
328 list_for_each_entry(emif
, &device_list
, node
) {
329 if (emif
->lpmode
== EMIF_LP_MODE_SELF_REFRESH
)
330 set_lpmode(emif
, EMIF_LP_MODE_DISABLE
);
334 * TODO: Do FREQ_UPDATE here when an API
335 * is available for this as part of the new
339 list_for_each_entry(emif
, &device_list
, node
) {
340 if (emif
->lpmode
== EMIF_LP_MODE_SELF_REFRESH
)
341 set_lpmode(emif
, EMIF_LP_MODE_SELF_REFRESH
);
345 /* Find addressing table entry based on the device's type and density */
346 static const struct lpddr2_addressing
*get_addressing_table(
347 const struct ddr_device_info
*device_info
)
349 u32 index
, type
, density
;
351 type
= device_info
->type
;
352 density
= device_info
->density
;
355 case DDR_TYPE_LPDDR2_S4
:
358 case DDR_TYPE_LPDDR2_S2
:
360 case DDR_DENSITY_1Gb
:
361 case DDR_DENSITY_2Gb
:
372 return &lpddr2_jedec_addressing_table
[index
];
376 * Find the the right timing table from the array of timing
377 * tables of the device using DDR clock frequency
379 static const struct lpddr2_timings
*get_timings_table(struct emif_data
*emif
,
382 u32 i
, min
, max
, freq_nearest
;
383 const struct lpddr2_timings
*timings
= NULL
;
384 const struct lpddr2_timings
*timings_arr
= emif
->plat_data
->timings
;
385 struct device
*dev
= emif
->dev
;
387 /* Start with a very high frequency - 1GHz */
388 freq_nearest
= 1000000000;
391 * Find the timings table such that:
392 * 1. the frequency range covers the required frequency(safe) AND
393 * 2. the max_freq is closest to the required frequency(optimal)
395 for (i
= 0; i
< emif
->plat_data
->timings_arr_size
; i
++) {
396 max
= timings_arr
[i
].max_freq
;
397 min
= timings_arr
[i
].min_freq
;
398 if ((freq
>= min
) && (freq
<= max
) && (max
< freq_nearest
)) {
400 timings
= &timings_arr
[i
];
405 dev_err(dev
, "%s: couldn't find timings for - %dHz\n",
408 dev_dbg(dev
, "%s: timings table: freq %d, speed bin freq %d\n",
409 __func__
, freq
, freq_nearest
);
414 static u32
get_sdram_ref_ctrl_shdw(u32 freq
,
415 const struct lpddr2_addressing
*addressing
)
417 u32 ref_ctrl_shdw
= 0, val
= 0, freq_khz
, t_refi
;
419 /* Scale down frequency and t_refi to avoid overflow */
420 freq_khz
= freq
/ 1000;
421 t_refi
= addressing
->tREFI_ns
/ 100;
424 * refresh rate to be set is 'tREFI(in us) * freq in MHz
425 * division by 10000 to account for change in units
427 val
= t_refi
* freq_khz
/ 10000;
428 ref_ctrl_shdw
|= val
<< REFRESH_RATE_SHIFT
;
430 return ref_ctrl_shdw
;
433 static u32
get_sdram_tim_1_shdw(const struct lpddr2_timings
*timings
,
434 const struct lpddr2_min_tck
*min_tck
,
435 const struct lpddr2_addressing
*addressing
)
437 u32 tim1
= 0, val
= 0;
439 val
= max(min_tck
->tWTR
, DIV_ROUND_UP(timings
->tWTR
, t_ck
)) - 1;
440 tim1
|= val
<< T_WTR_SHIFT
;
442 if (addressing
->num_banks
== B8
)
443 val
= DIV_ROUND_UP(timings
->tFAW
, t_ck
*4);
445 val
= max(min_tck
->tRRD
, DIV_ROUND_UP(timings
->tRRD
, t_ck
));
446 tim1
|= (val
- 1) << T_RRD_SHIFT
;
448 val
= DIV_ROUND_UP(timings
->tRAS_min
+ timings
->tRPab
, t_ck
) - 1;
449 tim1
|= val
<< T_RC_SHIFT
;
451 val
= max(min_tck
->tRASmin
, DIV_ROUND_UP(timings
->tRAS_min
, t_ck
));
452 tim1
|= (val
- 1) << T_RAS_SHIFT
;
454 val
= max(min_tck
->tWR
, DIV_ROUND_UP(timings
->tWR
, t_ck
)) - 1;
455 tim1
|= val
<< T_WR_SHIFT
;
457 val
= max(min_tck
->tRCD
, DIV_ROUND_UP(timings
->tRCD
, t_ck
)) - 1;
458 tim1
|= val
<< T_RCD_SHIFT
;
460 val
= max(min_tck
->tRPab
, DIV_ROUND_UP(timings
->tRPab
, t_ck
)) - 1;
461 tim1
|= val
<< T_RP_SHIFT
;
466 static u32
get_sdram_tim_1_shdw_derated(const struct lpddr2_timings
*timings
,
467 const struct lpddr2_min_tck
*min_tck
,
468 const struct lpddr2_addressing
*addressing
)
470 u32 tim1
= 0, val
= 0;
472 val
= max(min_tck
->tWTR
, DIV_ROUND_UP(timings
->tWTR
, t_ck
)) - 1;
473 tim1
= val
<< T_WTR_SHIFT
;
476 * tFAW is approximately 4 times tRRD. So add 1875*4 = 7500ps
477 * to tFAW for de-rating
479 if (addressing
->num_banks
== B8
) {
480 val
= DIV_ROUND_UP(timings
->tFAW
+ 7500, 4 * t_ck
) - 1;
482 val
= DIV_ROUND_UP(timings
->tRRD
+ 1875, t_ck
);
483 val
= max(min_tck
->tRRD
, val
) - 1;
485 tim1
|= val
<< T_RRD_SHIFT
;
487 val
= DIV_ROUND_UP(timings
->tRAS_min
+ timings
->tRPab
+ 1875, t_ck
);
488 tim1
|= (val
- 1) << T_RC_SHIFT
;
490 val
= DIV_ROUND_UP(timings
->tRAS_min
+ 1875, t_ck
);
491 val
= max(min_tck
->tRASmin
, val
) - 1;
492 tim1
|= val
<< T_RAS_SHIFT
;
494 val
= max(min_tck
->tWR
, DIV_ROUND_UP(timings
->tWR
, t_ck
)) - 1;
495 tim1
|= val
<< T_WR_SHIFT
;
497 val
= max(min_tck
->tRCD
, DIV_ROUND_UP(timings
->tRCD
+ 1875, t_ck
));
498 tim1
|= (val
- 1) << T_RCD_SHIFT
;
500 val
= max(min_tck
->tRPab
, DIV_ROUND_UP(timings
->tRPab
+ 1875, t_ck
));
501 tim1
|= (val
- 1) << T_RP_SHIFT
;
506 static u32
get_sdram_tim_2_shdw(const struct lpddr2_timings
*timings
,
507 const struct lpddr2_min_tck
*min_tck
,
508 const struct lpddr2_addressing
*addressing
,
511 u32 tim2
= 0, val
= 0;
513 val
= min_tck
->tCKE
- 1;
514 tim2
|= val
<< T_CKE_SHIFT
;
516 val
= max(min_tck
->tRTP
, DIV_ROUND_UP(timings
->tRTP
, t_ck
)) - 1;
517 tim2
|= val
<< T_RTP_SHIFT
;
519 /* tXSNR = tRFCab_ps + 10 ns(tRFCab_ps for LPDDR2). */
520 val
= DIV_ROUND_UP(addressing
->tRFCab_ps
+ 10000, t_ck
) - 1;
521 tim2
|= val
<< T_XSNR_SHIFT
;
523 /* XSRD same as XSNR for LPDDR2 */
524 tim2
|= val
<< T_XSRD_SHIFT
;
526 val
= max(min_tck
->tXP
, DIV_ROUND_UP(timings
->tXP
, t_ck
)) - 1;
527 tim2
|= val
<< T_XP_SHIFT
;
532 static u32
get_sdram_tim_3_shdw(const struct lpddr2_timings
*timings
,
533 const struct lpddr2_min_tck
*min_tck
,
534 const struct lpddr2_addressing
*addressing
,
535 u32 type
, u32 ip_rev
, u32 derated
)
537 u32 tim3
= 0, val
= 0, t_dqsck
;
539 val
= timings
->tRAS_max_ns
/ addressing
->tREFI_ns
- 1;
540 val
= val
> 0xF ? 0xF : val
;
541 tim3
|= val
<< T_RAS_MAX_SHIFT
;
543 val
= DIV_ROUND_UP(addressing
->tRFCab_ps
, t_ck
) - 1;
544 tim3
|= val
<< T_RFC_SHIFT
;
546 t_dqsck
= (derated
== EMIF_DERATED_TIMINGS
) ?
547 timings
->tDQSCK_max_derated
: timings
->tDQSCK_max
;
548 if (ip_rev
== EMIF_4D5
)
549 val
= DIV_ROUND_UP(t_dqsck
+ 1000, t_ck
) - 1;
551 val
= DIV_ROUND_UP(t_dqsck
, t_ck
) - 1;
553 tim3
|= val
<< T_TDQSCKMAX_SHIFT
;
555 val
= DIV_ROUND_UP(timings
->tZQCS
, t_ck
) - 1;
556 tim3
|= val
<< ZQ_ZQCS_SHIFT
;
558 val
= DIV_ROUND_UP(timings
->tCKESR
, t_ck
);
559 val
= max(min_tck
->tCKESR
, val
) - 1;
560 tim3
|= val
<< T_CKESR_SHIFT
;
562 if (ip_rev
== EMIF_4D5
) {
563 tim3
|= (EMIF_T_CSTA
- 1) << T_CSTA_SHIFT
;
565 val
= DIV_ROUND_UP(EMIF_T_PDLL_UL
, 128) - 1;
566 tim3
|= val
<< T_PDLL_UL_SHIFT
;
572 static u32
get_zq_config_reg(const struct lpddr2_addressing
*addressing
,
573 bool cs1_used
, bool cal_resistors_per_cs
)
577 val
= EMIF_ZQCS_INTERVAL_US
* 1000 / addressing
->tREFI_ns
;
578 zq
|= val
<< ZQ_REFINTERVAL_SHIFT
;
580 val
= DIV_ROUND_UP(T_ZQCL_DEFAULT_NS
, T_ZQCS_DEFAULT_NS
) - 1;
581 zq
|= val
<< ZQ_ZQCL_MULT_SHIFT
;
583 val
= DIV_ROUND_UP(T_ZQINIT_DEFAULT_NS
, T_ZQCL_DEFAULT_NS
) - 1;
584 zq
|= val
<< ZQ_ZQINIT_MULT_SHIFT
;
586 zq
|= ZQ_SFEXITEN_ENABLE
<< ZQ_SFEXITEN_SHIFT
;
588 if (cal_resistors_per_cs
)
589 zq
|= ZQ_DUALCALEN_ENABLE
<< ZQ_DUALCALEN_SHIFT
;
591 zq
|= ZQ_DUALCALEN_DISABLE
<< ZQ_DUALCALEN_SHIFT
;
593 zq
|= ZQ_CS0EN_MASK
; /* CS0 is used for sure */
595 val
= cs1_used
? 1 : 0;
596 zq
|= val
<< ZQ_CS1EN_SHIFT
;
601 static u32
get_temp_alert_config(const struct lpddr2_addressing
*addressing
,
602 const struct emif_custom_configs
*custom_configs
, bool cs1_used
,
603 u32 sdram_io_width
, u32 emif_bus_width
)
605 u32 alert
= 0, interval
, devcnt
;
607 if (custom_configs
&& (custom_configs
->mask
&
608 EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL
))
609 interval
= custom_configs
->temp_alert_poll_interval_ms
;
611 interval
= TEMP_ALERT_POLL_INTERVAL_DEFAULT_MS
;
613 interval
*= 1000000; /* Convert to ns */
614 interval
/= addressing
->tREFI_ns
; /* Convert to refresh cycles */
615 alert
|= (interval
<< TA_REFINTERVAL_SHIFT
);
618 * sdram_io_width is in 'log2(x) - 1' form. Convert emif_bus_width
619 * also to this form and subtract to get TA_DEVCNT, which is
622 emif_bus_width
= __fls(emif_bus_width
) - 1;
623 devcnt
= emif_bus_width
- sdram_io_width
;
624 alert
|= devcnt
<< TA_DEVCNT_SHIFT
;
626 /* DEVWDT is in 'log2(x) - 3' form */
627 alert
|= (sdram_io_width
- 2) << TA_DEVWDT_SHIFT
;
629 alert
|= 1 << TA_SFEXITEN_SHIFT
;
630 alert
|= 1 << TA_CS0EN_SHIFT
;
631 alert
|= (cs1_used
? 1 : 0) << TA_CS1EN_SHIFT
;
636 static u32
get_read_idle_ctrl_shdw(u8 volt_ramp
)
638 u32 idle
= 0, val
= 0;
641 * Maximum value in normal conditions and increased frequency
642 * when voltage is ramping
645 val
= READ_IDLE_INTERVAL_DVFS
/ t_ck
/ 64 - 1;
650 * READ_IDLE_CTRL register in EMIF4D has same offset and fields
651 * as DLL_CALIB_CTRL in EMIF4D5, so use the same shifts
653 idle
|= val
<< DLL_CALIB_INTERVAL_SHIFT
;
654 idle
|= EMIF_READ_IDLE_LEN_VAL
<< ACK_WAIT_SHIFT
;
659 static u32
get_dll_calib_ctrl_shdw(u8 volt_ramp
)
661 u32 calib
= 0, val
= 0;
663 if (volt_ramp
== DDR_VOLTAGE_RAMPING
)
664 val
= DLL_CALIB_INTERVAL_DVFS
/ t_ck
/ 16 - 1;
666 val
= 0; /* Disabled when voltage is stable */
668 calib
|= val
<< DLL_CALIB_INTERVAL_SHIFT
;
669 calib
|= DLL_CALIB_ACK_WAIT_VAL
<< ACK_WAIT_SHIFT
;
674 static u32
get_ddr_phy_ctrl_1_attilaphy_4d(const struct lpddr2_timings
*timings
,
677 u32 phy
= EMIF_DDR_PHY_CTRL_1_BASE_VAL_ATTILAPHY
, val
= 0;
679 val
= RL
+ DIV_ROUND_UP(timings
->tDQSCK_max
, t_ck
) - 1;
680 phy
|= val
<< READ_LATENCY_SHIFT_4D
;
682 if (freq
<= 100000000)
683 val
= EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS_ATTILAPHY
;
684 else if (freq
<= 200000000)
685 val
= EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ_ATTILAPHY
;
687 val
= EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ_ATTILAPHY
;
689 phy
|= val
<< DLL_SLAVE_DLY_CTRL_SHIFT_4D
;
694 static u32
get_phy_ctrl_1_intelliphy_4d5(u32 freq
, u8 cl
)
696 u32 phy
= EMIF_DDR_PHY_CTRL_1_BASE_VAL_INTELLIPHY
, half_delay
;
699 * DLL operates at 266 MHz. If DDR frequency is near 266 MHz,
700 * half-delay is not needed else set half-delay
702 if (freq
>= 265000000 && freq
< 267000000)
707 phy
|= half_delay
<< DLL_HALF_DELAY_SHIFT_4D5
;
708 phy
|= ((cl
+ DIV_ROUND_UP(EMIF_PHY_TOTAL_READ_LATENCY_INTELLIPHY_PS
,
709 t_ck
) - 1) << READ_LATENCY_SHIFT_4D5
);
714 static u32
get_ext_phy_ctrl_2_intelliphy_4d5(void)
716 u32 fifo_we_slave_ratio
;
718 fifo_we_slave_ratio
= DIV_ROUND_CLOSEST(
719 EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS
* 256 , t_ck
);
721 return fifo_we_slave_ratio
| fifo_we_slave_ratio
<< 11 |
722 fifo_we_slave_ratio
<< 22;
725 static u32
get_ext_phy_ctrl_3_intelliphy_4d5(void)
727 u32 fifo_we_slave_ratio
;
729 fifo_we_slave_ratio
= DIV_ROUND_CLOSEST(
730 EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS
* 256 , t_ck
);
732 return fifo_we_slave_ratio
>> 10 | fifo_we_slave_ratio
<< 1 |
733 fifo_we_slave_ratio
<< 12 | fifo_we_slave_ratio
<< 23;
736 static u32
get_ext_phy_ctrl_4_intelliphy_4d5(void)
738 u32 fifo_we_slave_ratio
;
740 fifo_we_slave_ratio
= DIV_ROUND_CLOSEST(
741 EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS
* 256 , t_ck
);
743 return fifo_we_slave_ratio
>> 9 | fifo_we_slave_ratio
<< 2 |
744 fifo_we_slave_ratio
<< 13;
747 static u32
get_pwr_mgmt_ctrl(u32 freq
, struct emif_data
*emif
, u32 ip_rev
)
749 u32 pwr_mgmt_ctrl
= 0, timeout
;
750 u32 lpmode
= EMIF_LP_MODE_SELF_REFRESH
;
751 u32 timeout_perf
= EMIF_LP_MODE_TIMEOUT_PERFORMANCE
;
752 u32 timeout_pwr
= EMIF_LP_MODE_TIMEOUT_POWER
;
753 u32 freq_threshold
= EMIF_LP_MODE_FREQ_THRESHOLD
;
757 struct emif_custom_configs
*cust_cfgs
= emif
->plat_data
->custom_configs
;
759 if (cust_cfgs
&& (cust_cfgs
->mask
& EMIF_CUSTOM_CONFIG_LPMODE
)) {
760 lpmode
= cust_cfgs
->lpmode
;
761 timeout_perf
= cust_cfgs
->lpmode_timeout_performance
;
762 timeout_pwr
= cust_cfgs
->lpmode_timeout_power
;
763 freq_threshold
= cust_cfgs
->lpmode_freq_threshold
;
766 /* Timeout based on DDR frequency */
767 timeout
= freq
>= freq_threshold
? timeout_perf
: timeout_pwr
;
770 * The value to be set in register is "log2(timeout) - 3"
771 * if timeout < 16 load 0 in register
772 * if timeout is not a power of 2, round to next highest power of 2
777 if (timeout
& (timeout
- 1))
779 timeout
= __fls(timeout
) - 3;
783 case EMIF_LP_MODE_CLOCK_STOP
:
784 shift
= CS_TIM_SHIFT
;
787 case EMIF_LP_MODE_SELF_REFRESH
:
788 /* Workaround for errata i735 */
792 shift
= SR_TIM_SHIFT
;
795 case EMIF_LP_MODE_PWR_DN
:
796 shift
= PD_TIM_SHIFT
;
799 case EMIF_LP_MODE_DISABLE
:
805 /* Round to maximum in case of overflow, BUT warn! */
806 if (lpmode
!= EMIF_LP_MODE_DISABLE
&& timeout
> mask
>> shift
) {
807 pr_err("TIMEOUT Overflow - lpmode=%d perf=%d pwr=%d freq=%d\n",
812 WARN(1, "timeout=0x%02x greater than 0x%02x. Using max\n",
813 timeout
, mask
>> shift
);
814 timeout
= mask
>> shift
;
817 /* Setup required timing */
818 pwr_mgmt_ctrl
= (timeout
<< shift
) & mask
;
819 /* setup a default mask for rest of the modes */
820 pwr_mgmt_ctrl
|= (SR_TIM_MASK
| CS_TIM_MASK
| PD_TIM_MASK
) &
823 /* No CS_TIM in EMIF_4D5 */
824 if (ip_rev
== EMIF_4D5
)
825 pwr_mgmt_ctrl
&= ~CS_TIM_MASK
;
827 pwr_mgmt_ctrl
|= lpmode
<< LP_MODE_SHIFT
;
829 return pwr_mgmt_ctrl
;
833 * Get the temperature level of the EMIF instance:
834 * Reads the MR4 register of attached SDRAM parts to find out the temperature
835 * level. If there are two parts attached(one on each CS), then the temperature
836 * level for the EMIF instance is the higher of the two temperatures.
838 static void get_temperature_level(struct emif_data
*emif
)
840 u32 temp
, temperature_level
;
845 /* Read mode register 4 */
846 writel(DDR_MR4
, base
+ EMIF_LPDDR2_MODE_REG_CONFIG
);
847 temperature_level
= readl(base
+ EMIF_LPDDR2_MODE_REG_DATA
);
848 temperature_level
= (temperature_level
& MR4_SDRAM_REF_RATE_MASK
) >>
849 MR4_SDRAM_REF_RATE_SHIFT
;
851 if (emif
->plat_data
->device_info
->cs1_used
) {
852 writel(DDR_MR4
| CS_MASK
, base
+ EMIF_LPDDR2_MODE_REG_CONFIG
);
853 temp
= readl(base
+ EMIF_LPDDR2_MODE_REG_DATA
);
854 temp
= (temp
& MR4_SDRAM_REF_RATE_MASK
)
855 >> MR4_SDRAM_REF_RATE_SHIFT
;
856 temperature_level
= max(temp
, temperature_level
);
859 /* treat everything less than nominal(3) in MR4 as nominal */
860 if (unlikely(temperature_level
< SDRAM_TEMP_NOMINAL
))
861 temperature_level
= SDRAM_TEMP_NOMINAL
;
863 /* if we get reserved value in MR4 persist with the existing value */
864 if (likely(temperature_level
!= SDRAM_TEMP_RESERVED_4
))
865 emif
->temperature_level
= temperature_level
;
869 * Program EMIF shadow registers that are not dependent on temperature
872 static void setup_registers(struct emif_data
*emif
, struct emif_regs
*regs
)
874 void __iomem
*base
= emif
->base
;
876 writel(regs
->sdram_tim2_shdw
, base
+ EMIF_SDRAM_TIMING_2_SHDW
);
877 writel(regs
->phy_ctrl_1_shdw
, base
+ EMIF_DDR_PHY_CTRL_1_SHDW
);
878 writel(regs
->pwr_mgmt_ctrl_shdw
,
879 base
+ EMIF_POWER_MANAGEMENT_CTRL_SHDW
);
881 /* Settings specific for EMIF4D5 */
882 if (emif
->plat_data
->ip_rev
!= EMIF_4D5
)
884 writel(regs
->ext_phy_ctrl_2_shdw
, base
+ EMIF_EXT_PHY_CTRL_2_SHDW
);
885 writel(regs
->ext_phy_ctrl_3_shdw
, base
+ EMIF_EXT_PHY_CTRL_3_SHDW
);
886 writel(regs
->ext_phy_ctrl_4_shdw
, base
+ EMIF_EXT_PHY_CTRL_4_SHDW
);
890 * When voltage ramps dll calibration and forced read idle should
893 static void setup_volt_sensitive_regs(struct emif_data
*emif
,
894 struct emif_regs
*regs
, u32 volt_state
)
897 void __iomem
*base
= emif
->base
;
900 * EMIF_READ_IDLE_CTRL in EMIF4D refers to the same register as
901 * EMIF_DLL_CALIB_CTRL in EMIF4D5 and dll_calib_ctrl_shadow_*
902 * is an alias of the respective read_idle_ctrl_shdw_* (members of
903 * a union). So, the below code takes care of both cases
905 if (volt_state
== DDR_VOLTAGE_RAMPING
)
906 calib_ctrl
= regs
->dll_calib_ctrl_shdw_volt_ramp
;
908 calib_ctrl
= regs
->dll_calib_ctrl_shdw_normal
;
910 writel(calib_ctrl
, base
+ EMIF_DLL_CALIB_CTRL_SHDW
);
914 * setup_temperature_sensitive_regs() - set the timings for temperature
915 * sensitive registers. This happens once at initialisation time based
916 * on the temperature at boot time and subsequently based on the temperature
917 * alert interrupt. Temperature alert can happen when the temperature
918 * increases or drops. So this function can have the effect of either
919 * derating the timings or going back to nominal values.
921 static void setup_temperature_sensitive_regs(struct emif_data
*emif
,
922 struct emif_regs
*regs
)
924 u32 tim1
, tim3
, ref_ctrl
, type
;
925 void __iomem
*base
= emif
->base
;
928 type
= emif
->plat_data
->device_info
->type
;
930 tim1
= regs
->sdram_tim1_shdw
;
931 tim3
= regs
->sdram_tim3_shdw
;
932 ref_ctrl
= regs
->ref_ctrl_shdw
;
934 /* No de-rating for non-lpddr2 devices */
935 if (type
!= DDR_TYPE_LPDDR2_S2
&& type
!= DDR_TYPE_LPDDR2_S4
)
938 temperature
= emif
->temperature_level
;
939 if (temperature
== SDRAM_TEMP_HIGH_DERATE_REFRESH
) {
940 ref_ctrl
= regs
->ref_ctrl_shdw_derated
;
941 } else if (temperature
== SDRAM_TEMP_HIGH_DERATE_REFRESH_AND_TIMINGS
) {
942 tim1
= regs
->sdram_tim1_shdw_derated
;
943 tim3
= regs
->sdram_tim3_shdw_derated
;
944 ref_ctrl
= regs
->ref_ctrl_shdw_derated
;
948 writel(tim1
, base
+ EMIF_SDRAM_TIMING_1_SHDW
);
949 writel(tim3
, base
+ EMIF_SDRAM_TIMING_3_SHDW
);
950 writel(ref_ctrl
, base
+ EMIF_SDRAM_REFRESH_CTRL_SHDW
);
953 static irqreturn_t
handle_temp_alert(void __iomem
*base
, struct emif_data
*emif
)
956 irqreturn_t ret
= IRQ_HANDLED
;
957 struct emif_custom_configs
*custom_configs
;
959 spin_lock_irqsave(&emif_lock
, irq_state
);
960 old_temp_level
= emif
->temperature_level
;
961 get_temperature_level(emif
);
963 if (unlikely(emif
->temperature_level
== old_temp_level
)) {
965 } else if (!emif
->curr_regs
) {
966 dev_err(emif
->dev
, "temperature alert before registers are calculated, not de-rating timings\n");
970 custom_configs
= emif
->plat_data
->custom_configs
;
973 * IF we detect higher than "nominal rating" from DDR sensor
974 * on an unsupported DDR part, shutdown system
976 if (custom_configs
&& !(custom_configs
->mask
&
977 EMIF_CUSTOM_CONFIG_EXTENDED_TEMP_PART
)) {
978 if (emif
->temperature_level
>= SDRAM_TEMP_HIGH_DERATE_REFRESH
) {
980 "%s:NOT Extended temperature capable memory."
981 "Converting MR4=0x%02x as shutdown event\n",
982 __func__
, emif
->temperature_level
);
984 * Temperature far too high - do kernel_power_off()
985 * from thread context
987 emif
->temperature_level
= SDRAM_TEMP_VERY_HIGH_SHUTDOWN
;
988 ret
= IRQ_WAKE_THREAD
;
993 if (emif
->temperature_level
< old_temp_level
||
994 emif
->temperature_level
== SDRAM_TEMP_VERY_HIGH_SHUTDOWN
) {
996 * Temperature coming down - defer handling to thread OR
997 * Temperature far too high - do kernel_power_off() from
1000 ret
= IRQ_WAKE_THREAD
;
1002 /* Temperature is going up - handle immediately */
1003 setup_temperature_sensitive_regs(emif
, emif
->curr_regs
);
1008 spin_unlock_irqrestore(&emif_lock
, irq_state
);
1012 static irqreturn_t
emif_interrupt_handler(int irq
, void *dev_id
)
1015 struct emif_data
*emif
= dev_id
;
1016 void __iomem
*base
= emif
->base
;
1017 struct device
*dev
= emif
->dev
;
1018 irqreturn_t ret
= IRQ_HANDLED
;
1020 /* Save the status and clear it */
1021 interrupts
= readl(base
+ EMIF_SYSTEM_OCP_INTERRUPT_STATUS
);
1022 writel(interrupts
, base
+ EMIF_SYSTEM_OCP_INTERRUPT_STATUS
);
1025 * Handle temperature alert
1026 * Temperature alert should be same for all ports
1027 * So, it's enough to process it only for one of the ports
1029 if (interrupts
& TA_SYS_MASK
)
1030 ret
= handle_temp_alert(base
, emif
);
1032 if (interrupts
& ERR_SYS_MASK
)
1033 dev_err(dev
, "Access error from SYS port - %x\n", interrupts
);
1035 if (emif
->plat_data
->hw_caps
& EMIF_HW_CAPS_LL_INTERFACE
) {
1036 /* Save the status and clear it */
1037 interrupts
= readl(base
+ EMIF_LL_OCP_INTERRUPT_STATUS
);
1038 writel(interrupts
, base
+ EMIF_LL_OCP_INTERRUPT_STATUS
);
1040 if (interrupts
& ERR_LL_MASK
)
1041 dev_err(dev
, "Access error from LL port - %x\n",
1048 static irqreturn_t
emif_threaded_isr(int irq
, void *dev_id
)
1050 struct emif_data
*emif
= dev_id
;
1052 if (emif
->temperature_level
== SDRAM_TEMP_VERY_HIGH_SHUTDOWN
) {
1053 dev_emerg(emif
->dev
, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n");
1055 /* If we have Power OFF ability, use it, else try restarting */
1059 WARN(1, "FIXME: NO pm_power_off!!! trying restart\n");
1060 kernel_restart("SDRAM Over-temp Emergency restart");
1065 spin_lock_irqsave(&emif_lock
, irq_state
);
1067 if (emif
->curr_regs
) {
1068 setup_temperature_sensitive_regs(emif
, emif
->curr_regs
);
1071 dev_err(emif
->dev
, "temperature alert before registers are calculated, not de-rating timings\n");
1074 spin_unlock_irqrestore(&emif_lock
, irq_state
);
1079 static void clear_all_interrupts(struct emif_data
*emif
)
1081 void __iomem
*base
= emif
->base
;
1083 writel(readl(base
+ EMIF_SYSTEM_OCP_INTERRUPT_STATUS
),
1084 base
+ EMIF_SYSTEM_OCP_INTERRUPT_STATUS
);
1085 if (emif
->plat_data
->hw_caps
& EMIF_HW_CAPS_LL_INTERFACE
)
1086 writel(readl(base
+ EMIF_LL_OCP_INTERRUPT_STATUS
),
1087 base
+ EMIF_LL_OCP_INTERRUPT_STATUS
);
1090 static void disable_and_clear_all_interrupts(struct emif_data
*emif
)
1092 void __iomem
*base
= emif
->base
;
1094 /* Disable all interrupts */
1095 writel(readl(base
+ EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET
),
1096 base
+ EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_CLEAR
);
1097 if (emif
->plat_data
->hw_caps
& EMIF_HW_CAPS_LL_INTERFACE
)
1098 writel(readl(base
+ EMIF_LL_OCP_INTERRUPT_ENABLE_SET
),
1099 base
+ EMIF_LL_OCP_INTERRUPT_ENABLE_CLEAR
);
1101 /* Clear all interrupts */
1102 clear_all_interrupts(emif
);
1105 static int __init_or_module
setup_interrupts(struct emif_data
*emif
, u32 irq
)
1107 u32 interrupts
, type
;
1108 void __iomem
*base
= emif
->base
;
1110 type
= emif
->plat_data
->device_info
->type
;
1112 clear_all_interrupts(emif
);
1114 /* Enable interrupts for SYS interface */
1115 interrupts
= EN_ERR_SYS_MASK
;
1116 if (type
== DDR_TYPE_LPDDR2_S2
|| type
== DDR_TYPE_LPDDR2_S4
)
1117 interrupts
|= EN_TA_SYS_MASK
;
1118 writel(interrupts
, base
+ EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET
);
1120 /* Enable interrupts for LL interface */
1121 if (emif
->plat_data
->hw_caps
& EMIF_HW_CAPS_LL_INTERFACE
) {
1122 /* TA need not be enabled for LL */
1123 interrupts
= EN_ERR_LL_MASK
;
1124 writel(interrupts
, base
+ EMIF_LL_OCP_INTERRUPT_ENABLE_SET
);
1127 /* setup IRQ handlers */
1128 return devm_request_threaded_irq(emif
->dev
, irq
,
1129 emif_interrupt_handler
,
1131 0, dev_name(emif
->dev
),
1136 static void __init_or_module
emif_onetime_settings(struct emif_data
*emif
)
1138 u32 pwr_mgmt_ctrl
, zq
, temp_alert_cfg
;
1139 void __iomem
*base
= emif
->base
;
1140 const struct lpddr2_addressing
*addressing
;
1141 const struct ddr_device_info
*device_info
;
1143 device_info
= emif
->plat_data
->device_info
;
1144 addressing
= get_addressing_table(device_info
);
1147 * Init power management settings
1148 * We don't know the frequency yet. Use a high frequency
1149 * value for a conservative timeout setting
1151 pwr_mgmt_ctrl
= get_pwr_mgmt_ctrl(1000000000, emif
,
1152 emif
->plat_data
->ip_rev
);
1153 emif
->lpmode
= (pwr_mgmt_ctrl
& LP_MODE_MASK
) >> LP_MODE_SHIFT
;
1154 writel(pwr_mgmt_ctrl
, base
+ EMIF_POWER_MANAGEMENT_CONTROL
);
1156 /* Init ZQ calibration settings */
1157 zq
= get_zq_config_reg(addressing
, device_info
->cs1_used
,
1158 device_info
->cal_resistors_per_cs
);
1159 writel(zq
, base
+ EMIF_SDRAM_OUTPUT_IMPEDANCE_CALIBRATION_CONFIG
);
1161 /* Check temperature level temperature level*/
1162 get_temperature_level(emif
);
1163 if (emif
->temperature_level
== SDRAM_TEMP_VERY_HIGH_SHUTDOWN
)
1164 dev_emerg(emif
->dev
, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n");
1166 /* Init temperature polling */
1167 temp_alert_cfg
= get_temp_alert_config(addressing
,
1168 emif
->plat_data
->custom_configs
, device_info
->cs1_used
,
1169 device_info
->io_width
, get_emif_bus_width(emif
));
1170 writel(temp_alert_cfg
, base
+ EMIF_TEMPERATURE_ALERT_CONFIG
);
1173 * Program external PHY control registers that are not frequency
1176 if (emif
->plat_data
->phy_type
!= EMIF_PHY_TYPE_INTELLIPHY
)
1178 writel(EMIF_EXT_PHY_CTRL_1_VAL
, base
+ EMIF_EXT_PHY_CTRL_1_SHDW
);
1179 writel(EMIF_EXT_PHY_CTRL_5_VAL
, base
+ EMIF_EXT_PHY_CTRL_5_SHDW
);
1180 writel(EMIF_EXT_PHY_CTRL_6_VAL
, base
+ EMIF_EXT_PHY_CTRL_6_SHDW
);
1181 writel(EMIF_EXT_PHY_CTRL_7_VAL
, base
+ EMIF_EXT_PHY_CTRL_7_SHDW
);
1182 writel(EMIF_EXT_PHY_CTRL_8_VAL
, base
+ EMIF_EXT_PHY_CTRL_8_SHDW
);
1183 writel(EMIF_EXT_PHY_CTRL_9_VAL
, base
+ EMIF_EXT_PHY_CTRL_9_SHDW
);
1184 writel(EMIF_EXT_PHY_CTRL_10_VAL
, base
+ EMIF_EXT_PHY_CTRL_10_SHDW
);
1185 writel(EMIF_EXT_PHY_CTRL_11_VAL
, base
+ EMIF_EXT_PHY_CTRL_11_SHDW
);
1186 writel(EMIF_EXT_PHY_CTRL_12_VAL
, base
+ EMIF_EXT_PHY_CTRL_12_SHDW
);
1187 writel(EMIF_EXT_PHY_CTRL_13_VAL
, base
+ EMIF_EXT_PHY_CTRL_13_SHDW
);
1188 writel(EMIF_EXT_PHY_CTRL_14_VAL
, base
+ EMIF_EXT_PHY_CTRL_14_SHDW
);
1189 writel(EMIF_EXT_PHY_CTRL_15_VAL
, base
+ EMIF_EXT_PHY_CTRL_15_SHDW
);
1190 writel(EMIF_EXT_PHY_CTRL_16_VAL
, base
+ EMIF_EXT_PHY_CTRL_16_SHDW
);
1191 writel(EMIF_EXT_PHY_CTRL_17_VAL
, base
+ EMIF_EXT_PHY_CTRL_17_SHDW
);
1192 writel(EMIF_EXT_PHY_CTRL_18_VAL
, base
+ EMIF_EXT_PHY_CTRL_18_SHDW
);
1193 writel(EMIF_EXT_PHY_CTRL_19_VAL
, base
+ EMIF_EXT_PHY_CTRL_19_SHDW
);
1194 writel(EMIF_EXT_PHY_CTRL_20_VAL
, base
+ EMIF_EXT_PHY_CTRL_20_SHDW
);
1195 writel(EMIF_EXT_PHY_CTRL_21_VAL
, base
+ EMIF_EXT_PHY_CTRL_21_SHDW
);
1196 writel(EMIF_EXT_PHY_CTRL_22_VAL
, base
+ EMIF_EXT_PHY_CTRL_22_SHDW
);
1197 writel(EMIF_EXT_PHY_CTRL_23_VAL
, base
+ EMIF_EXT_PHY_CTRL_23_SHDW
);
1198 writel(EMIF_EXT_PHY_CTRL_24_VAL
, base
+ EMIF_EXT_PHY_CTRL_24_SHDW
);
1201 static void get_default_timings(struct emif_data
*emif
)
1203 struct emif_platform_data
*pd
= emif
->plat_data
;
1205 pd
->timings
= lpddr2_jedec_timings
;
1206 pd
->timings_arr_size
= ARRAY_SIZE(lpddr2_jedec_timings
);
1208 dev_warn(emif
->dev
, "%s: using default timings\n", __func__
);
1211 static int is_dev_data_valid(u32 type
, u32 density
, u32 io_width
, u32 phy_type
,
1212 u32 ip_rev
, struct device
*dev
)
1216 valid
= (type
== DDR_TYPE_LPDDR2_S4
||
1217 type
== DDR_TYPE_LPDDR2_S2
)
1218 && (density
>= DDR_DENSITY_64Mb
1219 && density
<= DDR_DENSITY_8Gb
)
1220 && (io_width
>= DDR_IO_WIDTH_8
1221 && io_width
<= DDR_IO_WIDTH_32
);
1223 /* Combinations of EMIF and PHY revisions that we support today */
1226 valid
= valid
&& (phy_type
== EMIF_PHY_TYPE_ATTILAPHY
);
1229 valid
= valid
&& (phy_type
== EMIF_PHY_TYPE_INTELLIPHY
);
1236 dev_err(dev
, "%s: invalid DDR details\n", __func__
);
1240 static int is_custom_config_valid(struct emif_custom_configs
*cust_cfgs
,
1245 if ((cust_cfgs
->mask
& EMIF_CUSTOM_CONFIG_LPMODE
) &&
1246 (cust_cfgs
->lpmode
!= EMIF_LP_MODE_DISABLE
))
1247 valid
= cust_cfgs
->lpmode_freq_threshold
&&
1248 cust_cfgs
->lpmode_timeout_performance
&&
1249 cust_cfgs
->lpmode_timeout_power
;
1251 if (cust_cfgs
->mask
& EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL
)
1252 valid
= valid
&& cust_cfgs
->temp_alert_poll_interval_ms
;
1255 dev_warn(dev
, "%s: invalid custom configs\n", __func__
);
1260 #if defined(CONFIG_OF)
1261 static void __init_or_module
of_get_custom_configs(struct device_node
*np_emif
,
1262 struct emif_data
*emif
)
1264 struct emif_custom_configs
*cust_cfgs
= NULL
;
1266 const __be32
*lpmode
, *poll_intvl
;
1268 lpmode
= of_get_property(np_emif
, "low-power-mode", &len
);
1269 poll_intvl
= of_get_property(np_emif
, "temp-alert-poll-interval", &len
);
1271 if (lpmode
|| poll_intvl
)
1272 cust_cfgs
= devm_kzalloc(emif
->dev
, sizeof(*cust_cfgs
),
1279 cust_cfgs
->mask
|= EMIF_CUSTOM_CONFIG_LPMODE
;
1280 cust_cfgs
->lpmode
= be32_to_cpup(lpmode
);
1281 of_property_read_u32(np_emif
,
1282 "low-power-mode-timeout-performance",
1283 &cust_cfgs
->lpmode_timeout_performance
);
1284 of_property_read_u32(np_emif
,
1285 "low-power-mode-timeout-power",
1286 &cust_cfgs
->lpmode_timeout_power
);
1287 of_property_read_u32(np_emif
,
1288 "low-power-mode-freq-threshold",
1289 &cust_cfgs
->lpmode_freq_threshold
);
1294 EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL
;
1295 cust_cfgs
->temp_alert_poll_interval_ms
=
1296 be32_to_cpup(poll_intvl
);
1299 if (of_find_property(np_emif
, "extended-temp-part", &len
))
1300 cust_cfgs
->mask
|= EMIF_CUSTOM_CONFIG_EXTENDED_TEMP_PART
;
1302 if (!is_custom_config_valid(cust_cfgs
, emif
->dev
)) {
1303 devm_kfree(emif
->dev
, cust_cfgs
);
1307 emif
->plat_data
->custom_configs
= cust_cfgs
;
1310 static void __init_or_module
of_get_ddr_info(struct device_node
*np_emif
,
1311 struct device_node
*np_ddr
,
1312 struct ddr_device_info
*dev_info
)
1314 u32 density
= 0, io_width
= 0;
1317 if (of_find_property(np_emif
, "cs1-used", &len
))
1318 dev_info
->cs1_used
= true;
1320 if (of_find_property(np_emif
, "cal-resistor-per-cs", &len
))
1321 dev_info
->cal_resistors_per_cs
= true;
1323 if (of_device_is_compatible(np_ddr
, "jedec,lpddr2-s4"))
1324 dev_info
->type
= DDR_TYPE_LPDDR2_S4
;
1325 else if (of_device_is_compatible(np_ddr
, "jedec,lpddr2-s2"))
1326 dev_info
->type
= DDR_TYPE_LPDDR2_S2
;
1328 of_property_read_u32(np_ddr
, "density", &density
);
1329 of_property_read_u32(np_ddr
, "io-width", &io_width
);
1331 /* Convert from density in Mb to the density encoding in jedc_ddr.h */
1332 if (density
& (density
- 1))
1333 dev_info
->density
= 0;
1335 dev_info
->density
= __fls(density
) - 5;
1337 /* Convert from io_width in bits to io_width encoding in jedc_ddr.h */
1338 if (io_width
& (io_width
- 1))
1339 dev_info
->io_width
= 0;
1341 dev_info
->io_width
= __fls(io_width
) - 1;
1344 static struct emif_data
* __init_or_module
of_get_memory_device_details(
1345 struct device_node
*np_emif
, struct device
*dev
)
1347 struct emif_data
*emif
= NULL
;
1348 struct ddr_device_info
*dev_info
= NULL
;
1349 struct emif_platform_data
*pd
= NULL
;
1350 struct device_node
*np_ddr
;
1353 np_ddr
= of_parse_phandle(np_emif
, "device-handle", 0);
1356 emif
= devm_kzalloc(dev
, sizeof(struct emif_data
), GFP_KERNEL
);
1357 pd
= devm_kzalloc(dev
, sizeof(*pd
), GFP_KERNEL
);
1358 dev_info
= devm_kzalloc(dev
, sizeof(*dev_info
), GFP_KERNEL
);
1360 if (!emif
|| !pd
|| !dev_info
) {
1361 dev_err(dev
, "%s: Out of memory!!\n",
1366 emif
->plat_data
= pd
;
1367 pd
->device_info
= dev_info
;
1369 emif
->np_ddr
= np_ddr
;
1370 emif
->temperature_level
= SDRAM_TEMP_NOMINAL
;
1372 if (of_device_is_compatible(np_emif
, "ti,emif-4d"))
1373 emif
->plat_data
->ip_rev
= EMIF_4D
;
1374 else if (of_device_is_compatible(np_emif
, "ti,emif-4d5"))
1375 emif
->plat_data
->ip_rev
= EMIF_4D5
;
1377 of_property_read_u32(np_emif
, "phy-type", &pd
->phy_type
);
1379 if (of_find_property(np_emif
, "hw-caps-ll-interface", &len
))
1380 pd
->hw_caps
|= EMIF_HW_CAPS_LL_INTERFACE
;
1382 of_get_ddr_info(np_emif
, np_ddr
, dev_info
);
1383 if (!is_dev_data_valid(pd
->device_info
->type
, pd
->device_info
->density
,
1384 pd
->device_info
->io_width
, pd
->phy_type
, pd
->ip_rev
,
1386 dev_err(dev
, "%s: invalid device data!!\n", __func__
);
1390 * For EMIF instances other than EMIF1 see if the devices connected
1391 * are exactly same as on EMIF1(which is typically the case). If so,
1392 * mark it as a duplicate of EMIF1. This will save some memory and
1395 if (emif1
&& emif1
->np_ddr
== np_ddr
) {
1396 emif
->duplicate
= true;
1399 dev_warn(emif
->dev
, "%s: Non-symmetric DDR geometry\n",
1403 of_get_custom_configs(np_emif
, emif
);
1404 emif
->plat_data
->timings
= of_get_ddr_timings(np_ddr
, emif
->dev
,
1405 emif
->plat_data
->device_info
->type
,
1406 &emif
->plat_data
->timings_arr_size
);
1408 emif
->plat_data
->min_tck
= of_get_min_tck(np_ddr
, emif
->dev
);
1419 static struct emif_data
* __init_or_module
of_get_memory_device_details(
1420 struct device_node
*np_emif
, struct device
*dev
)
1426 static struct emif_data
*__init_or_module
get_device_details(
1427 struct platform_device
*pdev
)
1430 struct emif_data
*emif
= NULL
;
1431 struct ddr_device_info
*dev_info
;
1432 struct emif_custom_configs
*cust_cfgs
;
1433 struct emif_platform_data
*pd
;
1437 pd
= pdev
->dev
.platform_data
;
1440 if (!(pd
&& pd
->device_info
&& is_dev_data_valid(pd
->device_info
->type
,
1441 pd
->device_info
->density
, pd
->device_info
->io_width
,
1442 pd
->phy_type
, pd
->ip_rev
, dev
))) {
1443 dev_err(dev
, "%s: invalid device data\n", __func__
);
1447 emif
= devm_kzalloc(dev
, sizeof(*emif
), GFP_KERNEL
);
1448 temp
= devm_kzalloc(dev
, sizeof(*pd
), GFP_KERNEL
);
1449 dev_info
= devm_kzalloc(dev
, sizeof(*dev_info
), GFP_KERNEL
);
1451 if (!emif
|| !pd
|| !dev_info
) {
1452 dev_err(dev
, "%s:%d: allocation error\n", __func__
, __LINE__
);
1456 memcpy(temp
, pd
, sizeof(*pd
));
1458 memcpy(dev_info
, pd
->device_info
, sizeof(*dev_info
));
1460 pd
->device_info
= dev_info
;
1461 emif
->plat_data
= pd
;
1463 emif
->temperature_level
= SDRAM_TEMP_NOMINAL
;
1466 * For EMIF instances other than EMIF1 see if the devices connected
1467 * are exactly same as on EMIF1(which is typically the case). If so,
1468 * mark it as a duplicate of EMIF1 and skip copying timings data.
1469 * This will save some memory and some computation later.
1471 emif
->duplicate
= emif1
&& (memcmp(dev_info
,
1472 emif1
->plat_data
->device_info
,
1473 sizeof(struct ddr_device_info
)) == 0);
1475 if (emif
->duplicate
) {
1480 dev_warn(emif
->dev
, "%s: Non-symmetric DDR geometry\n",
1485 * Copy custom configs - ignore allocation error, if any, as
1486 * custom_configs is not very critical
1488 cust_cfgs
= pd
->custom_configs
;
1489 if (cust_cfgs
&& is_custom_config_valid(cust_cfgs
, dev
)) {
1490 temp
= devm_kzalloc(dev
, sizeof(*cust_cfgs
), GFP_KERNEL
);
1492 memcpy(temp
, cust_cfgs
, sizeof(*cust_cfgs
));
1494 dev_warn(dev
, "%s:%d: allocation error\n", __func__
,
1496 pd
->custom_configs
= temp
;
1500 * Copy timings and min-tck values from platform data. If it is not
1501 * available or if memory allocation fails, use JEDEC defaults
1503 size
= sizeof(struct lpddr2_timings
) * pd
->timings_arr_size
;
1505 temp
= devm_kzalloc(dev
, size
, GFP_KERNEL
);
1507 memcpy(temp
, pd
->timings
, size
);
1510 dev_warn(dev
, "%s:%d: allocation error\n", __func__
,
1512 get_default_timings(emif
);
1515 get_default_timings(emif
);
1519 temp
= devm_kzalloc(dev
, sizeof(*pd
->min_tck
), GFP_KERNEL
);
1521 memcpy(temp
, pd
->min_tck
, sizeof(*pd
->min_tck
));
1524 dev_warn(dev
, "%s:%d: allocation error\n", __func__
,
1526 pd
->min_tck
= &lpddr2_jedec_min_tck
;
1529 pd
->min_tck
= &lpddr2_jedec_min_tck
;
1539 static int __init_or_module
emif_probe(struct platform_device
*pdev
)
1541 struct emif_data
*emif
;
1542 struct resource
*res
;
1545 if (pdev
->dev
.of_node
)
1546 emif
= of_get_memory_device_details(pdev
->dev
.of_node
, &pdev
->dev
);
1548 emif
= get_device_details(pdev
);
1551 pr_err("%s: error getting device data\n", __func__
);
1555 list_add(&emif
->node
, &device_list
);
1556 emif
->addressing
= get_addressing_table(emif
->plat_data
->device_info
);
1558 /* Save pointers to each other in emif and device structures */
1559 emif
->dev
= &pdev
->dev
;
1560 platform_set_drvdata(pdev
, emif
);
1562 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1563 emif
->base
= devm_ioremap_resource(emif
->dev
, res
);
1564 if (IS_ERR(emif
->base
))
1567 irq
= platform_get_irq(pdev
, 0);
1569 dev_err(emif
->dev
, "%s: error getting IRQ resource - %d\n",
1574 emif_onetime_settings(emif
);
1575 emif_debugfs_init(emif
);
1576 disable_and_clear_all_interrupts(emif
);
1577 setup_interrupts(emif
, irq
);
1579 /* One-time actions taken on probing the first device */
1582 spin_lock_init(&emif_lock
);
1585 * TODO: register notifiers for frequency and voltage
1586 * change here once the respective frameworks are
1591 dev_info(&pdev
->dev
, "%s: device configured with addr = %p and IRQ%d\n",
1592 __func__
, emif
->base
, irq
);
1599 static int __exit
emif_remove(struct platform_device
*pdev
)
1601 struct emif_data
*emif
= platform_get_drvdata(pdev
);
1603 emif_debugfs_exit(emif
);
1608 static void emif_shutdown(struct platform_device
*pdev
)
1610 struct emif_data
*emif
= platform_get_drvdata(pdev
);
1612 disable_and_clear_all_interrupts(emif
);
1615 static int get_emif_reg_values(struct emif_data
*emif
, u32 freq
,
1616 struct emif_regs
*regs
)
1618 u32 cs1_used
, ip_rev
, phy_type
;
1620 const struct lpddr2_timings
*timings
;
1621 const struct lpddr2_min_tck
*min_tck
;
1622 const struct ddr_device_info
*device_info
;
1623 const struct lpddr2_addressing
*addressing
;
1624 struct emif_data
*emif_for_calc
;
1626 const struct emif_custom_configs
*custom_configs
;
1630 * If the devices on this EMIF instance is duplicate of EMIF1,
1631 * use EMIF1 details for the calculation
1633 emif_for_calc
= emif
->duplicate
? emif1
: emif
;
1634 timings
= get_timings_table(emif_for_calc
, freq
);
1635 addressing
= emif_for_calc
->addressing
;
1636 if (!timings
|| !addressing
) {
1637 dev_err(dev
, "%s: not enough data available for %dHz",
1642 device_info
= emif_for_calc
->plat_data
->device_info
;
1643 type
= device_info
->type
;
1644 cs1_used
= device_info
->cs1_used
;
1645 ip_rev
= emif_for_calc
->plat_data
->ip_rev
;
1646 phy_type
= emif_for_calc
->plat_data
->phy_type
;
1648 min_tck
= emif_for_calc
->plat_data
->min_tck
;
1649 custom_configs
= emif_for_calc
->plat_data
->custom_configs
;
1651 set_ddr_clk_period(freq
);
1653 regs
->ref_ctrl_shdw
= get_sdram_ref_ctrl_shdw(freq
, addressing
);
1654 regs
->sdram_tim1_shdw
= get_sdram_tim_1_shdw(timings
, min_tck
,
1656 regs
->sdram_tim2_shdw
= get_sdram_tim_2_shdw(timings
, min_tck
,
1658 regs
->sdram_tim3_shdw
= get_sdram_tim_3_shdw(timings
, min_tck
,
1659 addressing
, type
, ip_rev
, EMIF_NORMAL_TIMINGS
);
1663 if (phy_type
== EMIF_PHY_TYPE_ATTILAPHY
&& ip_rev
== EMIF_4D
) {
1664 regs
->phy_ctrl_1_shdw
= get_ddr_phy_ctrl_1_attilaphy_4d(
1666 } else if (phy_type
== EMIF_PHY_TYPE_INTELLIPHY
&& ip_rev
== EMIF_4D5
) {
1667 regs
->phy_ctrl_1_shdw
= get_phy_ctrl_1_intelliphy_4d5(freq
, cl
);
1668 regs
->ext_phy_ctrl_2_shdw
= get_ext_phy_ctrl_2_intelliphy_4d5();
1669 regs
->ext_phy_ctrl_3_shdw
= get_ext_phy_ctrl_3_intelliphy_4d5();
1670 regs
->ext_phy_ctrl_4_shdw
= get_ext_phy_ctrl_4_intelliphy_4d5();
1675 /* Only timeout values in pwr_mgmt_ctrl_shdw register */
1676 regs
->pwr_mgmt_ctrl_shdw
=
1677 get_pwr_mgmt_ctrl(freq
, emif_for_calc
, ip_rev
) &
1678 (CS_TIM_MASK
| SR_TIM_MASK
| PD_TIM_MASK
);
1680 if (ip_rev
& EMIF_4D
) {
1681 regs
->read_idle_ctrl_shdw_normal
=
1682 get_read_idle_ctrl_shdw(DDR_VOLTAGE_STABLE
);
1684 regs
->read_idle_ctrl_shdw_volt_ramp
=
1685 get_read_idle_ctrl_shdw(DDR_VOLTAGE_RAMPING
);
1686 } else if (ip_rev
& EMIF_4D5
) {
1687 regs
->dll_calib_ctrl_shdw_normal
=
1688 get_dll_calib_ctrl_shdw(DDR_VOLTAGE_STABLE
);
1690 regs
->dll_calib_ctrl_shdw_volt_ramp
=
1691 get_dll_calib_ctrl_shdw(DDR_VOLTAGE_RAMPING
);
1694 if (type
== DDR_TYPE_LPDDR2_S2
|| type
== DDR_TYPE_LPDDR2_S4
) {
1695 regs
->ref_ctrl_shdw_derated
= get_sdram_ref_ctrl_shdw(freq
/ 4,
1698 regs
->sdram_tim1_shdw_derated
=
1699 get_sdram_tim_1_shdw_derated(timings
, min_tck
,
1702 regs
->sdram_tim3_shdw_derated
= get_sdram_tim_3_shdw(timings
,
1703 min_tck
, addressing
, type
, ip_rev
,
1704 EMIF_DERATED_TIMINGS
);
1713 * get_regs() - gets the cached emif_regs structure for a given EMIF instance
1714 * given frequency(freq):
1716 * As an optimisation, every EMIF instance other than EMIF1 shares the
1717 * register cache with EMIF1 if the devices connected on this instance
1718 * are same as that on EMIF1(indicated by the duplicate flag)
1720 * If we do not have an entry corresponding to the frequency given, we
1721 * allocate a new entry and calculate the values
1723 * Upon finding the right reg dump, save it in curr_regs. It can be
1724 * directly used for thermal de-rating and voltage ramping changes.
1726 static struct emif_regs
*get_regs(struct emif_data
*emif
, u32 freq
)
1729 struct emif_regs
**regs_cache
;
1730 struct emif_regs
*regs
= NULL
;
1734 if (emif
->curr_regs
&& emif
->curr_regs
->freq
== freq
) {
1735 dev_dbg(dev
, "%s: using curr_regs - %u Hz", __func__
, freq
);
1736 return emif
->curr_regs
;
1739 if (emif
->duplicate
)
1740 regs_cache
= emif1
->regs_cache
;
1742 regs_cache
= emif
->regs_cache
;
1744 for (i
= 0; i
< EMIF_MAX_NUM_FREQUENCIES
&& regs_cache
[i
]; i
++) {
1745 if (regs_cache
[i
]->freq
== freq
) {
1746 regs
= regs_cache
[i
];
1748 "%s: reg dump found in reg cache for %u Hz\n",
1755 * If we don't have an entry for this frequency in the cache create one
1756 * and calculate the values
1759 regs
= devm_kzalloc(emif
->dev
, sizeof(*regs
), GFP_ATOMIC
);
1763 if (get_emif_reg_values(emif
, freq
, regs
)) {
1764 devm_kfree(emif
->dev
, regs
);
1769 * Now look for an un-used entry in the cache and save the
1770 * newly created struct. If there are no free entries
1771 * over-write the last entry
1773 for (i
= 0; i
< EMIF_MAX_NUM_FREQUENCIES
&& regs_cache
[i
]; i
++)
1776 if (i
>= EMIF_MAX_NUM_FREQUENCIES
) {
1777 dev_warn(dev
, "%s: regs_cache full - reusing a slot!!\n",
1779 i
= EMIF_MAX_NUM_FREQUENCIES
- 1;
1780 devm_kfree(emif
->dev
, regs_cache
[i
]);
1782 regs_cache
[i
] = regs
;
1788 static void do_volt_notify_handling(struct emif_data
*emif
, u32 volt_state
)
1790 dev_dbg(emif
->dev
, "%s: voltage notification : %d", __func__
,
1793 if (!emif
->curr_regs
) {
1795 "%s: volt-notify before registers are ready: %d\n",
1796 __func__
, volt_state
);
1800 setup_volt_sensitive_regs(emif
, emif
->curr_regs
, volt_state
);
1804 * TODO: voltage notify handling should be hooked up to
1805 * regulator framework as soon as the necessary support
1806 * is available in mainline kernel. This function is un-used
1809 static void __attribute__((unused
)) volt_notify_handling(u32 volt_state
)
1811 struct emif_data
*emif
;
1813 spin_lock_irqsave(&emif_lock
, irq_state
);
1815 list_for_each_entry(emif
, &device_list
, node
)
1816 do_volt_notify_handling(emif
, volt_state
);
1819 spin_unlock_irqrestore(&emif_lock
, irq_state
);
1822 static void do_freq_pre_notify_handling(struct emif_data
*emif
, u32 new_freq
)
1824 struct emif_regs
*regs
;
1826 regs
= get_regs(emif
, new_freq
);
1830 emif
->curr_regs
= regs
;
1833 * Update the shadow registers:
1834 * Temperature and voltage-ramp sensitive settings are also configured
1835 * in terms of DDR cycles. So, we need to update them too when there
1838 dev_dbg(emif
->dev
, "%s: setting up shadow registers for %uHz",
1839 __func__
, new_freq
);
1840 setup_registers(emif
, regs
);
1841 setup_temperature_sensitive_regs(emif
, regs
);
1842 setup_volt_sensitive_regs(emif
, regs
, DDR_VOLTAGE_STABLE
);
1845 * Part of workaround for errata i728. See do_freq_update()
1848 if (emif
->lpmode
== EMIF_LP_MODE_SELF_REFRESH
)
1849 set_lpmode(emif
, EMIF_LP_MODE_DISABLE
);
1853 * TODO: frequency notify handling should be hooked up to
1854 * clock framework as soon as the necessary support is
1855 * available in mainline kernel. This function is un-used
1858 static void __attribute__((unused
)) freq_pre_notify_handling(u32 new_freq
)
1860 struct emif_data
*emif
;
1863 * NOTE: we are taking the spin-lock here and releases it
1864 * only in post-notifier. This doesn't look good and
1865 * Sparse complains about it, but this seems to be
1866 * un-avoidable. We need to lock a sequence of events
1867 * that is split between EMIF and clock framework.
1869 * 1. EMIF driver updates EMIF timings in shadow registers in the
1870 * frequency pre-notify callback from clock framework
1871 * 2. clock framework sets up the registers for the new frequency
1872 * 3. clock framework initiates a hw-sequence that updates
1873 * the frequency EMIF timings synchronously.
1875 * All these 3 steps should be performed as an atomic operation
1876 * vis-a-vis similar sequence in the EMIF interrupt handler
1877 * for temperature events. Otherwise, there could be race
1878 * conditions that could result in incorrect EMIF timings for
1881 spin_lock_irqsave(&emif_lock
, irq_state
);
1883 list_for_each_entry(emif
, &device_list
, node
)
1884 do_freq_pre_notify_handling(emif
, new_freq
);
1887 static void do_freq_post_notify_handling(struct emif_data
*emif
)
1890 * Part of workaround for errata i728. See do_freq_update()
1893 if (emif
->lpmode
== EMIF_LP_MODE_SELF_REFRESH
)
1894 set_lpmode(emif
, EMIF_LP_MODE_SELF_REFRESH
);
1898 * TODO: frequency notify handling should be hooked up to
1899 * clock framework as soon as the necessary support is
1900 * available in mainline kernel. This function is un-used
1903 static void __attribute__((unused
)) freq_post_notify_handling(void)
1905 struct emif_data
*emif
;
1907 list_for_each_entry(emif
, &device_list
, node
)
1908 do_freq_post_notify_handling(emif
);
1911 * Lock is done in pre-notify handler. See freq_pre_notify_handling()
1914 spin_unlock_irqrestore(&emif_lock
, irq_state
);
1917 #if defined(CONFIG_OF)
1918 static const struct of_device_id emif_of_match
[] = {
1919 { .compatible
= "ti,emif-4d" },
1920 { .compatible
= "ti,emif-4d5" },
1923 MODULE_DEVICE_TABLE(of
, emif_of_match
);
1926 static struct platform_driver emif_driver
= {
1927 .remove
= __exit_p(emif_remove
),
1928 .shutdown
= emif_shutdown
,
1931 .of_match_table
= of_match_ptr(emif_of_match
),
1935 module_platform_driver_probe(emif_driver
, emif_probe
);
1937 MODULE_DESCRIPTION("TI EMIF SDRAM Controller Driver");
1938 MODULE_LICENSE("GPL");
1939 MODULE_ALIAS("platform:emif");
1940 MODULE_AUTHOR("Texas Instruments Inc");