dmfe: kill DEVICE define
[linux/fpc-iii.git] / net / mac80211 / rx.c
blobc5678703921e0318e285c7c3b014827820d8b7a8
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright(c) 2015 - 2016 Intel Deutschland GmbH
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
14 #include <linux/jiffies.h>
15 #include <linux/slab.h>
16 #include <linux/kernel.h>
17 #include <linux/skbuff.h>
18 #include <linux/netdevice.h>
19 #include <linux/etherdevice.h>
20 #include <linux/rcupdate.h>
21 #include <linux/export.h>
22 #include <linux/bitops.h>
23 #include <net/mac80211.h>
24 #include <net/ieee80211_radiotap.h>
25 #include <asm/unaligned.h>
27 #include "ieee80211_i.h"
28 #include "driver-ops.h"
29 #include "led.h"
30 #include "mesh.h"
31 #include "wep.h"
32 #include "wpa.h"
33 #include "tkip.h"
34 #include "wme.h"
35 #include "rate.h"
37 static inline void ieee80211_rx_stats(struct net_device *dev, u32 len)
39 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
41 u64_stats_update_begin(&tstats->syncp);
42 tstats->rx_packets++;
43 tstats->rx_bytes += len;
44 u64_stats_update_end(&tstats->syncp);
47 static u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len,
48 enum nl80211_iftype type)
50 __le16 fc = hdr->frame_control;
52 if (ieee80211_is_data(fc)) {
53 if (len < 24) /* drop incorrect hdr len (data) */
54 return NULL;
56 if (ieee80211_has_a4(fc))
57 return NULL;
58 if (ieee80211_has_tods(fc))
59 return hdr->addr1;
60 if (ieee80211_has_fromds(fc))
61 return hdr->addr2;
63 return hdr->addr3;
66 if (ieee80211_is_mgmt(fc)) {
67 if (len < 24) /* drop incorrect hdr len (mgmt) */
68 return NULL;
69 return hdr->addr3;
72 if (ieee80211_is_ctl(fc)) {
73 if (ieee80211_is_pspoll(fc))
74 return hdr->addr1;
76 if (ieee80211_is_back_req(fc)) {
77 switch (type) {
78 case NL80211_IFTYPE_STATION:
79 return hdr->addr2;
80 case NL80211_IFTYPE_AP:
81 case NL80211_IFTYPE_AP_VLAN:
82 return hdr->addr1;
83 default:
84 break; /* fall through to the return */
89 return NULL;
93 * monitor mode reception
95 * This function cleans up the SKB, i.e. it removes all the stuff
96 * only useful for monitoring.
98 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
99 struct sk_buff *skb,
100 unsigned int rtap_vendor_space)
102 if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) {
103 if (likely(skb->len > FCS_LEN))
104 __pskb_trim(skb, skb->len - FCS_LEN);
105 else {
106 /* driver bug */
107 WARN_ON(1);
108 dev_kfree_skb(skb);
109 return NULL;
113 __pskb_pull(skb, rtap_vendor_space);
115 return skb;
118 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len,
119 unsigned int rtap_vendor_space)
121 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
122 struct ieee80211_hdr *hdr;
124 hdr = (void *)(skb->data + rtap_vendor_space);
126 if (status->flag & (RX_FLAG_FAILED_FCS_CRC |
127 RX_FLAG_FAILED_PLCP_CRC |
128 RX_FLAG_ONLY_MONITOR))
129 return true;
131 if (unlikely(skb->len < 16 + present_fcs_len + rtap_vendor_space))
132 return true;
134 if (ieee80211_is_ctl(hdr->frame_control) &&
135 !ieee80211_is_pspoll(hdr->frame_control) &&
136 !ieee80211_is_back_req(hdr->frame_control))
137 return true;
139 return false;
142 static int
143 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local,
144 struct ieee80211_rx_status *status,
145 struct sk_buff *skb)
147 int len;
149 /* always present fields */
150 len = sizeof(struct ieee80211_radiotap_header) + 8;
152 /* allocate extra bitmaps */
153 if (status->chains)
154 len += 4 * hweight8(status->chains);
156 if (ieee80211_have_rx_timestamp(status)) {
157 len = ALIGN(len, 8);
158 len += 8;
160 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM))
161 len += 1;
163 /* antenna field, if we don't have per-chain info */
164 if (!status->chains)
165 len += 1;
167 /* padding for RX_FLAGS if necessary */
168 len = ALIGN(len, 2);
170 if (status->flag & RX_FLAG_HT) /* HT info */
171 len += 3;
173 if (status->flag & RX_FLAG_AMPDU_DETAILS) {
174 len = ALIGN(len, 4);
175 len += 8;
178 if (status->flag & RX_FLAG_VHT) {
179 len = ALIGN(len, 2);
180 len += 12;
183 if (status->chains) {
184 /* antenna and antenna signal fields */
185 len += 2 * hweight8(status->chains);
188 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
189 struct ieee80211_vendor_radiotap *rtap = (void *)skb->data;
191 /* vendor presence bitmap */
192 len += 4;
193 /* alignment for fixed 6-byte vendor data header */
194 len = ALIGN(len, 2);
195 /* vendor data header */
196 len += 6;
197 if (WARN_ON(rtap->align == 0))
198 rtap->align = 1;
199 len = ALIGN(len, rtap->align);
200 len += rtap->len + rtap->pad;
203 return len;
207 * ieee80211_add_rx_radiotap_header - add radiotap header
209 * add a radiotap header containing all the fields which the hardware provided.
211 static void
212 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
213 struct sk_buff *skb,
214 struct ieee80211_rate *rate,
215 int rtap_len, bool has_fcs)
217 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
218 struct ieee80211_radiotap_header *rthdr;
219 unsigned char *pos;
220 __le32 *it_present;
221 u32 it_present_val;
222 u16 rx_flags = 0;
223 u16 channel_flags = 0;
224 int mpdulen, chain;
225 unsigned long chains = status->chains;
226 struct ieee80211_vendor_radiotap rtap = {};
228 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
229 rtap = *(struct ieee80211_vendor_radiotap *)skb->data;
230 /* rtap.len and rtap.pad are undone immediately */
231 skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad);
234 mpdulen = skb->len;
235 if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)))
236 mpdulen += FCS_LEN;
238 rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len);
239 memset(rthdr, 0, rtap_len - rtap.len - rtap.pad);
240 it_present = &rthdr->it_present;
242 /* radiotap header, set always present flags */
243 rthdr->it_len = cpu_to_le16(rtap_len);
244 it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) |
245 BIT(IEEE80211_RADIOTAP_CHANNEL) |
246 BIT(IEEE80211_RADIOTAP_RX_FLAGS);
248 if (!status->chains)
249 it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA);
251 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
252 it_present_val |=
253 BIT(IEEE80211_RADIOTAP_EXT) |
254 BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE);
255 put_unaligned_le32(it_present_val, it_present);
256 it_present++;
257 it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) |
258 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
261 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
262 it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) |
263 BIT(IEEE80211_RADIOTAP_EXT);
264 put_unaligned_le32(it_present_val, it_present);
265 it_present++;
266 it_present_val = rtap.present;
269 put_unaligned_le32(it_present_val, it_present);
271 pos = (void *)(it_present + 1);
273 /* the order of the following fields is important */
275 /* IEEE80211_RADIOTAP_TSFT */
276 if (ieee80211_have_rx_timestamp(status)) {
277 /* padding */
278 while ((pos - (u8 *)rthdr) & 7)
279 *pos++ = 0;
280 put_unaligned_le64(
281 ieee80211_calculate_rx_timestamp(local, status,
282 mpdulen, 0),
283 pos);
284 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
285 pos += 8;
288 /* IEEE80211_RADIOTAP_FLAGS */
289 if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))
290 *pos |= IEEE80211_RADIOTAP_F_FCS;
291 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
292 *pos |= IEEE80211_RADIOTAP_F_BADFCS;
293 if (status->flag & RX_FLAG_SHORTPRE)
294 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
295 pos++;
297 /* IEEE80211_RADIOTAP_RATE */
298 if (!rate || status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) {
300 * Without rate information don't add it. If we have,
301 * MCS information is a separate field in radiotap,
302 * added below. The byte here is needed as padding
303 * for the channel though, so initialise it to 0.
305 *pos = 0;
306 } else {
307 int shift = 0;
308 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
309 if (status->flag & RX_FLAG_10MHZ)
310 shift = 1;
311 else if (status->flag & RX_FLAG_5MHZ)
312 shift = 2;
313 *pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift));
315 pos++;
317 /* IEEE80211_RADIOTAP_CHANNEL */
318 put_unaligned_le16(status->freq, pos);
319 pos += 2;
320 if (status->flag & RX_FLAG_10MHZ)
321 channel_flags |= IEEE80211_CHAN_HALF;
322 else if (status->flag & RX_FLAG_5MHZ)
323 channel_flags |= IEEE80211_CHAN_QUARTER;
325 if (status->band == NL80211_BAND_5GHZ)
326 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ;
327 else if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT))
328 channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
329 else if (rate && rate->flags & IEEE80211_RATE_ERP_G)
330 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ;
331 else if (rate)
332 channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ;
333 else
334 channel_flags |= IEEE80211_CHAN_2GHZ;
335 put_unaligned_le16(channel_flags, pos);
336 pos += 2;
338 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
339 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) &&
340 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
341 *pos = status->signal;
342 rthdr->it_present |=
343 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
344 pos++;
347 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
349 if (!status->chains) {
350 /* IEEE80211_RADIOTAP_ANTENNA */
351 *pos = status->antenna;
352 pos++;
355 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
357 /* IEEE80211_RADIOTAP_RX_FLAGS */
358 /* ensure 2 byte alignment for the 2 byte field as required */
359 if ((pos - (u8 *)rthdr) & 1)
360 *pos++ = 0;
361 if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
362 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
363 put_unaligned_le16(rx_flags, pos);
364 pos += 2;
366 if (status->flag & RX_FLAG_HT) {
367 unsigned int stbc;
369 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS);
370 *pos++ = local->hw.radiotap_mcs_details;
371 *pos = 0;
372 if (status->flag & RX_FLAG_SHORT_GI)
373 *pos |= IEEE80211_RADIOTAP_MCS_SGI;
374 if (status->flag & RX_FLAG_40MHZ)
375 *pos |= IEEE80211_RADIOTAP_MCS_BW_40;
376 if (status->flag & RX_FLAG_HT_GF)
377 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF;
378 if (status->flag & RX_FLAG_LDPC)
379 *pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC;
380 stbc = (status->flag & RX_FLAG_STBC_MASK) >> RX_FLAG_STBC_SHIFT;
381 *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT;
382 pos++;
383 *pos++ = status->rate_idx;
386 if (status->flag & RX_FLAG_AMPDU_DETAILS) {
387 u16 flags = 0;
389 /* ensure 4 byte alignment */
390 while ((pos - (u8 *)rthdr) & 3)
391 pos++;
392 rthdr->it_present |=
393 cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS);
394 put_unaligned_le32(status->ampdu_reference, pos);
395 pos += 4;
396 if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN)
397 flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN;
398 if (status->flag & RX_FLAG_AMPDU_IS_LAST)
399 flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST;
400 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR)
401 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR;
402 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
403 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN;
404 put_unaligned_le16(flags, pos);
405 pos += 2;
406 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
407 *pos++ = status->ampdu_delimiter_crc;
408 else
409 *pos++ = 0;
410 *pos++ = 0;
413 if (status->flag & RX_FLAG_VHT) {
414 u16 known = local->hw.radiotap_vht_details;
416 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT);
417 put_unaligned_le16(known, pos);
418 pos += 2;
419 /* flags */
420 if (status->flag & RX_FLAG_SHORT_GI)
421 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI;
422 /* in VHT, STBC is binary */
423 if (status->flag & RX_FLAG_STBC_MASK)
424 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC;
425 if (status->vht_flag & RX_VHT_FLAG_BF)
426 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED;
427 pos++;
428 /* bandwidth */
429 if (status->vht_flag & RX_VHT_FLAG_80MHZ)
430 *pos++ = 4;
431 else if (status->vht_flag & RX_VHT_FLAG_160MHZ)
432 *pos++ = 11;
433 else if (status->flag & RX_FLAG_40MHZ)
434 *pos++ = 1;
435 else /* 20 MHz */
436 *pos++ = 0;
437 /* MCS/NSS */
438 *pos = (status->rate_idx << 4) | status->vht_nss;
439 pos += 4;
440 /* coding field */
441 if (status->flag & RX_FLAG_LDPC)
442 *pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0;
443 pos++;
444 /* group ID */
445 pos++;
446 /* partial_aid */
447 pos += 2;
450 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
451 *pos++ = status->chain_signal[chain];
452 *pos++ = chain;
455 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
456 /* ensure 2 byte alignment for the vendor field as required */
457 if ((pos - (u8 *)rthdr) & 1)
458 *pos++ = 0;
459 *pos++ = rtap.oui[0];
460 *pos++ = rtap.oui[1];
461 *pos++ = rtap.oui[2];
462 *pos++ = rtap.subns;
463 put_unaligned_le16(rtap.len, pos);
464 pos += 2;
465 /* align the actual payload as requested */
466 while ((pos - (u8 *)rthdr) & (rtap.align - 1))
467 *pos++ = 0;
468 /* data (and possible padding) already follows */
473 * This function copies a received frame to all monitor interfaces and
474 * returns a cleaned-up SKB that no longer includes the FCS nor the
475 * radiotap header the driver might have added.
477 static struct sk_buff *
478 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
479 struct ieee80211_rate *rate)
481 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
482 struct ieee80211_sub_if_data *sdata;
483 int rt_hdrlen, needed_headroom;
484 struct sk_buff *skb, *skb2;
485 struct net_device *prev_dev = NULL;
486 int present_fcs_len = 0;
487 unsigned int rtap_vendor_space = 0;
489 if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) {
490 struct ieee80211_vendor_radiotap *rtap = (void *)origskb->data;
492 rtap_vendor_space = sizeof(*rtap) + rtap->len + rtap->pad;
496 * First, we may need to make a copy of the skb because
497 * (1) we need to modify it for radiotap (if not present), and
498 * (2) the other RX handlers will modify the skb we got.
500 * We don't need to, of course, if we aren't going to return
501 * the SKB because it has a bad FCS/PLCP checksum.
504 if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))
505 present_fcs_len = FCS_LEN;
507 /* ensure hdr->frame_control and vendor radiotap data are in skb head */
508 if (!pskb_may_pull(origskb, 2 + rtap_vendor_space)) {
509 dev_kfree_skb(origskb);
510 return NULL;
513 if (!local->monitors || (status->flag & RX_FLAG_SKIP_MONITOR)) {
514 if (should_drop_frame(origskb, present_fcs_len,
515 rtap_vendor_space)) {
516 dev_kfree_skb(origskb);
517 return NULL;
520 return remove_monitor_info(local, origskb, rtap_vendor_space);
523 /* room for the radiotap header based on driver features */
524 rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, origskb);
525 needed_headroom = rt_hdrlen - rtap_vendor_space;
527 if (should_drop_frame(origskb, present_fcs_len, rtap_vendor_space)) {
528 /* only need to expand headroom if necessary */
529 skb = origskb;
530 origskb = NULL;
533 * This shouldn't trigger often because most devices have an
534 * RX header they pull before we get here, and that should
535 * be big enough for our radiotap information. We should
536 * probably export the length to drivers so that we can have
537 * them allocate enough headroom to start with.
539 if (skb_headroom(skb) < needed_headroom &&
540 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
541 dev_kfree_skb(skb);
542 return NULL;
544 } else {
546 * Need to make a copy and possibly remove radiotap header
547 * and FCS from the original.
549 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);
551 origskb = remove_monitor_info(local, origskb,
552 rtap_vendor_space);
554 if (!skb)
555 return origskb;
558 /* prepend radiotap information */
559 ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true);
561 skb_reset_mac_header(skb);
562 skb->ip_summed = CHECKSUM_UNNECESSARY;
563 skb->pkt_type = PACKET_OTHERHOST;
564 skb->protocol = htons(ETH_P_802_2);
566 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
567 if (sdata->vif.type != NL80211_IFTYPE_MONITOR)
568 continue;
570 if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)
571 continue;
573 if (!ieee80211_sdata_running(sdata))
574 continue;
576 if (prev_dev) {
577 skb2 = skb_clone(skb, GFP_ATOMIC);
578 if (skb2) {
579 skb2->dev = prev_dev;
580 netif_receive_skb(skb2);
584 prev_dev = sdata->dev;
585 ieee80211_rx_stats(sdata->dev, skb->len);
588 if (prev_dev) {
589 skb->dev = prev_dev;
590 netif_receive_skb(skb);
591 } else
592 dev_kfree_skb(skb);
594 return origskb;
597 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
599 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
600 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
601 int tid, seqno_idx, security_idx;
603 /* does the frame have a qos control field? */
604 if (ieee80211_is_data_qos(hdr->frame_control)) {
605 u8 *qc = ieee80211_get_qos_ctl(hdr);
606 /* frame has qos control */
607 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
608 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
609 status->rx_flags |= IEEE80211_RX_AMSDU;
611 seqno_idx = tid;
612 security_idx = tid;
613 } else {
615 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
617 * Sequence numbers for management frames, QoS data
618 * frames with a broadcast/multicast address in the
619 * Address 1 field, and all non-QoS data frames sent
620 * by QoS STAs are assigned using an additional single
621 * modulo-4096 counter, [...]
623 * We also use that counter for non-QoS STAs.
625 seqno_idx = IEEE80211_NUM_TIDS;
626 security_idx = 0;
627 if (ieee80211_is_mgmt(hdr->frame_control))
628 security_idx = IEEE80211_NUM_TIDS;
629 tid = 0;
632 rx->seqno_idx = seqno_idx;
633 rx->security_idx = security_idx;
634 /* Set skb->priority to 1d tag if highest order bit of TID is not set.
635 * For now, set skb->priority to 0 for other cases. */
636 rx->skb->priority = (tid > 7) ? 0 : tid;
640 * DOC: Packet alignment
642 * Drivers always need to pass packets that are aligned to two-byte boundaries
643 * to the stack.
645 * Additionally, should, if possible, align the payload data in a way that
646 * guarantees that the contained IP header is aligned to a four-byte
647 * boundary. In the case of regular frames, this simply means aligning the
648 * payload to a four-byte boundary (because either the IP header is directly
649 * contained, or IV/RFC1042 headers that have a length divisible by four are
650 * in front of it). If the payload data is not properly aligned and the
651 * architecture doesn't support efficient unaligned operations, mac80211
652 * will align the data.
654 * With A-MSDU frames, however, the payload data address must yield two modulo
655 * four because there are 14-byte 802.3 headers within the A-MSDU frames that
656 * push the IP header further back to a multiple of four again. Thankfully, the
657 * specs were sane enough this time around to require padding each A-MSDU
658 * subframe to a length that is a multiple of four.
660 * Padding like Atheros hardware adds which is between the 802.11 header and
661 * the payload is not supported, the driver is required to move the 802.11
662 * header to be directly in front of the payload in that case.
664 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
666 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
667 WARN_ON_ONCE((unsigned long)rx->skb->data & 1);
668 #endif
672 /* rx handlers */
674 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
676 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
678 if (is_multicast_ether_addr(hdr->addr1))
679 return 0;
681 return ieee80211_is_robust_mgmt_frame(skb);
685 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
687 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
689 if (!is_multicast_ether_addr(hdr->addr1))
690 return 0;
692 return ieee80211_is_robust_mgmt_frame(skb);
696 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
697 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
699 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
700 struct ieee80211_mmie *mmie;
701 struct ieee80211_mmie_16 *mmie16;
703 if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da))
704 return -1;
706 if (!ieee80211_is_robust_mgmt_frame(skb))
707 return -1; /* not a robust management frame */
709 mmie = (struct ieee80211_mmie *)
710 (skb->data + skb->len - sizeof(*mmie));
711 if (mmie->element_id == WLAN_EID_MMIE &&
712 mmie->length == sizeof(*mmie) - 2)
713 return le16_to_cpu(mmie->key_id);
715 mmie16 = (struct ieee80211_mmie_16 *)
716 (skb->data + skb->len - sizeof(*mmie16));
717 if (skb->len >= 24 + sizeof(*mmie16) &&
718 mmie16->element_id == WLAN_EID_MMIE &&
719 mmie16->length == sizeof(*mmie16) - 2)
720 return le16_to_cpu(mmie16->key_id);
722 return -1;
725 static int ieee80211_get_cs_keyid(const struct ieee80211_cipher_scheme *cs,
726 struct sk_buff *skb)
728 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
729 __le16 fc;
730 int hdrlen;
731 u8 keyid;
733 fc = hdr->frame_control;
734 hdrlen = ieee80211_hdrlen(fc);
736 if (skb->len < hdrlen + cs->hdr_len)
737 return -EINVAL;
739 skb_copy_bits(skb, hdrlen + cs->key_idx_off, &keyid, 1);
740 keyid &= cs->key_idx_mask;
741 keyid >>= cs->key_idx_shift;
743 return keyid;
746 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
748 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
749 char *dev_addr = rx->sdata->vif.addr;
751 if (ieee80211_is_data(hdr->frame_control)) {
752 if (is_multicast_ether_addr(hdr->addr1)) {
753 if (ieee80211_has_tods(hdr->frame_control) ||
754 !ieee80211_has_fromds(hdr->frame_control))
755 return RX_DROP_MONITOR;
756 if (ether_addr_equal(hdr->addr3, dev_addr))
757 return RX_DROP_MONITOR;
758 } else {
759 if (!ieee80211_has_a4(hdr->frame_control))
760 return RX_DROP_MONITOR;
761 if (ether_addr_equal(hdr->addr4, dev_addr))
762 return RX_DROP_MONITOR;
766 /* If there is not an established peer link and this is not a peer link
767 * establisment frame, beacon or probe, drop the frame.
770 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
771 struct ieee80211_mgmt *mgmt;
773 if (!ieee80211_is_mgmt(hdr->frame_control))
774 return RX_DROP_MONITOR;
776 if (ieee80211_is_action(hdr->frame_control)) {
777 u8 category;
779 /* make sure category field is present */
780 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE)
781 return RX_DROP_MONITOR;
783 mgmt = (struct ieee80211_mgmt *)hdr;
784 category = mgmt->u.action.category;
785 if (category != WLAN_CATEGORY_MESH_ACTION &&
786 category != WLAN_CATEGORY_SELF_PROTECTED)
787 return RX_DROP_MONITOR;
788 return RX_CONTINUE;
791 if (ieee80211_is_probe_req(hdr->frame_control) ||
792 ieee80211_is_probe_resp(hdr->frame_control) ||
793 ieee80211_is_beacon(hdr->frame_control) ||
794 ieee80211_is_auth(hdr->frame_control))
795 return RX_CONTINUE;
797 return RX_DROP_MONITOR;
800 return RX_CONTINUE;
803 static inline bool ieee80211_rx_reorder_ready(struct tid_ampdu_rx *tid_agg_rx,
804 int index)
806 struct sk_buff_head *frames = &tid_agg_rx->reorder_buf[index];
807 struct sk_buff *tail = skb_peek_tail(frames);
808 struct ieee80211_rx_status *status;
810 if (tid_agg_rx->reorder_buf_filtered & BIT_ULL(index))
811 return true;
813 if (!tail)
814 return false;
816 status = IEEE80211_SKB_RXCB(tail);
817 if (status->flag & RX_FLAG_AMSDU_MORE)
818 return false;
820 return true;
823 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata,
824 struct tid_ampdu_rx *tid_agg_rx,
825 int index,
826 struct sk_buff_head *frames)
828 struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index];
829 struct sk_buff *skb;
830 struct ieee80211_rx_status *status;
832 lockdep_assert_held(&tid_agg_rx->reorder_lock);
834 if (skb_queue_empty(skb_list))
835 goto no_frame;
837 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
838 __skb_queue_purge(skb_list);
839 goto no_frame;
842 /* release frames from the reorder ring buffer */
843 tid_agg_rx->stored_mpdu_num--;
844 while ((skb = __skb_dequeue(skb_list))) {
845 status = IEEE80211_SKB_RXCB(skb);
846 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
847 __skb_queue_tail(frames, skb);
850 no_frame:
851 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
852 tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num);
855 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata,
856 struct tid_ampdu_rx *tid_agg_rx,
857 u16 head_seq_num,
858 struct sk_buff_head *frames)
860 int index;
862 lockdep_assert_held(&tid_agg_rx->reorder_lock);
864 while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) {
865 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
866 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
867 frames);
872 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
873 * the skb was added to the buffer longer than this time ago, the earlier
874 * frames that have not yet been received are assumed to be lost and the skb
875 * can be released for processing. This may also release other skb's from the
876 * reorder buffer if there are no additional gaps between the frames.
878 * Callers must hold tid_agg_rx->reorder_lock.
880 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
882 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata,
883 struct tid_ampdu_rx *tid_agg_rx,
884 struct sk_buff_head *frames)
886 int index, i, j;
888 lockdep_assert_held(&tid_agg_rx->reorder_lock);
890 /* release the buffer until next missing frame */
891 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
892 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index) &&
893 tid_agg_rx->stored_mpdu_num) {
895 * No buffers ready to be released, but check whether any
896 * frames in the reorder buffer have timed out.
898 int skipped = 1;
899 for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
900 j = (j + 1) % tid_agg_rx->buf_size) {
901 if (!ieee80211_rx_reorder_ready(tid_agg_rx, j)) {
902 skipped++;
903 continue;
905 if (skipped &&
906 !time_after(jiffies, tid_agg_rx->reorder_time[j] +
907 HT_RX_REORDER_BUF_TIMEOUT))
908 goto set_release_timer;
910 /* don't leave incomplete A-MSDUs around */
911 for (i = (index + 1) % tid_agg_rx->buf_size; i != j;
912 i = (i + 1) % tid_agg_rx->buf_size)
913 __skb_queue_purge(&tid_agg_rx->reorder_buf[i]);
915 ht_dbg_ratelimited(sdata,
916 "release an RX reorder frame due to timeout on earlier frames\n");
917 ieee80211_release_reorder_frame(sdata, tid_agg_rx, j,
918 frames);
921 * Increment the head seq# also for the skipped slots.
923 tid_agg_rx->head_seq_num =
924 (tid_agg_rx->head_seq_num +
925 skipped) & IEEE80211_SN_MASK;
926 skipped = 0;
928 } else while (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
929 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
930 frames);
931 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
934 if (tid_agg_rx->stored_mpdu_num) {
935 j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
937 for (; j != (index - 1) % tid_agg_rx->buf_size;
938 j = (j + 1) % tid_agg_rx->buf_size) {
939 if (ieee80211_rx_reorder_ready(tid_agg_rx, j))
940 break;
943 set_release_timer:
945 if (!tid_agg_rx->removed)
946 mod_timer(&tid_agg_rx->reorder_timer,
947 tid_agg_rx->reorder_time[j] + 1 +
948 HT_RX_REORDER_BUF_TIMEOUT);
949 } else {
950 del_timer(&tid_agg_rx->reorder_timer);
955 * As this function belongs to the RX path it must be under
956 * rcu_read_lock protection. It returns false if the frame
957 * can be processed immediately, true if it was consumed.
959 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata,
960 struct tid_ampdu_rx *tid_agg_rx,
961 struct sk_buff *skb,
962 struct sk_buff_head *frames)
964 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
965 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
966 u16 sc = le16_to_cpu(hdr->seq_ctrl);
967 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
968 u16 head_seq_num, buf_size;
969 int index;
970 bool ret = true;
972 spin_lock(&tid_agg_rx->reorder_lock);
975 * Offloaded BA sessions have no known starting sequence number so pick
976 * one from first Rxed frame for this tid after BA was started.
978 if (unlikely(tid_agg_rx->auto_seq)) {
979 tid_agg_rx->auto_seq = false;
980 tid_agg_rx->ssn = mpdu_seq_num;
981 tid_agg_rx->head_seq_num = mpdu_seq_num;
984 buf_size = tid_agg_rx->buf_size;
985 head_seq_num = tid_agg_rx->head_seq_num;
987 /* frame with out of date sequence number */
988 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
989 dev_kfree_skb(skb);
990 goto out;
994 * If frame the sequence number exceeds our buffering window
995 * size release some previous frames to make room for this one.
997 if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) {
998 head_seq_num = ieee80211_sn_inc(
999 ieee80211_sn_sub(mpdu_seq_num, buf_size));
1000 /* release stored frames up to new head to stack */
1001 ieee80211_release_reorder_frames(sdata, tid_agg_rx,
1002 head_seq_num, frames);
1005 /* Now the new frame is always in the range of the reordering buffer */
1007 index = mpdu_seq_num % tid_agg_rx->buf_size;
1009 /* check if we already stored this frame */
1010 if (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1011 dev_kfree_skb(skb);
1012 goto out;
1016 * If the current MPDU is in the right order and nothing else
1017 * is stored we can process it directly, no need to buffer it.
1018 * If it is first but there's something stored, we may be able
1019 * to release frames after this one.
1021 if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
1022 tid_agg_rx->stored_mpdu_num == 0) {
1023 if (!(status->flag & RX_FLAG_AMSDU_MORE))
1024 tid_agg_rx->head_seq_num =
1025 ieee80211_sn_inc(tid_agg_rx->head_seq_num);
1026 ret = false;
1027 goto out;
1030 /* put the frame in the reordering buffer */
1031 __skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb);
1032 if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1033 tid_agg_rx->reorder_time[index] = jiffies;
1034 tid_agg_rx->stored_mpdu_num++;
1035 ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames);
1038 out:
1039 spin_unlock(&tid_agg_rx->reorder_lock);
1040 return ret;
1044 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
1045 * true if the MPDU was buffered, false if it should be processed.
1047 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
1048 struct sk_buff_head *frames)
1050 struct sk_buff *skb = rx->skb;
1051 struct ieee80211_local *local = rx->local;
1052 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1053 struct sta_info *sta = rx->sta;
1054 struct tid_ampdu_rx *tid_agg_rx;
1055 u16 sc;
1056 u8 tid, ack_policy;
1058 if (!ieee80211_is_data_qos(hdr->frame_control) ||
1059 is_multicast_ether_addr(hdr->addr1))
1060 goto dont_reorder;
1063 * filter the QoS data rx stream according to
1064 * STA/TID and check if this STA/TID is on aggregation
1067 if (!sta)
1068 goto dont_reorder;
1070 ack_policy = *ieee80211_get_qos_ctl(hdr) &
1071 IEEE80211_QOS_CTL_ACK_POLICY_MASK;
1072 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
1074 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
1075 if (!tid_agg_rx)
1076 goto dont_reorder;
1078 /* qos null data frames are excluded */
1079 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
1080 goto dont_reorder;
1082 /* not part of a BA session */
1083 if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
1084 ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL)
1085 goto dont_reorder;
1087 /* new, potentially un-ordered, ampdu frame - process it */
1089 /* reset session timer */
1090 if (tid_agg_rx->timeout)
1091 tid_agg_rx->last_rx = jiffies;
1093 /* if this mpdu is fragmented - terminate rx aggregation session */
1094 sc = le16_to_cpu(hdr->seq_ctrl);
1095 if (sc & IEEE80211_SCTL_FRAG) {
1096 skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
1097 skb_queue_tail(&rx->sdata->skb_queue, skb);
1098 ieee80211_queue_work(&local->hw, &rx->sdata->work);
1099 return;
1103 * No locking needed -- we will only ever process one
1104 * RX packet at a time, and thus own tid_agg_rx. All
1105 * other code manipulating it needs to (and does) make
1106 * sure that we cannot get to it any more before doing
1107 * anything with it.
1109 if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb,
1110 frames))
1111 return;
1113 dont_reorder:
1114 __skb_queue_tail(frames, skb);
1117 static ieee80211_rx_result debug_noinline
1118 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx)
1120 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1121 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1123 if (status->flag & RX_FLAG_DUP_VALIDATED)
1124 return RX_CONTINUE;
1127 * Drop duplicate 802.11 retransmissions
1128 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
1131 if (rx->skb->len < 24)
1132 return RX_CONTINUE;
1134 if (ieee80211_is_ctl(hdr->frame_control) ||
1135 ieee80211_is_qos_nullfunc(hdr->frame_control) ||
1136 is_multicast_ether_addr(hdr->addr1))
1137 return RX_CONTINUE;
1139 if (!rx->sta)
1140 return RX_CONTINUE;
1142 if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
1143 rx->sta->last_seq_ctrl[rx->seqno_idx] == hdr->seq_ctrl)) {
1144 I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount);
1145 rx->sta->rx_stats.num_duplicates++;
1146 return RX_DROP_UNUSABLE;
1147 } else if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1148 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
1151 return RX_CONTINUE;
1154 static ieee80211_rx_result debug_noinline
1155 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
1157 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1159 /* Drop disallowed frame classes based on STA auth/assoc state;
1160 * IEEE 802.11, Chap 5.5.
1162 * mac80211 filters only based on association state, i.e. it drops
1163 * Class 3 frames from not associated stations. hostapd sends
1164 * deauth/disassoc frames when needed. In addition, hostapd is
1165 * responsible for filtering on both auth and assoc states.
1168 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1169 return ieee80211_rx_mesh_check(rx);
1171 if (unlikely((ieee80211_is_data(hdr->frame_control) ||
1172 ieee80211_is_pspoll(hdr->frame_control)) &&
1173 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
1174 rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
1175 rx->sdata->vif.type != NL80211_IFTYPE_OCB &&
1176 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
1178 * accept port control frames from the AP even when it's not
1179 * yet marked ASSOC to prevent a race where we don't set the
1180 * assoc bit quickly enough before it sends the first frame
1182 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1183 ieee80211_is_data_present(hdr->frame_control)) {
1184 unsigned int hdrlen;
1185 __be16 ethertype;
1187 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1189 if (rx->skb->len < hdrlen + 8)
1190 return RX_DROP_MONITOR;
1192 skb_copy_bits(rx->skb, hdrlen + 6, &ethertype, 2);
1193 if (ethertype == rx->sdata->control_port_protocol)
1194 return RX_CONTINUE;
1197 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
1198 cfg80211_rx_spurious_frame(rx->sdata->dev,
1199 hdr->addr2,
1200 GFP_ATOMIC))
1201 return RX_DROP_UNUSABLE;
1203 return RX_DROP_MONITOR;
1206 return RX_CONTINUE;
1210 static ieee80211_rx_result debug_noinline
1211 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1213 struct ieee80211_local *local;
1214 struct ieee80211_hdr *hdr;
1215 struct sk_buff *skb;
1217 local = rx->local;
1218 skb = rx->skb;
1219 hdr = (struct ieee80211_hdr *) skb->data;
1221 if (!local->pspolling)
1222 return RX_CONTINUE;
1224 if (!ieee80211_has_fromds(hdr->frame_control))
1225 /* this is not from AP */
1226 return RX_CONTINUE;
1228 if (!ieee80211_is_data(hdr->frame_control))
1229 return RX_CONTINUE;
1231 if (!ieee80211_has_moredata(hdr->frame_control)) {
1232 /* AP has no more frames buffered for us */
1233 local->pspolling = false;
1234 return RX_CONTINUE;
1237 /* more data bit is set, let's request a new frame from the AP */
1238 ieee80211_send_pspoll(local, rx->sdata);
1240 return RX_CONTINUE;
1243 static void sta_ps_start(struct sta_info *sta)
1245 struct ieee80211_sub_if_data *sdata = sta->sdata;
1246 struct ieee80211_local *local = sdata->local;
1247 struct ps_data *ps;
1248 int tid;
1250 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1251 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1252 ps = &sdata->bss->ps;
1253 else
1254 return;
1256 atomic_inc(&ps->num_sta_ps);
1257 set_sta_flag(sta, WLAN_STA_PS_STA);
1258 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
1259 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1260 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n",
1261 sta->sta.addr, sta->sta.aid);
1263 ieee80211_clear_fast_xmit(sta);
1265 if (!sta->sta.txq[0])
1266 return;
1268 for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) {
1269 struct txq_info *txqi = to_txq_info(sta->sta.txq[tid]);
1271 if (!skb_queue_len(&txqi->queue))
1272 set_bit(tid, &sta->txq_buffered_tids);
1273 else
1274 clear_bit(tid, &sta->txq_buffered_tids);
1278 static void sta_ps_end(struct sta_info *sta)
1280 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n",
1281 sta->sta.addr, sta->sta.aid);
1283 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
1285 * Clear the flag only if the other one is still set
1286 * so that the TX path won't start TX'ing new frames
1287 * directly ... In the case that the driver flag isn't
1288 * set ieee80211_sta_ps_deliver_wakeup() will clear it.
1290 clear_sta_flag(sta, WLAN_STA_PS_STA);
1291 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n",
1292 sta->sta.addr, sta->sta.aid);
1293 return;
1296 set_sta_flag(sta, WLAN_STA_PS_DELIVER);
1297 clear_sta_flag(sta, WLAN_STA_PS_STA);
1298 ieee80211_sta_ps_deliver_wakeup(sta);
1301 int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start)
1303 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1304 bool in_ps;
1306 WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS));
1308 /* Don't let the same PS state be set twice */
1309 in_ps = test_sta_flag(sta, WLAN_STA_PS_STA);
1310 if ((start && in_ps) || (!start && !in_ps))
1311 return -EINVAL;
1313 if (start)
1314 sta_ps_start(sta);
1315 else
1316 sta_ps_end(sta);
1318 return 0;
1320 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1322 static ieee80211_rx_result debug_noinline
1323 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
1325 struct ieee80211_sub_if_data *sdata = rx->sdata;
1326 struct ieee80211_hdr *hdr = (void *)rx->skb->data;
1327 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1328 int tid, ac;
1330 if (!rx->sta)
1331 return RX_CONTINUE;
1333 if (sdata->vif.type != NL80211_IFTYPE_AP &&
1334 sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
1335 return RX_CONTINUE;
1338 * The device handles station powersave, so don't do anything about
1339 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1340 * it to mac80211 since they're handled.)
1342 if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS))
1343 return RX_CONTINUE;
1346 * Don't do anything if the station isn't already asleep. In
1347 * the uAPSD case, the station will probably be marked asleep,
1348 * in the PS-Poll case the station must be confused ...
1350 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA))
1351 return RX_CONTINUE;
1353 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
1354 if (!test_sta_flag(rx->sta, WLAN_STA_SP)) {
1355 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
1356 ieee80211_sta_ps_deliver_poll_response(rx->sta);
1357 else
1358 set_sta_flag(rx->sta, WLAN_STA_PSPOLL);
1361 /* Free PS Poll skb here instead of returning RX_DROP that would
1362 * count as an dropped frame. */
1363 dev_kfree_skb(rx->skb);
1365 return RX_QUEUED;
1366 } else if (!ieee80211_has_morefrags(hdr->frame_control) &&
1367 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1368 ieee80211_has_pm(hdr->frame_control) &&
1369 (ieee80211_is_data_qos(hdr->frame_control) ||
1370 ieee80211_is_qos_nullfunc(hdr->frame_control))) {
1371 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
1372 ac = ieee802_1d_to_ac[tid & 7];
1375 * If this AC is not trigger-enabled do nothing.
1377 * NB: This could/should check a separate bitmap of trigger-
1378 * enabled queues, but for now we only implement uAPSD w/o
1379 * TSPEC changes to the ACs, so they're always the same.
1381 if (!(rx->sta->sta.uapsd_queues & BIT(ac)))
1382 return RX_CONTINUE;
1384 /* if we are in a service period, do nothing */
1385 if (test_sta_flag(rx->sta, WLAN_STA_SP))
1386 return RX_CONTINUE;
1388 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
1389 ieee80211_sta_ps_deliver_uapsd(rx->sta);
1390 else
1391 set_sta_flag(rx->sta, WLAN_STA_UAPSD);
1394 return RX_CONTINUE;
1397 static ieee80211_rx_result debug_noinline
1398 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1400 struct sta_info *sta = rx->sta;
1401 struct sk_buff *skb = rx->skb;
1402 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1403 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1404 int i;
1406 if (!sta)
1407 return RX_CONTINUE;
1410 * Update last_rx only for IBSS packets which are for the current
1411 * BSSID and for station already AUTHORIZED to avoid keeping the
1412 * current IBSS network alive in cases where other STAs start
1413 * using different BSSID. This will also give the station another
1414 * chance to restart the authentication/authorization in case
1415 * something went wrong the first time.
1417 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1418 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1419 NL80211_IFTYPE_ADHOC);
1420 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) &&
1421 test_sta_flag(sta, WLAN_STA_AUTHORIZED)) {
1422 sta->rx_stats.last_rx = jiffies;
1423 if (ieee80211_is_data(hdr->frame_control) &&
1424 !is_multicast_ether_addr(hdr->addr1))
1425 sta->rx_stats.last_rate =
1426 sta_stats_encode_rate(status);
1428 } else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) {
1429 sta->rx_stats.last_rx = jiffies;
1430 } else if (!is_multicast_ether_addr(hdr->addr1)) {
1432 * Mesh beacons will update last_rx when if they are found to
1433 * match the current local configuration when processed.
1435 sta->rx_stats.last_rx = jiffies;
1436 if (ieee80211_is_data(hdr->frame_control))
1437 sta->rx_stats.last_rate = sta_stats_encode_rate(status);
1440 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1441 ieee80211_sta_rx_notify(rx->sdata, hdr);
1443 sta->rx_stats.fragments++;
1445 u64_stats_update_begin(&rx->sta->rx_stats.syncp);
1446 sta->rx_stats.bytes += rx->skb->len;
1447 u64_stats_update_end(&rx->sta->rx_stats.syncp);
1449 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
1450 sta->rx_stats.last_signal = status->signal;
1451 ewma_signal_add(&sta->rx_stats_avg.signal, -status->signal);
1454 if (status->chains) {
1455 sta->rx_stats.chains = status->chains;
1456 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
1457 int signal = status->chain_signal[i];
1459 if (!(status->chains & BIT(i)))
1460 continue;
1462 sta->rx_stats.chain_signal_last[i] = signal;
1463 ewma_signal_add(&sta->rx_stats_avg.chain_signal[i],
1464 -signal);
1469 * Change STA power saving mode only at the end of a frame
1470 * exchange sequence.
1472 if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) &&
1473 !ieee80211_has_morefrags(hdr->frame_control) &&
1474 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1475 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1476 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
1477 /* PM bit is only checked in frames where it isn't reserved,
1478 * in AP mode it's reserved in non-bufferable management frames
1479 * (cf. IEEE 802.11-2012 8.2.4.1.7 Power Management field)
1481 (!ieee80211_is_mgmt(hdr->frame_control) ||
1482 ieee80211_is_bufferable_mmpdu(hdr->frame_control))) {
1483 if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
1484 if (!ieee80211_has_pm(hdr->frame_control))
1485 sta_ps_end(sta);
1486 } else {
1487 if (ieee80211_has_pm(hdr->frame_control))
1488 sta_ps_start(sta);
1492 /* mesh power save support */
1493 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1494 ieee80211_mps_rx_h_sta_process(sta, hdr);
1497 * Drop (qos-)data::nullfunc frames silently, since they
1498 * are used only to control station power saving mode.
1500 if (ieee80211_is_nullfunc(hdr->frame_control) ||
1501 ieee80211_is_qos_nullfunc(hdr->frame_control)) {
1502 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1505 * If we receive a 4-addr nullfunc frame from a STA
1506 * that was not moved to a 4-addr STA vlan yet send
1507 * the event to userspace and for older hostapd drop
1508 * the frame to the monitor interface.
1510 if (ieee80211_has_a4(hdr->frame_control) &&
1511 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1512 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1513 !rx->sdata->u.vlan.sta))) {
1514 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT))
1515 cfg80211_rx_unexpected_4addr_frame(
1516 rx->sdata->dev, sta->sta.addr,
1517 GFP_ATOMIC);
1518 return RX_DROP_MONITOR;
1521 * Update counter and free packet here to avoid
1522 * counting this as a dropped packed.
1524 sta->rx_stats.packets++;
1525 dev_kfree_skb(rx->skb);
1526 return RX_QUEUED;
1529 return RX_CONTINUE;
1530 } /* ieee80211_rx_h_sta_process */
1532 static ieee80211_rx_result debug_noinline
1533 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
1535 struct sk_buff *skb = rx->skb;
1536 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1537 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1538 int keyidx;
1539 int hdrlen;
1540 ieee80211_rx_result result = RX_DROP_UNUSABLE;
1541 struct ieee80211_key *sta_ptk = NULL;
1542 int mmie_keyidx = -1;
1543 __le16 fc;
1544 const struct ieee80211_cipher_scheme *cs = NULL;
1547 * Key selection 101
1549 * There are four types of keys:
1550 * - GTK (group keys)
1551 * - IGTK (group keys for management frames)
1552 * - PTK (pairwise keys)
1553 * - STK (station-to-station pairwise keys)
1555 * When selecting a key, we have to distinguish between multicast
1556 * (including broadcast) and unicast frames, the latter can only
1557 * use PTKs and STKs while the former always use GTKs and IGTKs.
1558 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
1559 * unicast frames can also use key indices like GTKs. Hence, if we
1560 * don't have a PTK/STK we check the key index for a WEP key.
1562 * Note that in a regular BSS, multicast frames are sent by the
1563 * AP only, associated stations unicast the frame to the AP first
1564 * which then multicasts it on their behalf.
1566 * There is also a slight problem in IBSS mode: GTKs are negotiated
1567 * with each station, that is something we don't currently handle.
1568 * The spec seems to expect that one negotiates the same key with
1569 * every station but there's no such requirement; VLANs could be
1570 * possible.
1573 /* start without a key */
1574 rx->key = NULL;
1575 fc = hdr->frame_control;
1577 if (rx->sta) {
1578 int keyid = rx->sta->ptk_idx;
1580 if (ieee80211_has_protected(fc) && rx->sta->cipher_scheme) {
1581 cs = rx->sta->cipher_scheme;
1582 keyid = ieee80211_get_cs_keyid(cs, rx->skb);
1583 if (unlikely(keyid < 0))
1584 return RX_DROP_UNUSABLE;
1586 sta_ptk = rcu_dereference(rx->sta->ptk[keyid]);
1589 if (!ieee80211_has_protected(fc))
1590 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
1592 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
1593 rx->key = sta_ptk;
1594 if ((status->flag & RX_FLAG_DECRYPTED) &&
1595 (status->flag & RX_FLAG_IV_STRIPPED))
1596 return RX_CONTINUE;
1597 /* Skip decryption if the frame is not protected. */
1598 if (!ieee80211_has_protected(fc))
1599 return RX_CONTINUE;
1600 } else if (mmie_keyidx >= 0) {
1601 /* Broadcast/multicast robust management frame / BIP */
1602 if ((status->flag & RX_FLAG_DECRYPTED) &&
1603 (status->flag & RX_FLAG_IV_STRIPPED))
1604 return RX_CONTINUE;
1606 if (mmie_keyidx < NUM_DEFAULT_KEYS ||
1607 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
1608 return RX_DROP_MONITOR; /* unexpected BIP keyidx */
1609 if (rx->sta)
1610 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
1611 if (!rx->key)
1612 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
1613 } else if (!ieee80211_has_protected(fc)) {
1615 * The frame was not protected, so skip decryption. However, we
1616 * need to set rx->key if there is a key that could have been
1617 * used so that the frame may be dropped if encryption would
1618 * have been expected.
1620 struct ieee80211_key *key = NULL;
1621 struct ieee80211_sub_if_data *sdata = rx->sdata;
1622 int i;
1624 if (ieee80211_is_mgmt(fc) &&
1625 is_multicast_ether_addr(hdr->addr1) &&
1626 (key = rcu_dereference(rx->sdata->default_mgmt_key)))
1627 rx->key = key;
1628 else {
1629 if (rx->sta) {
1630 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1631 key = rcu_dereference(rx->sta->gtk[i]);
1632 if (key)
1633 break;
1636 if (!key) {
1637 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1638 key = rcu_dereference(sdata->keys[i]);
1639 if (key)
1640 break;
1643 if (key)
1644 rx->key = key;
1646 return RX_CONTINUE;
1647 } else {
1648 u8 keyid;
1651 * The device doesn't give us the IV so we won't be
1652 * able to look up the key. That's ok though, we
1653 * don't need to decrypt the frame, we just won't
1654 * be able to keep statistics accurate.
1655 * Except for key threshold notifications, should
1656 * we somehow allow the driver to tell us which key
1657 * the hardware used if this flag is set?
1659 if ((status->flag & RX_FLAG_DECRYPTED) &&
1660 (status->flag & RX_FLAG_IV_STRIPPED))
1661 return RX_CONTINUE;
1663 hdrlen = ieee80211_hdrlen(fc);
1665 if (cs) {
1666 keyidx = ieee80211_get_cs_keyid(cs, rx->skb);
1668 if (unlikely(keyidx < 0))
1669 return RX_DROP_UNUSABLE;
1670 } else {
1671 if (rx->skb->len < 8 + hdrlen)
1672 return RX_DROP_UNUSABLE; /* TODO: count this? */
1674 * no need to call ieee80211_wep_get_keyidx,
1675 * it verifies a bunch of things we've done already
1677 skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1);
1678 keyidx = keyid >> 6;
1681 /* check per-station GTK first, if multicast packet */
1682 if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
1683 rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
1685 /* if not found, try default key */
1686 if (!rx->key) {
1687 rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
1690 * RSNA-protected unicast frames should always be
1691 * sent with pairwise or station-to-station keys,
1692 * but for WEP we allow using a key index as well.
1694 if (rx->key &&
1695 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
1696 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
1697 !is_multicast_ether_addr(hdr->addr1))
1698 rx->key = NULL;
1702 if (rx->key) {
1703 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
1704 return RX_DROP_MONITOR;
1706 /* TODO: add threshold stuff again */
1707 } else {
1708 return RX_DROP_MONITOR;
1711 switch (rx->key->conf.cipher) {
1712 case WLAN_CIPHER_SUITE_WEP40:
1713 case WLAN_CIPHER_SUITE_WEP104:
1714 result = ieee80211_crypto_wep_decrypt(rx);
1715 break;
1716 case WLAN_CIPHER_SUITE_TKIP:
1717 result = ieee80211_crypto_tkip_decrypt(rx);
1718 break;
1719 case WLAN_CIPHER_SUITE_CCMP:
1720 result = ieee80211_crypto_ccmp_decrypt(
1721 rx, IEEE80211_CCMP_MIC_LEN);
1722 break;
1723 case WLAN_CIPHER_SUITE_CCMP_256:
1724 result = ieee80211_crypto_ccmp_decrypt(
1725 rx, IEEE80211_CCMP_256_MIC_LEN);
1726 break;
1727 case WLAN_CIPHER_SUITE_AES_CMAC:
1728 result = ieee80211_crypto_aes_cmac_decrypt(rx);
1729 break;
1730 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
1731 result = ieee80211_crypto_aes_cmac_256_decrypt(rx);
1732 break;
1733 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
1734 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
1735 result = ieee80211_crypto_aes_gmac_decrypt(rx);
1736 break;
1737 case WLAN_CIPHER_SUITE_GCMP:
1738 case WLAN_CIPHER_SUITE_GCMP_256:
1739 result = ieee80211_crypto_gcmp_decrypt(rx);
1740 break;
1741 default:
1742 result = ieee80211_crypto_hw_decrypt(rx);
1745 /* the hdr variable is invalid after the decrypt handlers */
1747 /* either the frame has been decrypted or will be dropped */
1748 status->flag |= RX_FLAG_DECRYPTED;
1750 return result;
1753 static inline struct ieee80211_fragment_entry *
1754 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
1755 unsigned int frag, unsigned int seq, int rx_queue,
1756 struct sk_buff **skb)
1758 struct ieee80211_fragment_entry *entry;
1760 entry = &sdata->fragments[sdata->fragment_next++];
1761 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
1762 sdata->fragment_next = 0;
1764 if (!skb_queue_empty(&entry->skb_list))
1765 __skb_queue_purge(&entry->skb_list);
1767 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
1768 *skb = NULL;
1769 entry->first_frag_time = jiffies;
1770 entry->seq = seq;
1771 entry->rx_queue = rx_queue;
1772 entry->last_frag = frag;
1773 entry->check_sequential_pn = false;
1774 entry->extra_len = 0;
1776 return entry;
1779 static inline struct ieee80211_fragment_entry *
1780 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
1781 unsigned int frag, unsigned int seq,
1782 int rx_queue, struct ieee80211_hdr *hdr)
1784 struct ieee80211_fragment_entry *entry;
1785 int i, idx;
1787 idx = sdata->fragment_next;
1788 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
1789 struct ieee80211_hdr *f_hdr;
1791 idx--;
1792 if (idx < 0)
1793 idx = IEEE80211_FRAGMENT_MAX - 1;
1795 entry = &sdata->fragments[idx];
1796 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
1797 entry->rx_queue != rx_queue ||
1798 entry->last_frag + 1 != frag)
1799 continue;
1801 f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data;
1804 * Check ftype and addresses are equal, else check next fragment
1806 if (((hdr->frame_control ^ f_hdr->frame_control) &
1807 cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
1808 !ether_addr_equal(hdr->addr1, f_hdr->addr1) ||
1809 !ether_addr_equal(hdr->addr2, f_hdr->addr2))
1810 continue;
1812 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
1813 __skb_queue_purge(&entry->skb_list);
1814 continue;
1816 return entry;
1819 return NULL;
1822 static ieee80211_rx_result debug_noinline
1823 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
1825 struct ieee80211_hdr *hdr;
1826 u16 sc;
1827 __le16 fc;
1828 unsigned int frag, seq;
1829 struct ieee80211_fragment_entry *entry;
1830 struct sk_buff *skb;
1831 struct ieee80211_rx_status *status;
1833 hdr = (struct ieee80211_hdr *)rx->skb->data;
1834 fc = hdr->frame_control;
1836 if (ieee80211_is_ctl(fc))
1837 return RX_CONTINUE;
1839 sc = le16_to_cpu(hdr->seq_ctrl);
1840 frag = sc & IEEE80211_SCTL_FRAG;
1842 if (is_multicast_ether_addr(hdr->addr1)) {
1843 I802_DEBUG_INC(rx->local->dot11MulticastReceivedFrameCount);
1844 goto out_no_led;
1847 if (likely(!ieee80211_has_morefrags(fc) && frag == 0))
1848 goto out;
1850 I802_DEBUG_INC(rx->local->rx_handlers_fragments);
1852 if (skb_linearize(rx->skb))
1853 return RX_DROP_UNUSABLE;
1856 * skb_linearize() might change the skb->data and
1857 * previously cached variables (in this case, hdr) need to
1858 * be refreshed with the new data.
1860 hdr = (struct ieee80211_hdr *)rx->skb->data;
1861 seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
1863 if (frag == 0) {
1864 /* This is the first fragment of a new frame. */
1865 entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
1866 rx->seqno_idx, &(rx->skb));
1867 if (rx->key &&
1868 (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP ||
1869 rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256 ||
1870 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP ||
1871 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP_256) &&
1872 ieee80211_has_protected(fc)) {
1873 int queue = rx->security_idx;
1875 /* Store CCMP/GCMP PN so that we can verify that the
1876 * next fragment has a sequential PN value.
1878 entry->check_sequential_pn = true;
1879 memcpy(entry->last_pn,
1880 rx->key->u.ccmp.rx_pn[queue],
1881 IEEE80211_CCMP_PN_LEN);
1882 BUILD_BUG_ON(offsetof(struct ieee80211_key,
1883 u.ccmp.rx_pn) !=
1884 offsetof(struct ieee80211_key,
1885 u.gcmp.rx_pn));
1886 BUILD_BUG_ON(sizeof(rx->key->u.ccmp.rx_pn[queue]) !=
1887 sizeof(rx->key->u.gcmp.rx_pn[queue]));
1888 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN !=
1889 IEEE80211_GCMP_PN_LEN);
1891 return RX_QUEUED;
1894 /* This is a fragment for a frame that should already be pending in
1895 * fragment cache. Add this fragment to the end of the pending entry.
1897 entry = ieee80211_reassemble_find(rx->sdata, frag, seq,
1898 rx->seqno_idx, hdr);
1899 if (!entry) {
1900 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1901 return RX_DROP_MONITOR;
1904 /* "The receiver shall discard MSDUs and MMPDUs whose constituent
1905 * MPDU PN values are not incrementing in steps of 1."
1906 * see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP)
1907 * and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP)
1909 if (entry->check_sequential_pn) {
1910 int i;
1911 u8 pn[IEEE80211_CCMP_PN_LEN], *rpn;
1912 int queue;
1914 if (!rx->key ||
1915 (rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP &&
1916 rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP_256 &&
1917 rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP &&
1918 rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP_256))
1919 return RX_DROP_UNUSABLE;
1920 memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN);
1921 for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) {
1922 pn[i]++;
1923 if (pn[i])
1924 break;
1926 queue = rx->security_idx;
1927 rpn = rx->key->u.ccmp.rx_pn[queue];
1928 if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN))
1929 return RX_DROP_UNUSABLE;
1930 memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN);
1933 skb_pull(rx->skb, ieee80211_hdrlen(fc));
1934 __skb_queue_tail(&entry->skb_list, rx->skb);
1935 entry->last_frag = frag;
1936 entry->extra_len += rx->skb->len;
1937 if (ieee80211_has_morefrags(fc)) {
1938 rx->skb = NULL;
1939 return RX_QUEUED;
1942 rx->skb = __skb_dequeue(&entry->skb_list);
1943 if (skb_tailroom(rx->skb) < entry->extra_len) {
1944 I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag);
1945 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
1946 GFP_ATOMIC))) {
1947 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1948 __skb_queue_purge(&entry->skb_list);
1949 return RX_DROP_UNUSABLE;
1952 while ((skb = __skb_dequeue(&entry->skb_list))) {
1953 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
1954 dev_kfree_skb(skb);
1957 /* Complete frame has been reassembled - process it now */
1958 status = IEEE80211_SKB_RXCB(rx->skb);
1960 out:
1961 ieee80211_led_rx(rx->local);
1962 out_no_led:
1963 if (rx->sta)
1964 rx->sta->rx_stats.packets++;
1965 return RX_CONTINUE;
1968 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
1970 if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
1971 return -EACCES;
1973 return 0;
1976 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
1978 struct sk_buff *skb = rx->skb;
1979 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1982 * Pass through unencrypted frames if the hardware has
1983 * decrypted them already.
1985 if (status->flag & RX_FLAG_DECRYPTED)
1986 return 0;
1988 /* Drop unencrypted frames if key is set. */
1989 if (unlikely(!ieee80211_has_protected(fc) &&
1990 !ieee80211_is_nullfunc(fc) &&
1991 ieee80211_is_data(fc) && rx->key))
1992 return -EACCES;
1994 return 0;
1997 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
1999 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2000 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2001 __le16 fc = hdr->frame_control;
2004 * Pass through unencrypted frames if the hardware has
2005 * decrypted them already.
2007 if (status->flag & RX_FLAG_DECRYPTED)
2008 return 0;
2010 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) {
2011 if (unlikely(!ieee80211_has_protected(fc) &&
2012 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
2013 rx->key)) {
2014 if (ieee80211_is_deauth(fc) ||
2015 ieee80211_is_disassoc(fc))
2016 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2017 rx->skb->data,
2018 rx->skb->len);
2019 return -EACCES;
2021 /* BIP does not use Protected field, so need to check MMIE */
2022 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
2023 ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
2024 if (ieee80211_is_deauth(fc) ||
2025 ieee80211_is_disassoc(fc))
2026 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2027 rx->skb->data,
2028 rx->skb->len);
2029 return -EACCES;
2032 * When using MFP, Action frames are not allowed prior to
2033 * having configured keys.
2035 if (unlikely(ieee80211_is_action(fc) && !rx->key &&
2036 ieee80211_is_robust_mgmt_frame(rx->skb)))
2037 return -EACCES;
2040 return 0;
2043 static int
2044 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
2046 struct ieee80211_sub_if_data *sdata = rx->sdata;
2047 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2048 bool check_port_control = false;
2049 struct ethhdr *ehdr;
2050 int ret;
2052 *port_control = false;
2053 if (ieee80211_has_a4(hdr->frame_control) &&
2054 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
2055 return -1;
2057 if (sdata->vif.type == NL80211_IFTYPE_STATION &&
2058 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
2060 if (!sdata->u.mgd.use_4addr)
2061 return -1;
2062 else
2063 check_port_control = true;
2066 if (is_multicast_ether_addr(hdr->addr1) &&
2067 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
2068 return -1;
2070 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
2071 if (ret < 0)
2072 return ret;
2074 ehdr = (struct ethhdr *) rx->skb->data;
2075 if (ehdr->h_proto == rx->sdata->control_port_protocol)
2076 *port_control = true;
2077 else if (check_port_control)
2078 return -1;
2080 return 0;
2084 * requires that rx->skb is a frame with ethernet header
2086 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
2088 static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
2089 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
2090 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2093 * Allow EAPOL frames to us/the PAE group address regardless
2094 * of whether the frame was encrypted or not.
2096 if (ehdr->h_proto == rx->sdata->control_port_protocol &&
2097 (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) ||
2098 ether_addr_equal(ehdr->h_dest, pae_group_addr)))
2099 return true;
2101 if (ieee80211_802_1x_port_control(rx) ||
2102 ieee80211_drop_unencrypted(rx, fc))
2103 return false;
2105 return true;
2109 * requires that rx->skb is a frame with ethernet header
2111 static void
2112 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
2114 struct ieee80211_sub_if_data *sdata = rx->sdata;
2115 struct net_device *dev = sdata->dev;
2116 struct sk_buff *skb, *xmit_skb;
2117 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2118 struct sta_info *dsta;
2120 skb = rx->skb;
2121 xmit_skb = NULL;
2123 ieee80211_rx_stats(dev, skb->len);
2125 if (rx->sta) {
2126 /* The seqno index has the same property as needed
2127 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
2128 * for non-QoS-data frames. Here we know it's a data
2129 * frame, so count MSDUs.
2131 u64_stats_update_begin(&rx->sta->rx_stats.syncp);
2132 rx->sta->rx_stats.msdu[rx->seqno_idx]++;
2133 u64_stats_update_end(&rx->sta->rx_stats.syncp);
2136 if ((sdata->vif.type == NL80211_IFTYPE_AP ||
2137 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
2138 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
2139 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
2140 if (is_multicast_ether_addr(ehdr->h_dest)) {
2142 * send multicast frames both to higher layers in
2143 * local net stack and back to the wireless medium
2145 xmit_skb = skb_copy(skb, GFP_ATOMIC);
2146 if (!xmit_skb)
2147 net_info_ratelimited("%s: failed to clone multicast frame\n",
2148 dev->name);
2149 } else {
2150 dsta = sta_info_get(sdata, skb->data);
2151 if (dsta) {
2153 * The destination station is associated to
2154 * this AP (in this VLAN), so send the frame
2155 * directly to it and do not pass it to local
2156 * net stack.
2158 xmit_skb = skb;
2159 skb = NULL;
2164 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2165 if (skb) {
2166 /* 'align' will only take the values 0 or 2 here since all
2167 * frames are required to be aligned to 2-byte boundaries
2168 * when being passed to mac80211; the code here works just
2169 * as well if that isn't true, but mac80211 assumes it can
2170 * access fields as 2-byte aligned (e.g. for ether_addr_equal)
2172 int align;
2174 align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3;
2175 if (align) {
2176 if (WARN_ON(skb_headroom(skb) < 3)) {
2177 dev_kfree_skb(skb);
2178 skb = NULL;
2179 } else {
2180 u8 *data = skb->data;
2181 size_t len = skb_headlen(skb);
2182 skb->data -= align;
2183 memmove(skb->data, data, len);
2184 skb_set_tail_pointer(skb, len);
2188 #endif
2190 if (skb) {
2191 /* deliver to local stack */
2192 skb->protocol = eth_type_trans(skb, dev);
2193 memset(skb->cb, 0, sizeof(skb->cb));
2194 if (rx->napi)
2195 napi_gro_receive(rx->napi, skb);
2196 else
2197 netif_receive_skb(skb);
2200 if (xmit_skb) {
2202 * Send to wireless media and increase priority by 256 to
2203 * keep the received priority instead of reclassifying
2204 * the frame (see cfg80211_classify8021d).
2206 xmit_skb->priority += 256;
2207 xmit_skb->protocol = htons(ETH_P_802_3);
2208 skb_reset_network_header(xmit_skb);
2209 skb_reset_mac_header(xmit_skb);
2210 dev_queue_xmit(xmit_skb);
2214 static ieee80211_rx_result debug_noinline
2215 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
2217 struct net_device *dev = rx->sdata->dev;
2218 struct sk_buff *skb = rx->skb;
2219 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2220 __le16 fc = hdr->frame_control;
2221 struct sk_buff_head frame_list;
2222 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2224 if (unlikely(!ieee80211_is_data(fc)))
2225 return RX_CONTINUE;
2227 if (unlikely(!ieee80211_is_data_present(fc)))
2228 return RX_DROP_MONITOR;
2230 if (!(status->rx_flags & IEEE80211_RX_AMSDU))
2231 return RX_CONTINUE;
2233 if (ieee80211_has_a4(hdr->frame_control) &&
2234 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2235 !rx->sdata->u.vlan.sta)
2236 return RX_DROP_UNUSABLE;
2238 if (is_multicast_ether_addr(hdr->addr1) &&
2239 ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2240 rx->sdata->u.vlan.sta) ||
2241 (rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
2242 rx->sdata->u.mgd.use_4addr)))
2243 return RX_DROP_UNUSABLE;
2245 skb->dev = dev;
2246 __skb_queue_head_init(&frame_list);
2248 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
2249 rx->sdata->vif.type,
2250 rx->local->hw.extra_tx_headroom, true);
2252 while (!skb_queue_empty(&frame_list)) {
2253 rx->skb = __skb_dequeue(&frame_list);
2255 if (!ieee80211_frame_allowed(rx, fc)) {
2256 dev_kfree_skb(rx->skb);
2257 continue;
2260 ieee80211_deliver_skb(rx);
2263 return RX_QUEUED;
2266 #ifdef CONFIG_MAC80211_MESH
2267 static ieee80211_rx_result
2268 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
2270 struct ieee80211_hdr *fwd_hdr, *hdr;
2271 struct ieee80211_tx_info *info;
2272 struct ieee80211s_hdr *mesh_hdr;
2273 struct sk_buff *skb = rx->skb, *fwd_skb;
2274 struct ieee80211_local *local = rx->local;
2275 struct ieee80211_sub_if_data *sdata = rx->sdata;
2276 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
2277 u16 ac, q, hdrlen;
2279 hdr = (struct ieee80211_hdr *) skb->data;
2280 hdrlen = ieee80211_hdrlen(hdr->frame_control);
2282 /* make sure fixed part of mesh header is there, also checks skb len */
2283 if (!pskb_may_pull(rx->skb, hdrlen + 6))
2284 return RX_DROP_MONITOR;
2286 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2288 /* make sure full mesh header is there, also checks skb len */
2289 if (!pskb_may_pull(rx->skb,
2290 hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr)))
2291 return RX_DROP_MONITOR;
2293 /* reload pointers */
2294 hdr = (struct ieee80211_hdr *) skb->data;
2295 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2297 if (ieee80211_drop_unencrypted(rx, hdr->frame_control))
2298 return RX_DROP_MONITOR;
2300 /* frame is in RMC, don't forward */
2301 if (ieee80211_is_data(hdr->frame_control) &&
2302 is_multicast_ether_addr(hdr->addr1) &&
2303 mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr))
2304 return RX_DROP_MONITOR;
2306 if (!ieee80211_is_data(hdr->frame_control))
2307 return RX_CONTINUE;
2309 if (!mesh_hdr->ttl)
2310 return RX_DROP_MONITOR;
2312 if (mesh_hdr->flags & MESH_FLAGS_AE) {
2313 struct mesh_path *mppath;
2314 char *proxied_addr;
2315 char *mpp_addr;
2317 if (is_multicast_ether_addr(hdr->addr1)) {
2318 mpp_addr = hdr->addr3;
2319 proxied_addr = mesh_hdr->eaddr1;
2320 } else if (mesh_hdr->flags & MESH_FLAGS_AE_A5_A6) {
2321 /* has_a4 already checked in ieee80211_rx_mesh_check */
2322 mpp_addr = hdr->addr4;
2323 proxied_addr = mesh_hdr->eaddr2;
2324 } else {
2325 return RX_DROP_MONITOR;
2328 rcu_read_lock();
2329 mppath = mpp_path_lookup(sdata, proxied_addr);
2330 if (!mppath) {
2331 mpp_path_add(sdata, proxied_addr, mpp_addr);
2332 } else {
2333 spin_lock_bh(&mppath->state_lock);
2334 if (!ether_addr_equal(mppath->mpp, mpp_addr))
2335 memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
2336 mppath->exp_time = jiffies;
2337 spin_unlock_bh(&mppath->state_lock);
2339 rcu_read_unlock();
2342 /* Frame has reached destination. Don't forward */
2343 if (!is_multicast_ether_addr(hdr->addr1) &&
2344 ether_addr_equal(sdata->vif.addr, hdr->addr3))
2345 return RX_CONTINUE;
2347 ac = ieee80211_select_queue_80211(sdata, skb, hdr);
2348 q = sdata->vif.hw_queue[ac];
2349 if (ieee80211_queue_stopped(&local->hw, q)) {
2350 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion);
2351 return RX_DROP_MONITOR;
2353 skb_set_queue_mapping(skb, q);
2355 if (!--mesh_hdr->ttl) {
2356 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl);
2357 goto out;
2360 if (!ifmsh->mshcfg.dot11MeshForwarding)
2361 goto out;
2363 fwd_skb = skb_copy(skb, GFP_ATOMIC);
2364 if (!fwd_skb) {
2365 net_info_ratelimited("%s: failed to clone mesh frame\n",
2366 sdata->name);
2367 goto out;
2370 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data;
2371 fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY);
2372 info = IEEE80211_SKB_CB(fwd_skb);
2373 memset(info, 0, sizeof(*info));
2374 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
2375 info->control.vif = &rx->sdata->vif;
2376 info->control.jiffies = jiffies;
2377 if (is_multicast_ether_addr(fwd_hdr->addr1)) {
2378 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast);
2379 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
2380 /* update power mode indication when forwarding */
2381 ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr);
2382 } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) {
2383 /* mesh power mode flags updated in mesh_nexthop_lookup */
2384 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast);
2385 } else {
2386 /* unable to resolve next hop */
2387 mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl,
2388 fwd_hdr->addr3, 0,
2389 WLAN_REASON_MESH_PATH_NOFORWARD,
2390 fwd_hdr->addr2);
2391 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route);
2392 kfree_skb(fwd_skb);
2393 return RX_DROP_MONITOR;
2396 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames);
2397 ieee80211_add_pending_skb(local, fwd_skb);
2398 out:
2399 if (is_multicast_ether_addr(hdr->addr1))
2400 return RX_CONTINUE;
2401 return RX_DROP_MONITOR;
2403 #endif
2405 static ieee80211_rx_result debug_noinline
2406 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
2408 struct ieee80211_sub_if_data *sdata = rx->sdata;
2409 struct ieee80211_local *local = rx->local;
2410 struct net_device *dev = sdata->dev;
2411 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2412 __le16 fc = hdr->frame_control;
2413 bool port_control;
2414 int err;
2416 if (unlikely(!ieee80211_is_data(hdr->frame_control)))
2417 return RX_CONTINUE;
2419 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
2420 return RX_DROP_MONITOR;
2423 * Send unexpected-4addr-frame event to hostapd. For older versions,
2424 * also drop the frame to cooked monitor interfaces.
2426 if (ieee80211_has_a4(hdr->frame_control) &&
2427 sdata->vif.type == NL80211_IFTYPE_AP) {
2428 if (rx->sta &&
2429 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT))
2430 cfg80211_rx_unexpected_4addr_frame(
2431 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC);
2432 return RX_DROP_MONITOR;
2435 err = __ieee80211_data_to_8023(rx, &port_control);
2436 if (unlikely(err))
2437 return RX_DROP_UNUSABLE;
2439 if (!ieee80211_frame_allowed(rx, fc))
2440 return RX_DROP_MONITOR;
2442 /* directly handle TDLS channel switch requests/responses */
2443 if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto ==
2444 cpu_to_be16(ETH_P_TDLS))) {
2445 struct ieee80211_tdls_data *tf = (void *)rx->skb->data;
2447 if (pskb_may_pull(rx->skb,
2448 offsetof(struct ieee80211_tdls_data, u)) &&
2449 tf->payload_type == WLAN_TDLS_SNAP_RFTYPE &&
2450 tf->category == WLAN_CATEGORY_TDLS &&
2451 (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST ||
2452 tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) {
2453 skb_queue_tail(&local->skb_queue_tdls_chsw, rx->skb);
2454 schedule_work(&local->tdls_chsw_work);
2455 if (rx->sta)
2456 rx->sta->rx_stats.packets++;
2458 return RX_QUEUED;
2462 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2463 unlikely(port_control) && sdata->bss) {
2464 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
2465 u.ap);
2466 dev = sdata->dev;
2467 rx->sdata = sdata;
2470 rx->skb->dev = dev;
2472 if (!ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS) &&
2473 local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
2474 !is_multicast_ether_addr(
2475 ((struct ethhdr *)rx->skb->data)->h_dest) &&
2476 (!local->scanning &&
2477 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state)))
2478 mod_timer(&local->dynamic_ps_timer, jiffies +
2479 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
2481 ieee80211_deliver_skb(rx);
2483 return RX_QUEUED;
2486 static ieee80211_rx_result debug_noinline
2487 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
2489 struct sk_buff *skb = rx->skb;
2490 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
2491 struct tid_ampdu_rx *tid_agg_rx;
2492 u16 start_seq_num;
2493 u16 tid;
2495 if (likely(!ieee80211_is_ctl(bar->frame_control)))
2496 return RX_CONTINUE;
2498 if (ieee80211_is_back_req(bar->frame_control)) {
2499 struct {
2500 __le16 control, start_seq_num;
2501 } __packed bar_data;
2502 struct ieee80211_event event = {
2503 .type = BAR_RX_EVENT,
2506 if (!rx->sta)
2507 return RX_DROP_MONITOR;
2509 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
2510 &bar_data, sizeof(bar_data)))
2511 return RX_DROP_MONITOR;
2513 tid = le16_to_cpu(bar_data.control) >> 12;
2515 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
2516 if (!tid_agg_rx)
2517 return RX_DROP_MONITOR;
2519 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
2520 event.u.ba.tid = tid;
2521 event.u.ba.ssn = start_seq_num;
2522 event.u.ba.sta = &rx->sta->sta;
2524 /* reset session timer */
2525 if (tid_agg_rx->timeout)
2526 mod_timer(&tid_agg_rx->session_timer,
2527 TU_TO_EXP_TIME(tid_agg_rx->timeout));
2529 spin_lock(&tid_agg_rx->reorder_lock);
2530 /* release stored frames up to start of BAR */
2531 ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx,
2532 start_seq_num, frames);
2533 spin_unlock(&tid_agg_rx->reorder_lock);
2535 drv_event_callback(rx->local, rx->sdata, &event);
2537 kfree_skb(skb);
2538 return RX_QUEUED;
2542 * After this point, we only want management frames,
2543 * so we can drop all remaining control frames to
2544 * cooked monitor interfaces.
2546 return RX_DROP_MONITOR;
2549 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
2550 struct ieee80211_mgmt *mgmt,
2551 size_t len)
2553 struct ieee80211_local *local = sdata->local;
2554 struct sk_buff *skb;
2555 struct ieee80211_mgmt *resp;
2557 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) {
2558 /* Not to own unicast address */
2559 return;
2562 if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) ||
2563 !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) {
2564 /* Not from the current AP or not associated yet. */
2565 return;
2568 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
2569 /* Too short SA Query request frame */
2570 return;
2573 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
2574 if (skb == NULL)
2575 return;
2577 skb_reserve(skb, local->hw.extra_tx_headroom);
2578 resp = (struct ieee80211_mgmt *) skb_put(skb, 24);
2579 memset(resp, 0, 24);
2580 memcpy(resp->da, mgmt->sa, ETH_ALEN);
2581 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
2582 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
2583 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2584 IEEE80211_STYPE_ACTION);
2585 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
2586 resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
2587 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
2588 memcpy(resp->u.action.u.sa_query.trans_id,
2589 mgmt->u.action.u.sa_query.trans_id,
2590 WLAN_SA_QUERY_TR_ID_LEN);
2592 ieee80211_tx_skb(sdata, skb);
2595 static ieee80211_rx_result debug_noinline
2596 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
2598 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2599 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2602 * From here on, look only at management frames.
2603 * Data and control frames are already handled,
2604 * and unknown (reserved) frames are useless.
2606 if (rx->skb->len < 24)
2607 return RX_DROP_MONITOR;
2609 if (!ieee80211_is_mgmt(mgmt->frame_control))
2610 return RX_DROP_MONITOR;
2612 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
2613 ieee80211_is_beacon(mgmt->frame_control) &&
2614 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) {
2615 int sig = 0;
2617 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM))
2618 sig = status->signal;
2620 cfg80211_report_obss_beacon(rx->local->hw.wiphy,
2621 rx->skb->data, rx->skb->len,
2622 status->freq, sig);
2623 rx->flags |= IEEE80211_RX_BEACON_REPORTED;
2626 if (ieee80211_drop_unencrypted_mgmt(rx))
2627 return RX_DROP_UNUSABLE;
2629 return RX_CONTINUE;
2632 static ieee80211_rx_result debug_noinline
2633 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
2635 struct ieee80211_local *local = rx->local;
2636 struct ieee80211_sub_if_data *sdata = rx->sdata;
2637 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2638 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2639 int len = rx->skb->len;
2641 if (!ieee80211_is_action(mgmt->frame_control))
2642 return RX_CONTINUE;
2644 /* drop too small frames */
2645 if (len < IEEE80211_MIN_ACTION_SIZE)
2646 return RX_DROP_UNUSABLE;
2648 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC &&
2649 mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED &&
2650 mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT)
2651 return RX_DROP_UNUSABLE;
2653 switch (mgmt->u.action.category) {
2654 case WLAN_CATEGORY_HT:
2655 /* reject HT action frames from stations not supporting HT */
2656 if (!rx->sta->sta.ht_cap.ht_supported)
2657 goto invalid;
2659 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2660 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2661 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2662 sdata->vif.type != NL80211_IFTYPE_AP &&
2663 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2664 break;
2666 /* verify action & smps_control/chanwidth are present */
2667 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2668 goto invalid;
2670 switch (mgmt->u.action.u.ht_smps.action) {
2671 case WLAN_HT_ACTION_SMPS: {
2672 struct ieee80211_supported_band *sband;
2673 enum ieee80211_smps_mode smps_mode;
2675 /* convert to HT capability */
2676 switch (mgmt->u.action.u.ht_smps.smps_control) {
2677 case WLAN_HT_SMPS_CONTROL_DISABLED:
2678 smps_mode = IEEE80211_SMPS_OFF;
2679 break;
2680 case WLAN_HT_SMPS_CONTROL_STATIC:
2681 smps_mode = IEEE80211_SMPS_STATIC;
2682 break;
2683 case WLAN_HT_SMPS_CONTROL_DYNAMIC:
2684 smps_mode = IEEE80211_SMPS_DYNAMIC;
2685 break;
2686 default:
2687 goto invalid;
2690 /* if no change do nothing */
2691 if (rx->sta->sta.smps_mode == smps_mode)
2692 goto handled;
2693 rx->sta->sta.smps_mode = smps_mode;
2695 sband = rx->local->hw.wiphy->bands[status->band];
2697 rate_control_rate_update(local, sband, rx->sta,
2698 IEEE80211_RC_SMPS_CHANGED);
2699 goto handled;
2701 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: {
2702 struct ieee80211_supported_band *sband;
2703 u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth;
2704 enum ieee80211_sta_rx_bandwidth max_bw, new_bw;
2706 /* If it doesn't support 40 MHz it can't change ... */
2707 if (!(rx->sta->sta.ht_cap.cap &
2708 IEEE80211_HT_CAP_SUP_WIDTH_20_40))
2709 goto handled;
2711 if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ)
2712 max_bw = IEEE80211_STA_RX_BW_20;
2713 else
2714 max_bw = ieee80211_sta_cap_rx_bw(rx->sta);
2716 /* set cur_max_bandwidth and recalc sta bw */
2717 rx->sta->cur_max_bandwidth = max_bw;
2718 new_bw = ieee80211_sta_cur_vht_bw(rx->sta);
2720 if (rx->sta->sta.bandwidth == new_bw)
2721 goto handled;
2723 rx->sta->sta.bandwidth = new_bw;
2724 sband = rx->local->hw.wiphy->bands[status->band];
2726 rate_control_rate_update(local, sband, rx->sta,
2727 IEEE80211_RC_BW_CHANGED);
2728 goto handled;
2730 default:
2731 goto invalid;
2734 break;
2735 case WLAN_CATEGORY_PUBLIC:
2736 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2737 goto invalid;
2738 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2739 break;
2740 if (!rx->sta)
2741 break;
2742 if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid))
2743 break;
2744 if (mgmt->u.action.u.ext_chan_switch.action_code !=
2745 WLAN_PUB_ACTION_EXT_CHANSW_ANN)
2746 break;
2747 if (len < offsetof(struct ieee80211_mgmt,
2748 u.action.u.ext_chan_switch.variable))
2749 goto invalid;
2750 goto queue;
2751 case WLAN_CATEGORY_VHT:
2752 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2753 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2754 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2755 sdata->vif.type != NL80211_IFTYPE_AP &&
2756 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2757 break;
2759 /* verify action code is present */
2760 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2761 goto invalid;
2763 switch (mgmt->u.action.u.vht_opmode_notif.action_code) {
2764 case WLAN_VHT_ACTION_OPMODE_NOTIF: {
2765 u8 opmode;
2767 /* verify opmode is present */
2768 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2769 goto invalid;
2771 opmode = mgmt->u.action.u.vht_opmode_notif.operating_mode;
2773 ieee80211_vht_handle_opmode(rx->sdata, rx->sta,
2774 opmode, status->band);
2775 goto handled;
2777 case WLAN_VHT_ACTION_GROUPID_MGMT: {
2778 if (len < IEEE80211_MIN_ACTION_SIZE + 25)
2779 goto invalid;
2780 goto queue;
2782 default:
2783 break;
2785 break;
2786 case WLAN_CATEGORY_BACK:
2787 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2788 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2789 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2790 sdata->vif.type != NL80211_IFTYPE_AP &&
2791 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2792 break;
2794 /* verify action_code is present */
2795 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2796 break;
2798 switch (mgmt->u.action.u.addba_req.action_code) {
2799 case WLAN_ACTION_ADDBA_REQ:
2800 if (len < (IEEE80211_MIN_ACTION_SIZE +
2801 sizeof(mgmt->u.action.u.addba_req)))
2802 goto invalid;
2803 break;
2804 case WLAN_ACTION_ADDBA_RESP:
2805 if (len < (IEEE80211_MIN_ACTION_SIZE +
2806 sizeof(mgmt->u.action.u.addba_resp)))
2807 goto invalid;
2808 break;
2809 case WLAN_ACTION_DELBA:
2810 if (len < (IEEE80211_MIN_ACTION_SIZE +
2811 sizeof(mgmt->u.action.u.delba)))
2812 goto invalid;
2813 break;
2814 default:
2815 goto invalid;
2818 goto queue;
2819 case WLAN_CATEGORY_SPECTRUM_MGMT:
2820 /* verify action_code is present */
2821 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2822 break;
2824 switch (mgmt->u.action.u.measurement.action_code) {
2825 case WLAN_ACTION_SPCT_MSR_REQ:
2826 if (status->band != NL80211_BAND_5GHZ)
2827 break;
2829 if (len < (IEEE80211_MIN_ACTION_SIZE +
2830 sizeof(mgmt->u.action.u.measurement)))
2831 break;
2833 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2834 break;
2836 ieee80211_process_measurement_req(sdata, mgmt, len);
2837 goto handled;
2838 case WLAN_ACTION_SPCT_CHL_SWITCH: {
2839 u8 *bssid;
2840 if (len < (IEEE80211_MIN_ACTION_SIZE +
2841 sizeof(mgmt->u.action.u.chan_switch)))
2842 break;
2844 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2845 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2846 sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
2847 break;
2849 if (sdata->vif.type == NL80211_IFTYPE_STATION)
2850 bssid = sdata->u.mgd.bssid;
2851 else if (sdata->vif.type == NL80211_IFTYPE_ADHOC)
2852 bssid = sdata->u.ibss.bssid;
2853 else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
2854 bssid = mgmt->sa;
2855 else
2856 break;
2858 if (!ether_addr_equal(mgmt->bssid, bssid))
2859 break;
2861 goto queue;
2864 break;
2865 case WLAN_CATEGORY_SA_QUERY:
2866 if (len < (IEEE80211_MIN_ACTION_SIZE +
2867 sizeof(mgmt->u.action.u.sa_query)))
2868 break;
2870 switch (mgmt->u.action.u.sa_query.action) {
2871 case WLAN_ACTION_SA_QUERY_REQUEST:
2872 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2873 break;
2874 ieee80211_process_sa_query_req(sdata, mgmt, len);
2875 goto handled;
2877 break;
2878 case WLAN_CATEGORY_SELF_PROTECTED:
2879 if (len < (IEEE80211_MIN_ACTION_SIZE +
2880 sizeof(mgmt->u.action.u.self_prot.action_code)))
2881 break;
2883 switch (mgmt->u.action.u.self_prot.action_code) {
2884 case WLAN_SP_MESH_PEERING_OPEN:
2885 case WLAN_SP_MESH_PEERING_CLOSE:
2886 case WLAN_SP_MESH_PEERING_CONFIRM:
2887 if (!ieee80211_vif_is_mesh(&sdata->vif))
2888 goto invalid;
2889 if (sdata->u.mesh.user_mpm)
2890 /* userspace handles this frame */
2891 break;
2892 goto queue;
2893 case WLAN_SP_MGK_INFORM:
2894 case WLAN_SP_MGK_ACK:
2895 if (!ieee80211_vif_is_mesh(&sdata->vif))
2896 goto invalid;
2897 break;
2899 break;
2900 case WLAN_CATEGORY_MESH_ACTION:
2901 if (len < (IEEE80211_MIN_ACTION_SIZE +
2902 sizeof(mgmt->u.action.u.mesh_action.action_code)))
2903 break;
2905 if (!ieee80211_vif_is_mesh(&sdata->vif))
2906 break;
2907 if (mesh_action_is_path_sel(mgmt) &&
2908 !mesh_path_sel_is_hwmp(sdata))
2909 break;
2910 goto queue;
2913 return RX_CONTINUE;
2915 invalid:
2916 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
2917 /* will return in the next handlers */
2918 return RX_CONTINUE;
2920 handled:
2921 if (rx->sta)
2922 rx->sta->rx_stats.packets++;
2923 dev_kfree_skb(rx->skb);
2924 return RX_QUEUED;
2926 queue:
2927 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2928 skb_queue_tail(&sdata->skb_queue, rx->skb);
2929 ieee80211_queue_work(&local->hw, &sdata->work);
2930 if (rx->sta)
2931 rx->sta->rx_stats.packets++;
2932 return RX_QUEUED;
2935 static ieee80211_rx_result debug_noinline
2936 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
2938 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2939 int sig = 0;
2941 /* skip known-bad action frames and return them in the next handler */
2942 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
2943 return RX_CONTINUE;
2946 * Getting here means the kernel doesn't know how to handle
2947 * it, but maybe userspace does ... include returned frames
2948 * so userspace can register for those to know whether ones
2949 * it transmitted were processed or returned.
2952 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM))
2953 sig = status->signal;
2955 if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig,
2956 rx->skb->data, rx->skb->len, 0)) {
2957 if (rx->sta)
2958 rx->sta->rx_stats.packets++;
2959 dev_kfree_skb(rx->skb);
2960 return RX_QUEUED;
2963 return RX_CONTINUE;
2966 static ieee80211_rx_result debug_noinline
2967 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
2969 struct ieee80211_local *local = rx->local;
2970 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2971 struct sk_buff *nskb;
2972 struct ieee80211_sub_if_data *sdata = rx->sdata;
2973 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2975 if (!ieee80211_is_action(mgmt->frame_control))
2976 return RX_CONTINUE;
2979 * For AP mode, hostapd is responsible for handling any action
2980 * frames that we didn't handle, including returning unknown
2981 * ones. For all other modes we will return them to the sender,
2982 * setting the 0x80 bit in the action category, as required by
2983 * 802.11-2012 9.24.4.
2984 * Newer versions of hostapd shall also use the management frame
2985 * registration mechanisms, but older ones still use cooked
2986 * monitor interfaces so push all frames there.
2988 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
2989 (sdata->vif.type == NL80211_IFTYPE_AP ||
2990 sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
2991 return RX_DROP_MONITOR;
2993 if (is_multicast_ether_addr(mgmt->da))
2994 return RX_DROP_MONITOR;
2996 /* do not return rejected action frames */
2997 if (mgmt->u.action.category & 0x80)
2998 return RX_DROP_UNUSABLE;
3000 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
3001 GFP_ATOMIC);
3002 if (nskb) {
3003 struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
3005 nmgmt->u.action.category |= 0x80;
3006 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
3007 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
3009 memset(nskb->cb, 0, sizeof(nskb->cb));
3011 if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) {
3012 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb);
3014 info->flags = IEEE80211_TX_CTL_TX_OFFCHAN |
3015 IEEE80211_TX_INTFL_OFFCHAN_TX_OK |
3016 IEEE80211_TX_CTL_NO_CCK_RATE;
3017 if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL))
3018 info->hw_queue =
3019 local->hw.offchannel_tx_hw_queue;
3022 __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7,
3023 status->band);
3025 dev_kfree_skb(rx->skb);
3026 return RX_QUEUED;
3029 static ieee80211_rx_result debug_noinline
3030 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
3032 struct ieee80211_sub_if_data *sdata = rx->sdata;
3033 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
3034 __le16 stype;
3036 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
3038 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
3039 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3040 sdata->vif.type != NL80211_IFTYPE_OCB &&
3041 sdata->vif.type != NL80211_IFTYPE_STATION)
3042 return RX_DROP_MONITOR;
3044 switch (stype) {
3045 case cpu_to_le16(IEEE80211_STYPE_AUTH):
3046 case cpu_to_le16(IEEE80211_STYPE_BEACON):
3047 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
3048 /* process for all: mesh, mlme, ibss */
3049 break;
3050 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP):
3051 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP):
3052 case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
3053 case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
3054 if (is_multicast_ether_addr(mgmt->da) &&
3055 !is_broadcast_ether_addr(mgmt->da))
3056 return RX_DROP_MONITOR;
3058 /* process only for station */
3059 if (sdata->vif.type != NL80211_IFTYPE_STATION)
3060 return RX_DROP_MONITOR;
3061 break;
3062 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
3063 /* process only for ibss and mesh */
3064 if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3065 sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
3066 return RX_DROP_MONITOR;
3067 break;
3068 default:
3069 return RX_DROP_MONITOR;
3072 /* queue up frame and kick off work to process it */
3073 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
3074 skb_queue_tail(&sdata->skb_queue, rx->skb);
3075 ieee80211_queue_work(&rx->local->hw, &sdata->work);
3076 if (rx->sta)
3077 rx->sta->rx_stats.packets++;
3079 return RX_QUEUED;
3082 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
3083 struct ieee80211_rate *rate)
3085 struct ieee80211_sub_if_data *sdata;
3086 struct ieee80211_local *local = rx->local;
3087 struct sk_buff *skb = rx->skb, *skb2;
3088 struct net_device *prev_dev = NULL;
3089 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3090 int needed_headroom;
3093 * If cooked monitor has been processed already, then
3094 * don't do it again. If not, set the flag.
3096 if (rx->flags & IEEE80211_RX_CMNTR)
3097 goto out_free_skb;
3098 rx->flags |= IEEE80211_RX_CMNTR;
3100 /* If there are no cooked monitor interfaces, just free the SKB */
3101 if (!local->cooked_mntrs)
3102 goto out_free_skb;
3104 /* vendor data is long removed here */
3105 status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA;
3106 /* room for the radiotap header based on driver features */
3107 needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb);
3109 if (skb_headroom(skb) < needed_headroom &&
3110 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC))
3111 goto out_free_skb;
3113 /* prepend radiotap information */
3114 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
3115 false);
3117 skb_reset_mac_header(skb);
3118 skb->ip_summed = CHECKSUM_UNNECESSARY;
3119 skb->pkt_type = PACKET_OTHERHOST;
3120 skb->protocol = htons(ETH_P_802_2);
3122 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3123 if (!ieee80211_sdata_running(sdata))
3124 continue;
3126 if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
3127 !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES))
3128 continue;
3130 if (prev_dev) {
3131 skb2 = skb_clone(skb, GFP_ATOMIC);
3132 if (skb2) {
3133 skb2->dev = prev_dev;
3134 netif_receive_skb(skb2);
3138 prev_dev = sdata->dev;
3139 ieee80211_rx_stats(sdata->dev, skb->len);
3142 if (prev_dev) {
3143 skb->dev = prev_dev;
3144 netif_receive_skb(skb);
3145 return;
3148 out_free_skb:
3149 dev_kfree_skb(skb);
3152 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
3153 ieee80211_rx_result res)
3155 switch (res) {
3156 case RX_DROP_MONITOR:
3157 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3158 if (rx->sta)
3159 rx->sta->rx_stats.dropped++;
3160 /* fall through */
3161 case RX_CONTINUE: {
3162 struct ieee80211_rate *rate = NULL;
3163 struct ieee80211_supported_band *sband;
3164 struct ieee80211_rx_status *status;
3166 status = IEEE80211_SKB_RXCB((rx->skb));
3168 sband = rx->local->hw.wiphy->bands[status->band];
3169 if (!(status->flag & RX_FLAG_HT) &&
3170 !(status->flag & RX_FLAG_VHT))
3171 rate = &sband->bitrates[status->rate_idx];
3173 ieee80211_rx_cooked_monitor(rx, rate);
3174 break;
3176 case RX_DROP_UNUSABLE:
3177 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3178 if (rx->sta)
3179 rx->sta->rx_stats.dropped++;
3180 dev_kfree_skb(rx->skb);
3181 break;
3182 case RX_QUEUED:
3183 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
3184 break;
3188 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx,
3189 struct sk_buff_head *frames)
3191 ieee80211_rx_result res = RX_DROP_MONITOR;
3192 struct sk_buff *skb;
3194 #define CALL_RXH(rxh) \
3195 do { \
3196 res = rxh(rx); \
3197 if (res != RX_CONTINUE) \
3198 goto rxh_next; \
3199 } while (0)
3201 /* Lock here to avoid hitting all of the data used in the RX
3202 * path (e.g. key data, station data, ...) concurrently when
3203 * a frame is released from the reorder buffer due to timeout
3204 * from the timer, potentially concurrently with RX from the
3205 * driver.
3207 spin_lock_bh(&rx->local->rx_path_lock);
3209 while ((skb = __skb_dequeue(frames))) {
3211 * all the other fields are valid across frames
3212 * that belong to an aMPDU since they are on the
3213 * same TID from the same station
3215 rx->skb = skb;
3217 CALL_RXH(ieee80211_rx_h_check_more_data);
3218 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll);
3219 CALL_RXH(ieee80211_rx_h_sta_process);
3220 CALL_RXH(ieee80211_rx_h_decrypt);
3221 CALL_RXH(ieee80211_rx_h_defragment);
3222 CALL_RXH(ieee80211_rx_h_michael_mic_verify);
3223 /* must be after MMIC verify so header is counted in MPDU mic */
3224 #ifdef CONFIG_MAC80211_MESH
3225 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
3226 CALL_RXH(ieee80211_rx_h_mesh_fwding);
3227 #endif
3228 CALL_RXH(ieee80211_rx_h_amsdu);
3229 CALL_RXH(ieee80211_rx_h_data);
3231 /* special treatment -- needs the queue */
3232 res = ieee80211_rx_h_ctrl(rx, frames);
3233 if (res != RX_CONTINUE)
3234 goto rxh_next;
3236 CALL_RXH(ieee80211_rx_h_mgmt_check);
3237 CALL_RXH(ieee80211_rx_h_action);
3238 CALL_RXH(ieee80211_rx_h_userspace_mgmt);
3239 CALL_RXH(ieee80211_rx_h_action_return);
3240 CALL_RXH(ieee80211_rx_h_mgmt);
3242 rxh_next:
3243 ieee80211_rx_handlers_result(rx, res);
3245 #undef CALL_RXH
3248 spin_unlock_bh(&rx->local->rx_path_lock);
3251 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
3253 struct sk_buff_head reorder_release;
3254 ieee80211_rx_result res = RX_DROP_MONITOR;
3256 __skb_queue_head_init(&reorder_release);
3258 #define CALL_RXH(rxh) \
3259 do { \
3260 res = rxh(rx); \
3261 if (res != RX_CONTINUE) \
3262 goto rxh_next; \
3263 } while (0)
3265 CALL_RXH(ieee80211_rx_h_check_dup);
3266 CALL_RXH(ieee80211_rx_h_check);
3268 ieee80211_rx_reorder_ampdu(rx, &reorder_release);
3270 ieee80211_rx_handlers(rx, &reorder_release);
3271 return;
3273 rxh_next:
3274 ieee80211_rx_handlers_result(rx, res);
3276 #undef CALL_RXH
3280 * This function makes calls into the RX path, therefore
3281 * it has to be invoked under RCU read lock.
3283 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
3285 struct sk_buff_head frames;
3286 struct ieee80211_rx_data rx = {
3287 .sta = sta,
3288 .sdata = sta->sdata,
3289 .local = sta->local,
3290 /* This is OK -- must be QoS data frame */
3291 .security_idx = tid,
3292 .seqno_idx = tid,
3293 .napi = NULL, /* must be NULL to not have races */
3295 struct tid_ampdu_rx *tid_agg_rx;
3297 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3298 if (!tid_agg_rx)
3299 return;
3301 __skb_queue_head_init(&frames);
3303 spin_lock(&tid_agg_rx->reorder_lock);
3304 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3305 spin_unlock(&tid_agg_rx->reorder_lock);
3307 if (!skb_queue_empty(&frames)) {
3308 struct ieee80211_event event = {
3309 .type = BA_FRAME_TIMEOUT,
3310 .u.ba.tid = tid,
3311 .u.ba.sta = &sta->sta,
3313 drv_event_callback(rx.local, rx.sdata, &event);
3316 ieee80211_rx_handlers(&rx, &frames);
3319 void ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta *pubsta, u8 tid,
3320 u16 ssn, u64 filtered,
3321 u16 received_mpdus)
3323 struct sta_info *sta;
3324 struct tid_ampdu_rx *tid_agg_rx;
3325 struct sk_buff_head frames;
3326 struct ieee80211_rx_data rx = {
3327 /* This is OK -- must be QoS data frame */
3328 .security_idx = tid,
3329 .seqno_idx = tid,
3331 int i, diff;
3333 if (WARN_ON(!pubsta || tid >= IEEE80211_NUM_TIDS))
3334 return;
3336 __skb_queue_head_init(&frames);
3338 sta = container_of(pubsta, struct sta_info, sta);
3340 rx.sta = sta;
3341 rx.sdata = sta->sdata;
3342 rx.local = sta->local;
3344 rcu_read_lock();
3345 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3346 if (!tid_agg_rx)
3347 goto out;
3349 spin_lock_bh(&tid_agg_rx->reorder_lock);
3351 if (received_mpdus >= IEEE80211_SN_MODULO >> 1) {
3352 int release;
3354 /* release all frames in the reorder buffer */
3355 release = (tid_agg_rx->head_seq_num + tid_agg_rx->buf_size) %
3356 IEEE80211_SN_MODULO;
3357 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx,
3358 release, &frames);
3359 /* update ssn to match received ssn */
3360 tid_agg_rx->head_seq_num = ssn;
3361 } else {
3362 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, ssn,
3363 &frames);
3366 /* handle the case that received ssn is behind the mac ssn.
3367 * it can be tid_agg_rx->buf_size behind and still be valid */
3368 diff = (tid_agg_rx->head_seq_num - ssn) & IEEE80211_SN_MASK;
3369 if (diff >= tid_agg_rx->buf_size) {
3370 tid_agg_rx->reorder_buf_filtered = 0;
3371 goto release;
3373 filtered = filtered >> diff;
3374 ssn += diff;
3376 /* update bitmap */
3377 for (i = 0; i < tid_agg_rx->buf_size; i++) {
3378 int index = (ssn + i) % tid_agg_rx->buf_size;
3380 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
3381 if (filtered & BIT_ULL(i))
3382 tid_agg_rx->reorder_buf_filtered |= BIT_ULL(index);
3385 /* now process also frames that the filter marking released */
3386 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3388 release:
3389 spin_unlock_bh(&tid_agg_rx->reorder_lock);
3391 ieee80211_rx_handlers(&rx, &frames);
3393 out:
3394 rcu_read_unlock();
3396 EXPORT_SYMBOL(ieee80211_mark_rx_ba_filtered_frames);
3398 /* main receive path */
3400 static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx)
3402 struct ieee80211_sub_if_data *sdata = rx->sdata;
3403 struct sk_buff *skb = rx->skb;
3404 struct ieee80211_hdr *hdr = (void *)skb->data;
3405 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3406 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
3407 int multicast = is_multicast_ether_addr(hdr->addr1);
3409 switch (sdata->vif.type) {
3410 case NL80211_IFTYPE_STATION:
3411 if (!bssid && !sdata->u.mgd.use_4addr)
3412 return false;
3413 if (multicast)
3414 return true;
3415 return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3416 case NL80211_IFTYPE_ADHOC:
3417 if (!bssid)
3418 return false;
3419 if (ether_addr_equal(sdata->vif.addr, hdr->addr2) ||
3420 ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2))
3421 return false;
3422 if (ieee80211_is_beacon(hdr->frame_control))
3423 return true;
3424 if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid))
3425 return false;
3426 if (!multicast &&
3427 !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3428 return false;
3429 if (!rx->sta) {
3430 int rate_idx;
3431 if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT))
3432 rate_idx = 0; /* TODO: HT/VHT rates */
3433 else
3434 rate_idx = status->rate_idx;
3435 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2,
3436 BIT(rate_idx));
3438 return true;
3439 case NL80211_IFTYPE_OCB:
3440 if (!bssid)
3441 return false;
3442 if (!ieee80211_is_data_present(hdr->frame_control))
3443 return false;
3444 if (!is_broadcast_ether_addr(bssid))
3445 return false;
3446 if (!multicast &&
3447 !ether_addr_equal(sdata->dev->dev_addr, hdr->addr1))
3448 return false;
3449 if (!rx->sta) {
3450 int rate_idx;
3451 if (status->flag & RX_FLAG_HT)
3452 rate_idx = 0; /* TODO: HT rates */
3453 else
3454 rate_idx = status->rate_idx;
3455 ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2,
3456 BIT(rate_idx));
3458 return true;
3459 case NL80211_IFTYPE_MESH_POINT:
3460 if (multicast)
3461 return true;
3462 return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3463 case NL80211_IFTYPE_AP_VLAN:
3464 case NL80211_IFTYPE_AP:
3465 if (!bssid)
3466 return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3468 if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) {
3470 * Accept public action frames even when the
3471 * BSSID doesn't match, this is used for P2P
3472 * and location updates. Note that mac80211
3473 * itself never looks at these frames.
3475 if (!multicast &&
3476 !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3477 return false;
3478 if (ieee80211_is_public_action(hdr, skb->len))
3479 return true;
3480 return ieee80211_is_beacon(hdr->frame_control);
3483 if (!ieee80211_has_tods(hdr->frame_control)) {
3484 /* ignore data frames to TDLS-peers */
3485 if (ieee80211_is_data(hdr->frame_control))
3486 return false;
3487 /* ignore action frames to TDLS-peers */
3488 if (ieee80211_is_action(hdr->frame_control) &&
3489 !is_broadcast_ether_addr(bssid) &&
3490 !ether_addr_equal(bssid, hdr->addr1))
3491 return false;
3493 return true;
3494 case NL80211_IFTYPE_WDS:
3495 if (bssid || !ieee80211_is_data(hdr->frame_control))
3496 return false;
3497 return ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2);
3498 case NL80211_IFTYPE_P2P_DEVICE:
3499 return ieee80211_is_public_action(hdr, skb->len) ||
3500 ieee80211_is_probe_req(hdr->frame_control) ||
3501 ieee80211_is_probe_resp(hdr->frame_control) ||
3502 ieee80211_is_beacon(hdr->frame_control);
3503 default:
3504 break;
3507 WARN_ON_ONCE(1);
3508 return false;
3511 void ieee80211_check_fast_rx(struct sta_info *sta)
3513 struct ieee80211_sub_if_data *sdata = sta->sdata;
3514 struct ieee80211_local *local = sdata->local;
3515 struct ieee80211_key *key;
3516 struct ieee80211_fast_rx fastrx = {
3517 .dev = sdata->dev,
3518 .vif_type = sdata->vif.type,
3519 .control_port_protocol = sdata->control_port_protocol,
3520 }, *old, *new = NULL;
3521 bool assign = false;
3523 /* use sparse to check that we don't return without updating */
3524 __acquire(check_fast_rx);
3526 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != sizeof(rfc1042_header));
3527 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != ETH_ALEN);
3528 ether_addr_copy(fastrx.rfc1042_hdr, rfc1042_header);
3529 ether_addr_copy(fastrx.vif_addr, sdata->vif.addr);
3531 fastrx.uses_rss = ieee80211_hw_check(&local->hw, USES_RSS);
3533 /* fast-rx doesn't do reordering */
3534 if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) &&
3535 !ieee80211_hw_check(&local->hw, SUPPORTS_REORDERING_BUFFER))
3536 goto clear;
3538 switch (sdata->vif.type) {
3539 case NL80211_IFTYPE_STATION:
3540 /* 4-addr is harder to deal with, later maybe */
3541 if (sdata->u.mgd.use_4addr)
3542 goto clear;
3543 /* software powersave is a huge mess, avoid all of it */
3544 if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK))
3545 goto clear;
3546 if (ieee80211_hw_check(&local->hw, SUPPORTS_PS) &&
3547 !ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS))
3548 goto clear;
3549 if (sta->sta.tdls) {
3550 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
3551 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
3552 fastrx.expected_ds_bits = 0;
3553 } else {
3554 fastrx.sta_notify = sdata->u.mgd.probe_send_count > 0;
3555 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
3556 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr3);
3557 fastrx.expected_ds_bits =
3558 cpu_to_le16(IEEE80211_FCTL_FROMDS);
3560 break;
3561 case NL80211_IFTYPE_AP_VLAN:
3562 case NL80211_IFTYPE_AP:
3563 /* parallel-rx requires this, at least with calls to
3564 * ieee80211_sta_ps_transition()
3566 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
3567 goto clear;
3568 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3);
3569 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
3570 fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_TODS);
3572 fastrx.internal_forward =
3573 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
3574 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN ||
3575 !sdata->u.vlan.sta);
3576 break;
3577 default:
3578 goto clear;
3581 if (!test_sta_flag(sta, WLAN_STA_AUTHORIZED))
3582 goto clear;
3584 rcu_read_lock();
3585 key = rcu_dereference(sta->ptk[sta->ptk_idx]);
3586 if (key) {
3587 switch (key->conf.cipher) {
3588 case WLAN_CIPHER_SUITE_TKIP:
3589 /* we don't want to deal with MMIC in fast-rx */
3590 goto clear_rcu;
3591 case WLAN_CIPHER_SUITE_CCMP:
3592 case WLAN_CIPHER_SUITE_CCMP_256:
3593 case WLAN_CIPHER_SUITE_GCMP:
3594 case WLAN_CIPHER_SUITE_GCMP_256:
3595 break;
3596 default:
3597 /* we also don't want to deal with WEP or cipher scheme
3598 * since those require looking up the key idx in the
3599 * frame, rather than assuming the PTK is used
3600 * (we need to revisit this once we implement the real
3601 * PTK index, which is now valid in the spec, but we
3602 * haven't implemented that part yet)
3604 goto clear_rcu;
3607 fastrx.key = true;
3608 fastrx.icv_len = key->conf.icv_len;
3611 assign = true;
3612 clear_rcu:
3613 rcu_read_unlock();
3614 clear:
3615 __release(check_fast_rx);
3617 if (assign)
3618 new = kmemdup(&fastrx, sizeof(fastrx), GFP_KERNEL);
3620 spin_lock_bh(&sta->lock);
3621 old = rcu_dereference_protected(sta->fast_rx, true);
3622 rcu_assign_pointer(sta->fast_rx, new);
3623 spin_unlock_bh(&sta->lock);
3625 if (old)
3626 kfree_rcu(old, rcu_head);
3629 void ieee80211_clear_fast_rx(struct sta_info *sta)
3631 struct ieee80211_fast_rx *old;
3633 spin_lock_bh(&sta->lock);
3634 old = rcu_dereference_protected(sta->fast_rx, true);
3635 RCU_INIT_POINTER(sta->fast_rx, NULL);
3636 spin_unlock_bh(&sta->lock);
3638 if (old)
3639 kfree_rcu(old, rcu_head);
3642 void __ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
3644 struct ieee80211_local *local = sdata->local;
3645 struct sta_info *sta;
3647 lockdep_assert_held(&local->sta_mtx);
3649 list_for_each_entry_rcu(sta, &local->sta_list, list) {
3650 if (sdata != sta->sdata &&
3651 (!sta->sdata->bss || sta->sdata->bss != sdata->bss))
3652 continue;
3653 ieee80211_check_fast_rx(sta);
3657 void ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
3659 struct ieee80211_local *local = sdata->local;
3661 mutex_lock(&local->sta_mtx);
3662 __ieee80211_check_fast_rx_iface(sdata);
3663 mutex_unlock(&local->sta_mtx);
3666 static bool ieee80211_invoke_fast_rx(struct ieee80211_rx_data *rx,
3667 struct ieee80211_fast_rx *fast_rx)
3669 struct sk_buff *skb = rx->skb;
3670 struct ieee80211_hdr *hdr = (void *)skb->data;
3671 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3672 struct sta_info *sta = rx->sta;
3673 int orig_len = skb->len;
3674 int snap_offs = ieee80211_hdrlen(hdr->frame_control);
3675 struct {
3676 u8 snap[sizeof(rfc1042_header)];
3677 __be16 proto;
3678 } *payload __aligned(2);
3679 struct {
3680 u8 da[ETH_ALEN];
3681 u8 sa[ETH_ALEN];
3682 } addrs __aligned(2);
3683 struct ieee80211_sta_rx_stats *stats = &sta->rx_stats;
3685 if (fast_rx->uses_rss)
3686 stats = this_cpu_ptr(sta->pcpu_rx_stats);
3688 /* for parallel-rx, we need to have DUP_VALIDATED, otherwise we write
3689 * to a common data structure; drivers can implement that per queue
3690 * but we don't have that information in mac80211
3692 if (!(status->flag & RX_FLAG_DUP_VALIDATED))
3693 return false;
3695 #define FAST_RX_CRYPT_FLAGS (RX_FLAG_PN_VALIDATED | RX_FLAG_DECRYPTED)
3697 /* If using encryption, we also need to have:
3698 * - PN_VALIDATED: similar, but the implementation is tricky
3699 * - DECRYPTED: necessary for PN_VALIDATED
3701 if (fast_rx->key &&
3702 (status->flag & FAST_RX_CRYPT_FLAGS) != FAST_RX_CRYPT_FLAGS)
3703 return false;
3705 /* we don't deal with A-MSDU deaggregation here */
3706 if (status->rx_flags & IEEE80211_RX_AMSDU)
3707 return false;
3709 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
3710 return false;
3712 if (unlikely(ieee80211_is_frag(hdr)))
3713 return false;
3715 /* Since our interface address cannot be multicast, this
3716 * implicitly also rejects multicast frames without the
3717 * explicit check.
3719 * We shouldn't get any *data* frames not addressed to us
3720 * (AP mode will accept multicast *management* frames), but
3721 * punting here will make it go through the full checks in
3722 * ieee80211_accept_frame().
3724 if (!ether_addr_equal(fast_rx->vif_addr, hdr->addr1))
3725 return false;
3727 if ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FROMDS |
3728 IEEE80211_FCTL_TODS)) !=
3729 fast_rx->expected_ds_bits)
3730 goto drop;
3732 /* assign the key to drop unencrypted frames (later)
3733 * and strip the IV/MIC if necessary
3735 if (fast_rx->key && !(status->flag & RX_FLAG_IV_STRIPPED)) {
3736 /* GCMP header length is the same */
3737 snap_offs += IEEE80211_CCMP_HDR_LEN;
3740 if (!pskb_may_pull(skb, snap_offs + sizeof(*payload)))
3741 goto drop;
3742 payload = (void *)(skb->data + snap_offs);
3744 if (!ether_addr_equal(payload->snap, fast_rx->rfc1042_hdr))
3745 return false;
3747 /* Don't handle these here since they require special code.
3748 * Accept AARP and IPX even though they should come with a
3749 * bridge-tunnel header - but if we get them this way then
3750 * there's little point in discarding them.
3752 if (unlikely(payload->proto == cpu_to_be16(ETH_P_TDLS) ||
3753 payload->proto == fast_rx->control_port_protocol))
3754 return false;
3756 /* after this point, don't punt to the slowpath! */
3758 if (rx->key && !(status->flag & RX_FLAG_MIC_STRIPPED) &&
3759 pskb_trim(skb, skb->len - fast_rx->icv_len))
3760 goto drop;
3762 if (unlikely(fast_rx->sta_notify)) {
3763 ieee80211_sta_rx_notify(rx->sdata, hdr);
3764 fast_rx->sta_notify = false;
3767 /* statistics part of ieee80211_rx_h_sta_process() */
3768 stats->last_rx = jiffies;
3769 stats->last_rate = sta_stats_encode_rate(status);
3771 stats->fragments++;
3773 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
3774 stats->last_signal = status->signal;
3775 if (!fast_rx->uses_rss)
3776 ewma_signal_add(&sta->rx_stats_avg.signal,
3777 -status->signal);
3780 if (status->chains) {
3781 int i;
3783 stats->chains = status->chains;
3784 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
3785 int signal = status->chain_signal[i];
3787 if (!(status->chains & BIT(i)))
3788 continue;
3790 stats->chain_signal_last[i] = signal;
3791 if (!fast_rx->uses_rss)
3792 ewma_signal_add(&sta->rx_stats_avg.chain_signal[i],
3793 -signal);
3796 /* end of statistics */
3798 if (rx->key && !ieee80211_has_protected(hdr->frame_control))
3799 goto drop;
3801 /* do the header conversion - first grab the addresses */
3802 ether_addr_copy(addrs.da, skb->data + fast_rx->da_offs);
3803 ether_addr_copy(addrs.sa, skb->data + fast_rx->sa_offs);
3804 /* remove the SNAP but leave the ethertype */
3805 skb_pull(skb, snap_offs + sizeof(rfc1042_header));
3806 /* push the addresses in front */
3807 memcpy(skb_push(skb, sizeof(addrs)), &addrs, sizeof(addrs));
3809 skb->dev = fast_rx->dev;
3811 ieee80211_rx_stats(fast_rx->dev, skb->len);
3813 /* The seqno index has the same property as needed
3814 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
3815 * for non-QoS-data frames. Here we know it's a data
3816 * frame, so count MSDUs.
3818 u64_stats_update_begin(&stats->syncp);
3819 stats->msdu[rx->seqno_idx]++;
3820 stats->bytes += orig_len;
3821 u64_stats_update_end(&stats->syncp);
3823 if (fast_rx->internal_forward) {
3824 struct sta_info *dsta = sta_info_get(rx->sdata, skb->data);
3826 if (dsta) {
3828 * Send to wireless media and increase priority by 256
3829 * to keep the received priority instead of
3830 * reclassifying the frame (see cfg80211_classify8021d).
3832 skb->priority += 256;
3833 skb->protocol = htons(ETH_P_802_3);
3834 skb_reset_network_header(skb);
3835 skb_reset_mac_header(skb);
3836 dev_queue_xmit(skb);
3837 return true;
3841 /* deliver to local stack */
3842 skb->protocol = eth_type_trans(skb, fast_rx->dev);
3843 memset(skb->cb, 0, sizeof(skb->cb));
3844 if (rx->napi)
3845 napi_gro_receive(rx->napi, skb);
3846 else
3847 netif_receive_skb(skb);
3849 return true;
3850 drop:
3851 dev_kfree_skb(skb);
3852 stats->dropped++;
3853 return true;
3857 * This function returns whether or not the SKB
3858 * was destined for RX processing or not, which,
3859 * if consume is true, is equivalent to whether
3860 * or not the skb was consumed.
3862 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
3863 struct sk_buff *skb, bool consume)
3865 struct ieee80211_local *local = rx->local;
3866 struct ieee80211_sub_if_data *sdata = rx->sdata;
3868 rx->skb = skb;
3870 /* See if we can do fast-rx; if we have to copy we already lost,
3871 * so punt in that case. We should never have to deliver a data
3872 * frame to multiple interfaces anyway.
3874 * We skip the ieee80211_accept_frame() call and do the necessary
3875 * checking inside ieee80211_invoke_fast_rx().
3877 if (consume && rx->sta) {
3878 struct ieee80211_fast_rx *fast_rx;
3880 fast_rx = rcu_dereference(rx->sta->fast_rx);
3881 if (fast_rx && ieee80211_invoke_fast_rx(rx, fast_rx))
3882 return true;
3885 if (!ieee80211_accept_frame(rx))
3886 return false;
3888 if (!consume) {
3889 skb = skb_copy(skb, GFP_ATOMIC);
3890 if (!skb) {
3891 if (net_ratelimit())
3892 wiphy_debug(local->hw.wiphy,
3893 "failed to copy skb for %s\n",
3894 sdata->name);
3895 return true;
3898 rx->skb = skb;
3901 ieee80211_invoke_rx_handlers(rx);
3902 return true;
3906 * This is the actual Rx frames handler. as it belongs to Rx path it must
3907 * be called with rcu_read_lock protection.
3909 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
3910 struct ieee80211_sta *pubsta,
3911 struct sk_buff *skb,
3912 struct napi_struct *napi)
3914 struct ieee80211_local *local = hw_to_local(hw);
3915 struct ieee80211_sub_if_data *sdata;
3916 struct ieee80211_hdr *hdr;
3917 __le16 fc;
3918 struct ieee80211_rx_data rx;
3919 struct ieee80211_sub_if_data *prev;
3920 struct rhash_head *tmp;
3921 int err = 0;
3923 fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
3924 memset(&rx, 0, sizeof(rx));
3925 rx.skb = skb;
3926 rx.local = local;
3927 rx.napi = napi;
3929 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
3930 I802_DEBUG_INC(local->dot11ReceivedFragmentCount);
3932 if (ieee80211_is_mgmt(fc)) {
3933 /* drop frame if too short for header */
3934 if (skb->len < ieee80211_hdrlen(fc))
3935 err = -ENOBUFS;
3936 else
3937 err = skb_linearize(skb);
3938 } else {
3939 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
3942 if (err) {
3943 dev_kfree_skb(skb);
3944 return;
3947 hdr = (struct ieee80211_hdr *)skb->data;
3948 ieee80211_parse_qos(&rx);
3949 ieee80211_verify_alignment(&rx);
3951 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) ||
3952 ieee80211_is_beacon(hdr->frame_control)))
3953 ieee80211_scan_rx(local, skb);
3955 if (pubsta) {
3956 rx.sta = container_of(pubsta, struct sta_info, sta);
3957 rx.sdata = rx.sta->sdata;
3958 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
3959 return;
3960 goto out;
3961 } else if (ieee80211_is_data(fc)) {
3962 struct sta_info *sta, *prev_sta;
3963 const struct bucket_table *tbl;
3965 prev_sta = NULL;
3967 tbl = rht_dereference_rcu(local->sta_hash.tbl, &local->sta_hash);
3969 for_each_sta_info(local, tbl, hdr->addr2, sta, tmp) {
3970 if (!prev_sta) {
3971 prev_sta = sta;
3972 continue;
3975 rx.sta = prev_sta;
3976 rx.sdata = prev_sta->sdata;
3977 ieee80211_prepare_and_rx_handle(&rx, skb, false);
3979 prev_sta = sta;
3982 if (prev_sta) {
3983 rx.sta = prev_sta;
3984 rx.sdata = prev_sta->sdata;
3986 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
3987 return;
3988 goto out;
3992 prev = NULL;
3994 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3995 if (!ieee80211_sdata_running(sdata))
3996 continue;
3998 if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
3999 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
4000 continue;
4003 * frame is destined for this interface, but if it's
4004 * not also for the previous one we handle that after
4005 * the loop to avoid copying the SKB once too much
4008 if (!prev) {
4009 prev = sdata;
4010 continue;
4013 rx.sta = sta_info_get_bss(prev, hdr->addr2);
4014 rx.sdata = prev;
4015 ieee80211_prepare_and_rx_handle(&rx, skb, false);
4017 prev = sdata;
4020 if (prev) {
4021 rx.sta = sta_info_get_bss(prev, hdr->addr2);
4022 rx.sdata = prev;
4024 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4025 return;
4028 out:
4029 dev_kfree_skb(skb);
4033 * This is the receive path handler. It is called by a low level driver when an
4034 * 802.11 MPDU is received from the hardware.
4036 void ieee80211_rx_napi(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta,
4037 struct sk_buff *skb, struct napi_struct *napi)
4039 struct ieee80211_local *local = hw_to_local(hw);
4040 struct ieee80211_rate *rate = NULL;
4041 struct ieee80211_supported_band *sband;
4042 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
4044 WARN_ON_ONCE(softirq_count() == 0);
4046 if (WARN_ON(status->band >= NUM_NL80211_BANDS))
4047 goto drop;
4049 sband = local->hw.wiphy->bands[status->band];
4050 if (WARN_ON(!sband))
4051 goto drop;
4054 * If we're suspending, it is possible although not too likely
4055 * that we'd be receiving frames after having already partially
4056 * quiesced the stack. We can't process such frames then since
4057 * that might, for example, cause stations to be added or other
4058 * driver callbacks be invoked.
4060 if (unlikely(local->quiescing || local->suspended))
4061 goto drop;
4063 /* We might be during a HW reconfig, prevent Rx for the same reason */
4064 if (unlikely(local->in_reconfig))
4065 goto drop;
4068 * The same happens when we're not even started,
4069 * but that's worth a warning.
4071 if (WARN_ON(!local->started))
4072 goto drop;
4074 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
4076 * Validate the rate, unless a PLCP error means that
4077 * we probably can't have a valid rate here anyway.
4080 if (status->flag & RX_FLAG_HT) {
4082 * rate_idx is MCS index, which can be [0-76]
4083 * as documented on:
4085 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
4087 * Anything else would be some sort of driver or
4088 * hardware error. The driver should catch hardware
4089 * errors.
4091 if (WARN(status->rate_idx > 76,
4092 "Rate marked as an HT rate but passed "
4093 "status->rate_idx is not "
4094 "an MCS index [0-76]: %d (0x%02x)\n",
4095 status->rate_idx,
4096 status->rate_idx))
4097 goto drop;
4098 } else if (status->flag & RX_FLAG_VHT) {
4099 if (WARN_ONCE(status->rate_idx > 9 ||
4100 !status->vht_nss ||
4101 status->vht_nss > 8,
4102 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n",
4103 status->rate_idx, status->vht_nss))
4104 goto drop;
4105 } else {
4106 if (WARN_ON(status->rate_idx >= sband->n_bitrates))
4107 goto drop;
4108 rate = &sband->bitrates[status->rate_idx];
4112 status->rx_flags = 0;
4115 * key references and virtual interfaces are protected using RCU
4116 * and this requires that we are in a read-side RCU section during
4117 * receive processing
4119 rcu_read_lock();
4122 * Frames with failed FCS/PLCP checksum are not returned,
4123 * all other frames are returned without radiotap header
4124 * if it was previously present.
4125 * Also, frames with less than 16 bytes are dropped.
4127 skb = ieee80211_rx_monitor(local, skb, rate);
4128 if (!skb) {
4129 rcu_read_unlock();
4130 return;
4133 ieee80211_tpt_led_trig_rx(local,
4134 ((struct ieee80211_hdr *)skb->data)->frame_control,
4135 skb->len);
4137 __ieee80211_rx_handle_packet(hw, pubsta, skb, napi);
4139 rcu_read_unlock();
4141 return;
4142 drop:
4143 kfree_skb(skb);
4145 EXPORT_SYMBOL(ieee80211_rx_napi);
4147 /* This is a version of the rx handler that can be called from hard irq
4148 * context. Post the skb on the queue and schedule the tasklet */
4149 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
4151 struct ieee80211_local *local = hw_to_local(hw);
4153 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
4155 skb->pkt_type = IEEE80211_RX_MSG;
4156 skb_queue_tail(&local->skb_queue, skb);
4157 tasklet_schedule(&local->tasklet);
4159 EXPORT_SYMBOL(ieee80211_rx_irqsafe);