Staging: brcm80211: remove __cplusplus markers
[linux/fpc-iii.git] / fs / ext4 / inode.c
blob4b8debeb39652fa0e10bcf36d397d6125c750d1a
1 /*
2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
9 * from
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include <linux/workqueue.h>
41 #include <linux/kernel.h>
42 #include <linux/slab.h>
44 #include "ext4_jbd2.h"
45 #include "xattr.h"
46 #include "acl.h"
47 #include "ext4_extents.h"
49 #include <trace/events/ext4.h>
51 #define MPAGE_DA_EXTENT_TAIL 0x01
53 static inline int ext4_begin_ordered_truncate(struct inode *inode,
54 loff_t new_size)
56 return jbd2_journal_begin_ordered_truncate(
57 EXT4_SB(inode->i_sb)->s_journal,
58 &EXT4_I(inode)->jinode,
59 new_size);
62 static void ext4_invalidatepage(struct page *page, unsigned long offset);
65 * Test whether an inode is a fast symlink.
67 static int ext4_inode_is_fast_symlink(struct inode *inode)
69 int ea_blocks = EXT4_I(inode)->i_file_acl ?
70 (inode->i_sb->s_blocksize >> 9) : 0;
72 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
76 * Work out how many blocks we need to proceed with the next chunk of a
77 * truncate transaction.
79 static unsigned long blocks_for_truncate(struct inode *inode)
81 ext4_lblk_t needed;
83 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
85 /* Give ourselves just enough room to cope with inodes in which
86 * i_blocks is corrupt: we've seen disk corruptions in the past
87 * which resulted in random data in an inode which looked enough
88 * like a regular file for ext4 to try to delete it. Things
89 * will go a bit crazy if that happens, but at least we should
90 * try not to panic the whole kernel. */
91 if (needed < 2)
92 needed = 2;
94 /* But we need to bound the transaction so we don't overflow the
95 * journal. */
96 if (needed > EXT4_MAX_TRANS_DATA)
97 needed = EXT4_MAX_TRANS_DATA;
99 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
103 * Truncate transactions can be complex and absolutely huge. So we need to
104 * be able to restart the transaction at a conventient checkpoint to make
105 * sure we don't overflow the journal.
107 * start_transaction gets us a new handle for a truncate transaction,
108 * and extend_transaction tries to extend the existing one a bit. If
109 * extend fails, we need to propagate the failure up and restart the
110 * transaction in the top-level truncate loop. --sct
112 static handle_t *start_transaction(struct inode *inode)
114 handle_t *result;
116 result = ext4_journal_start(inode, blocks_for_truncate(inode));
117 if (!IS_ERR(result))
118 return result;
120 ext4_std_error(inode->i_sb, PTR_ERR(result));
121 return result;
125 * Try to extend this transaction for the purposes of truncation.
127 * Returns 0 if we managed to create more room. If we can't create more
128 * room, and the transaction must be restarted we return 1.
130 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
132 if (!ext4_handle_valid(handle))
133 return 0;
134 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
135 return 0;
136 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
137 return 0;
138 return 1;
142 * Restart the transaction associated with *handle. This does a commit,
143 * so before we call here everything must be consistently dirtied against
144 * this transaction.
146 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
147 int nblocks)
149 int ret;
152 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
153 * moment, get_block can be called only for blocks inside i_size since
154 * page cache has been already dropped and writes are blocked by
155 * i_mutex. So we can safely drop the i_data_sem here.
157 BUG_ON(EXT4_JOURNAL(inode) == NULL);
158 jbd_debug(2, "restarting handle %p\n", handle);
159 up_write(&EXT4_I(inode)->i_data_sem);
160 ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
161 down_write(&EXT4_I(inode)->i_data_sem);
162 ext4_discard_preallocations(inode);
164 return ret;
168 * Called at the last iput() if i_nlink is zero.
170 void ext4_evict_inode(struct inode *inode)
172 handle_t *handle;
173 int err;
175 if (inode->i_nlink) {
176 truncate_inode_pages(&inode->i_data, 0);
177 goto no_delete;
180 if (!is_bad_inode(inode))
181 dquot_initialize(inode);
183 if (ext4_should_order_data(inode))
184 ext4_begin_ordered_truncate(inode, 0);
185 truncate_inode_pages(&inode->i_data, 0);
187 if (is_bad_inode(inode))
188 goto no_delete;
190 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
191 if (IS_ERR(handle)) {
192 ext4_std_error(inode->i_sb, PTR_ERR(handle));
194 * If we're going to skip the normal cleanup, we still need to
195 * make sure that the in-core orphan linked list is properly
196 * cleaned up.
198 ext4_orphan_del(NULL, inode);
199 goto no_delete;
202 if (IS_SYNC(inode))
203 ext4_handle_sync(handle);
204 inode->i_size = 0;
205 err = ext4_mark_inode_dirty(handle, inode);
206 if (err) {
207 ext4_warning(inode->i_sb,
208 "couldn't mark inode dirty (err %d)", err);
209 goto stop_handle;
211 if (inode->i_blocks)
212 ext4_truncate(inode);
215 * ext4_ext_truncate() doesn't reserve any slop when it
216 * restarts journal transactions; therefore there may not be
217 * enough credits left in the handle to remove the inode from
218 * the orphan list and set the dtime field.
220 if (!ext4_handle_has_enough_credits(handle, 3)) {
221 err = ext4_journal_extend(handle, 3);
222 if (err > 0)
223 err = ext4_journal_restart(handle, 3);
224 if (err != 0) {
225 ext4_warning(inode->i_sb,
226 "couldn't extend journal (err %d)", err);
227 stop_handle:
228 ext4_journal_stop(handle);
229 ext4_orphan_del(NULL, inode);
230 goto no_delete;
235 * Kill off the orphan record which ext4_truncate created.
236 * AKPM: I think this can be inside the above `if'.
237 * Note that ext4_orphan_del() has to be able to cope with the
238 * deletion of a non-existent orphan - this is because we don't
239 * know if ext4_truncate() actually created an orphan record.
240 * (Well, we could do this if we need to, but heck - it works)
242 ext4_orphan_del(handle, inode);
243 EXT4_I(inode)->i_dtime = get_seconds();
246 * One subtle ordering requirement: if anything has gone wrong
247 * (transaction abort, IO errors, whatever), then we can still
248 * do these next steps (the fs will already have been marked as
249 * having errors), but we can't free the inode if the mark_dirty
250 * fails.
252 if (ext4_mark_inode_dirty(handle, inode))
253 /* If that failed, just do the required in-core inode clear. */
254 ext4_clear_inode(inode);
255 else
256 ext4_free_inode(handle, inode);
257 ext4_journal_stop(handle);
258 return;
259 no_delete:
260 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
263 typedef struct {
264 __le32 *p;
265 __le32 key;
266 struct buffer_head *bh;
267 } Indirect;
269 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
271 p->key = *(p->p = v);
272 p->bh = bh;
276 * ext4_block_to_path - parse the block number into array of offsets
277 * @inode: inode in question (we are only interested in its superblock)
278 * @i_block: block number to be parsed
279 * @offsets: array to store the offsets in
280 * @boundary: set this non-zero if the referred-to block is likely to be
281 * followed (on disk) by an indirect block.
283 * To store the locations of file's data ext4 uses a data structure common
284 * for UNIX filesystems - tree of pointers anchored in the inode, with
285 * data blocks at leaves and indirect blocks in intermediate nodes.
286 * This function translates the block number into path in that tree -
287 * return value is the path length and @offsets[n] is the offset of
288 * pointer to (n+1)th node in the nth one. If @block is out of range
289 * (negative or too large) warning is printed and zero returned.
291 * Note: function doesn't find node addresses, so no IO is needed. All
292 * we need to know is the capacity of indirect blocks (taken from the
293 * inode->i_sb).
297 * Portability note: the last comparison (check that we fit into triple
298 * indirect block) is spelled differently, because otherwise on an
299 * architecture with 32-bit longs and 8Kb pages we might get into trouble
300 * if our filesystem had 8Kb blocks. We might use long long, but that would
301 * kill us on x86. Oh, well, at least the sign propagation does not matter -
302 * i_block would have to be negative in the very beginning, so we would not
303 * get there at all.
306 static int ext4_block_to_path(struct inode *inode,
307 ext4_lblk_t i_block,
308 ext4_lblk_t offsets[4], int *boundary)
310 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
311 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
312 const long direct_blocks = EXT4_NDIR_BLOCKS,
313 indirect_blocks = ptrs,
314 double_blocks = (1 << (ptrs_bits * 2));
315 int n = 0;
316 int final = 0;
318 if (i_block < direct_blocks) {
319 offsets[n++] = i_block;
320 final = direct_blocks;
321 } else if ((i_block -= direct_blocks) < indirect_blocks) {
322 offsets[n++] = EXT4_IND_BLOCK;
323 offsets[n++] = i_block;
324 final = ptrs;
325 } else if ((i_block -= indirect_blocks) < double_blocks) {
326 offsets[n++] = EXT4_DIND_BLOCK;
327 offsets[n++] = i_block >> ptrs_bits;
328 offsets[n++] = i_block & (ptrs - 1);
329 final = ptrs;
330 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
331 offsets[n++] = EXT4_TIND_BLOCK;
332 offsets[n++] = i_block >> (ptrs_bits * 2);
333 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
334 offsets[n++] = i_block & (ptrs - 1);
335 final = ptrs;
336 } else {
337 ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
338 i_block + direct_blocks +
339 indirect_blocks + double_blocks, inode->i_ino);
341 if (boundary)
342 *boundary = final - 1 - (i_block & (ptrs - 1));
343 return n;
346 static int __ext4_check_blockref(const char *function, unsigned int line,
347 struct inode *inode,
348 __le32 *p, unsigned int max)
350 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
351 __le32 *bref = p;
352 unsigned int blk;
354 while (bref < p+max) {
355 blk = le32_to_cpu(*bref++);
356 if (blk &&
357 unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
358 blk, 1))) {
359 es->s_last_error_block = cpu_to_le64(blk);
360 ext4_error_inode(inode, function, line, blk,
361 "invalid block");
362 return -EIO;
365 return 0;
369 #define ext4_check_indirect_blockref(inode, bh) \
370 __ext4_check_blockref(__func__, __LINE__, inode, \
371 (__le32 *)(bh)->b_data, \
372 EXT4_ADDR_PER_BLOCK((inode)->i_sb))
374 #define ext4_check_inode_blockref(inode) \
375 __ext4_check_blockref(__func__, __LINE__, inode, \
376 EXT4_I(inode)->i_data, \
377 EXT4_NDIR_BLOCKS)
380 * ext4_get_branch - read the chain of indirect blocks leading to data
381 * @inode: inode in question
382 * @depth: depth of the chain (1 - direct pointer, etc.)
383 * @offsets: offsets of pointers in inode/indirect blocks
384 * @chain: place to store the result
385 * @err: here we store the error value
387 * Function fills the array of triples <key, p, bh> and returns %NULL
388 * if everything went OK or the pointer to the last filled triple
389 * (incomplete one) otherwise. Upon the return chain[i].key contains
390 * the number of (i+1)-th block in the chain (as it is stored in memory,
391 * i.e. little-endian 32-bit), chain[i].p contains the address of that
392 * number (it points into struct inode for i==0 and into the bh->b_data
393 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
394 * block for i>0 and NULL for i==0. In other words, it holds the block
395 * numbers of the chain, addresses they were taken from (and where we can
396 * verify that chain did not change) and buffer_heads hosting these
397 * numbers.
399 * Function stops when it stumbles upon zero pointer (absent block)
400 * (pointer to last triple returned, *@err == 0)
401 * or when it gets an IO error reading an indirect block
402 * (ditto, *@err == -EIO)
403 * or when it reads all @depth-1 indirect blocks successfully and finds
404 * the whole chain, all way to the data (returns %NULL, *err == 0).
406 * Need to be called with
407 * down_read(&EXT4_I(inode)->i_data_sem)
409 static Indirect *ext4_get_branch(struct inode *inode, int depth,
410 ext4_lblk_t *offsets,
411 Indirect chain[4], int *err)
413 struct super_block *sb = inode->i_sb;
414 Indirect *p = chain;
415 struct buffer_head *bh;
417 *err = 0;
418 /* i_data is not going away, no lock needed */
419 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
420 if (!p->key)
421 goto no_block;
422 while (--depth) {
423 bh = sb_getblk(sb, le32_to_cpu(p->key));
424 if (unlikely(!bh))
425 goto failure;
427 if (!bh_uptodate_or_lock(bh)) {
428 if (bh_submit_read(bh) < 0) {
429 put_bh(bh);
430 goto failure;
432 /* validate block references */
433 if (ext4_check_indirect_blockref(inode, bh)) {
434 put_bh(bh);
435 goto failure;
439 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
440 /* Reader: end */
441 if (!p->key)
442 goto no_block;
444 return NULL;
446 failure:
447 *err = -EIO;
448 no_block:
449 return p;
453 * ext4_find_near - find a place for allocation with sufficient locality
454 * @inode: owner
455 * @ind: descriptor of indirect block.
457 * This function returns the preferred place for block allocation.
458 * It is used when heuristic for sequential allocation fails.
459 * Rules are:
460 * + if there is a block to the left of our position - allocate near it.
461 * + if pointer will live in indirect block - allocate near that block.
462 * + if pointer will live in inode - allocate in the same
463 * cylinder group.
465 * In the latter case we colour the starting block by the callers PID to
466 * prevent it from clashing with concurrent allocations for a different inode
467 * in the same block group. The PID is used here so that functionally related
468 * files will be close-by on-disk.
470 * Caller must make sure that @ind is valid and will stay that way.
472 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
474 struct ext4_inode_info *ei = EXT4_I(inode);
475 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
476 __le32 *p;
477 ext4_fsblk_t bg_start;
478 ext4_fsblk_t last_block;
479 ext4_grpblk_t colour;
480 ext4_group_t block_group;
481 int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
483 /* Try to find previous block */
484 for (p = ind->p - 1; p >= start; p--) {
485 if (*p)
486 return le32_to_cpu(*p);
489 /* No such thing, so let's try location of indirect block */
490 if (ind->bh)
491 return ind->bh->b_blocknr;
494 * It is going to be referred to from the inode itself? OK, just put it
495 * into the same cylinder group then.
497 block_group = ei->i_block_group;
498 if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
499 block_group &= ~(flex_size-1);
500 if (S_ISREG(inode->i_mode))
501 block_group++;
503 bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
504 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
507 * If we are doing delayed allocation, we don't need take
508 * colour into account.
510 if (test_opt(inode->i_sb, DELALLOC))
511 return bg_start;
513 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
514 colour = (current->pid % 16) *
515 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
516 else
517 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
518 return bg_start + colour;
522 * ext4_find_goal - find a preferred place for allocation.
523 * @inode: owner
524 * @block: block we want
525 * @partial: pointer to the last triple within a chain
527 * Normally this function find the preferred place for block allocation,
528 * returns it.
529 * Because this is only used for non-extent files, we limit the block nr
530 * to 32 bits.
532 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
533 Indirect *partial)
535 ext4_fsblk_t goal;
538 * XXX need to get goal block from mballoc's data structures
541 goal = ext4_find_near(inode, partial);
542 goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
543 return goal;
547 * ext4_blks_to_allocate: Look up the block map and count the number
548 * of direct blocks need to be allocated for the given branch.
550 * @branch: chain of indirect blocks
551 * @k: number of blocks need for indirect blocks
552 * @blks: number of data blocks to be mapped.
553 * @blocks_to_boundary: the offset in the indirect block
555 * return the total number of blocks to be allocate, including the
556 * direct and indirect blocks.
558 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
559 int blocks_to_boundary)
561 unsigned int count = 0;
564 * Simple case, [t,d]Indirect block(s) has not allocated yet
565 * then it's clear blocks on that path have not allocated
567 if (k > 0) {
568 /* right now we don't handle cross boundary allocation */
569 if (blks < blocks_to_boundary + 1)
570 count += blks;
571 else
572 count += blocks_to_boundary + 1;
573 return count;
576 count++;
577 while (count < blks && count <= blocks_to_boundary &&
578 le32_to_cpu(*(branch[0].p + count)) == 0) {
579 count++;
581 return count;
585 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
586 * @indirect_blks: the number of blocks need to allocate for indirect
587 * blocks
589 * @new_blocks: on return it will store the new block numbers for
590 * the indirect blocks(if needed) and the first direct block,
591 * @blks: on return it will store the total number of allocated
592 * direct blocks
594 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
595 ext4_lblk_t iblock, ext4_fsblk_t goal,
596 int indirect_blks, int blks,
597 ext4_fsblk_t new_blocks[4], int *err)
599 struct ext4_allocation_request ar;
600 int target, i;
601 unsigned long count = 0, blk_allocated = 0;
602 int index = 0;
603 ext4_fsblk_t current_block = 0;
604 int ret = 0;
607 * Here we try to allocate the requested multiple blocks at once,
608 * on a best-effort basis.
609 * To build a branch, we should allocate blocks for
610 * the indirect blocks(if not allocated yet), and at least
611 * the first direct block of this branch. That's the
612 * minimum number of blocks need to allocate(required)
614 /* first we try to allocate the indirect blocks */
615 target = indirect_blks;
616 while (target > 0) {
617 count = target;
618 /* allocating blocks for indirect blocks and direct blocks */
619 current_block = ext4_new_meta_blocks(handle, inode,
620 goal, &count, err);
621 if (*err)
622 goto failed_out;
624 if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) {
625 EXT4_ERROR_INODE(inode,
626 "current_block %llu + count %lu > %d!",
627 current_block, count,
628 EXT4_MAX_BLOCK_FILE_PHYS);
629 *err = -EIO;
630 goto failed_out;
633 target -= count;
634 /* allocate blocks for indirect blocks */
635 while (index < indirect_blks && count) {
636 new_blocks[index++] = current_block++;
637 count--;
639 if (count > 0) {
641 * save the new block number
642 * for the first direct block
644 new_blocks[index] = current_block;
645 printk(KERN_INFO "%s returned more blocks than "
646 "requested\n", __func__);
647 WARN_ON(1);
648 break;
652 target = blks - count ;
653 blk_allocated = count;
654 if (!target)
655 goto allocated;
656 /* Now allocate data blocks */
657 memset(&ar, 0, sizeof(ar));
658 ar.inode = inode;
659 ar.goal = goal;
660 ar.len = target;
661 ar.logical = iblock;
662 if (S_ISREG(inode->i_mode))
663 /* enable in-core preallocation only for regular files */
664 ar.flags = EXT4_MB_HINT_DATA;
666 current_block = ext4_mb_new_blocks(handle, &ar, err);
667 if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) {
668 EXT4_ERROR_INODE(inode,
669 "current_block %llu + ar.len %d > %d!",
670 current_block, ar.len,
671 EXT4_MAX_BLOCK_FILE_PHYS);
672 *err = -EIO;
673 goto failed_out;
676 if (*err && (target == blks)) {
678 * if the allocation failed and we didn't allocate
679 * any blocks before
681 goto failed_out;
683 if (!*err) {
684 if (target == blks) {
686 * save the new block number
687 * for the first direct block
689 new_blocks[index] = current_block;
691 blk_allocated += ar.len;
693 allocated:
694 /* total number of blocks allocated for direct blocks */
695 ret = blk_allocated;
696 *err = 0;
697 return ret;
698 failed_out:
699 for (i = 0; i < index; i++)
700 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
701 return ret;
705 * ext4_alloc_branch - allocate and set up a chain of blocks.
706 * @inode: owner
707 * @indirect_blks: number of allocated indirect blocks
708 * @blks: number of allocated direct blocks
709 * @offsets: offsets (in the blocks) to store the pointers to next.
710 * @branch: place to store the chain in.
712 * This function allocates blocks, zeroes out all but the last one,
713 * links them into chain and (if we are synchronous) writes them to disk.
714 * In other words, it prepares a branch that can be spliced onto the
715 * inode. It stores the information about that chain in the branch[], in
716 * the same format as ext4_get_branch() would do. We are calling it after
717 * we had read the existing part of chain and partial points to the last
718 * triple of that (one with zero ->key). Upon the exit we have the same
719 * picture as after the successful ext4_get_block(), except that in one
720 * place chain is disconnected - *branch->p is still zero (we did not
721 * set the last link), but branch->key contains the number that should
722 * be placed into *branch->p to fill that gap.
724 * If allocation fails we free all blocks we've allocated (and forget
725 * their buffer_heads) and return the error value the from failed
726 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
727 * as described above and return 0.
729 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
730 ext4_lblk_t iblock, int indirect_blks,
731 int *blks, ext4_fsblk_t goal,
732 ext4_lblk_t *offsets, Indirect *branch)
734 int blocksize = inode->i_sb->s_blocksize;
735 int i, n = 0;
736 int err = 0;
737 struct buffer_head *bh;
738 int num;
739 ext4_fsblk_t new_blocks[4];
740 ext4_fsblk_t current_block;
742 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
743 *blks, new_blocks, &err);
744 if (err)
745 return err;
747 branch[0].key = cpu_to_le32(new_blocks[0]);
749 * metadata blocks and data blocks are allocated.
751 for (n = 1; n <= indirect_blks; n++) {
753 * Get buffer_head for parent block, zero it out
754 * and set the pointer to new one, then send
755 * parent to disk.
757 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
758 branch[n].bh = bh;
759 lock_buffer(bh);
760 BUFFER_TRACE(bh, "call get_create_access");
761 err = ext4_journal_get_create_access(handle, bh);
762 if (err) {
763 /* Don't brelse(bh) here; it's done in
764 * ext4_journal_forget() below */
765 unlock_buffer(bh);
766 goto failed;
769 memset(bh->b_data, 0, blocksize);
770 branch[n].p = (__le32 *) bh->b_data + offsets[n];
771 branch[n].key = cpu_to_le32(new_blocks[n]);
772 *branch[n].p = branch[n].key;
773 if (n == indirect_blks) {
774 current_block = new_blocks[n];
776 * End of chain, update the last new metablock of
777 * the chain to point to the new allocated
778 * data blocks numbers
780 for (i = 1; i < num; i++)
781 *(branch[n].p + i) = cpu_to_le32(++current_block);
783 BUFFER_TRACE(bh, "marking uptodate");
784 set_buffer_uptodate(bh);
785 unlock_buffer(bh);
787 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
788 err = ext4_handle_dirty_metadata(handle, inode, bh);
789 if (err)
790 goto failed;
792 *blks = num;
793 return err;
794 failed:
795 /* Allocation failed, free what we already allocated */
796 ext4_free_blocks(handle, inode, 0, new_blocks[0], 1, 0);
797 for (i = 1; i <= n ; i++) {
799 * branch[i].bh is newly allocated, so there is no
800 * need to revoke the block, which is why we don't
801 * need to set EXT4_FREE_BLOCKS_METADATA.
803 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1,
804 EXT4_FREE_BLOCKS_FORGET);
806 for (i = n+1; i < indirect_blks; i++)
807 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
809 ext4_free_blocks(handle, inode, 0, new_blocks[i], num, 0);
811 return err;
815 * ext4_splice_branch - splice the allocated branch onto inode.
816 * @inode: owner
817 * @block: (logical) number of block we are adding
818 * @chain: chain of indirect blocks (with a missing link - see
819 * ext4_alloc_branch)
820 * @where: location of missing link
821 * @num: number of indirect blocks we are adding
822 * @blks: number of direct blocks we are adding
824 * This function fills the missing link and does all housekeeping needed in
825 * inode (->i_blocks, etc.). In case of success we end up with the full
826 * chain to new block and return 0.
828 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
829 ext4_lblk_t block, Indirect *where, int num,
830 int blks)
832 int i;
833 int err = 0;
834 ext4_fsblk_t current_block;
837 * If we're splicing into a [td]indirect block (as opposed to the
838 * inode) then we need to get write access to the [td]indirect block
839 * before the splice.
841 if (where->bh) {
842 BUFFER_TRACE(where->bh, "get_write_access");
843 err = ext4_journal_get_write_access(handle, where->bh);
844 if (err)
845 goto err_out;
847 /* That's it */
849 *where->p = where->key;
852 * Update the host buffer_head or inode to point to more just allocated
853 * direct blocks blocks
855 if (num == 0 && blks > 1) {
856 current_block = le32_to_cpu(where->key) + 1;
857 for (i = 1; i < blks; i++)
858 *(where->p + i) = cpu_to_le32(current_block++);
861 /* We are done with atomic stuff, now do the rest of housekeeping */
862 /* had we spliced it onto indirect block? */
863 if (where->bh) {
865 * If we spliced it onto an indirect block, we haven't
866 * altered the inode. Note however that if it is being spliced
867 * onto an indirect block at the very end of the file (the
868 * file is growing) then we *will* alter the inode to reflect
869 * the new i_size. But that is not done here - it is done in
870 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
872 jbd_debug(5, "splicing indirect only\n");
873 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
874 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
875 if (err)
876 goto err_out;
877 } else {
879 * OK, we spliced it into the inode itself on a direct block.
881 ext4_mark_inode_dirty(handle, inode);
882 jbd_debug(5, "splicing direct\n");
884 return err;
886 err_out:
887 for (i = 1; i <= num; i++) {
889 * branch[i].bh is newly allocated, so there is no
890 * need to revoke the block, which is why we don't
891 * need to set EXT4_FREE_BLOCKS_METADATA.
893 ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
894 EXT4_FREE_BLOCKS_FORGET);
896 ext4_free_blocks(handle, inode, 0, le32_to_cpu(where[num].key),
897 blks, 0);
899 return err;
903 * The ext4_ind_map_blocks() function handles non-extents inodes
904 * (i.e., using the traditional indirect/double-indirect i_blocks
905 * scheme) for ext4_map_blocks().
907 * Allocation strategy is simple: if we have to allocate something, we will
908 * have to go the whole way to leaf. So let's do it before attaching anything
909 * to tree, set linkage between the newborn blocks, write them if sync is
910 * required, recheck the path, free and repeat if check fails, otherwise
911 * set the last missing link (that will protect us from any truncate-generated
912 * removals - all blocks on the path are immune now) and possibly force the
913 * write on the parent block.
914 * That has a nice additional property: no special recovery from the failed
915 * allocations is needed - we simply release blocks and do not touch anything
916 * reachable from inode.
918 * `handle' can be NULL if create == 0.
920 * return > 0, # of blocks mapped or allocated.
921 * return = 0, if plain lookup failed.
922 * return < 0, error case.
924 * The ext4_ind_get_blocks() function should be called with
925 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
926 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
927 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
928 * blocks.
930 static int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
931 struct ext4_map_blocks *map,
932 int flags)
934 int err = -EIO;
935 ext4_lblk_t offsets[4];
936 Indirect chain[4];
937 Indirect *partial;
938 ext4_fsblk_t goal;
939 int indirect_blks;
940 int blocks_to_boundary = 0;
941 int depth;
942 int count = 0;
943 ext4_fsblk_t first_block = 0;
945 J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
946 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
947 depth = ext4_block_to_path(inode, map->m_lblk, offsets,
948 &blocks_to_boundary);
950 if (depth == 0)
951 goto out;
953 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
955 /* Simplest case - block found, no allocation needed */
956 if (!partial) {
957 first_block = le32_to_cpu(chain[depth - 1].key);
958 count++;
959 /*map more blocks*/
960 while (count < map->m_len && count <= blocks_to_boundary) {
961 ext4_fsblk_t blk;
963 blk = le32_to_cpu(*(chain[depth-1].p + count));
965 if (blk == first_block + count)
966 count++;
967 else
968 break;
970 goto got_it;
973 /* Next simple case - plain lookup or failed read of indirect block */
974 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
975 goto cleanup;
978 * Okay, we need to do block allocation.
980 goal = ext4_find_goal(inode, map->m_lblk, partial);
982 /* the number of blocks need to allocate for [d,t]indirect blocks */
983 indirect_blks = (chain + depth) - partial - 1;
986 * Next look up the indirect map to count the totoal number of
987 * direct blocks to allocate for this branch.
989 count = ext4_blks_to_allocate(partial, indirect_blks,
990 map->m_len, blocks_to_boundary);
992 * Block out ext4_truncate while we alter the tree
994 err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks,
995 &count, goal,
996 offsets + (partial - chain), partial);
999 * The ext4_splice_branch call will free and forget any buffers
1000 * on the new chain if there is a failure, but that risks using
1001 * up transaction credits, especially for bitmaps where the
1002 * credits cannot be returned. Can we handle this somehow? We
1003 * may need to return -EAGAIN upwards in the worst case. --sct
1005 if (!err)
1006 err = ext4_splice_branch(handle, inode, map->m_lblk,
1007 partial, indirect_blks, count);
1008 if (err)
1009 goto cleanup;
1011 map->m_flags |= EXT4_MAP_NEW;
1013 ext4_update_inode_fsync_trans(handle, inode, 1);
1014 got_it:
1015 map->m_flags |= EXT4_MAP_MAPPED;
1016 map->m_pblk = le32_to_cpu(chain[depth-1].key);
1017 map->m_len = count;
1018 if (count > blocks_to_boundary)
1019 map->m_flags |= EXT4_MAP_BOUNDARY;
1020 err = count;
1021 /* Clean up and exit */
1022 partial = chain + depth - 1; /* the whole chain */
1023 cleanup:
1024 while (partial > chain) {
1025 BUFFER_TRACE(partial->bh, "call brelse");
1026 brelse(partial->bh);
1027 partial--;
1029 out:
1030 return err;
1033 #ifdef CONFIG_QUOTA
1034 qsize_t *ext4_get_reserved_space(struct inode *inode)
1036 return &EXT4_I(inode)->i_reserved_quota;
1038 #endif
1041 * Calculate the number of metadata blocks need to reserve
1042 * to allocate a new block at @lblocks for non extent file based file
1044 static int ext4_indirect_calc_metadata_amount(struct inode *inode,
1045 sector_t lblock)
1047 struct ext4_inode_info *ei = EXT4_I(inode);
1048 sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
1049 int blk_bits;
1051 if (lblock < EXT4_NDIR_BLOCKS)
1052 return 0;
1054 lblock -= EXT4_NDIR_BLOCKS;
1056 if (ei->i_da_metadata_calc_len &&
1057 (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
1058 ei->i_da_metadata_calc_len++;
1059 return 0;
1061 ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
1062 ei->i_da_metadata_calc_len = 1;
1063 blk_bits = order_base_2(lblock);
1064 return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
1068 * Calculate the number of metadata blocks need to reserve
1069 * to allocate a block located at @lblock
1071 static int ext4_calc_metadata_amount(struct inode *inode, sector_t lblock)
1073 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1074 return ext4_ext_calc_metadata_amount(inode, lblock);
1076 return ext4_indirect_calc_metadata_amount(inode, lblock);
1080 * Called with i_data_sem down, which is important since we can call
1081 * ext4_discard_preallocations() from here.
1083 void ext4_da_update_reserve_space(struct inode *inode,
1084 int used, int quota_claim)
1086 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1087 struct ext4_inode_info *ei = EXT4_I(inode);
1089 spin_lock(&ei->i_block_reservation_lock);
1090 trace_ext4_da_update_reserve_space(inode, used);
1091 if (unlikely(used > ei->i_reserved_data_blocks)) {
1092 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
1093 "with only %d reserved data blocks\n",
1094 __func__, inode->i_ino, used,
1095 ei->i_reserved_data_blocks);
1096 WARN_ON(1);
1097 used = ei->i_reserved_data_blocks;
1100 /* Update per-inode reservations */
1101 ei->i_reserved_data_blocks -= used;
1102 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
1103 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1104 used + ei->i_allocated_meta_blocks);
1105 ei->i_allocated_meta_blocks = 0;
1107 if (ei->i_reserved_data_blocks == 0) {
1109 * We can release all of the reserved metadata blocks
1110 * only when we have written all of the delayed
1111 * allocation blocks.
1113 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1114 ei->i_reserved_meta_blocks);
1115 ei->i_reserved_meta_blocks = 0;
1116 ei->i_da_metadata_calc_len = 0;
1118 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1120 /* Update quota subsystem for data blocks */
1121 if (quota_claim)
1122 dquot_claim_block(inode, used);
1123 else {
1125 * We did fallocate with an offset that is already delayed
1126 * allocated. So on delayed allocated writeback we should
1127 * not re-claim the quota for fallocated blocks.
1129 dquot_release_reservation_block(inode, used);
1133 * If we have done all the pending block allocations and if
1134 * there aren't any writers on the inode, we can discard the
1135 * inode's preallocations.
1137 if ((ei->i_reserved_data_blocks == 0) &&
1138 (atomic_read(&inode->i_writecount) == 0))
1139 ext4_discard_preallocations(inode);
1142 static int __check_block_validity(struct inode *inode, const char *func,
1143 unsigned int line,
1144 struct ext4_map_blocks *map)
1146 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
1147 map->m_len)) {
1148 ext4_error_inode(inode, func, line, map->m_pblk,
1149 "lblock %lu mapped to illegal pblock "
1150 "(length %d)", (unsigned long) map->m_lblk,
1151 map->m_len);
1152 return -EIO;
1154 return 0;
1157 #define check_block_validity(inode, map) \
1158 __check_block_validity((inode), __func__, __LINE__, (map))
1161 * Return the number of contiguous dirty pages in a given inode
1162 * starting at page frame idx.
1164 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
1165 unsigned int max_pages)
1167 struct address_space *mapping = inode->i_mapping;
1168 pgoff_t index;
1169 struct pagevec pvec;
1170 pgoff_t num = 0;
1171 int i, nr_pages, done = 0;
1173 if (max_pages == 0)
1174 return 0;
1175 pagevec_init(&pvec, 0);
1176 while (!done) {
1177 index = idx;
1178 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1179 PAGECACHE_TAG_DIRTY,
1180 (pgoff_t)PAGEVEC_SIZE);
1181 if (nr_pages == 0)
1182 break;
1183 for (i = 0; i < nr_pages; i++) {
1184 struct page *page = pvec.pages[i];
1185 struct buffer_head *bh, *head;
1187 lock_page(page);
1188 if (unlikely(page->mapping != mapping) ||
1189 !PageDirty(page) ||
1190 PageWriteback(page) ||
1191 page->index != idx) {
1192 done = 1;
1193 unlock_page(page);
1194 break;
1196 if (page_has_buffers(page)) {
1197 bh = head = page_buffers(page);
1198 do {
1199 if (!buffer_delay(bh) &&
1200 !buffer_unwritten(bh))
1201 done = 1;
1202 bh = bh->b_this_page;
1203 } while (!done && (bh != head));
1205 unlock_page(page);
1206 if (done)
1207 break;
1208 idx++;
1209 num++;
1210 if (num >= max_pages)
1211 break;
1213 pagevec_release(&pvec);
1215 return num;
1219 * The ext4_map_blocks() function tries to look up the requested blocks,
1220 * and returns if the blocks are already mapped.
1222 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1223 * and store the allocated blocks in the result buffer head and mark it
1224 * mapped.
1226 * If file type is extents based, it will call ext4_ext_map_blocks(),
1227 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
1228 * based files
1230 * On success, it returns the number of blocks being mapped or allocate.
1231 * if create==0 and the blocks are pre-allocated and uninitialized block,
1232 * the result buffer head is unmapped. If the create ==1, it will make sure
1233 * the buffer head is mapped.
1235 * It returns 0 if plain look up failed (blocks have not been allocated), in
1236 * that casem, buffer head is unmapped
1238 * It returns the error in case of allocation failure.
1240 int ext4_map_blocks(handle_t *handle, struct inode *inode,
1241 struct ext4_map_blocks *map, int flags)
1243 int retval;
1245 map->m_flags = 0;
1246 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
1247 "logical block %lu\n", inode->i_ino, flags, map->m_len,
1248 (unsigned long) map->m_lblk);
1250 * Try to see if we can get the block without requesting a new
1251 * file system block.
1253 down_read((&EXT4_I(inode)->i_data_sem));
1254 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
1255 retval = ext4_ext_map_blocks(handle, inode, map, 0);
1256 } else {
1257 retval = ext4_ind_map_blocks(handle, inode, map, 0);
1259 up_read((&EXT4_I(inode)->i_data_sem));
1261 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
1262 int ret = check_block_validity(inode, map);
1263 if (ret != 0)
1264 return ret;
1267 /* If it is only a block(s) look up */
1268 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1269 return retval;
1272 * Returns if the blocks have already allocated
1274 * Note that if blocks have been preallocated
1275 * ext4_ext_get_block() returns th create = 0
1276 * with buffer head unmapped.
1278 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
1279 return retval;
1282 * When we call get_blocks without the create flag, the
1283 * BH_Unwritten flag could have gotten set if the blocks
1284 * requested were part of a uninitialized extent. We need to
1285 * clear this flag now that we are committed to convert all or
1286 * part of the uninitialized extent to be an initialized
1287 * extent. This is because we need to avoid the combination
1288 * of BH_Unwritten and BH_Mapped flags being simultaneously
1289 * set on the buffer_head.
1291 map->m_flags &= ~EXT4_MAP_UNWRITTEN;
1294 * New blocks allocate and/or writing to uninitialized extent
1295 * will possibly result in updating i_data, so we take
1296 * the write lock of i_data_sem, and call get_blocks()
1297 * with create == 1 flag.
1299 down_write((&EXT4_I(inode)->i_data_sem));
1302 * if the caller is from delayed allocation writeout path
1303 * we have already reserved fs blocks for allocation
1304 * let the underlying get_block() function know to
1305 * avoid double accounting
1307 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1308 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1310 * We need to check for EXT4 here because migrate
1311 * could have changed the inode type in between
1313 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
1314 retval = ext4_ext_map_blocks(handle, inode, map, flags);
1315 } else {
1316 retval = ext4_ind_map_blocks(handle, inode, map, flags);
1318 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
1320 * We allocated new blocks which will result in
1321 * i_data's format changing. Force the migrate
1322 * to fail by clearing migrate flags
1324 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
1328 * Update reserved blocks/metadata blocks after successful
1329 * block allocation which had been deferred till now. We don't
1330 * support fallocate for non extent files. So we can update
1331 * reserve space here.
1333 if ((retval > 0) &&
1334 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
1335 ext4_da_update_reserve_space(inode, retval, 1);
1337 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1338 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1340 up_write((&EXT4_I(inode)->i_data_sem));
1341 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
1342 int ret = check_block_validity(inode, map);
1343 if (ret != 0)
1344 return ret;
1346 return retval;
1349 /* Maximum number of blocks we map for direct IO at once. */
1350 #define DIO_MAX_BLOCKS 4096
1352 static int _ext4_get_block(struct inode *inode, sector_t iblock,
1353 struct buffer_head *bh, int flags)
1355 handle_t *handle = ext4_journal_current_handle();
1356 struct ext4_map_blocks map;
1357 int ret = 0, started = 0;
1358 int dio_credits;
1360 map.m_lblk = iblock;
1361 map.m_len = bh->b_size >> inode->i_blkbits;
1363 if (flags && !handle) {
1364 /* Direct IO write... */
1365 if (map.m_len > DIO_MAX_BLOCKS)
1366 map.m_len = DIO_MAX_BLOCKS;
1367 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
1368 handle = ext4_journal_start(inode, dio_credits);
1369 if (IS_ERR(handle)) {
1370 ret = PTR_ERR(handle);
1371 return ret;
1373 started = 1;
1376 ret = ext4_map_blocks(handle, inode, &map, flags);
1377 if (ret > 0) {
1378 map_bh(bh, inode->i_sb, map.m_pblk);
1379 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1380 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
1381 ret = 0;
1383 if (started)
1384 ext4_journal_stop(handle);
1385 return ret;
1388 int ext4_get_block(struct inode *inode, sector_t iblock,
1389 struct buffer_head *bh, int create)
1391 return _ext4_get_block(inode, iblock, bh,
1392 create ? EXT4_GET_BLOCKS_CREATE : 0);
1396 * `handle' can be NULL if create is zero
1398 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1399 ext4_lblk_t block, int create, int *errp)
1401 struct ext4_map_blocks map;
1402 struct buffer_head *bh;
1403 int fatal = 0, err;
1405 J_ASSERT(handle != NULL || create == 0);
1407 map.m_lblk = block;
1408 map.m_len = 1;
1409 err = ext4_map_blocks(handle, inode, &map,
1410 create ? EXT4_GET_BLOCKS_CREATE : 0);
1412 if (err < 0)
1413 *errp = err;
1414 if (err <= 0)
1415 return NULL;
1416 *errp = 0;
1418 bh = sb_getblk(inode->i_sb, map.m_pblk);
1419 if (!bh) {
1420 *errp = -EIO;
1421 return NULL;
1423 if (map.m_flags & EXT4_MAP_NEW) {
1424 J_ASSERT(create != 0);
1425 J_ASSERT(handle != NULL);
1428 * Now that we do not always journal data, we should
1429 * keep in mind whether this should always journal the
1430 * new buffer as metadata. For now, regular file
1431 * writes use ext4_get_block instead, so it's not a
1432 * problem.
1434 lock_buffer(bh);
1435 BUFFER_TRACE(bh, "call get_create_access");
1436 fatal = ext4_journal_get_create_access(handle, bh);
1437 if (!fatal && !buffer_uptodate(bh)) {
1438 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1439 set_buffer_uptodate(bh);
1441 unlock_buffer(bh);
1442 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1443 err = ext4_handle_dirty_metadata(handle, inode, bh);
1444 if (!fatal)
1445 fatal = err;
1446 } else {
1447 BUFFER_TRACE(bh, "not a new buffer");
1449 if (fatal) {
1450 *errp = fatal;
1451 brelse(bh);
1452 bh = NULL;
1454 return bh;
1457 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1458 ext4_lblk_t block, int create, int *err)
1460 struct buffer_head *bh;
1462 bh = ext4_getblk(handle, inode, block, create, err);
1463 if (!bh)
1464 return bh;
1465 if (buffer_uptodate(bh))
1466 return bh;
1467 ll_rw_block(READ_META, 1, &bh);
1468 wait_on_buffer(bh);
1469 if (buffer_uptodate(bh))
1470 return bh;
1471 put_bh(bh);
1472 *err = -EIO;
1473 return NULL;
1476 static int walk_page_buffers(handle_t *handle,
1477 struct buffer_head *head,
1478 unsigned from,
1479 unsigned to,
1480 int *partial,
1481 int (*fn)(handle_t *handle,
1482 struct buffer_head *bh))
1484 struct buffer_head *bh;
1485 unsigned block_start, block_end;
1486 unsigned blocksize = head->b_size;
1487 int err, ret = 0;
1488 struct buffer_head *next;
1490 for (bh = head, block_start = 0;
1491 ret == 0 && (bh != head || !block_start);
1492 block_start = block_end, bh = next) {
1493 next = bh->b_this_page;
1494 block_end = block_start + blocksize;
1495 if (block_end <= from || block_start >= to) {
1496 if (partial && !buffer_uptodate(bh))
1497 *partial = 1;
1498 continue;
1500 err = (*fn)(handle, bh);
1501 if (!ret)
1502 ret = err;
1504 return ret;
1508 * To preserve ordering, it is essential that the hole instantiation and
1509 * the data write be encapsulated in a single transaction. We cannot
1510 * close off a transaction and start a new one between the ext4_get_block()
1511 * and the commit_write(). So doing the jbd2_journal_start at the start of
1512 * prepare_write() is the right place.
1514 * Also, this function can nest inside ext4_writepage() ->
1515 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1516 * has generated enough buffer credits to do the whole page. So we won't
1517 * block on the journal in that case, which is good, because the caller may
1518 * be PF_MEMALLOC.
1520 * By accident, ext4 can be reentered when a transaction is open via
1521 * quota file writes. If we were to commit the transaction while thus
1522 * reentered, there can be a deadlock - we would be holding a quota
1523 * lock, and the commit would never complete if another thread had a
1524 * transaction open and was blocking on the quota lock - a ranking
1525 * violation.
1527 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1528 * will _not_ run commit under these circumstances because handle->h_ref
1529 * is elevated. We'll still have enough credits for the tiny quotafile
1530 * write.
1532 static int do_journal_get_write_access(handle_t *handle,
1533 struct buffer_head *bh)
1535 int dirty = buffer_dirty(bh);
1536 int ret;
1538 if (!buffer_mapped(bh) || buffer_freed(bh))
1539 return 0;
1541 * __block_prepare_write() could have dirtied some buffers. Clean
1542 * the dirty bit as jbd2_journal_get_write_access() could complain
1543 * otherwise about fs integrity issues. Setting of the dirty bit
1544 * by __block_prepare_write() isn't a real problem here as we clear
1545 * the bit before releasing a page lock and thus writeback cannot
1546 * ever write the buffer.
1548 if (dirty)
1549 clear_buffer_dirty(bh);
1550 ret = ext4_journal_get_write_access(handle, bh);
1551 if (!ret && dirty)
1552 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1553 return ret;
1557 * Truncate blocks that were not used by write. We have to truncate the
1558 * pagecache as well so that corresponding buffers get properly unmapped.
1560 static void ext4_truncate_failed_write(struct inode *inode)
1562 truncate_inode_pages(inode->i_mapping, inode->i_size);
1563 ext4_truncate(inode);
1566 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
1567 struct buffer_head *bh_result, int create);
1568 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1569 loff_t pos, unsigned len, unsigned flags,
1570 struct page **pagep, void **fsdata)
1572 struct inode *inode = mapping->host;
1573 int ret, needed_blocks;
1574 handle_t *handle;
1575 int retries = 0;
1576 struct page *page;
1577 pgoff_t index;
1578 unsigned from, to;
1580 trace_ext4_write_begin(inode, pos, len, flags);
1582 * Reserve one block more for addition to orphan list in case
1583 * we allocate blocks but write fails for some reason
1585 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1586 index = pos >> PAGE_CACHE_SHIFT;
1587 from = pos & (PAGE_CACHE_SIZE - 1);
1588 to = from + len;
1590 retry:
1591 handle = ext4_journal_start(inode, needed_blocks);
1592 if (IS_ERR(handle)) {
1593 ret = PTR_ERR(handle);
1594 goto out;
1597 /* We cannot recurse into the filesystem as the transaction is already
1598 * started */
1599 flags |= AOP_FLAG_NOFS;
1601 page = grab_cache_page_write_begin(mapping, index, flags);
1602 if (!page) {
1603 ext4_journal_stop(handle);
1604 ret = -ENOMEM;
1605 goto out;
1607 *pagep = page;
1609 if (ext4_should_dioread_nolock(inode))
1610 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1611 else
1612 ret = __block_write_begin(page, pos, len, ext4_get_block);
1614 if (!ret && ext4_should_journal_data(inode)) {
1615 ret = walk_page_buffers(handle, page_buffers(page),
1616 from, to, NULL, do_journal_get_write_access);
1619 if (ret) {
1620 unlock_page(page);
1621 page_cache_release(page);
1623 * __block_write_begin may have instantiated a few blocks
1624 * outside i_size. Trim these off again. Don't need
1625 * i_size_read because we hold i_mutex.
1627 * Add inode to orphan list in case we crash before
1628 * truncate finishes
1630 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1631 ext4_orphan_add(handle, inode);
1633 ext4_journal_stop(handle);
1634 if (pos + len > inode->i_size) {
1635 ext4_truncate_failed_write(inode);
1637 * If truncate failed early the inode might
1638 * still be on the orphan list; we need to
1639 * make sure the inode is removed from the
1640 * orphan list in that case.
1642 if (inode->i_nlink)
1643 ext4_orphan_del(NULL, inode);
1647 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1648 goto retry;
1649 out:
1650 return ret;
1653 /* For write_end() in data=journal mode */
1654 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1656 if (!buffer_mapped(bh) || buffer_freed(bh))
1657 return 0;
1658 set_buffer_uptodate(bh);
1659 return ext4_handle_dirty_metadata(handle, NULL, bh);
1662 static int ext4_generic_write_end(struct file *file,
1663 struct address_space *mapping,
1664 loff_t pos, unsigned len, unsigned copied,
1665 struct page *page, void *fsdata)
1667 int i_size_changed = 0;
1668 struct inode *inode = mapping->host;
1669 handle_t *handle = ext4_journal_current_handle();
1671 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1674 * No need to use i_size_read() here, the i_size
1675 * cannot change under us because we hold i_mutex.
1677 * But it's important to update i_size while still holding page lock:
1678 * page writeout could otherwise come in and zero beyond i_size.
1680 if (pos + copied > inode->i_size) {
1681 i_size_write(inode, pos + copied);
1682 i_size_changed = 1;
1685 if (pos + copied > EXT4_I(inode)->i_disksize) {
1686 /* We need to mark inode dirty even if
1687 * new_i_size is less that inode->i_size
1688 * bu greater than i_disksize.(hint delalloc)
1690 ext4_update_i_disksize(inode, (pos + copied));
1691 i_size_changed = 1;
1693 unlock_page(page);
1694 page_cache_release(page);
1697 * Don't mark the inode dirty under page lock. First, it unnecessarily
1698 * makes the holding time of page lock longer. Second, it forces lock
1699 * ordering of page lock and transaction start for journaling
1700 * filesystems.
1702 if (i_size_changed)
1703 ext4_mark_inode_dirty(handle, inode);
1705 return copied;
1709 * We need to pick up the new inode size which generic_commit_write gave us
1710 * `file' can be NULL - eg, when called from page_symlink().
1712 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1713 * buffers are managed internally.
1715 static int ext4_ordered_write_end(struct file *file,
1716 struct address_space *mapping,
1717 loff_t pos, unsigned len, unsigned copied,
1718 struct page *page, void *fsdata)
1720 handle_t *handle = ext4_journal_current_handle();
1721 struct inode *inode = mapping->host;
1722 int ret = 0, ret2;
1724 trace_ext4_ordered_write_end(inode, pos, len, copied);
1725 ret = ext4_jbd2_file_inode(handle, inode);
1727 if (ret == 0) {
1728 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1729 page, fsdata);
1730 copied = ret2;
1731 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1732 /* if we have allocated more blocks and copied
1733 * less. We will have blocks allocated outside
1734 * inode->i_size. So truncate them
1736 ext4_orphan_add(handle, inode);
1737 if (ret2 < 0)
1738 ret = ret2;
1740 ret2 = ext4_journal_stop(handle);
1741 if (!ret)
1742 ret = ret2;
1744 if (pos + len > inode->i_size) {
1745 ext4_truncate_failed_write(inode);
1747 * If truncate failed early the inode might still be
1748 * on the orphan list; we need to make sure the inode
1749 * is removed from the orphan list in that case.
1751 if (inode->i_nlink)
1752 ext4_orphan_del(NULL, inode);
1756 return ret ? ret : copied;
1759 static int ext4_writeback_write_end(struct file *file,
1760 struct address_space *mapping,
1761 loff_t pos, unsigned len, unsigned copied,
1762 struct page *page, void *fsdata)
1764 handle_t *handle = ext4_journal_current_handle();
1765 struct inode *inode = mapping->host;
1766 int ret = 0, ret2;
1768 trace_ext4_writeback_write_end(inode, pos, len, copied);
1769 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1770 page, fsdata);
1771 copied = ret2;
1772 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1773 /* if we have allocated more blocks and copied
1774 * less. We will have blocks allocated outside
1775 * inode->i_size. So truncate them
1777 ext4_orphan_add(handle, inode);
1779 if (ret2 < 0)
1780 ret = ret2;
1782 ret2 = ext4_journal_stop(handle);
1783 if (!ret)
1784 ret = ret2;
1786 if (pos + len > inode->i_size) {
1787 ext4_truncate_failed_write(inode);
1789 * If truncate failed early the inode might still be
1790 * on the orphan list; we need to make sure the inode
1791 * is removed from the orphan list in that case.
1793 if (inode->i_nlink)
1794 ext4_orphan_del(NULL, inode);
1797 return ret ? ret : copied;
1800 static int ext4_journalled_write_end(struct file *file,
1801 struct address_space *mapping,
1802 loff_t pos, unsigned len, unsigned copied,
1803 struct page *page, void *fsdata)
1805 handle_t *handle = ext4_journal_current_handle();
1806 struct inode *inode = mapping->host;
1807 int ret = 0, ret2;
1808 int partial = 0;
1809 unsigned from, to;
1810 loff_t new_i_size;
1812 trace_ext4_journalled_write_end(inode, pos, len, copied);
1813 from = pos & (PAGE_CACHE_SIZE - 1);
1814 to = from + len;
1816 if (copied < len) {
1817 if (!PageUptodate(page))
1818 copied = 0;
1819 page_zero_new_buffers(page, from+copied, to);
1822 ret = walk_page_buffers(handle, page_buffers(page), from,
1823 to, &partial, write_end_fn);
1824 if (!partial)
1825 SetPageUptodate(page);
1826 new_i_size = pos + copied;
1827 if (new_i_size > inode->i_size)
1828 i_size_write(inode, pos+copied);
1829 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1830 if (new_i_size > EXT4_I(inode)->i_disksize) {
1831 ext4_update_i_disksize(inode, new_i_size);
1832 ret2 = ext4_mark_inode_dirty(handle, inode);
1833 if (!ret)
1834 ret = ret2;
1837 unlock_page(page);
1838 page_cache_release(page);
1839 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1840 /* if we have allocated more blocks and copied
1841 * less. We will have blocks allocated outside
1842 * inode->i_size. So truncate them
1844 ext4_orphan_add(handle, inode);
1846 ret2 = ext4_journal_stop(handle);
1847 if (!ret)
1848 ret = ret2;
1849 if (pos + len > inode->i_size) {
1850 ext4_truncate_failed_write(inode);
1852 * If truncate failed early the inode might still be
1853 * on the orphan list; we need to make sure the inode
1854 * is removed from the orphan list in that case.
1856 if (inode->i_nlink)
1857 ext4_orphan_del(NULL, inode);
1860 return ret ? ret : copied;
1864 * Reserve a single block located at lblock
1866 static int ext4_da_reserve_space(struct inode *inode, sector_t lblock)
1868 int retries = 0;
1869 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1870 struct ext4_inode_info *ei = EXT4_I(inode);
1871 unsigned long md_needed;
1872 int ret;
1875 * recalculate the amount of metadata blocks to reserve
1876 * in order to allocate nrblocks
1877 * worse case is one extent per block
1879 repeat:
1880 spin_lock(&ei->i_block_reservation_lock);
1881 md_needed = ext4_calc_metadata_amount(inode, lblock);
1882 trace_ext4_da_reserve_space(inode, md_needed);
1883 spin_unlock(&ei->i_block_reservation_lock);
1886 * We will charge metadata quota at writeout time; this saves
1887 * us from metadata over-estimation, though we may go over by
1888 * a small amount in the end. Here we just reserve for data.
1890 ret = dquot_reserve_block(inode, 1);
1891 if (ret)
1892 return ret;
1894 * We do still charge estimated metadata to the sb though;
1895 * we cannot afford to run out of free blocks.
1897 if (ext4_claim_free_blocks(sbi, md_needed + 1)) {
1898 dquot_release_reservation_block(inode, 1);
1899 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1900 yield();
1901 goto repeat;
1903 return -ENOSPC;
1905 spin_lock(&ei->i_block_reservation_lock);
1906 ei->i_reserved_data_blocks++;
1907 ei->i_reserved_meta_blocks += md_needed;
1908 spin_unlock(&ei->i_block_reservation_lock);
1910 return 0; /* success */
1913 static void ext4_da_release_space(struct inode *inode, int to_free)
1915 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1916 struct ext4_inode_info *ei = EXT4_I(inode);
1918 if (!to_free)
1919 return; /* Nothing to release, exit */
1921 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1923 trace_ext4_da_release_space(inode, to_free);
1924 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1926 * if there aren't enough reserved blocks, then the
1927 * counter is messed up somewhere. Since this
1928 * function is called from invalidate page, it's
1929 * harmless to return without any action.
1931 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1932 "ino %lu, to_free %d with only %d reserved "
1933 "data blocks\n", inode->i_ino, to_free,
1934 ei->i_reserved_data_blocks);
1935 WARN_ON(1);
1936 to_free = ei->i_reserved_data_blocks;
1938 ei->i_reserved_data_blocks -= to_free;
1940 if (ei->i_reserved_data_blocks == 0) {
1942 * We can release all of the reserved metadata blocks
1943 * only when we have written all of the delayed
1944 * allocation blocks.
1946 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1947 ei->i_reserved_meta_blocks);
1948 ei->i_reserved_meta_blocks = 0;
1949 ei->i_da_metadata_calc_len = 0;
1952 /* update fs dirty data blocks counter */
1953 percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
1955 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1957 dquot_release_reservation_block(inode, to_free);
1960 static void ext4_da_page_release_reservation(struct page *page,
1961 unsigned long offset)
1963 int to_release = 0;
1964 struct buffer_head *head, *bh;
1965 unsigned int curr_off = 0;
1967 head = page_buffers(page);
1968 bh = head;
1969 do {
1970 unsigned int next_off = curr_off + bh->b_size;
1972 if ((offset <= curr_off) && (buffer_delay(bh))) {
1973 to_release++;
1974 clear_buffer_delay(bh);
1976 curr_off = next_off;
1977 } while ((bh = bh->b_this_page) != head);
1978 ext4_da_release_space(page->mapping->host, to_release);
1982 * Delayed allocation stuff
1986 * mpage_da_submit_io - walks through extent of pages and try to write
1987 * them with writepage() call back
1989 * @mpd->inode: inode
1990 * @mpd->first_page: first page of the extent
1991 * @mpd->next_page: page after the last page of the extent
1993 * By the time mpage_da_submit_io() is called we expect all blocks
1994 * to be allocated. this may be wrong if allocation failed.
1996 * As pages are already locked by write_cache_pages(), we can't use it
1998 static int mpage_da_submit_io(struct mpage_da_data *mpd)
2000 long pages_skipped;
2001 struct pagevec pvec;
2002 unsigned long index, end;
2003 int ret = 0, err, nr_pages, i;
2004 struct inode *inode = mpd->inode;
2005 struct address_space *mapping = inode->i_mapping;
2007 BUG_ON(mpd->next_page <= mpd->first_page);
2009 * We need to start from the first_page to the next_page - 1
2010 * to make sure we also write the mapped dirty buffer_heads.
2011 * If we look at mpd->b_blocknr we would only be looking
2012 * at the currently mapped buffer_heads.
2014 index = mpd->first_page;
2015 end = mpd->next_page - 1;
2017 pagevec_init(&pvec, 0);
2018 while (index <= end) {
2019 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2020 if (nr_pages == 0)
2021 break;
2022 for (i = 0; i < nr_pages; i++) {
2023 struct page *page = pvec.pages[i];
2025 index = page->index;
2026 if (index > end)
2027 break;
2028 index++;
2030 BUG_ON(!PageLocked(page));
2031 BUG_ON(PageWriteback(page));
2033 pages_skipped = mpd->wbc->pages_skipped;
2034 err = mapping->a_ops->writepage(page, mpd->wbc);
2035 if (!err && (pages_skipped == mpd->wbc->pages_skipped))
2037 * have successfully written the page
2038 * without skipping the same
2040 mpd->pages_written++;
2042 * In error case, we have to continue because
2043 * remaining pages are still locked
2044 * XXX: unlock and re-dirty them?
2046 if (ret == 0)
2047 ret = err;
2049 pagevec_release(&pvec);
2051 return ret;
2055 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
2057 * the function goes through all passed space and put actual disk
2058 * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
2060 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd,
2061 struct ext4_map_blocks *map)
2063 struct inode *inode = mpd->inode;
2064 struct address_space *mapping = inode->i_mapping;
2065 int blocks = map->m_len;
2066 sector_t pblock = map->m_pblk, cur_logical;
2067 struct buffer_head *head, *bh;
2068 pgoff_t index, end;
2069 struct pagevec pvec;
2070 int nr_pages, i;
2072 index = map->m_lblk >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2073 end = (map->m_lblk + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2074 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2076 pagevec_init(&pvec, 0);
2078 while (index <= end) {
2079 /* XXX: optimize tail */
2080 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2081 if (nr_pages == 0)
2082 break;
2083 for (i = 0; i < nr_pages; i++) {
2084 struct page *page = pvec.pages[i];
2086 index = page->index;
2087 if (index > end)
2088 break;
2089 index++;
2091 BUG_ON(!PageLocked(page));
2092 BUG_ON(PageWriteback(page));
2093 BUG_ON(!page_has_buffers(page));
2095 bh = page_buffers(page);
2096 head = bh;
2098 /* skip blocks out of the range */
2099 do {
2100 if (cur_logical >= map->m_lblk)
2101 break;
2102 cur_logical++;
2103 } while ((bh = bh->b_this_page) != head);
2105 do {
2106 if (cur_logical >= map->m_lblk + blocks)
2107 break;
2109 if (buffer_delay(bh) || buffer_unwritten(bh)) {
2111 BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);
2113 if (buffer_delay(bh)) {
2114 clear_buffer_delay(bh);
2115 bh->b_blocknr = pblock;
2116 } else {
2118 * unwritten already should have
2119 * blocknr assigned. Verify that
2121 clear_buffer_unwritten(bh);
2122 BUG_ON(bh->b_blocknr != pblock);
2125 } else if (buffer_mapped(bh))
2126 BUG_ON(bh->b_blocknr != pblock);
2128 if (map->m_flags & EXT4_MAP_UNINIT)
2129 set_buffer_uninit(bh);
2130 cur_logical++;
2131 pblock++;
2132 } while ((bh = bh->b_this_page) != head);
2134 pagevec_release(&pvec);
2139 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
2140 sector_t logical, long blk_cnt)
2142 int nr_pages, i;
2143 pgoff_t index, end;
2144 struct pagevec pvec;
2145 struct inode *inode = mpd->inode;
2146 struct address_space *mapping = inode->i_mapping;
2148 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2149 end = (logical + blk_cnt - 1) >>
2150 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2151 while (index <= end) {
2152 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2153 if (nr_pages == 0)
2154 break;
2155 for (i = 0; i < nr_pages; i++) {
2156 struct page *page = pvec.pages[i];
2157 if (page->index > end)
2158 break;
2159 BUG_ON(!PageLocked(page));
2160 BUG_ON(PageWriteback(page));
2161 block_invalidatepage(page, 0);
2162 ClearPageUptodate(page);
2163 unlock_page(page);
2165 index = pvec.pages[nr_pages - 1]->index + 1;
2166 pagevec_release(&pvec);
2168 return;
2171 static void ext4_print_free_blocks(struct inode *inode)
2173 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2174 printk(KERN_CRIT "Total free blocks count %lld\n",
2175 ext4_count_free_blocks(inode->i_sb));
2176 printk(KERN_CRIT "Free/Dirty block details\n");
2177 printk(KERN_CRIT "free_blocks=%lld\n",
2178 (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
2179 printk(KERN_CRIT "dirty_blocks=%lld\n",
2180 (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2181 printk(KERN_CRIT "Block reservation details\n");
2182 printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
2183 EXT4_I(inode)->i_reserved_data_blocks);
2184 printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
2185 EXT4_I(inode)->i_reserved_meta_blocks);
2186 return;
2190 * mpage_da_map_blocks - go through given space
2192 * @mpd - bh describing space
2194 * The function skips space we know is already mapped to disk blocks.
2197 static int mpage_da_map_blocks(struct mpage_da_data *mpd)
2199 int err, blks, get_blocks_flags;
2200 struct ext4_map_blocks map;
2201 sector_t next = mpd->b_blocknr;
2202 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2203 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2204 handle_t *handle = NULL;
2207 * We consider only non-mapped and non-allocated blocks
2209 if ((mpd->b_state & (1 << BH_Mapped)) &&
2210 !(mpd->b_state & (1 << BH_Delay)) &&
2211 !(mpd->b_state & (1 << BH_Unwritten)))
2212 return 0;
2215 * If we didn't accumulate anything to write simply return
2217 if (!mpd->b_size)
2218 return 0;
2220 handle = ext4_journal_current_handle();
2221 BUG_ON(!handle);
2224 * Call ext4_map_blocks() to allocate any delayed allocation
2225 * blocks, or to convert an uninitialized extent to be
2226 * initialized (in the case where we have written into
2227 * one or more preallocated blocks).
2229 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2230 * indicate that we are on the delayed allocation path. This
2231 * affects functions in many different parts of the allocation
2232 * call path. This flag exists primarily because we don't
2233 * want to change *many* call functions, so ext4_map_blocks()
2234 * will set the magic i_delalloc_reserved_flag once the
2235 * inode's allocation semaphore is taken.
2237 * If the blocks in questions were delalloc blocks, set
2238 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2239 * variables are updated after the blocks have been allocated.
2241 map.m_lblk = next;
2242 map.m_len = max_blocks;
2243 get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
2244 if (ext4_should_dioread_nolock(mpd->inode))
2245 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2246 if (mpd->b_state & (1 << BH_Delay))
2247 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2249 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
2250 if (blks < 0) {
2251 struct super_block *sb = mpd->inode->i_sb;
2253 err = blks;
2255 * If get block returns with error we simply
2256 * return. Later writepage will redirty the page and
2257 * writepages will find the dirty page again
2259 if (err == -EAGAIN)
2260 return 0;
2262 if (err == -ENOSPC &&
2263 ext4_count_free_blocks(sb)) {
2264 mpd->retval = err;
2265 return 0;
2269 * get block failure will cause us to loop in
2270 * writepages, because a_ops->writepage won't be able
2271 * to make progress. The page will be redirtied by
2272 * writepage and writepages will again try to write
2273 * the same.
2275 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2276 ext4_msg(sb, KERN_CRIT,
2277 "delayed block allocation failed for inode %lu "
2278 "at logical offset %llu with max blocks %zd "
2279 "with error %d", mpd->inode->i_ino,
2280 (unsigned long long) next,
2281 mpd->b_size >> mpd->inode->i_blkbits, err);
2282 ext4_msg(sb, KERN_CRIT,
2283 "This should not happen!! Data will be lost\n");
2284 if (err == -ENOSPC)
2285 ext4_print_free_blocks(mpd->inode);
2287 /* invalidate all the pages */
2288 ext4_da_block_invalidatepages(mpd, next,
2289 mpd->b_size >> mpd->inode->i_blkbits);
2290 return err;
2292 BUG_ON(blks == 0);
2294 if (map.m_flags & EXT4_MAP_NEW) {
2295 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
2296 int i;
2298 for (i = 0; i < map.m_len; i++)
2299 unmap_underlying_metadata(bdev, map.m_pblk + i);
2303 * If blocks are delayed marked, we need to
2304 * put actual blocknr and drop delayed bit
2306 if ((mpd->b_state & (1 << BH_Delay)) ||
2307 (mpd->b_state & (1 << BH_Unwritten)))
2308 mpage_put_bnr_to_bhs(mpd, &map);
2310 if (ext4_should_order_data(mpd->inode)) {
2311 err = ext4_jbd2_file_inode(handle, mpd->inode);
2312 if (err)
2313 return err;
2317 * Update on-disk size along with block allocation.
2319 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2320 if (disksize > i_size_read(mpd->inode))
2321 disksize = i_size_read(mpd->inode);
2322 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2323 ext4_update_i_disksize(mpd->inode, disksize);
2324 return ext4_mark_inode_dirty(handle, mpd->inode);
2327 return 0;
2330 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2331 (1 << BH_Delay) | (1 << BH_Unwritten))
2334 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2336 * @mpd->lbh - extent of blocks
2337 * @logical - logical number of the block in the file
2338 * @bh - bh of the block (used to access block's state)
2340 * the function is used to collect contig. blocks in same state
2342 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2343 sector_t logical, size_t b_size,
2344 unsigned long b_state)
2346 sector_t next;
2347 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2350 * XXX Don't go larger than mballoc is willing to allocate
2351 * This is a stopgap solution. We eventually need to fold
2352 * mpage_da_submit_io() into this function and then call
2353 * ext4_map_blocks() multiple times in a loop
2355 if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
2356 goto flush_it;
2358 /* check if thereserved journal credits might overflow */
2359 if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
2360 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2362 * With non-extent format we are limited by the journal
2363 * credit available. Total credit needed to insert
2364 * nrblocks contiguous blocks is dependent on the
2365 * nrblocks. So limit nrblocks.
2367 goto flush_it;
2368 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2369 EXT4_MAX_TRANS_DATA) {
2371 * Adding the new buffer_head would make it cross the
2372 * allowed limit for which we have journal credit
2373 * reserved. So limit the new bh->b_size
2375 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2376 mpd->inode->i_blkbits;
2377 /* we will do mpage_da_submit_io in the next loop */
2381 * First block in the extent
2383 if (mpd->b_size == 0) {
2384 mpd->b_blocknr = logical;
2385 mpd->b_size = b_size;
2386 mpd->b_state = b_state & BH_FLAGS;
2387 return;
2390 next = mpd->b_blocknr + nrblocks;
2392 * Can we merge the block to our big extent?
2394 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2395 mpd->b_size += b_size;
2396 return;
2399 flush_it:
2401 * We couldn't merge the block to our extent, so we
2402 * need to flush current extent and start new one
2404 if (mpage_da_map_blocks(mpd) == 0)
2405 mpage_da_submit_io(mpd);
2406 mpd->io_done = 1;
2407 return;
2410 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
2412 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
2416 * __mpage_da_writepage - finds extent of pages and blocks
2418 * @page: page to consider
2419 * @wbc: not used, we just follow rules
2420 * @data: context
2422 * The function finds extents of pages and scan them for all blocks.
2424 static int __mpage_da_writepage(struct page *page,
2425 struct writeback_control *wbc, void *data)
2427 struct mpage_da_data *mpd = data;
2428 struct inode *inode = mpd->inode;
2429 struct buffer_head *bh, *head;
2430 sector_t logical;
2433 * Can we merge this page to current extent?
2435 if (mpd->next_page != page->index) {
2437 * Nope, we can't. So, we map non-allocated blocks
2438 * and start IO on them using writepage()
2440 if (mpd->next_page != mpd->first_page) {
2441 if (mpage_da_map_blocks(mpd) == 0)
2442 mpage_da_submit_io(mpd);
2444 * skip rest of the page in the page_vec
2446 mpd->io_done = 1;
2447 redirty_page_for_writepage(wbc, page);
2448 unlock_page(page);
2449 return MPAGE_DA_EXTENT_TAIL;
2453 * Start next extent of pages ...
2455 mpd->first_page = page->index;
2458 * ... and blocks
2460 mpd->b_size = 0;
2461 mpd->b_state = 0;
2462 mpd->b_blocknr = 0;
2465 mpd->next_page = page->index + 1;
2466 logical = (sector_t) page->index <<
2467 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2469 if (!page_has_buffers(page)) {
2470 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2471 (1 << BH_Dirty) | (1 << BH_Uptodate));
2472 if (mpd->io_done)
2473 return MPAGE_DA_EXTENT_TAIL;
2474 } else {
2476 * Page with regular buffer heads, just add all dirty ones
2478 head = page_buffers(page);
2479 bh = head;
2480 do {
2481 BUG_ON(buffer_locked(bh));
2483 * We need to try to allocate
2484 * unmapped blocks in the same page.
2485 * Otherwise we won't make progress
2486 * with the page in ext4_writepage
2488 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2489 mpage_add_bh_to_extent(mpd, logical,
2490 bh->b_size,
2491 bh->b_state);
2492 if (mpd->io_done)
2493 return MPAGE_DA_EXTENT_TAIL;
2494 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2496 * mapped dirty buffer. We need to update
2497 * the b_state because we look at
2498 * b_state in mpage_da_map_blocks. We don't
2499 * update b_size because if we find an
2500 * unmapped buffer_head later we need to
2501 * use the b_state flag of that buffer_head.
2503 if (mpd->b_size == 0)
2504 mpd->b_state = bh->b_state & BH_FLAGS;
2506 logical++;
2507 } while ((bh = bh->b_this_page) != head);
2510 return 0;
2514 * This is a special get_blocks_t callback which is used by
2515 * ext4_da_write_begin(). It will either return mapped block or
2516 * reserve space for a single block.
2518 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2519 * We also have b_blocknr = -1 and b_bdev initialized properly
2521 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2522 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2523 * initialized properly.
2525 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2526 struct buffer_head *bh, int create)
2528 struct ext4_map_blocks map;
2529 int ret = 0;
2530 sector_t invalid_block = ~((sector_t) 0xffff);
2532 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2533 invalid_block = ~0;
2535 BUG_ON(create == 0);
2536 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
2538 map.m_lblk = iblock;
2539 map.m_len = 1;
2542 * first, we need to know whether the block is allocated already
2543 * preallocated blocks are unmapped but should treated
2544 * the same as allocated blocks.
2546 ret = ext4_map_blocks(NULL, inode, &map, 0);
2547 if (ret < 0)
2548 return ret;
2549 if (ret == 0) {
2550 if (buffer_delay(bh))
2551 return 0; /* Not sure this could or should happen */
2553 * XXX: __block_prepare_write() unmaps passed block,
2554 * is it OK?
2556 ret = ext4_da_reserve_space(inode, iblock);
2557 if (ret)
2558 /* not enough space to reserve */
2559 return ret;
2561 map_bh(bh, inode->i_sb, invalid_block);
2562 set_buffer_new(bh);
2563 set_buffer_delay(bh);
2564 return 0;
2567 map_bh(bh, inode->i_sb, map.m_pblk);
2568 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
2570 if (buffer_unwritten(bh)) {
2571 /* A delayed write to unwritten bh should be marked
2572 * new and mapped. Mapped ensures that we don't do
2573 * get_block multiple times when we write to the same
2574 * offset and new ensures that we do proper zero out
2575 * for partial write.
2577 set_buffer_new(bh);
2578 set_buffer_mapped(bh);
2580 return 0;
2584 * This function is used as a standard get_block_t calback function
2585 * when there is no desire to allocate any blocks. It is used as a
2586 * callback function for block_prepare_write() and block_write_full_page().
2587 * These functions should only try to map a single block at a time.
2589 * Since this function doesn't do block allocations even if the caller
2590 * requests it by passing in create=1, it is critically important that
2591 * any caller checks to make sure that any buffer heads are returned
2592 * by this function are either all already mapped or marked for
2593 * delayed allocation before calling block_write_full_page(). Otherwise,
2594 * b_blocknr could be left unitialized, and the page write functions will
2595 * be taken by surprise.
2597 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2598 struct buffer_head *bh_result, int create)
2600 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2601 return _ext4_get_block(inode, iblock, bh_result, 0);
2604 static int bget_one(handle_t *handle, struct buffer_head *bh)
2606 get_bh(bh);
2607 return 0;
2610 static int bput_one(handle_t *handle, struct buffer_head *bh)
2612 put_bh(bh);
2613 return 0;
2616 static int __ext4_journalled_writepage(struct page *page,
2617 unsigned int len)
2619 struct address_space *mapping = page->mapping;
2620 struct inode *inode = mapping->host;
2621 struct buffer_head *page_bufs;
2622 handle_t *handle = NULL;
2623 int ret = 0;
2624 int err;
2626 page_bufs = page_buffers(page);
2627 BUG_ON(!page_bufs);
2628 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
2629 /* As soon as we unlock the page, it can go away, but we have
2630 * references to buffers so we are safe */
2631 unlock_page(page);
2633 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2634 if (IS_ERR(handle)) {
2635 ret = PTR_ERR(handle);
2636 goto out;
2639 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2640 do_journal_get_write_access);
2642 err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2643 write_end_fn);
2644 if (ret == 0)
2645 ret = err;
2646 err = ext4_journal_stop(handle);
2647 if (!ret)
2648 ret = err;
2650 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
2651 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2652 out:
2653 return ret;
2656 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
2657 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
2660 * Note that we don't need to start a transaction unless we're journaling data
2661 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2662 * need to file the inode to the transaction's list in ordered mode because if
2663 * we are writing back data added by write(), the inode is already there and if
2664 * we are writing back data modified via mmap(), noone guarantees in which
2665 * transaction the data will hit the disk. In case we are journaling data, we
2666 * cannot start transaction directly because transaction start ranks above page
2667 * lock so we have to do some magic.
2669 * This function can get called via...
2670 * - ext4_da_writepages after taking page lock (have journal handle)
2671 * - journal_submit_inode_data_buffers (no journal handle)
2672 * - shrink_page_list via pdflush (no journal handle)
2673 * - grab_page_cache when doing write_begin (have journal handle)
2675 * We don't do any block allocation in this function. If we have page with
2676 * multiple blocks we need to write those buffer_heads that are mapped. This
2677 * is important for mmaped based write. So if we do with blocksize 1K
2678 * truncate(f, 1024);
2679 * a = mmap(f, 0, 4096);
2680 * a[0] = 'a';
2681 * truncate(f, 4096);
2682 * we have in the page first buffer_head mapped via page_mkwrite call back
2683 * but other bufer_heads would be unmapped but dirty(dirty done via the
2684 * do_wp_page). So writepage should write the first block. If we modify
2685 * the mmap area beyond 1024 we will again get a page_fault and the
2686 * page_mkwrite callback will do the block allocation and mark the
2687 * buffer_heads mapped.
2689 * We redirty the page if we have any buffer_heads that is either delay or
2690 * unwritten in the page.
2692 * We can get recursively called as show below.
2694 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2695 * ext4_writepage()
2697 * But since we don't do any block allocation we should not deadlock.
2698 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2700 static int ext4_writepage(struct page *page,
2701 struct writeback_control *wbc)
2703 int ret = 0;
2704 loff_t size;
2705 unsigned int len;
2706 struct buffer_head *page_bufs = NULL;
2707 struct inode *inode = page->mapping->host;
2709 trace_ext4_writepage(inode, page);
2710 size = i_size_read(inode);
2711 if (page->index == size >> PAGE_CACHE_SHIFT)
2712 len = size & ~PAGE_CACHE_MASK;
2713 else
2714 len = PAGE_CACHE_SIZE;
2716 if (page_has_buffers(page)) {
2717 page_bufs = page_buffers(page);
2718 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2719 ext4_bh_delay_or_unwritten)) {
2721 * We don't want to do block allocation
2722 * So redirty the page and return
2723 * We may reach here when we do a journal commit
2724 * via journal_submit_inode_data_buffers.
2725 * If we don't have mapping block we just ignore
2726 * them. We can also reach here via shrink_page_list
2728 redirty_page_for_writepage(wbc, page);
2729 unlock_page(page);
2730 return 0;
2732 } else {
2734 * The test for page_has_buffers() is subtle:
2735 * We know the page is dirty but it lost buffers. That means
2736 * that at some moment in time after write_begin()/write_end()
2737 * has been called all buffers have been clean and thus they
2738 * must have been written at least once. So they are all
2739 * mapped and we can happily proceed with mapping them
2740 * and writing the page.
2742 * Try to initialize the buffer_heads and check whether
2743 * all are mapped and non delay. We don't want to
2744 * do block allocation here.
2746 ret = block_prepare_write(page, 0, len,
2747 noalloc_get_block_write);
2748 if (!ret) {
2749 page_bufs = page_buffers(page);
2750 /* check whether all are mapped and non delay */
2751 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2752 ext4_bh_delay_or_unwritten)) {
2753 redirty_page_for_writepage(wbc, page);
2754 unlock_page(page);
2755 return 0;
2757 } else {
2759 * We can't do block allocation here
2760 * so just redity the page and unlock
2761 * and return
2763 redirty_page_for_writepage(wbc, page);
2764 unlock_page(page);
2765 return 0;
2767 /* now mark the buffer_heads as dirty and uptodate */
2768 block_commit_write(page, 0, len);
2771 if (PageChecked(page) && ext4_should_journal_data(inode)) {
2773 * It's mmapped pagecache. Add buffers and journal it. There
2774 * doesn't seem much point in redirtying the page here.
2776 ClearPageChecked(page);
2777 return __ext4_journalled_writepage(page, len);
2780 if (page_bufs && buffer_uninit(page_bufs)) {
2781 ext4_set_bh_endio(page_bufs, inode);
2782 ret = block_write_full_page_endio(page, noalloc_get_block_write,
2783 wbc, ext4_end_io_buffer_write);
2784 } else
2785 ret = block_write_full_page(page, noalloc_get_block_write,
2786 wbc);
2788 return ret;
2792 * This is called via ext4_da_writepages() to
2793 * calulate the total number of credits to reserve to fit
2794 * a single extent allocation into a single transaction,
2795 * ext4_da_writpeages() will loop calling this before
2796 * the block allocation.
2799 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2801 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2804 * With non-extent format the journal credit needed to
2805 * insert nrblocks contiguous block is dependent on
2806 * number of contiguous block. So we will limit
2807 * number of contiguous block to a sane value
2809 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2810 (max_blocks > EXT4_MAX_TRANS_DATA))
2811 max_blocks = EXT4_MAX_TRANS_DATA;
2813 return ext4_chunk_trans_blocks(inode, max_blocks);
2817 * write_cache_pages_da - walk the list of dirty pages of the given
2818 * address space and call the callback function (which usually writes
2819 * the pages).
2821 * This is a forked version of write_cache_pages(). Differences:
2822 * Range cyclic is ignored.
2823 * no_nrwrite_index_update is always presumed true
2825 static int write_cache_pages_da(struct address_space *mapping,
2826 struct writeback_control *wbc,
2827 struct mpage_da_data *mpd)
2829 int ret = 0;
2830 int done = 0;
2831 struct pagevec pvec;
2832 int nr_pages;
2833 pgoff_t index;
2834 pgoff_t end; /* Inclusive */
2835 long nr_to_write = wbc->nr_to_write;
2837 pagevec_init(&pvec, 0);
2838 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2839 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2841 while (!done && (index <= end)) {
2842 int i;
2844 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
2845 PAGECACHE_TAG_DIRTY,
2846 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2847 if (nr_pages == 0)
2848 break;
2850 for (i = 0; i < nr_pages; i++) {
2851 struct page *page = pvec.pages[i];
2854 * At this point, the page may be truncated or
2855 * invalidated (changing page->mapping to NULL), or
2856 * even swizzled back from swapper_space to tmpfs file
2857 * mapping. However, page->index will not change
2858 * because we have a reference on the page.
2860 if (page->index > end) {
2861 done = 1;
2862 break;
2865 lock_page(page);
2868 * Page truncated or invalidated. We can freely skip it
2869 * then, even for data integrity operations: the page
2870 * has disappeared concurrently, so there could be no
2871 * real expectation of this data interity operation
2872 * even if there is now a new, dirty page at the same
2873 * pagecache address.
2875 if (unlikely(page->mapping != mapping)) {
2876 continue_unlock:
2877 unlock_page(page);
2878 continue;
2881 if (!PageDirty(page)) {
2882 /* someone wrote it for us */
2883 goto continue_unlock;
2886 if (PageWriteback(page)) {
2887 if (wbc->sync_mode != WB_SYNC_NONE)
2888 wait_on_page_writeback(page);
2889 else
2890 goto continue_unlock;
2893 BUG_ON(PageWriteback(page));
2894 if (!clear_page_dirty_for_io(page))
2895 goto continue_unlock;
2897 ret = __mpage_da_writepage(page, wbc, mpd);
2898 if (unlikely(ret)) {
2899 if (ret == AOP_WRITEPAGE_ACTIVATE) {
2900 unlock_page(page);
2901 ret = 0;
2902 } else {
2903 done = 1;
2904 break;
2908 if (nr_to_write > 0) {
2909 nr_to_write--;
2910 if (nr_to_write == 0 &&
2911 wbc->sync_mode == WB_SYNC_NONE) {
2913 * We stop writing back only if we are
2914 * not doing integrity sync. In case of
2915 * integrity sync we have to keep going
2916 * because someone may be concurrently
2917 * dirtying pages, and we might have
2918 * synced a lot of newly appeared dirty
2919 * pages, but have not synced all of the
2920 * old dirty pages.
2922 done = 1;
2923 break;
2927 pagevec_release(&pvec);
2928 cond_resched();
2930 return ret;
2934 static int ext4_da_writepages(struct address_space *mapping,
2935 struct writeback_control *wbc)
2937 pgoff_t index;
2938 int range_whole = 0;
2939 handle_t *handle = NULL;
2940 struct mpage_da_data mpd;
2941 struct inode *inode = mapping->host;
2942 int pages_written = 0;
2943 long pages_skipped;
2944 unsigned int max_pages;
2945 int range_cyclic, cycled = 1, io_done = 0;
2946 int needed_blocks, ret = 0;
2947 long desired_nr_to_write, nr_to_writebump = 0;
2948 loff_t range_start = wbc->range_start;
2949 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2951 trace_ext4_da_writepages(inode, wbc);
2954 * No pages to write? This is mainly a kludge to avoid starting
2955 * a transaction for special inodes like journal inode on last iput()
2956 * because that could violate lock ordering on umount
2958 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2959 return 0;
2962 * If the filesystem has aborted, it is read-only, so return
2963 * right away instead of dumping stack traces later on that
2964 * will obscure the real source of the problem. We test
2965 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2966 * the latter could be true if the filesystem is mounted
2967 * read-only, and in that case, ext4_da_writepages should
2968 * *never* be called, so if that ever happens, we would want
2969 * the stack trace.
2971 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2972 return -EROFS;
2974 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2975 range_whole = 1;
2977 range_cyclic = wbc->range_cyclic;
2978 if (wbc->range_cyclic) {
2979 index = mapping->writeback_index;
2980 if (index)
2981 cycled = 0;
2982 wbc->range_start = index << PAGE_CACHE_SHIFT;
2983 wbc->range_end = LLONG_MAX;
2984 wbc->range_cyclic = 0;
2985 } else
2986 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2989 * This works around two forms of stupidity. The first is in
2990 * the writeback code, which caps the maximum number of pages
2991 * written to be 1024 pages. This is wrong on multiple
2992 * levels; different architectues have a different page size,
2993 * which changes the maximum amount of data which gets
2994 * written. Secondly, 4 megabytes is way too small. XFS
2995 * forces this value to be 16 megabytes by multiplying
2996 * nr_to_write parameter by four, and then relies on its
2997 * allocator to allocate larger extents to make them
2998 * contiguous. Unfortunately this brings us to the second
2999 * stupidity, which is that ext4's mballoc code only allocates
3000 * at most 2048 blocks. So we force contiguous writes up to
3001 * the number of dirty blocks in the inode, or
3002 * sbi->max_writeback_mb_bump whichever is smaller.
3004 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
3005 if (!range_cyclic && range_whole)
3006 desired_nr_to_write = wbc->nr_to_write * 8;
3007 else
3008 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
3009 max_pages);
3010 if (desired_nr_to_write > max_pages)
3011 desired_nr_to_write = max_pages;
3013 if (wbc->nr_to_write < desired_nr_to_write) {
3014 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
3015 wbc->nr_to_write = desired_nr_to_write;
3018 mpd.wbc = wbc;
3019 mpd.inode = mapping->host;
3021 pages_skipped = wbc->pages_skipped;
3023 retry:
3024 while (!ret && wbc->nr_to_write > 0) {
3027 * we insert one extent at a time. So we need
3028 * credit needed for single extent allocation.
3029 * journalled mode is currently not supported
3030 * by delalloc
3032 BUG_ON(ext4_should_journal_data(inode));
3033 needed_blocks = ext4_da_writepages_trans_blocks(inode);
3035 /* start a new transaction*/
3036 handle = ext4_journal_start(inode, needed_blocks);
3037 if (IS_ERR(handle)) {
3038 ret = PTR_ERR(handle);
3039 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
3040 "%ld pages, ino %lu; err %d", __func__,
3041 wbc->nr_to_write, inode->i_ino, ret);
3042 goto out_writepages;
3046 * Now call __mpage_da_writepage to find the next
3047 * contiguous region of logical blocks that need
3048 * blocks to be allocated by ext4. We don't actually
3049 * submit the blocks for I/O here, even though
3050 * write_cache_pages thinks it will, and will set the
3051 * pages as clean for write before calling
3052 * __mpage_da_writepage().
3054 mpd.b_size = 0;
3055 mpd.b_state = 0;
3056 mpd.b_blocknr = 0;
3057 mpd.first_page = 0;
3058 mpd.next_page = 0;
3059 mpd.io_done = 0;
3060 mpd.pages_written = 0;
3061 mpd.retval = 0;
3062 ret = write_cache_pages_da(mapping, wbc, &mpd);
3064 * If we have a contiguous extent of pages and we
3065 * haven't done the I/O yet, map the blocks and submit
3066 * them for I/O.
3068 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
3069 if (mpage_da_map_blocks(&mpd) == 0)
3070 mpage_da_submit_io(&mpd);
3071 mpd.io_done = 1;
3072 ret = MPAGE_DA_EXTENT_TAIL;
3074 trace_ext4_da_write_pages(inode, &mpd);
3075 wbc->nr_to_write -= mpd.pages_written;
3077 ext4_journal_stop(handle);
3079 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
3080 /* commit the transaction which would
3081 * free blocks released in the transaction
3082 * and try again
3084 jbd2_journal_force_commit_nested(sbi->s_journal);
3085 wbc->pages_skipped = pages_skipped;
3086 ret = 0;
3087 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
3089 * got one extent now try with
3090 * rest of the pages
3092 pages_written += mpd.pages_written;
3093 wbc->pages_skipped = pages_skipped;
3094 ret = 0;
3095 io_done = 1;
3096 } else if (wbc->nr_to_write)
3098 * There is no more writeout needed
3099 * or we requested for a noblocking writeout
3100 * and we found the device congested
3102 break;
3104 if (!io_done && !cycled) {
3105 cycled = 1;
3106 index = 0;
3107 wbc->range_start = index << PAGE_CACHE_SHIFT;
3108 wbc->range_end = mapping->writeback_index - 1;
3109 goto retry;
3111 if (pages_skipped != wbc->pages_skipped)
3112 ext4_msg(inode->i_sb, KERN_CRIT,
3113 "This should not happen leaving %s "
3114 "with nr_to_write = %ld ret = %d",
3115 __func__, wbc->nr_to_write, ret);
3117 /* Update index */
3118 index += pages_written;
3119 wbc->range_cyclic = range_cyclic;
3120 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3122 * set the writeback_index so that range_cyclic
3123 * mode will write it back later
3125 mapping->writeback_index = index;
3127 out_writepages:
3128 wbc->nr_to_write -= nr_to_writebump;
3129 wbc->range_start = range_start;
3130 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
3131 return ret;
3134 #define FALL_BACK_TO_NONDELALLOC 1
3135 static int ext4_nonda_switch(struct super_block *sb)
3137 s64 free_blocks, dirty_blocks;
3138 struct ext4_sb_info *sbi = EXT4_SB(sb);
3141 * switch to non delalloc mode if we are running low
3142 * on free block. The free block accounting via percpu
3143 * counters can get slightly wrong with percpu_counter_batch getting
3144 * accumulated on each CPU without updating global counters
3145 * Delalloc need an accurate free block accounting. So switch
3146 * to non delalloc when we are near to error range.
3148 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
3149 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
3150 if (2 * free_blocks < 3 * dirty_blocks ||
3151 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
3153 * free block count is less than 150% of dirty blocks
3154 * or free blocks is less than watermark
3156 return 1;
3159 * Even if we don't switch but are nearing capacity,
3160 * start pushing delalloc when 1/2 of free blocks are dirty.
3162 if (free_blocks < 2 * dirty_blocks)
3163 writeback_inodes_sb_if_idle(sb);
3165 return 0;
3168 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3169 loff_t pos, unsigned len, unsigned flags,
3170 struct page **pagep, void **fsdata)
3172 int ret, retries = 0;
3173 struct page *page;
3174 pgoff_t index;
3175 struct inode *inode = mapping->host;
3176 handle_t *handle;
3178 index = pos >> PAGE_CACHE_SHIFT;
3180 if (ext4_nonda_switch(inode->i_sb)) {
3181 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3182 return ext4_write_begin(file, mapping, pos,
3183 len, flags, pagep, fsdata);
3185 *fsdata = (void *)0;
3186 trace_ext4_da_write_begin(inode, pos, len, flags);
3187 retry:
3189 * With delayed allocation, we don't log the i_disksize update
3190 * if there is delayed block allocation. But we still need
3191 * to journalling the i_disksize update if writes to the end
3192 * of file which has an already mapped buffer.
3194 handle = ext4_journal_start(inode, 1);
3195 if (IS_ERR(handle)) {
3196 ret = PTR_ERR(handle);
3197 goto out;
3199 /* We cannot recurse into the filesystem as the transaction is already
3200 * started */
3201 flags |= AOP_FLAG_NOFS;
3203 page = grab_cache_page_write_begin(mapping, index, flags);
3204 if (!page) {
3205 ext4_journal_stop(handle);
3206 ret = -ENOMEM;
3207 goto out;
3209 *pagep = page;
3211 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3212 if (ret < 0) {
3213 unlock_page(page);
3214 ext4_journal_stop(handle);
3215 page_cache_release(page);
3217 * block_write_begin may have instantiated a few blocks
3218 * outside i_size. Trim these off again. Don't need
3219 * i_size_read because we hold i_mutex.
3221 if (pos + len > inode->i_size)
3222 ext4_truncate_failed_write(inode);
3225 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3226 goto retry;
3227 out:
3228 return ret;
3232 * Check if we should update i_disksize
3233 * when write to the end of file but not require block allocation
3235 static int ext4_da_should_update_i_disksize(struct page *page,
3236 unsigned long offset)
3238 struct buffer_head *bh;
3239 struct inode *inode = page->mapping->host;
3240 unsigned int idx;
3241 int i;
3243 bh = page_buffers(page);
3244 idx = offset >> inode->i_blkbits;
3246 for (i = 0; i < idx; i++)
3247 bh = bh->b_this_page;
3249 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3250 return 0;
3251 return 1;
3254 static int ext4_da_write_end(struct file *file,
3255 struct address_space *mapping,
3256 loff_t pos, unsigned len, unsigned copied,
3257 struct page *page, void *fsdata)
3259 struct inode *inode = mapping->host;
3260 int ret = 0, ret2;
3261 handle_t *handle = ext4_journal_current_handle();
3262 loff_t new_i_size;
3263 unsigned long start, end;
3264 int write_mode = (int)(unsigned long)fsdata;
3266 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3267 if (ext4_should_order_data(inode)) {
3268 return ext4_ordered_write_end(file, mapping, pos,
3269 len, copied, page, fsdata);
3270 } else if (ext4_should_writeback_data(inode)) {
3271 return ext4_writeback_write_end(file, mapping, pos,
3272 len, copied, page, fsdata);
3273 } else {
3274 BUG();
3278 trace_ext4_da_write_end(inode, pos, len, copied);
3279 start = pos & (PAGE_CACHE_SIZE - 1);
3280 end = start + copied - 1;
3283 * generic_write_end() will run mark_inode_dirty() if i_size
3284 * changes. So let's piggyback the i_disksize mark_inode_dirty
3285 * into that.
3288 new_i_size = pos + copied;
3289 if (new_i_size > EXT4_I(inode)->i_disksize) {
3290 if (ext4_da_should_update_i_disksize(page, end)) {
3291 down_write(&EXT4_I(inode)->i_data_sem);
3292 if (new_i_size > EXT4_I(inode)->i_disksize) {
3294 * Updating i_disksize when extending file
3295 * without needing block allocation
3297 if (ext4_should_order_data(inode))
3298 ret = ext4_jbd2_file_inode(handle,
3299 inode);
3301 EXT4_I(inode)->i_disksize = new_i_size;
3303 up_write(&EXT4_I(inode)->i_data_sem);
3304 /* We need to mark inode dirty even if
3305 * new_i_size is less that inode->i_size
3306 * bu greater than i_disksize.(hint delalloc)
3308 ext4_mark_inode_dirty(handle, inode);
3311 ret2 = generic_write_end(file, mapping, pos, len, copied,
3312 page, fsdata);
3313 copied = ret2;
3314 if (ret2 < 0)
3315 ret = ret2;
3316 ret2 = ext4_journal_stop(handle);
3317 if (!ret)
3318 ret = ret2;
3320 return ret ? ret : copied;
3323 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3326 * Drop reserved blocks
3328 BUG_ON(!PageLocked(page));
3329 if (!page_has_buffers(page))
3330 goto out;
3332 ext4_da_page_release_reservation(page, offset);
3334 out:
3335 ext4_invalidatepage(page, offset);
3337 return;
3341 * Force all delayed allocation blocks to be allocated for a given inode.
3343 int ext4_alloc_da_blocks(struct inode *inode)
3345 trace_ext4_alloc_da_blocks(inode);
3347 if (!EXT4_I(inode)->i_reserved_data_blocks &&
3348 !EXT4_I(inode)->i_reserved_meta_blocks)
3349 return 0;
3352 * We do something simple for now. The filemap_flush() will
3353 * also start triggering a write of the data blocks, which is
3354 * not strictly speaking necessary (and for users of
3355 * laptop_mode, not even desirable). However, to do otherwise
3356 * would require replicating code paths in:
3358 * ext4_da_writepages() ->
3359 * write_cache_pages() ---> (via passed in callback function)
3360 * __mpage_da_writepage() -->
3361 * mpage_add_bh_to_extent()
3362 * mpage_da_map_blocks()
3364 * The problem is that write_cache_pages(), located in
3365 * mm/page-writeback.c, marks pages clean in preparation for
3366 * doing I/O, which is not desirable if we're not planning on
3367 * doing I/O at all.
3369 * We could call write_cache_pages(), and then redirty all of
3370 * the pages by calling redirty_page_for_writeback() but that
3371 * would be ugly in the extreme. So instead we would need to
3372 * replicate parts of the code in the above functions,
3373 * simplifying them becuase we wouldn't actually intend to
3374 * write out the pages, but rather only collect contiguous
3375 * logical block extents, call the multi-block allocator, and
3376 * then update the buffer heads with the block allocations.
3378 * For now, though, we'll cheat by calling filemap_flush(),
3379 * which will map the blocks, and start the I/O, but not
3380 * actually wait for the I/O to complete.
3382 return filemap_flush(inode->i_mapping);
3386 * bmap() is special. It gets used by applications such as lilo and by
3387 * the swapper to find the on-disk block of a specific piece of data.
3389 * Naturally, this is dangerous if the block concerned is still in the
3390 * journal. If somebody makes a swapfile on an ext4 data-journaling
3391 * filesystem and enables swap, then they may get a nasty shock when the
3392 * data getting swapped to that swapfile suddenly gets overwritten by
3393 * the original zero's written out previously to the journal and
3394 * awaiting writeback in the kernel's buffer cache.
3396 * So, if we see any bmap calls here on a modified, data-journaled file,
3397 * take extra steps to flush any blocks which might be in the cache.
3399 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3401 struct inode *inode = mapping->host;
3402 journal_t *journal;
3403 int err;
3405 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3406 test_opt(inode->i_sb, DELALLOC)) {
3408 * With delalloc we want to sync the file
3409 * so that we can make sure we allocate
3410 * blocks for file
3412 filemap_write_and_wait(mapping);
3415 if (EXT4_JOURNAL(inode) &&
3416 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3418 * This is a REALLY heavyweight approach, but the use of
3419 * bmap on dirty files is expected to be extremely rare:
3420 * only if we run lilo or swapon on a freshly made file
3421 * do we expect this to happen.
3423 * (bmap requires CAP_SYS_RAWIO so this does not
3424 * represent an unprivileged user DOS attack --- we'd be
3425 * in trouble if mortal users could trigger this path at
3426 * will.)
3428 * NB. EXT4_STATE_JDATA is not set on files other than
3429 * regular files. If somebody wants to bmap a directory
3430 * or symlink and gets confused because the buffer
3431 * hasn't yet been flushed to disk, they deserve
3432 * everything they get.
3435 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3436 journal = EXT4_JOURNAL(inode);
3437 jbd2_journal_lock_updates(journal);
3438 err = jbd2_journal_flush(journal);
3439 jbd2_journal_unlock_updates(journal);
3441 if (err)
3442 return 0;
3445 return generic_block_bmap(mapping, block, ext4_get_block);
3448 static int ext4_readpage(struct file *file, struct page *page)
3450 return mpage_readpage(page, ext4_get_block);
3453 static int
3454 ext4_readpages(struct file *file, struct address_space *mapping,
3455 struct list_head *pages, unsigned nr_pages)
3457 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3460 static void ext4_free_io_end(ext4_io_end_t *io)
3462 BUG_ON(!io);
3463 if (io->page)
3464 put_page(io->page);
3465 iput(io->inode);
3466 kfree(io);
3469 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
3471 struct buffer_head *head, *bh;
3472 unsigned int curr_off = 0;
3474 if (!page_has_buffers(page))
3475 return;
3476 head = bh = page_buffers(page);
3477 do {
3478 if (offset <= curr_off && test_clear_buffer_uninit(bh)
3479 && bh->b_private) {
3480 ext4_free_io_end(bh->b_private);
3481 bh->b_private = NULL;
3482 bh->b_end_io = NULL;
3484 curr_off = curr_off + bh->b_size;
3485 bh = bh->b_this_page;
3486 } while (bh != head);
3489 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3491 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3494 * free any io_end structure allocated for buffers to be discarded
3496 if (ext4_should_dioread_nolock(page->mapping->host))
3497 ext4_invalidatepage_free_endio(page, offset);
3499 * If it's a full truncate we just forget about the pending dirtying
3501 if (offset == 0)
3502 ClearPageChecked(page);
3504 if (journal)
3505 jbd2_journal_invalidatepage(journal, page, offset);
3506 else
3507 block_invalidatepage(page, offset);
3510 static int ext4_releasepage(struct page *page, gfp_t wait)
3512 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3514 WARN_ON(PageChecked(page));
3515 if (!page_has_buffers(page))
3516 return 0;
3517 if (journal)
3518 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3519 else
3520 return try_to_free_buffers(page);
3524 * O_DIRECT for ext3 (or indirect map) based files
3526 * If the O_DIRECT write will extend the file then add this inode to the
3527 * orphan list. So recovery will truncate it back to the original size
3528 * if the machine crashes during the write.
3530 * If the O_DIRECT write is intantiating holes inside i_size and the machine
3531 * crashes then stale disk data _may_ be exposed inside the file. But current
3532 * VFS code falls back into buffered path in that case so we are safe.
3534 static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
3535 const struct iovec *iov, loff_t offset,
3536 unsigned long nr_segs)
3538 struct file *file = iocb->ki_filp;
3539 struct inode *inode = file->f_mapping->host;
3540 struct ext4_inode_info *ei = EXT4_I(inode);
3541 handle_t *handle;
3542 ssize_t ret;
3543 int orphan = 0;
3544 size_t count = iov_length(iov, nr_segs);
3545 int retries = 0;
3547 if (rw == WRITE) {
3548 loff_t final_size = offset + count;
3550 if (final_size > inode->i_size) {
3551 /* Credits for sb + inode write */
3552 handle = ext4_journal_start(inode, 2);
3553 if (IS_ERR(handle)) {
3554 ret = PTR_ERR(handle);
3555 goto out;
3557 ret = ext4_orphan_add(handle, inode);
3558 if (ret) {
3559 ext4_journal_stop(handle);
3560 goto out;
3562 orphan = 1;
3563 ei->i_disksize = inode->i_size;
3564 ext4_journal_stop(handle);
3568 retry:
3569 if (rw == READ && ext4_should_dioread_nolock(inode))
3570 ret = __blockdev_direct_IO(rw, iocb, inode,
3571 inode->i_sb->s_bdev, iov,
3572 offset, nr_segs,
3573 ext4_get_block, NULL, NULL, 0);
3574 else {
3575 ret = blockdev_direct_IO(rw, iocb, inode,
3576 inode->i_sb->s_bdev, iov,
3577 offset, nr_segs,
3578 ext4_get_block, NULL);
3580 if (unlikely((rw & WRITE) && ret < 0)) {
3581 loff_t isize = i_size_read(inode);
3582 loff_t end = offset + iov_length(iov, nr_segs);
3584 if (end > isize)
3585 vmtruncate(inode, isize);
3588 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3589 goto retry;
3591 if (orphan) {
3592 int err;
3594 /* Credits for sb + inode write */
3595 handle = ext4_journal_start(inode, 2);
3596 if (IS_ERR(handle)) {
3597 /* This is really bad luck. We've written the data
3598 * but cannot extend i_size. Bail out and pretend
3599 * the write failed... */
3600 ret = PTR_ERR(handle);
3601 if (inode->i_nlink)
3602 ext4_orphan_del(NULL, inode);
3604 goto out;
3606 if (inode->i_nlink)
3607 ext4_orphan_del(handle, inode);
3608 if (ret > 0) {
3609 loff_t end = offset + ret;
3610 if (end > inode->i_size) {
3611 ei->i_disksize = end;
3612 i_size_write(inode, end);
3614 * We're going to return a positive `ret'
3615 * here due to non-zero-length I/O, so there's
3616 * no way of reporting error returns from
3617 * ext4_mark_inode_dirty() to userspace. So
3618 * ignore it.
3620 ext4_mark_inode_dirty(handle, inode);
3623 err = ext4_journal_stop(handle);
3624 if (ret == 0)
3625 ret = err;
3627 out:
3628 return ret;
3632 * ext4_get_block used when preparing for a DIO write or buffer write.
3633 * We allocate an uinitialized extent if blocks haven't been allocated.
3634 * The extent will be converted to initialized after the IO is complete.
3636 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
3637 struct buffer_head *bh_result, int create)
3639 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3640 inode->i_ino, create);
3641 return _ext4_get_block(inode, iblock, bh_result,
3642 EXT4_GET_BLOCKS_IO_CREATE_EXT);
3645 static void dump_completed_IO(struct inode * inode)
3647 #ifdef EXT4_DEBUG
3648 struct list_head *cur, *before, *after;
3649 ext4_io_end_t *io, *io0, *io1;
3650 unsigned long flags;
3652 if (list_empty(&EXT4_I(inode)->i_completed_io_list)){
3653 ext4_debug("inode %lu completed_io list is empty\n", inode->i_ino);
3654 return;
3657 ext4_debug("Dump inode %lu completed_io list \n", inode->i_ino);
3658 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
3659 list_for_each_entry(io, &EXT4_I(inode)->i_completed_io_list, list){
3660 cur = &io->list;
3661 before = cur->prev;
3662 io0 = container_of(before, ext4_io_end_t, list);
3663 after = cur->next;
3664 io1 = container_of(after, ext4_io_end_t, list);
3666 ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
3667 io, inode->i_ino, io0, io1);
3669 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
3670 #endif
3674 * check a range of space and convert unwritten extents to written.
3676 static int ext4_end_io_nolock(ext4_io_end_t *io)
3678 struct inode *inode = io->inode;
3679 loff_t offset = io->offset;
3680 ssize_t size = io->size;
3681 int ret = 0;
3683 ext4_debug("ext4_end_io_nolock: io 0x%p from inode %lu,list->next 0x%p,"
3684 "list->prev 0x%p\n",
3685 io, inode->i_ino, io->list.next, io->list.prev);
3687 if (list_empty(&io->list))
3688 return ret;
3690 if (io->flag != EXT4_IO_UNWRITTEN)
3691 return ret;
3693 ret = ext4_convert_unwritten_extents(inode, offset, size);
3694 if (ret < 0) {
3695 printk(KERN_EMERG "%s: failed to convert unwritten"
3696 "extents to written extents, error is %d"
3697 " io is still on inode %lu aio dio list\n",
3698 __func__, ret, inode->i_ino);
3699 return ret;
3702 if (io->iocb)
3703 aio_complete(io->iocb, io->result, 0);
3704 /* clear the DIO AIO unwritten flag */
3705 io->flag = 0;
3706 return ret;
3710 * work on completed aio dio IO, to convert unwritten extents to extents
3712 static void ext4_end_io_work(struct work_struct *work)
3714 ext4_io_end_t *io = container_of(work, ext4_io_end_t, work);
3715 struct inode *inode = io->inode;
3716 struct ext4_inode_info *ei = EXT4_I(inode);
3717 unsigned long flags;
3718 int ret;
3720 mutex_lock(&inode->i_mutex);
3721 ret = ext4_end_io_nolock(io);
3722 if (ret < 0) {
3723 mutex_unlock(&inode->i_mutex);
3724 return;
3727 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3728 if (!list_empty(&io->list))
3729 list_del_init(&io->list);
3730 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3731 mutex_unlock(&inode->i_mutex);
3732 ext4_free_io_end(io);
3736 * This function is called from ext4_sync_file().
3738 * When IO is completed, the work to convert unwritten extents to
3739 * written is queued on workqueue but may not get immediately
3740 * scheduled. When fsync is called, we need to ensure the
3741 * conversion is complete before fsync returns.
3742 * The inode keeps track of a list of pending/completed IO that
3743 * might needs to do the conversion. This function walks through
3744 * the list and convert the related unwritten extents for completed IO
3745 * to written.
3746 * The function return the number of pending IOs on success.
3748 int flush_completed_IO(struct inode *inode)
3750 ext4_io_end_t *io;
3751 struct ext4_inode_info *ei = EXT4_I(inode);
3752 unsigned long flags;
3753 int ret = 0;
3754 int ret2 = 0;
3756 if (list_empty(&ei->i_completed_io_list))
3757 return ret;
3759 dump_completed_IO(inode);
3760 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3761 while (!list_empty(&ei->i_completed_io_list)){
3762 io = list_entry(ei->i_completed_io_list.next,
3763 ext4_io_end_t, list);
3765 * Calling ext4_end_io_nolock() to convert completed
3766 * IO to written.
3768 * When ext4_sync_file() is called, run_queue() may already
3769 * about to flush the work corresponding to this io structure.
3770 * It will be upset if it founds the io structure related
3771 * to the work-to-be schedule is freed.
3773 * Thus we need to keep the io structure still valid here after
3774 * convertion finished. The io structure has a flag to
3775 * avoid double converting from both fsync and background work
3776 * queue work.
3778 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3779 ret = ext4_end_io_nolock(io);
3780 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3781 if (ret < 0)
3782 ret2 = ret;
3783 else
3784 list_del_init(&io->list);
3786 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3787 return (ret2 < 0) ? ret2 : 0;
3790 static ext4_io_end_t *ext4_init_io_end (struct inode *inode, gfp_t flags)
3792 ext4_io_end_t *io = NULL;
3794 io = kmalloc(sizeof(*io), flags);
3796 if (io) {
3797 igrab(inode);
3798 io->inode = inode;
3799 io->flag = 0;
3800 io->offset = 0;
3801 io->size = 0;
3802 io->page = NULL;
3803 io->iocb = NULL;
3804 io->result = 0;
3805 INIT_WORK(&io->work, ext4_end_io_work);
3806 INIT_LIST_HEAD(&io->list);
3809 return io;
3812 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3813 ssize_t size, void *private, int ret,
3814 bool is_async)
3816 ext4_io_end_t *io_end = iocb->private;
3817 struct workqueue_struct *wq;
3818 unsigned long flags;
3819 struct ext4_inode_info *ei;
3821 /* if not async direct IO or dio with 0 bytes write, just return */
3822 if (!io_end || !size)
3823 goto out;
3825 ext_debug("ext4_end_io_dio(): io_end 0x%p"
3826 "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
3827 iocb->private, io_end->inode->i_ino, iocb, offset,
3828 size);
3830 /* if not aio dio with unwritten extents, just free io and return */
3831 if (io_end->flag != EXT4_IO_UNWRITTEN){
3832 ext4_free_io_end(io_end);
3833 iocb->private = NULL;
3834 out:
3835 if (is_async)
3836 aio_complete(iocb, ret, 0);
3837 return;
3840 io_end->offset = offset;
3841 io_end->size = size;
3842 if (is_async) {
3843 io_end->iocb = iocb;
3844 io_end->result = ret;
3846 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
3848 /* queue the work to convert unwritten extents to written */
3849 queue_work(wq, &io_end->work);
3851 /* Add the io_end to per-inode completed aio dio list*/
3852 ei = EXT4_I(io_end->inode);
3853 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3854 list_add_tail(&io_end->list, &ei->i_completed_io_list);
3855 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3856 iocb->private = NULL;
3859 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
3861 ext4_io_end_t *io_end = bh->b_private;
3862 struct workqueue_struct *wq;
3863 struct inode *inode;
3864 unsigned long flags;
3866 if (!test_clear_buffer_uninit(bh) || !io_end)
3867 goto out;
3869 if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
3870 printk("sb umounted, discard end_io request for inode %lu\n",
3871 io_end->inode->i_ino);
3872 ext4_free_io_end(io_end);
3873 goto out;
3876 io_end->flag = EXT4_IO_UNWRITTEN;
3877 inode = io_end->inode;
3879 /* Add the io_end to per-inode completed io list*/
3880 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
3881 list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
3882 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
3884 wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
3885 /* queue the work to convert unwritten extents to written */
3886 queue_work(wq, &io_end->work);
3887 out:
3888 bh->b_private = NULL;
3889 bh->b_end_io = NULL;
3890 clear_buffer_uninit(bh);
3891 end_buffer_async_write(bh, uptodate);
3894 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
3896 ext4_io_end_t *io_end;
3897 struct page *page = bh->b_page;
3898 loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
3899 size_t size = bh->b_size;
3901 retry:
3902 io_end = ext4_init_io_end(inode, GFP_ATOMIC);
3903 if (!io_end) {
3904 if (printk_ratelimit())
3905 printk(KERN_WARNING "%s: allocation fail\n", __func__);
3906 schedule();
3907 goto retry;
3909 io_end->offset = offset;
3910 io_end->size = size;
3912 * We need to hold a reference to the page to make sure it
3913 * doesn't get evicted before ext4_end_io_work() has a chance
3914 * to convert the extent from written to unwritten.
3916 io_end->page = page;
3917 get_page(io_end->page);
3919 bh->b_private = io_end;
3920 bh->b_end_io = ext4_end_io_buffer_write;
3921 return 0;
3925 * For ext4 extent files, ext4 will do direct-io write to holes,
3926 * preallocated extents, and those write extend the file, no need to
3927 * fall back to buffered IO.
3929 * For holes, we fallocate those blocks, mark them as unintialized
3930 * If those blocks were preallocated, we mark sure they are splited, but
3931 * still keep the range to write as unintialized.
3933 * The unwrritten extents will be converted to written when DIO is completed.
3934 * For async direct IO, since the IO may still pending when return, we
3935 * set up an end_io call back function, which will do the convertion
3936 * when async direct IO completed.
3938 * If the O_DIRECT write will extend the file then add this inode to the
3939 * orphan list. So recovery will truncate it back to the original size
3940 * if the machine crashes during the write.
3943 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3944 const struct iovec *iov, loff_t offset,
3945 unsigned long nr_segs)
3947 struct file *file = iocb->ki_filp;
3948 struct inode *inode = file->f_mapping->host;
3949 ssize_t ret;
3950 size_t count = iov_length(iov, nr_segs);
3952 loff_t final_size = offset + count;
3953 if (rw == WRITE && final_size <= inode->i_size) {
3955 * We could direct write to holes and fallocate.
3957 * Allocated blocks to fill the hole are marked as uninitialized
3958 * to prevent paralel buffered read to expose the stale data
3959 * before DIO complete the data IO.
3961 * As to previously fallocated extents, ext4 get_block
3962 * will just simply mark the buffer mapped but still
3963 * keep the extents uninitialized.
3965 * for non AIO case, we will convert those unwritten extents
3966 * to written after return back from blockdev_direct_IO.
3968 * for async DIO, the conversion needs to be defered when
3969 * the IO is completed. The ext4 end_io callback function
3970 * will be called to take care of the conversion work.
3971 * Here for async case, we allocate an io_end structure to
3972 * hook to the iocb.
3974 iocb->private = NULL;
3975 EXT4_I(inode)->cur_aio_dio = NULL;
3976 if (!is_sync_kiocb(iocb)) {
3977 iocb->private = ext4_init_io_end(inode, GFP_NOFS);
3978 if (!iocb->private)
3979 return -ENOMEM;
3981 * we save the io structure for current async
3982 * direct IO, so that later ext4_map_blocks()
3983 * could flag the io structure whether there
3984 * is a unwritten extents needs to be converted
3985 * when IO is completed.
3987 EXT4_I(inode)->cur_aio_dio = iocb->private;
3990 ret = blockdev_direct_IO(rw, iocb, inode,
3991 inode->i_sb->s_bdev, iov,
3992 offset, nr_segs,
3993 ext4_get_block_write,
3994 ext4_end_io_dio);
3995 if (iocb->private)
3996 EXT4_I(inode)->cur_aio_dio = NULL;
3998 * The io_end structure takes a reference to the inode,
3999 * that structure needs to be destroyed and the
4000 * reference to the inode need to be dropped, when IO is
4001 * complete, even with 0 byte write, or failed.
4003 * In the successful AIO DIO case, the io_end structure will be
4004 * desctroyed and the reference to the inode will be dropped
4005 * after the end_io call back function is called.
4007 * In the case there is 0 byte write, or error case, since
4008 * VFS direct IO won't invoke the end_io call back function,
4009 * we need to free the end_io structure here.
4011 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
4012 ext4_free_io_end(iocb->private);
4013 iocb->private = NULL;
4014 } else if (ret > 0 && ext4_test_inode_state(inode,
4015 EXT4_STATE_DIO_UNWRITTEN)) {
4016 int err;
4018 * for non AIO case, since the IO is already
4019 * completed, we could do the convertion right here
4021 err = ext4_convert_unwritten_extents(inode,
4022 offset, ret);
4023 if (err < 0)
4024 ret = err;
4025 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
4027 return ret;
4030 /* for write the the end of file case, we fall back to old way */
4031 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
4034 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
4035 const struct iovec *iov, loff_t offset,
4036 unsigned long nr_segs)
4038 struct file *file = iocb->ki_filp;
4039 struct inode *inode = file->f_mapping->host;
4041 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4042 return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
4044 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
4048 * Pages can be marked dirty completely asynchronously from ext4's journalling
4049 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
4050 * much here because ->set_page_dirty is called under VFS locks. The page is
4051 * not necessarily locked.
4053 * We cannot just dirty the page and leave attached buffers clean, because the
4054 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
4055 * or jbddirty because all the journalling code will explode.
4057 * So what we do is to mark the page "pending dirty" and next time writepage
4058 * is called, propagate that into the buffers appropriately.
4060 static int ext4_journalled_set_page_dirty(struct page *page)
4062 SetPageChecked(page);
4063 return __set_page_dirty_nobuffers(page);
4066 static const struct address_space_operations ext4_ordered_aops = {
4067 .readpage = ext4_readpage,
4068 .readpages = ext4_readpages,
4069 .writepage = ext4_writepage,
4070 .sync_page = block_sync_page,
4071 .write_begin = ext4_write_begin,
4072 .write_end = ext4_ordered_write_end,
4073 .bmap = ext4_bmap,
4074 .invalidatepage = ext4_invalidatepage,
4075 .releasepage = ext4_releasepage,
4076 .direct_IO = ext4_direct_IO,
4077 .migratepage = buffer_migrate_page,
4078 .is_partially_uptodate = block_is_partially_uptodate,
4079 .error_remove_page = generic_error_remove_page,
4082 static const struct address_space_operations ext4_writeback_aops = {
4083 .readpage = ext4_readpage,
4084 .readpages = ext4_readpages,
4085 .writepage = ext4_writepage,
4086 .sync_page = block_sync_page,
4087 .write_begin = ext4_write_begin,
4088 .write_end = ext4_writeback_write_end,
4089 .bmap = ext4_bmap,
4090 .invalidatepage = ext4_invalidatepage,
4091 .releasepage = ext4_releasepage,
4092 .direct_IO = ext4_direct_IO,
4093 .migratepage = buffer_migrate_page,
4094 .is_partially_uptodate = block_is_partially_uptodate,
4095 .error_remove_page = generic_error_remove_page,
4098 static const struct address_space_operations ext4_journalled_aops = {
4099 .readpage = ext4_readpage,
4100 .readpages = ext4_readpages,
4101 .writepage = ext4_writepage,
4102 .sync_page = block_sync_page,
4103 .write_begin = ext4_write_begin,
4104 .write_end = ext4_journalled_write_end,
4105 .set_page_dirty = ext4_journalled_set_page_dirty,
4106 .bmap = ext4_bmap,
4107 .invalidatepage = ext4_invalidatepage,
4108 .releasepage = ext4_releasepage,
4109 .is_partially_uptodate = block_is_partially_uptodate,
4110 .error_remove_page = generic_error_remove_page,
4113 static const struct address_space_operations ext4_da_aops = {
4114 .readpage = ext4_readpage,
4115 .readpages = ext4_readpages,
4116 .writepage = ext4_writepage,
4117 .writepages = ext4_da_writepages,
4118 .sync_page = block_sync_page,
4119 .write_begin = ext4_da_write_begin,
4120 .write_end = ext4_da_write_end,
4121 .bmap = ext4_bmap,
4122 .invalidatepage = ext4_da_invalidatepage,
4123 .releasepage = ext4_releasepage,
4124 .direct_IO = ext4_direct_IO,
4125 .migratepage = buffer_migrate_page,
4126 .is_partially_uptodate = block_is_partially_uptodate,
4127 .error_remove_page = generic_error_remove_page,
4130 void ext4_set_aops(struct inode *inode)
4132 if (ext4_should_order_data(inode) &&
4133 test_opt(inode->i_sb, DELALLOC))
4134 inode->i_mapping->a_ops = &ext4_da_aops;
4135 else if (ext4_should_order_data(inode))
4136 inode->i_mapping->a_ops = &ext4_ordered_aops;
4137 else if (ext4_should_writeback_data(inode) &&
4138 test_opt(inode->i_sb, DELALLOC))
4139 inode->i_mapping->a_ops = &ext4_da_aops;
4140 else if (ext4_should_writeback_data(inode))
4141 inode->i_mapping->a_ops = &ext4_writeback_aops;
4142 else
4143 inode->i_mapping->a_ops = &ext4_journalled_aops;
4147 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4148 * up to the end of the block which corresponds to `from'.
4149 * This required during truncate. We need to physically zero the tail end
4150 * of that block so it doesn't yield old data if the file is later grown.
4152 int ext4_block_truncate_page(handle_t *handle,
4153 struct address_space *mapping, loff_t from)
4155 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
4156 unsigned offset = from & (PAGE_CACHE_SIZE-1);
4157 unsigned blocksize, length, pos;
4158 ext4_lblk_t iblock;
4159 struct inode *inode = mapping->host;
4160 struct buffer_head *bh;
4161 struct page *page;
4162 int err = 0;
4164 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
4165 mapping_gfp_mask(mapping) & ~__GFP_FS);
4166 if (!page)
4167 return -EINVAL;
4169 blocksize = inode->i_sb->s_blocksize;
4170 length = blocksize - (offset & (blocksize - 1));
4171 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
4173 if (!page_has_buffers(page))
4174 create_empty_buffers(page, blocksize, 0);
4176 /* Find the buffer that contains "offset" */
4177 bh = page_buffers(page);
4178 pos = blocksize;
4179 while (offset >= pos) {
4180 bh = bh->b_this_page;
4181 iblock++;
4182 pos += blocksize;
4185 err = 0;
4186 if (buffer_freed(bh)) {
4187 BUFFER_TRACE(bh, "freed: skip");
4188 goto unlock;
4191 if (!buffer_mapped(bh)) {
4192 BUFFER_TRACE(bh, "unmapped");
4193 ext4_get_block(inode, iblock, bh, 0);
4194 /* unmapped? It's a hole - nothing to do */
4195 if (!buffer_mapped(bh)) {
4196 BUFFER_TRACE(bh, "still unmapped");
4197 goto unlock;
4201 /* Ok, it's mapped. Make sure it's up-to-date */
4202 if (PageUptodate(page))
4203 set_buffer_uptodate(bh);
4205 if (!buffer_uptodate(bh)) {
4206 err = -EIO;
4207 ll_rw_block(READ, 1, &bh);
4208 wait_on_buffer(bh);
4209 /* Uhhuh. Read error. Complain and punt. */
4210 if (!buffer_uptodate(bh))
4211 goto unlock;
4214 if (ext4_should_journal_data(inode)) {
4215 BUFFER_TRACE(bh, "get write access");
4216 err = ext4_journal_get_write_access(handle, bh);
4217 if (err)
4218 goto unlock;
4221 zero_user(page, offset, length);
4223 BUFFER_TRACE(bh, "zeroed end of block");
4225 err = 0;
4226 if (ext4_should_journal_data(inode)) {
4227 err = ext4_handle_dirty_metadata(handle, inode, bh);
4228 } else {
4229 if (ext4_should_order_data(inode))
4230 err = ext4_jbd2_file_inode(handle, inode);
4231 mark_buffer_dirty(bh);
4234 unlock:
4235 unlock_page(page);
4236 page_cache_release(page);
4237 return err;
4241 * Probably it should be a library function... search for first non-zero word
4242 * or memcmp with zero_page, whatever is better for particular architecture.
4243 * Linus?
4245 static inline int all_zeroes(__le32 *p, __le32 *q)
4247 while (p < q)
4248 if (*p++)
4249 return 0;
4250 return 1;
4254 * ext4_find_shared - find the indirect blocks for partial truncation.
4255 * @inode: inode in question
4256 * @depth: depth of the affected branch
4257 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
4258 * @chain: place to store the pointers to partial indirect blocks
4259 * @top: place to the (detached) top of branch
4261 * This is a helper function used by ext4_truncate().
4263 * When we do truncate() we may have to clean the ends of several
4264 * indirect blocks but leave the blocks themselves alive. Block is
4265 * partially truncated if some data below the new i_size is refered
4266 * from it (and it is on the path to the first completely truncated
4267 * data block, indeed). We have to free the top of that path along
4268 * with everything to the right of the path. Since no allocation
4269 * past the truncation point is possible until ext4_truncate()
4270 * finishes, we may safely do the latter, but top of branch may
4271 * require special attention - pageout below the truncation point
4272 * might try to populate it.
4274 * We atomically detach the top of branch from the tree, store the
4275 * block number of its root in *@top, pointers to buffer_heads of
4276 * partially truncated blocks - in @chain[].bh and pointers to
4277 * their last elements that should not be removed - in
4278 * @chain[].p. Return value is the pointer to last filled element
4279 * of @chain.
4281 * The work left to caller to do the actual freeing of subtrees:
4282 * a) free the subtree starting from *@top
4283 * b) free the subtrees whose roots are stored in
4284 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
4285 * c) free the subtrees growing from the inode past the @chain[0].
4286 * (no partially truncated stuff there). */
4288 static Indirect *ext4_find_shared(struct inode *inode, int depth,
4289 ext4_lblk_t offsets[4], Indirect chain[4],
4290 __le32 *top)
4292 Indirect *partial, *p;
4293 int k, err;
4295 *top = 0;
4296 /* Make k index the deepest non-null offset + 1 */
4297 for (k = depth; k > 1 && !offsets[k-1]; k--)
4299 partial = ext4_get_branch(inode, k, offsets, chain, &err);
4300 /* Writer: pointers */
4301 if (!partial)
4302 partial = chain + k-1;
4304 * If the branch acquired continuation since we've looked at it -
4305 * fine, it should all survive and (new) top doesn't belong to us.
4307 if (!partial->key && *partial->p)
4308 /* Writer: end */
4309 goto no_top;
4310 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
4313 * OK, we've found the last block that must survive. The rest of our
4314 * branch should be detached before unlocking. However, if that rest
4315 * of branch is all ours and does not grow immediately from the inode
4316 * it's easier to cheat and just decrement partial->p.
4318 if (p == chain + k - 1 && p > chain) {
4319 p->p--;
4320 } else {
4321 *top = *p->p;
4322 /* Nope, don't do this in ext4. Must leave the tree intact */
4323 #if 0
4324 *p->p = 0;
4325 #endif
4327 /* Writer: end */
4329 while (partial > p) {
4330 brelse(partial->bh);
4331 partial--;
4333 no_top:
4334 return partial;
4338 * Zero a number of block pointers in either an inode or an indirect block.
4339 * If we restart the transaction we must again get write access to the
4340 * indirect block for further modification.
4342 * We release `count' blocks on disk, but (last - first) may be greater
4343 * than `count' because there can be holes in there.
4345 static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
4346 struct buffer_head *bh,
4347 ext4_fsblk_t block_to_free,
4348 unsigned long count, __le32 *first,
4349 __le32 *last)
4351 __le32 *p;
4352 int flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED;
4354 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
4355 flags |= EXT4_FREE_BLOCKS_METADATA;
4357 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
4358 count)) {
4359 EXT4_ERROR_INODE(inode, "attempt to clear invalid "
4360 "blocks %llu len %lu",
4361 (unsigned long long) block_to_free, count);
4362 return 1;
4365 if (try_to_extend_transaction(handle, inode)) {
4366 if (bh) {
4367 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4368 ext4_handle_dirty_metadata(handle, inode, bh);
4370 ext4_mark_inode_dirty(handle, inode);
4371 ext4_truncate_restart_trans(handle, inode,
4372 blocks_for_truncate(inode));
4373 if (bh) {
4374 BUFFER_TRACE(bh, "retaking write access");
4375 ext4_journal_get_write_access(handle, bh);
4379 for (p = first; p < last; p++)
4380 *p = 0;
4382 ext4_free_blocks(handle, inode, 0, block_to_free, count, flags);
4383 return 0;
4387 * ext4_free_data - free a list of data blocks
4388 * @handle: handle for this transaction
4389 * @inode: inode we are dealing with
4390 * @this_bh: indirect buffer_head which contains *@first and *@last
4391 * @first: array of block numbers
4392 * @last: points immediately past the end of array
4394 * We are freeing all blocks refered from that array (numbers are stored as
4395 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
4397 * We accumulate contiguous runs of blocks to free. Conveniently, if these
4398 * blocks are contiguous then releasing them at one time will only affect one
4399 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
4400 * actually use a lot of journal space.
4402 * @this_bh will be %NULL if @first and @last point into the inode's direct
4403 * block pointers.
4405 static void ext4_free_data(handle_t *handle, struct inode *inode,
4406 struct buffer_head *this_bh,
4407 __le32 *first, __le32 *last)
4409 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
4410 unsigned long count = 0; /* Number of blocks in the run */
4411 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
4412 corresponding to
4413 block_to_free */
4414 ext4_fsblk_t nr; /* Current block # */
4415 __le32 *p; /* Pointer into inode/ind
4416 for current block */
4417 int err;
4419 if (this_bh) { /* For indirect block */
4420 BUFFER_TRACE(this_bh, "get_write_access");
4421 err = ext4_journal_get_write_access(handle, this_bh);
4422 /* Important: if we can't update the indirect pointers
4423 * to the blocks, we can't free them. */
4424 if (err)
4425 return;
4428 for (p = first; p < last; p++) {
4429 nr = le32_to_cpu(*p);
4430 if (nr) {
4431 /* accumulate blocks to free if they're contiguous */
4432 if (count == 0) {
4433 block_to_free = nr;
4434 block_to_free_p = p;
4435 count = 1;
4436 } else if (nr == block_to_free + count) {
4437 count++;
4438 } else {
4439 if (ext4_clear_blocks(handle, inode, this_bh,
4440 block_to_free, count,
4441 block_to_free_p, p))
4442 break;
4443 block_to_free = nr;
4444 block_to_free_p = p;
4445 count = 1;
4450 if (count > 0)
4451 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
4452 count, block_to_free_p, p);
4454 if (this_bh) {
4455 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
4458 * The buffer head should have an attached journal head at this
4459 * point. However, if the data is corrupted and an indirect
4460 * block pointed to itself, it would have been detached when
4461 * the block was cleared. Check for this instead of OOPSing.
4463 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
4464 ext4_handle_dirty_metadata(handle, inode, this_bh);
4465 else
4466 EXT4_ERROR_INODE(inode,
4467 "circular indirect block detected at "
4468 "block %llu",
4469 (unsigned long long) this_bh->b_blocknr);
4474 * ext4_free_branches - free an array of branches
4475 * @handle: JBD handle for this transaction
4476 * @inode: inode we are dealing with
4477 * @parent_bh: the buffer_head which contains *@first and *@last
4478 * @first: array of block numbers
4479 * @last: pointer immediately past the end of array
4480 * @depth: depth of the branches to free
4482 * We are freeing all blocks refered from these branches (numbers are
4483 * stored as little-endian 32-bit) and updating @inode->i_blocks
4484 * appropriately.
4486 static void ext4_free_branches(handle_t *handle, struct inode *inode,
4487 struct buffer_head *parent_bh,
4488 __le32 *first, __le32 *last, int depth)
4490 ext4_fsblk_t nr;
4491 __le32 *p;
4493 if (ext4_handle_is_aborted(handle))
4494 return;
4496 if (depth--) {
4497 struct buffer_head *bh;
4498 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4499 p = last;
4500 while (--p >= first) {
4501 nr = le32_to_cpu(*p);
4502 if (!nr)
4503 continue; /* A hole */
4505 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
4506 nr, 1)) {
4507 EXT4_ERROR_INODE(inode,
4508 "invalid indirect mapped "
4509 "block %lu (level %d)",
4510 (unsigned long) nr, depth);
4511 break;
4514 /* Go read the buffer for the next level down */
4515 bh = sb_bread(inode->i_sb, nr);
4518 * A read failure? Report error and clear slot
4519 * (should be rare).
4521 if (!bh) {
4522 EXT4_ERROR_INODE_BLOCK(inode, nr,
4523 "Read failure");
4524 continue;
4527 /* This zaps the entire block. Bottom up. */
4528 BUFFER_TRACE(bh, "free child branches");
4529 ext4_free_branches(handle, inode, bh,
4530 (__le32 *) bh->b_data,
4531 (__le32 *) bh->b_data + addr_per_block,
4532 depth);
4535 * Everything below this this pointer has been
4536 * released. Now let this top-of-subtree go.
4538 * We want the freeing of this indirect block to be
4539 * atomic in the journal with the updating of the
4540 * bitmap block which owns it. So make some room in
4541 * the journal.
4543 * We zero the parent pointer *after* freeing its
4544 * pointee in the bitmaps, so if extend_transaction()
4545 * for some reason fails to put the bitmap changes and
4546 * the release into the same transaction, recovery
4547 * will merely complain about releasing a free block,
4548 * rather than leaking blocks.
4550 if (ext4_handle_is_aborted(handle))
4551 return;
4552 if (try_to_extend_transaction(handle, inode)) {
4553 ext4_mark_inode_dirty(handle, inode);
4554 ext4_truncate_restart_trans(handle, inode,
4555 blocks_for_truncate(inode));
4559 * The forget flag here is critical because if
4560 * we are journaling (and not doing data
4561 * journaling), we have to make sure a revoke
4562 * record is written to prevent the journal
4563 * replay from overwriting the (former)
4564 * indirect block if it gets reallocated as a
4565 * data block. This must happen in the same
4566 * transaction where the data blocks are
4567 * actually freed.
4569 ext4_free_blocks(handle, inode, 0, nr, 1,
4570 EXT4_FREE_BLOCKS_METADATA|
4571 EXT4_FREE_BLOCKS_FORGET);
4573 if (parent_bh) {
4575 * The block which we have just freed is
4576 * pointed to by an indirect block: journal it
4578 BUFFER_TRACE(parent_bh, "get_write_access");
4579 if (!ext4_journal_get_write_access(handle,
4580 parent_bh)){
4581 *p = 0;
4582 BUFFER_TRACE(parent_bh,
4583 "call ext4_handle_dirty_metadata");
4584 ext4_handle_dirty_metadata(handle,
4585 inode,
4586 parent_bh);
4590 } else {
4591 /* We have reached the bottom of the tree. */
4592 BUFFER_TRACE(parent_bh, "free data blocks");
4593 ext4_free_data(handle, inode, parent_bh, first, last);
4597 int ext4_can_truncate(struct inode *inode)
4599 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4600 return 0;
4601 if (S_ISREG(inode->i_mode))
4602 return 1;
4603 if (S_ISDIR(inode->i_mode))
4604 return 1;
4605 if (S_ISLNK(inode->i_mode))
4606 return !ext4_inode_is_fast_symlink(inode);
4607 return 0;
4611 * ext4_truncate()
4613 * We block out ext4_get_block() block instantiations across the entire
4614 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4615 * simultaneously on behalf of the same inode.
4617 * As we work through the truncate and commmit bits of it to the journal there
4618 * is one core, guiding principle: the file's tree must always be consistent on
4619 * disk. We must be able to restart the truncate after a crash.
4621 * The file's tree may be transiently inconsistent in memory (although it
4622 * probably isn't), but whenever we close off and commit a journal transaction,
4623 * the contents of (the filesystem + the journal) must be consistent and
4624 * restartable. It's pretty simple, really: bottom up, right to left (although
4625 * left-to-right works OK too).
4627 * Note that at recovery time, journal replay occurs *before* the restart of
4628 * truncate against the orphan inode list.
4630 * The committed inode has the new, desired i_size (which is the same as
4631 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4632 * that this inode's truncate did not complete and it will again call
4633 * ext4_truncate() to have another go. So there will be instantiated blocks
4634 * to the right of the truncation point in a crashed ext4 filesystem. But
4635 * that's fine - as long as they are linked from the inode, the post-crash
4636 * ext4_truncate() run will find them and release them.
4638 void ext4_truncate(struct inode *inode)
4640 handle_t *handle;
4641 struct ext4_inode_info *ei = EXT4_I(inode);
4642 __le32 *i_data = ei->i_data;
4643 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4644 struct address_space *mapping = inode->i_mapping;
4645 ext4_lblk_t offsets[4];
4646 Indirect chain[4];
4647 Indirect *partial;
4648 __le32 nr = 0;
4649 int n;
4650 ext4_lblk_t last_block;
4651 unsigned blocksize = inode->i_sb->s_blocksize;
4653 if (!ext4_can_truncate(inode))
4654 return;
4656 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4658 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4659 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4661 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4662 ext4_ext_truncate(inode);
4663 return;
4666 handle = start_transaction(inode);
4667 if (IS_ERR(handle))
4668 return; /* AKPM: return what? */
4670 last_block = (inode->i_size + blocksize-1)
4671 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4673 if (inode->i_size & (blocksize - 1))
4674 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4675 goto out_stop;
4677 n = ext4_block_to_path(inode, last_block, offsets, NULL);
4678 if (n == 0)
4679 goto out_stop; /* error */
4682 * OK. This truncate is going to happen. We add the inode to the
4683 * orphan list, so that if this truncate spans multiple transactions,
4684 * and we crash, we will resume the truncate when the filesystem
4685 * recovers. It also marks the inode dirty, to catch the new size.
4687 * Implication: the file must always be in a sane, consistent
4688 * truncatable state while each transaction commits.
4690 if (ext4_orphan_add(handle, inode))
4691 goto out_stop;
4694 * From here we block out all ext4_get_block() callers who want to
4695 * modify the block allocation tree.
4697 down_write(&ei->i_data_sem);
4699 ext4_discard_preallocations(inode);
4702 * The orphan list entry will now protect us from any crash which
4703 * occurs before the truncate completes, so it is now safe to propagate
4704 * the new, shorter inode size (held for now in i_size) into the
4705 * on-disk inode. We do this via i_disksize, which is the value which
4706 * ext4 *really* writes onto the disk inode.
4708 ei->i_disksize = inode->i_size;
4710 if (n == 1) { /* direct blocks */
4711 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4712 i_data + EXT4_NDIR_BLOCKS);
4713 goto do_indirects;
4716 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4717 /* Kill the top of shared branch (not detached) */
4718 if (nr) {
4719 if (partial == chain) {
4720 /* Shared branch grows from the inode */
4721 ext4_free_branches(handle, inode, NULL,
4722 &nr, &nr+1, (chain+n-1) - partial);
4723 *partial->p = 0;
4725 * We mark the inode dirty prior to restart,
4726 * and prior to stop. No need for it here.
4728 } else {
4729 /* Shared branch grows from an indirect block */
4730 BUFFER_TRACE(partial->bh, "get_write_access");
4731 ext4_free_branches(handle, inode, partial->bh,
4732 partial->p,
4733 partial->p+1, (chain+n-1) - partial);
4736 /* Clear the ends of indirect blocks on the shared branch */
4737 while (partial > chain) {
4738 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4739 (__le32*)partial->bh->b_data+addr_per_block,
4740 (chain+n-1) - partial);
4741 BUFFER_TRACE(partial->bh, "call brelse");
4742 brelse(partial->bh);
4743 partial--;
4745 do_indirects:
4746 /* Kill the remaining (whole) subtrees */
4747 switch (offsets[0]) {
4748 default:
4749 nr = i_data[EXT4_IND_BLOCK];
4750 if (nr) {
4751 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4752 i_data[EXT4_IND_BLOCK] = 0;
4754 case EXT4_IND_BLOCK:
4755 nr = i_data[EXT4_DIND_BLOCK];
4756 if (nr) {
4757 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4758 i_data[EXT4_DIND_BLOCK] = 0;
4760 case EXT4_DIND_BLOCK:
4761 nr = i_data[EXT4_TIND_BLOCK];
4762 if (nr) {
4763 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4764 i_data[EXT4_TIND_BLOCK] = 0;
4766 case EXT4_TIND_BLOCK:
4770 up_write(&ei->i_data_sem);
4771 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4772 ext4_mark_inode_dirty(handle, inode);
4775 * In a multi-transaction truncate, we only make the final transaction
4776 * synchronous
4778 if (IS_SYNC(inode))
4779 ext4_handle_sync(handle);
4780 out_stop:
4782 * If this was a simple ftruncate(), and the file will remain alive
4783 * then we need to clear up the orphan record which we created above.
4784 * However, if this was a real unlink then we were called by
4785 * ext4_delete_inode(), and we allow that function to clean up the
4786 * orphan info for us.
4788 if (inode->i_nlink)
4789 ext4_orphan_del(handle, inode);
4791 ext4_journal_stop(handle);
4795 * ext4_get_inode_loc returns with an extra refcount against the inode's
4796 * underlying buffer_head on success. If 'in_mem' is true, we have all
4797 * data in memory that is needed to recreate the on-disk version of this
4798 * inode.
4800 static int __ext4_get_inode_loc(struct inode *inode,
4801 struct ext4_iloc *iloc, int in_mem)
4803 struct ext4_group_desc *gdp;
4804 struct buffer_head *bh;
4805 struct super_block *sb = inode->i_sb;
4806 ext4_fsblk_t block;
4807 int inodes_per_block, inode_offset;
4809 iloc->bh = NULL;
4810 if (!ext4_valid_inum(sb, inode->i_ino))
4811 return -EIO;
4813 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4814 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4815 if (!gdp)
4816 return -EIO;
4819 * Figure out the offset within the block group inode table
4821 inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4822 inode_offset = ((inode->i_ino - 1) %
4823 EXT4_INODES_PER_GROUP(sb));
4824 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4825 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4827 bh = sb_getblk(sb, block);
4828 if (!bh) {
4829 EXT4_ERROR_INODE_BLOCK(inode, block,
4830 "unable to read itable block");
4831 return -EIO;
4833 if (!buffer_uptodate(bh)) {
4834 lock_buffer(bh);
4837 * If the buffer has the write error flag, we have failed
4838 * to write out another inode in the same block. In this
4839 * case, we don't have to read the block because we may
4840 * read the old inode data successfully.
4842 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4843 set_buffer_uptodate(bh);
4845 if (buffer_uptodate(bh)) {
4846 /* someone brought it uptodate while we waited */
4847 unlock_buffer(bh);
4848 goto has_buffer;
4852 * If we have all information of the inode in memory and this
4853 * is the only valid inode in the block, we need not read the
4854 * block.
4856 if (in_mem) {
4857 struct buffer_head *bitmap_bh;
4858 int i, start;
4860 start = inode_offset & ~(inodes_per_block - 1);
4862 /* Is the inode bitmap in cache? */
4863 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4864 if (!bitmap_bh)
4865 goto make_io;
4868 * If the inode bitmap isn't in cache then the
4869 * optimisation may end up performing two reads instead
4870 * of one, so skip it.
4872 if (!buffer_uptodate(bitmap_bh)) {
4873 brelse(bitmap_bh);
4874 goto make_io;
4876 for (i = start; i < start + inodes_per_block; i++) {
4877 if (i == inode_offset)
4878 continue;
4879 if (ext4_test_bit(i, bitmap_bh->b_data))
4880 break;
4882 brelse(bitmap_bh);
4883 if (i == start + inodes_per_block) {
4884 /* all other inodes are free, so skip I/O */
4885 memset(bh->b_data, 0, bh->b_size);
4886 set_buffer_uptodate(bh);
4887 unlock_buffer(bh);
4888 goto has_buffer;
4892 make_io:
4894 * If we need to do any I/O, try to pre-readahead extra
4895 * blocks from the inode table.
4897 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4898 ext4_fsblk_t b, end, table;
4899 unsigned num;
4901 table = ext4_inode_table(sb, gdp);
4902 /* s_inode_readahead_blks is always a power of 2 */
4903 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4904 if (table > b)
4905 b = table;
4906 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4907 num = EXT4_INODES_PER_GROUP(sb);
4908 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4909 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4910 num -= ext4_itable_unused_count(sb, gdp);
4911 table += num / inodes_per_block;
4912 if (end > table)
4913 end = table;
4914 while (b <= end)
4915 sb_breadahead(sb, b++);
4919 * There are other valid inodes in the buffer, this inode
4920 * has in-inode xattrs, or we don't have this inode in memory.
4921 * Read the block from disk.
4923 get_bh(bh);
4924 bh->b_end_io = end_buffer_read_sync;
4925 submit_bh(READ_META, bh);
4926 wait_on_buffer(bh);
4927 if (!buffer_uptodate(bh)) {
4928 EXT4_ERROR_INODE_BLOCK(inode, block,
4929 "unable to read itable block");
4930 brelse(bh);
4931 return -EIO;
4934 has_buffer:
4935 iloc->bh = bh;
4936 return 0;
4939 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4941 /* We have all inode data except xattrs in memory here. */
4942 return __ext4_get_inode_loc(inode, iloc,
4943 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4946 void ext4_set_inode_flags(struct inode *inode)
4948 unsigned int flags = EXT4_I(inode)->i_flags;
4950 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4951 if (flags & EXT4_SYNC_FL)
4952 inode->i_flags |= S_SYNC;
4953 if (flags & EXT4_APPEND_FL)
4954 inode->i_flags |= S_APPEND;
4955 if (flags & EXT4_IMMUTABLE_FL)
4956 inode->i_flags |= S_IMMUTABLE;
4957 if (flags & EXT4_NOATIME_FL)
4958 inode->i_flags |= S_NOATIME;
4959 if (flags & EXT4_DIRSYNC_FL)
4960 inode->i_flags |= S_DIRSYNC;
4963 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4964 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4966 unsigned int vfs_fl;
4967 unsigned long old_fl, new_fl;
4969 do {
4970 vfs_fl = ei->vfs_inode.i_flags;
4971 old_fl = ei->i_flags;
4972 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4973 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4974 EXT4_DIRSYNC_FL);
4975 if (vfs_fl & S_SYNC)
4976 new_fl |= EXT4_SYNC_FL;
4977 if (vfs_fl & S_APPEND)
4978 new_fl |= EXT4_APPEND_FL;
4979 if (vfs_fl & S_IMMUTABLE)
4980 new_fl |= EXT4_IMMUTABLE_FL;
4981 if (vfs_fl & S_NOATIME)
4982 new_fl |= EXT4_NOATIME_FL;
4983 if (vfs_fl & S_DIRSYNC)
4984 new_fl |= EXT4_DIRSYNC_FL;
4985 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4988 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4989 struct ext4_inode_info *ei)
4991 blkcnt_t i_blocks ;
4992 struct inode *inode = &(ei->vfs_inode);
4993 struct super_block *sb = inode->i_sb;
4995 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4996 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4997 /* we are using combined 48 bit field */
4998 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4999 le32_to_cpu(raw_inode->i_blocks_lo);
5000 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
5001 /* i_blocks represent file system block size */
5002 return i_blocks << (inode->i_blkbits - 9);
5003 } else {
5004 return i_blocks;
5006 } else {
5007 return le32_to_cpu(raw_inode->i_blocks_lo);
5011 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
5013 struct ext4_iloc iloc;
5014 struct ext4_inode *raw_inode;
5015 struct ext4_inode_info *ei;
5016 struct inode *inode;
5017 journal_t *journal = EXT4_SB(sb)->s_journal;
5018 long ret;
5019 int block;
5021 inode = iget_locked(sb, ino);
5022 if (!inode)
5023 return ERR_PTR(-ENOMEM);
5024 if (!(inode->i_state & I_NEW))
5025 return inode;
5027 ei = EXT4_I(inode);
5028 iloc.bh = 0;
5030 ret = __ext4_get_inode_loc(inode, &iloc, 0);
5031 if (ret < 0)
5032 goto bad_inode;
5033 raw_inode = ext4_raw_inode(&iloc);
5034 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
5035 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
5036 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
5037 if (!(test_opt(inode->i_sb, NO_UID32))) {
5038 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
5039 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
5041 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
5043 ei->i_state_flags = 0;
5044 ei->i_dir_start_lookup = 0;
5045 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
5046 /* We now have enough fields to check if the inode was active or not.
5047 * This is needed because nfsd might try to access dead inodes
5048 * the test is that same one that e2fsck uses
5049 * NeilBrown 1999oct15
5051 if (inode->i_nlink == 0) {
5052 if (inode->i_mode == 0 ||
5053 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
5054 /* this inode is deleted */
5055 ret = -ESTALE;
5056 goto bad_inode;
5058 /* The only unlinked inodes we let through here have
5059 * valid i_mode and are being read by the orphan
5060 * recovery code: that's fine, we're about to complete
5061 * the process of deleting those. */
5063 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
5064 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
5065 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
5066 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
5067 ei->i_file_acl |=
5068 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
5069 inode->i_size = ext4_isize(raw_inode);
5070 ei->i_disksize = inode->i_size;
5071 #ifdef CONFIG_QUOTA
5072 ei->i_reserved_quota = 0;
5073 #endif
5074 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
5075 ei->i_block_group = iloc.block_group;
5076 ei->i_last_alloc_group = ~0;
5078 * NOTE! The in-memory inode i_data array is in little-endian order
5079 * even on big-endian machines: we do NOT byteswap the block numbers!
5081 for (block = 0; block < EXT4_N_BLOCKS; block++)
5082 ei->i_data[block] = raw_inode->i_block[block];
5083 INIT_LIST_HEAD(&ei->i_orphan);
5086 * Set transaction id's of transactions that have to be committed
5087 * to finish f[data]sync. We set them to currently running transaction
5088 * as we cannot be sure that the inode or some of its metadata isn't
5089 * part of the transaction - the inode could have been reclaimed and
5090 * now it is reread from disk.
5092 if (journal) {
5093 transaction_t *transaction;
5094 tid_t tid;
5096 read_lock(&journal->j_state_lock);
5097 if (journal->j_running_transaction)
5098 transaction = journal->j_running_transaction;
5099 else
5100 transaction = journal->j_committing_transaction;
5101 if (transaction)
5102 tid = transaction->t_tid;
5103 else
5104 tid = journal->j_commit_sequence;
5105 read_unlock(&journal->j_state_lock);
5106 ei->i_sync_tid = tid;
5107 ei->i_datasync_tid = tid;
5110 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5111 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
5112 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
5113 EXT4_INODE_SIZE(inode->i_sb)) {
5114 ret = -EIO;
5115 goto bad_inode;
5117 if (ei->i_extra_isize == 0) {
5118 /* The extra space is currently unused. Use it. */
5119 ei->i_extra_isize = sizeof(struct ext4_inode) -
5120 EXT4_GOOD_OLD_INODE_SIZE;
5121 } else {
5122 __le32 *magic = (void *)raw_inode +
5123 EXT4_GOOD_OLD_INODE_SIZE +
5124 ei->i_extra_isize;
5125 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
5126 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
5128 } else
5129 ei->i_extra_isize = 0;
5131 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
5132 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
5133 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
5134 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
5136 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
5137 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5138 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5139 inode->i_version |=
5140 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
5143 ret = 0;
5144 if (ei->i_file_acl &&
5145 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
5146 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
5147 ei->i_file_acl);
5148 ret = -EIO;
5149 goto bad_inode;
5150 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
5151 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5152 (S_ISLNK(inode->i_mode) &&
5153 !ext4_inode_is_fast_symlink(inode)))
5154 /* Validate extent which is part of inode */
5155 ret = ext4_ext_check_inode(inode);
5156 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5157 (S_ISLNK(inode->i_mode) &&
5158 !ext4_inode_is_fast_symlink(inode))) {
5159 /* Validate block references which are part of inode */
5160 ret = ext4_check_inode_blockref(inode);
5162 if (ret)
5163 goto bad_inode;
5165 if (S_ISREG(inode->i_mode)) {
5166 inode->i_op = &ext4_file_inode_operations;
5167 inode->i_fop = &ext4_file_operations;
5168 ext4_set_aops(inode);
5169 } else if (S_ISDIR(inode->i_mode)) {
5170 inode->i_op = &ext4_dir_inode_operations;
5171 inode->i_fop = &ext4_dir_operations;
5172 } else if (S_ISLNK(inode->i_mode)) {
5173 if (ext4_inode_is_fast_symlink(inode)) {
5174 inode->i_op = &ext4_fast_symlink_inode_operations;
5175 nd_terminate_link(ei->i_data, inode->i_size,
5176 sizeof(ei->i_data) - 1);
5177 } else {
5178 inode->i_op = &ext4_symlink_inode_operations;
5179 ext4_set_aops(inode);
5181 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5182 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5183 inode->i_op = &ext4_special_inode_operations;
5184 if (raw_inode->i_block[0])
5185 init_special_inode(inode, inode->i_mode,
5186 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5187 else
5188 init_special_inode(inode, inode->i_mode,
5189 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5190 } else {
5191 ret = -EIO;
5192 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
5193 goto bad_inode;
5195 brelse(iloc.bh);
5196 ext4_set_inode_flags(inode);
5197 unlock_new_inode(inode);
5198 return inode;
5200 bad_inode:
5201 brelse(iloc.bh);
5202 iget_failed(inode);
5203 return ERR_PTR(ret);
5206 static int ext4_inode_blocks_set(handle_t *handle,
5207 struct ext4_inode *raw_inode,
5208 struct ext4_inode_info *ei)
5210 struct inode *inode = &(ei->vfs_inode);
5211 u64 i_blocks = inode->i_blocks;
5212 struct super_block *sb = inode->i_sb;
5214 if (i_blocks <= ~0U) {
5216 * i_blocks can be represnted in a 32 bit variable
5217 * as multiple of 512 bytes
5219 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5220 raw_inode->i_blocks_high = 0;
5221 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5222 return 0;
5224 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
5225 return -EFBIG;
5227 if (i_blocks <= 0xffffffffffffULL) {
5229 * i_blocks can be represented in a 48 bit variable
5230 * as multiple of 512 bytes
5232 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5233 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5234 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5235 } else {
5236 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5237 /* i_block is stored in file system block size */
5238 i_blocks = i_blocks >> (inode->i_blkbits - 9);
5239 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5240 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5242 return 0;
5246 * Post the struct inode info into an on-disk inode location in the
5247 * buffer-cache. This gobbles the caller's reference to the
5248 * buffer_head in the inode location struct.
5250 * The caller must have write access to iloc->bh.
5252 static int ext4_do_update_inode(handle_t *handle,
5253 struct inode *inode,
5254 struct ext4_iloc *iloc)
5256 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5257 struct ext4_inode_info *ei = EXT4_I(inode);
5258 struct buffer_head *bh = iloc->bh;
5259 int err = 0, rc, block;
5261 /* For fields not not tracking in the in-memory inode,
5262 * initialise them to zero for new inodes. */
5263 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5264 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5266 ext4_get_inode_flags(ei);
5267 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5268 if (!(test_opt(inode->i_sb, NO_UID32))) {
5269 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
5270 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
5272 * Fix up interoperability with old kernels. Otherwise, old inodes get
5273 * re-used with the upper 16 bits of the uid/gid intact
5275 if (!ei->i_dtime) {
5276 raw_inode->i_uid_high =
5277 cpu_to_le16(high_16_bits(inode->i_uid));
5278 raw_inode->i_gid_high =
5279 cpu_to_le16(high_16_bits(inode->i_gid));
5280 } else {
5281 raw_inode->i_uid_high = 0;
5282 raw_inode->i_gid_high = 0;
5284 } else {
5285 raw_inode->i_uid_low =
5286 cpu_to_le16(fs_high2lowuid(inode->i_uid));
5287 raw_inode->i_gid_low =
5288 cpu_to_le16(fs_high2lowgid(inode->i_gid));
5289 raw_inode->i_uid_high = 0;
5290 raw_inode->i_gid_high = 0;
5292 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5294 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5295 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5296 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5297 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5299 if (ext4_inode_blocks_set(handle, raw_inode, ei))
5300 goto out_brelse;
5301 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5302 raw_inode->i_flags = cpu_to_le32(ei->i_flags);
5303 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
5304 cpu_to_le32(EXT4_OS_HURD))
5305 raw_inode->i_file_acl_high =
5306 cpu_to_le16(ei->i_file_acl >> 32);
5307 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5308 ext4_isize_set(raw_inode, ei->i_disksize);
5309 if (ei->i_disksize > 0x7fffffffULL) {
5310 struct super_block *sb = inode->i_sb;
5311 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
5312 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
5313 EXT4_SB(sb)->s_es->s_rev_level ==
5314 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
5315 /* If this is the first large file
5316 * created, add a flag to the superblock.
5318 err = ext4_journal_get_write_access(handle,
5319 EXT4_SB(sb)->s_sbh);
5320 if (err)
5321 goto out_brelse;
5322 ext4_update_dynamic_rev(sb);
5323 EXT4_SET_RO_COMPAT_FEATURE(sb,
5324 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
5325 sb->s_dirt = 1;
5326 ext4_handle_sync(handle);
5327 err = ext4_handle_dirty_metadata(handle, NULL,
5328 EXT4_SB(sb)->s_sbh);
5331 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5332 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5333 if (old_valid_dev(inode->i_rdev)) {
5334 raw_inode->i_block[0] =
5335 cpu_to_le32(old_encode_dev(inode->i_rdev));
5336 raw_inode->i_block[1] = 0;
5337 } else {
5338 raw_inode->i_block[0] = 0;
5339 raw_inode->i_block[1] =
5340 cpu_to_le32(new_encode_dev(inode->i_rdev));
5341 raw_inode->i_block[2] = 0;
5343 } else
5344 for (block = 0; block < EXT4_N_BLOCKS; block++)
5345 raw_inode->i_block[block] = ei->i_data[block];
5347 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5348 if (ei->i_extra_isize) {
5349 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5350 raw_inode->i_version_hi =
5351 cpu_to_le32(inode->i_version >> 32);
5352 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
5355 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5356 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5357 if (!err)
5358 err = rc;
5359 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5361 ext4_update_inode_fsync_trans(handle, inode, 0);
5362 out_brelse:
5363 brelse(bh);
5364 ext4_std_error(inode->i_sb, err);
5365 return err;
5369 * ext4_write_inode()
5371 * We are called from a few places:
5373 * - Within generic_file_write() for O_SYNC files.
5374 * Here, there will be no transaction running. We wait for any running
5375 * trasnaction to commit.
5377 * - Within sys_sync(), kupdate and such.
5378 * We wait on commit, if tol to.
5380 * - Within prune_icache() (PF_MEMALLOC == true)
5381 * Here we simply return. We can't afford to block kswapd on the
5382 * journal commit.
5384 * In all cases it is actually safe for us to return without doing anything,
5385 * because the inode has been copied into a raw inode buffer in
5386 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
5387 * knfsd.
5389 * Note that we are absolutely dependent upon all inode dirtiers doing the
5390 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5391 * which we are interested.
5393 * It would be a bug for them to not do this. The code:
5395 * mark_inode_dirty(inode)
5396 * stuff();
5397 * inode->i_size = expr;
5399 * is in error because a kswapd-driven write_inode() could occur while
5400 * `stuff()' is running, and the new i_size will be lost. Plus the inode
5401 * will no longer be on the superblock's dirty inode list.
5403 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5405 int err;
5407 if (current->flags & PF_MEMALLOC)
5408 return 0;
5410 if (EXT4_SB(inode->i_sb)->s_journal) {
5411 if (ext4_journal_current_handle()) {
5412 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5413 dump_stack();
5414 return -EIO;
5417 if (wbc->sync_mode != WB_SYNC_ALL)
5418 return 0;
5420 err = ext4_force_commit(inode->i_sb);
5421 } else {
5422 struct ext4_iloc iloc;
5424 err = __ext4_get_inode_loc(inode, &iloc, 0);
5425 if (err)
5426 return err;
5427 if (wbc->sync_mode == WB_SYNC_ALL)
5428 sync_dirty_buffer(iloc.bh);
5429 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5430 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5431 "IO error syncing inode");
5432 err = -EIO;
5434 brelse(iloc.bh);
5436 return err;
5440 * ext4_setattr()
5442 * Called from notify_change.
5444 * We want to trap VFS attempts to truncate the file as soon as
5445 * possible. In particular, we want to make sure that when the VFS
5446 * shrinks i_size, we put the inode on the orphan list and modify
5447 * i_disksize immediately, so that during the subsequent flushing of
5448 * dirty pages and freeing of disk blocks, we can guarantee that any
5449 * commit will leave the blocks being flushed in an unused state on
5450 * disk. (On recovery, the inode will get truncated and the blocks will
5451 * be freed, so we have a strong guarantee that no future commit will
5452 * leave these blocks visible to the user.)
5454 * Another thing we have to assure is that if we are in ordered mode
5455 * and inode is still attached to the committing transaction, we must
5456 * we start writeout of all the dirty pages which are being truncated.
5457 * This way we are sure that all the data written in the previous
5458 * transaction are already on disk (truncate waits for pages under
5459 * writeback).
5461 * Called with inode->i_mutex down.
5463 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5465 struct inode *inode = dentry->d_inode;
5466 int error, rc = 0;
5467 const unsigned int ia_valid = attr->ia_valid;
5469 error = inode_change_ok(inode, attr);
5470 if (error)
5471 return error;
5473 if (is_quota_modification(inode, attr))
5474 dquot_initialize(inode);
5475 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
5476 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
5477 handle_t *handle;
5479 /* (user+group)*(old+new) structure, inode write (sb,
5480 * inode block, ? - but truncate inode update has it) */
5481 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
5482 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
5483 if (IS_ERR(handle)) {
5484 error = PTR_ERR(handle);
5485 goto err_out;
5487 error = dquot_transfer(inode, attr);
5488 if (error) {
5489 ext4_journal_stop(handle);
5490 return error;
5492 /* Update corresponding info in inode so that everything is in
5493 * one transaction */
5494 if (attr->ia_valid & ATTR_UID)
5495 inode->i_uid = attr->ia_uid;
5496 if (attr->ia_valid & ATTR_GID)
5497 inode->i_gid = attr->ia_gid;
5498 error = ext4_mark_inode_dirty(handle, inode);
5499 ext4_journal_stop(handle);
5502 if (attr->ia_valid & ATTR_SIZE) {
5503 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5504 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5506 if (attr->ia_size > sbi->s_bitmap_maxbytes)
5507 return -EFBIG;
5511 if (S_ISREG(inode->i_mode) &&
5512 attr->ia_valid & ATTR_SIZE &&
5513 (attr->ia_size < inode->i_size ||
5514 (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))) {
5515 handle_t *handle;
5517 handle = ext4_journal_start(inode, 3);
5518 if (IS_ERR(handle)) {
5519 error = PTR_ERR(handle);
5520 goto err_out;
5523 error = ext4_orphan_add(handle, inode);
5524 EXT4_I(inode)->i_disksize = attr->ia_size;
5525 rc = ext4_mark_inode_dirty(handle, inode);
5526 if (!error)
5527 error = rc;
5528 ext4_journal_stop(handle);
5530 if (ext4_should_order_data(inode)) {
5531 error = ext4_begin_ordered_truncate(inode,
5532 attr->ia_size);
5533 if (error) {
5534 /* Do as much error cleanup as possible */
5535 handle = ext4_journal_start(inode, 3);
5536 if (IS_ERR(handle)) {
5537 ext4_orphan_del(NULL, inode);
5538 goto err_out;
5540 ext4_orphan_del(handle, inode);
5541 ext4_journal_stop(handle);
5542 goto err_out;
5545 /* ext4_truncate will clear the flag */
5546 if ((ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))
5547 ext4_truncate(inode);
5550 if ((attr->ia_valid & ATTR_SIZE) &&
5551 attr->ia_size != i_size_read(inode))
5552 rc = vmtruncate(inode, attr->ia_size);
5554 if (!rc) {
5555 setattr_copy(inode, attr);
5556 mark_inode_dirty(inode);
5560 * If the call to ext4_truncate failed to get a transaction handle at
5561 * all, we need to clean up the in-core orphan list manually.
5563 if (inode->i_nlink)
5564 ext4_orphan_del(NULL, inode);
5566 if (!rc && (ia_valid & ATTR_MODE))
5567 rc = ext4_acl_chmod(inode);
5569 err_out:
5570 ext4_std_error(inode->i_sb, error);
5571 if (!error)
5572 error = rc;
5573 return error;
5576 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5577 struct kstat *stat)
5579 struct inode *inode;
5580 unsigned long delalloc_blocks;
5582 inode = dentry->d_inode;
5583 generic_fillattr(inode, stat);
5586 * We can't update i_blocks if the block allocation is delayed
5587 * otherwise in the case of system crash before the real block
5588 * allocation is done, we will have i_blocks inconsistent with
5589 * on-disk file blocks.
5590 * We always keep i_blocks updated together with real
5591 * allocation. But to not confuse with user, stat
5592 * will return the blocks that include the delayed allocation
5593 * blocks for this file.
5595 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
5596 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
5597 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
5599 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
5600 return 0;
5603 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
5604 int chunk)
5606 int indirects;
5608 /* if nrblocks are contiguous */
5609 if (chunk) {
5611 * With N contiguous data blocks, it need at most
5612 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
5613 * 2 dindirect blocks
5614 * 1 tindirect block
5616 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
5617 return indirects + 3;
5620 * if nrblocks are not contiguous, worse case, each block touch
5621 * a indirect block, and each indirect block touch a double indirect
5622 * block, plus a triple indirect block
5624 indirects = nrblocks * 2 + 1;
5625 return indirects;
5628 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5630 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5631 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
5632 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
5636 * Account for index blocks, block groups bitmaps and block group
5637 * descriptor blocks if modify datablocks and index blocks
5638 * worse case, the indexs blocks spread over different block groups
5640 * If datablocks are discontiguous, they are possible to spread over
5641 * different block groups too. If they are contiuguous, with flexbg,
5642 * they could still across block group boundary.
5644 * Also account for superblock, inode, quota and xattr blocks
5646 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5648 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5649 int gdpblocks;
5650 int idxblocks;
5651 int ret = 0;
5654 * How many index blocks need to touch to modify nrblocks?
5655 * The "Chunk" flag indicating whether the nrblocks is
5656 * physically contiguous on disk
5658 * For Direct IO and fallocate, they calls get_block to allocate
5659 * one single extent at a time, so they could set the "Chunk" flag
5661 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
5663 ret = idxblocks;
5666 * Now let's see how many group bitmaps and group descriptors need
5667 * to account
5669 groups = idxblocks;
5670 if (chunk)
5671 groups += 1;
5672 else
5673 groups += nrblocks;
5675 gdpblocks = groups;
5676 if (groups > ngroups)
5677 groups = ngroups;
5678 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5679 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5681 /* bitmaps and block group descriptor blocks */
5682 ret += groups + gdpblocks;
5684 /* Blocks for super block, inode, quota and xattr blocks */
5685 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5687 return ret;
5691 * Calulate the total number of credits to reserve to fit
5692 * the modification of a single pages into a single transaction,
5693 * which may include multiple chunks of block allocations.
5695 * This could be called via ext4_write_begin()
5697 * We need to consider the worse case, when
5698 * one new block per extent.
5700 int ext4_writepage_trans_blocks(struct inode *inode)
5702 int bpp = ext4_journal_blocks_per_page(inode);
5703 int ret;
5705 ret = ext4_meta_trans_blocks(inode, bpp, 0);
5707 /* Account for data blocks for journalled mode */
5708 if (ext4_should_journal_data(inode))
5709 ret += bpp;
5710 return ret;
5714 * Calculate the journal credits for a chunk of data modification.
5716 * This is called from DIO, fallocate or whoever calling
5717 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5719 * journal buffers for data blocks are not included here, as DIO
5720 * and fallocate do no need to journal data buffers.
5722 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5724 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5728 * The caller must have previously called ext4_reserve_inode_write().
5729 * Give this, we know that the caller already has write access to iloc->bh.
5731 int ext4_mark_iloc_dirty(handle_t *handle,
5732 struct inode *inode, struct ext4_iloc *iloc)
5734 int err = 0;
5736 if (test_opt(inode->i_sb, I_VERSION))
5737 inode_inc_iversion(inode);
5739 /* the do_update_inode consumes one bh->b_count */
5740 get_bh(iloc->bh);
5742 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5743 err = ext4_do_update_inode(handle, inode, iloc);
5744 put_bh(iloc->bh);
5745 return err;
5749 * On success, We end up with an outstanding reference count against
5750 * iloc->bh. This _must_ be cleaned up later.
5754 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5755 struct ext4_iloc *iloc)
5757 int err;
5759 err = ext4_get_inode_loc(inode, iloc);
5760 if (!err) {
5761 BUFFER_TRACE(iloc->bh, "get_write_access");
5762 err = ext4_journal_get_write_access(handle, iloc->bh);
5763 if (err) {
5764 brelse(iloc->bh);
5765 iloc->bh = NULL;
5768 ext4_std_error(inode->i_sb, err);
5769 return err;
5773 * Expand an inode by new_extra_isize bytes.
5774 * Returns 0 on success or negative error number on failure.
5776 static int ext4_expand_extra_isize(struct inode *inode,
5777 unsigned int new_extra_isize,
5778 struct ext4_iloc iloc,
5779 handle_t *handle)
5781 struct ext4_inode *raw_inode;
5782 struct ext4_xattr_ibody_header *header;
5784 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5785 return 0;
5787 raw_inode = ext4_raw_inode(&iloc);
5789 header = IHDR(inode, raw_inode);
5791 /* No extended attributes present */
5792 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5793 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5794 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5795 new_extra_isize);
5796 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5797 return 0;
5800 /* try to expand with EAs present */
5801 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5802 raw_inode, handle);
5806 * What we do here is to mark the in-core inode as clean with respect to inode
5807 * dirtiness (it may still be data-dirty).
5808 * This means that the in-core inode may be reaped by prune_icache
5809 * without having to perform any I/O. This is a very good thing,
5810 * because *any* task may call prune_icache - even ones which
5811 * have a transaction open against a different journal.
5813 * Is this cheating? Not really. Sure, we haven't written the
5814 * inode out, but prune_icache isn't a user-visible syncing function.
5815 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5816 * we start and wait on commits.
5818 * Is this efficient/effective? Well, we're being nice to the system
5819 * by cleaning up our inodes proactively so they can be reaped
5820 * without I/O. But we are potentially leaving up to five seconds'
5821 * worth of inodes floating about which prune_icache wants us to
5822 * write out. One way to fix that would be to get prune_icache()
5823 * to do a write_super() to free up some memory. It has the desired
5824 * effect.
5826 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5828 struct ext4_iloc iloc;
5829 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5830 static unsigned int mnt_count;
5831 int err, ret;
5833 might_sleep();
5834 err = ext4_reserve_inode_write(handle, inode, &iloc);
5835 if (ext4_handle_valid(handle) &&
5836 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5837 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5839 * We need extra buffer credits since we may write into EA block
5840 * with this same handle. If journal_extend fails, then it will
5841 * only result in a minor loss of functionality for that inode.
5842 * If this is felt to be critical, then e2fsck should be run to
5843 * force a large enough s_min_extra_isize.
5845 if ((jbd2_journal_extend(handle,
5846 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5847 ret = ext4_expand_extra_isize(inode,
5848 sbi->s_want_extra_isize,
5849 iloc, handle);
5850 if (ret) {
5851 ext4_set_inode_state(inode,
5852 EXT4_STATE_NO_EXPAND);
5853 if (mnt_count !=
5854 le16_to_cpu(sbi->s_es->s_mnt_count)) {
5855 ext4_warning(inode->i_sb,
5856 "Unable to expand inode %lu. Delete"
5857 " some EAs or run e2fsck.",
5858 inode->i_ino);
5859 mnt_count =
5860 le16_to_cpu(sbi->s_es->s_mnt_count);
5865 if (!err)
5866 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5867 return err;
5871 * ext4_dirty_inode() is called from __mark_inode_dirty()
5873 * We're really interested in the case where a file is being extended.
5874 * i_size has been changed by generic_commit_write() and we thus need
5875 * to include the updated inode in the current transaction.
5877 * Also, dquot_alloc_block() will always dirty the inode when blocks
5878 * are allocated to the file.
5880 * If the inode is marked synchronous, we don't honour that here - doing
5881 * so would cause a commit on atime updates, which we don't bother doing.
5882 * We handle synchronous inodes at the highest possible level.
5884 void ext4_dirty_inode(struct inode *inode)
5886 handle_t *handle;
5888 handle = ext4_journal_start(inode, 2);
5889 if (IS_ERR(handle))
5890 goto out;
5892 ext4_mark_inode_dirty(handle, inode);
5894 ext4_journal_stop(handle);
5895 out:
5896 return;
5899 #if 0
5901 * Bind an inode's backing buffer_head into this transaction, to prevent
5902 * it from being flushed to disk early. Unlike
5903 * ext4_reserve_inode_write, this leaves behind no bh reference and
5904 * returns no iloc structure, so the caller needs to repeat the iloc
5905 * lookup to mark the inode dirty later.
5907 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5909 struct ext4_iloc iloc;
5911 int err = 0;
5912 if (handle) {
5913 err = ext4_get_inode_loc(inode, &iloc);
5914 if (!err) {
5915 BUFFER_TRACE(iloc.bh, "get_write_access");
5916 err = jbd2_journal_get_write_access(handle, iloc.bh);
5917 if (!err)
5918 err = ext4_handle_dirty_metadata(handle,
5919 NULL,
5920 iloc.bh);
5921 brelse(iloc.bh);
5924 ext4_std_error(inode->i_sb, err);
5925 return err;
5927 #endif
5929 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5931 journal_t *journal;
5932 handle_t *handle;
5933 int err;
5936 * We have to be very careful here: changing a data block's
5937 * journaling status dynamically is dangerous. If we write a
5938 * data block to the journal, change the status and then delete
5939 * that block, we risk forgetting to revoke the old log record
5940 * from the journal and so a subsequent replay can corrupt data.
5941 * So, first we make sure that the journal is empty and that
5942 * nobody is changing anything.
5945 journal = EXT4_JOURNAL(inode);
5946 if (!journal)
5947 return 0;
5948 if (is_journal_aborted(journal))
5949 return -EROFS;
5951 jbd2_journal_lock_updates(journal);
5952 jbd2_journal_flush(journal);
5955 * OK, there are no updates running now, and all cached data is
5956 * synced to disk. We are now in a completely consistent state
5957 * which doesn't have anything in the journal, and we know that
5958 * no filesystem updates are running, so it is safe to modify
5959 * the inode's in-core data-journaling state flag now.
5962 if (val)
5963 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5964 else
5965 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5966 ext4_set_aops(inode);
5968 jbd2_journal_unlock_updates(journal);
5970 /* Finally we can mark the inode as dirty. */
5972 handle = ext4_journal_start(inode, 1);
5973 if (IS_ERR(handle))
5974 return PTR_ERR(handle);
5976 err = ext4_mark_inode_dirty(handle, inode);
5977 ext4_handle_sync(handle);
5978 ext4_journal_stop(handle);
5979 ext4_std_error(inode->i_sb, err);
5981 return err;
5984 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5986 return !buffer_mapped(bh);
5989 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5991 struct page *page = vmf->page;
5992 loff_t size;
5993 unsigned long len;
5994 int ret = -EINVAL;
5995 void *fsdata;
5996 struct file *file = vma->vm_file;
5997 struct inode *inode = file->f_path.dentry->d_inode;
5998 struct address_space *mapping = inode->i_mapping;
6001 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
6002 * get i_mutex because we are already holding mmap_sem.
6004 down_read(&inode->i_alloc_sem);
6005 size = i_size_read(inode);
6006 if (page->mapping != mapping || size <= page_offset(page)
6007 || !PageUptodate(page)) {
6008 /* page got truncated from under us? */
6009 goto out_unlock;
6011 ret = 0;
6012 if (PageMappedToDisk(page))
6013 goto out_unlock;
6015 if (page->index == size >> PAGE_CACHE_SHIFT)
6016 len = size & ~PAGE_CACHE_MASK;
6017 else
6018 len = PAGE_CACHE_SIZE;
6020 lock_page(page);
6022 * return if we have all the buffers mapped. This avoid
6023 * the need to call write_begin/write_end which does a
6024 * journal_start/journal_stop which can block and take
6025 * long time
6027 if (page_has_buffers(page)) {
6028 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
6029 ext4_bh_unmapped)) {
6030 unlock_page(page);
6031 goto out_unlock;
6034 unlock_page(page);
6036 * OK, we need to fill the hole... Do write_begin write_end
6037 * to do block allocation/reservation.We are not holding
6038 * inode.i__mutex here. That allow * parallel write_begin,
6039 * write_end call. lock_page prevent this from happening
6040 * on the same page though
6042 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
6043 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
6044 if (ret < 0)
6045 goto out_unlock;
6046 ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
6047 len, len, page, fsdata);
6048 if (ret < 0)
6049 goto out_unlock;
6050 ret = 0;
6051 out_unlock:
6052 if (ret)
6053 ret = VM_FAULT_SIGBUS;
6054 up_read(&inode->i_alloc_sem);
6055 return ret;