dmfe: kill DEVICE define
[linux/fpc-iii.git] / net / mac80211 / sta_info.c
blob5ccfdbd406bdfe4b1613432eae2871fae01b0070
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
4 * Copyright 2013-2014 Intel Mobile Communications GmbH
5 * Copyright (C) 2015 - 2016 Intel Deutschland GmbH
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/etherdevice.h>
15 #include <linux/netdevice.h>
16 #include <linux/types.h>
17 #include <linux/slab.h>
18 #include <linux/skbuff.h>
19 #include <linux/if_arp.h>
20 #include <linux/timer.h>
21 #include <linux/rtnetlink.h>
23 #include <net/mac80211.h>
24 #include "ieee80211_i.h"
25 #include "driver-ops.h"
26 #include "rate.h"
27 #include "sta_info.h"
28 #include "debugfs_sta.h"
29 #include "mesh.h"
30 #include "wme.h"
32 /**
33 * DOC: STA information lifetime rules
35 * STA info structures (&struct sta_info) are managed in a hash table
36 * for faster lookup and a list for iteration. They are managed using
37 * RCU, i.e. access to the list and hash table is protected by RCU.
39 * Upon allocating a STA info structure with sta_info_alloc(), the caller
40 * owns that structure. It must then insert it into the hash table using
41 * either sta_info_insert() or sta_info_insert_rcu(); only in the latter
42 * case (which acquires an rcu read section but must not be called from
43 * within one) will the pointer still be valid after the call. Note that
44 * the caller may not do much with the STA info before inserting it, in
45 * particular, it may not start any mesh peer link management or add
46 * encryption keys.
48 * When the insertion fails (sta_info_insert()) returns non-zero), the
49 * structure will have been freed by sta_info_insert()!
51 * Station entries are added by mac80211 when you establish a link with a
52 * peer. This means different things for the different type of interfaces
53 * we support. For a regular station this mean we add the AP sta when we
54 * receive an association response from the AP. For IBSS this occurs when
55 * get to know about a peer on the same IBSS. For WDS we add the sta for
56 * the peer immediately upon device open. When using AP mode we add stations
57 * for each respective station upon request from userspace through nl80211.
59 * In order to remove a STA info structure, various sta_info_destroy_*()
60 * calls are available.
62 * There is no concept of ownership on a STA entry, each structure is
63 * owned by the global hash table/list until it is removed. All users of
64 * the structure need to be RCU protected so that the structure won't be
65 * freed before they are done using it.
68 static const struct rhashtable_params sta_rht_params = {
69 .nelem_hint = 3, /* start small */
70 .insecure_elasticity = true, /* Disable chain-length checks. */
71 .automatic_shrinking = true,
72 .head_offset = offsetof(struct sta_info, hash_node),
73 .key_offset = offsetof(struct sta_info, addr),
74 .key_len = ETH_ALEN,
75 .hashfn = sta_addr_hash,
76 .max_size = CONFIG_MAC80211_STA_HASH_MAX_SIZE,
79 /* Caller must hold local->sta_mtx */
80 static int sta_info_hash_del(struct ieee80211_local *local,
81 struct sta_info *sta)
83 return rhashtable_remove_fast(&local->sta_hash, &sta->hash_node,
84 sta_rht_params);
87 static void __cleanup_single_sta(struct sta_info *sta)
89 int ac, i;
90 struct tid_ampdu_tx *tid_tx;
91 struct ieee80211_sub_if_data *sdata = sta->sdata;
92 struct ieee80211_local *local = sdata->local;
93 struct ps_data *ps;
95 if (test_sta_flag(sta, WLAN_STA_PS_STA) ||
96 test_sta_flag(sta, WLAN_STA_PS_DRIVER) ||
97 test_sta_flag(sta, WLAN_STA_PS_DELIVER)) {
98 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
99 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
100 ps = &sdata->bss->ps;
101 else if (ieee80211_vif_is_mesh(&sdata->vif))
102 ps = &sdata->u.mesh.ps;
103 else
104 return;
106 clear_sta_flag(sta, WLAN_STA_PS_STA);
107 clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
108 clear_sta_flag(sta, WLAN_STA_PS_DELIVER);
110 atomic_dec(&ps->num_sta_ps);
113 if (sta->sta.txq[0]) {
114 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) {
115 struct txq_info *txqi = to_txq_info(sta->sta.txq[i]);
116 int n = skb_queue_len(&txqi->queue);
118 ieee80211_purge_tx_queue(&local->hw, &txqi->queue);
119 atomic_sub(n, &sdata->txqs_len[txqi->txq.ac]);
120 txqi->byte_cnt = 0;
124 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
125 local->total_ps_buffered -= skb_queue_len(&sta->ps_tx_buf[ac]);
126 ieee80211_purge_tx_queue(&local->hw, &sta->ps_tx_buf[ac]);
127 ieee80211_purge_tx_queue(&local->hw, &sta->tx_filtered[ac]);
130 if (ieee80211_vif_is_mesh(&sdata->vif))
131 mesh_sta_cleanup(sta);
133 cancel_work_sync(&sta->drv_deliver_wk);
136 * Destroy aggregation state here. It would be nice to wait for the
137 * driver to finish aggregation stop and then clean up, but for now
138 * drivers have to handle aggregation stop being requested, followed
139 * directly by station destruction.
141 for (i = 0; i < IEEE80211_NUM_TIDS; i++) {
142 kfree(sta->ampdu_mlme.tid_start_tx[i]);
143 tid_tx = rcu_dereference_raw(sta->ampdu_mlme.tid_tx[i]);
144 if (!tid_tx)
145 continue;
146 ieee80211_purge_tx_queue(&local->hw, &tid_tx->pending);
147 kfree(tid_tx);
151 static void cleanup_single_sta(struct sta_info *sta)
153 struct ieee80211_sub_if_data *sdata = sta->sdata;
154 struct ieee80211_local *local = sdata->local;
156 __cleanup_single_sta(sta);
157 sta_info_free(local, sta);
160 /* protected by RCU */
161 struct sta_info *sta_info_get(struct ieee80211_sub_if_data *sdata,
162 const u8 *addr)
164 struct ieee80211_local *local = sdata->local;
165 struct sta_info *sta;
166 struct rhash_head *tmp;
167 const struct bucket_table *tbl;
169 rcu_read_lock();
170 tbl = rht_dereference_rcu(local->sta_hash.tbl, &local->sta_hash);
172 for_each_sta_info(local, tbl, addr, sta, tmp) {
173 if (sta->sdata == sdata) {
174 rcu_read_unlock();
175 /* this is safe as the caller must already hold
176 * another rcu read section or the mutex
178 return sta;
181 rcu_read_unlock();
182 return NULL;
186 * Get sta info either from the specified interface
187 * or from one of its vlans
189 struct sta_info *sta_info_get_bss(struct ieee80211_sub_if_data *sdata,
190 const u8 *addr)
192 struct ieee80211_local *local = sdata->local;
193 struct sta_info *sta;
194 struct rhash_head *tmp;
195 const struct bucket_table *tbl;
197 rcu_read_lock();
198 tbl = rht_dereference_rcu(local->sta_hash.tbl, &local->sta_hash);
200 for_each_sta_info(local, tbl, addr, sta, tmp) {
201 if (sta->sdata == sdata ||
202 (sta->sdata->bss && sta->sdata->bss == sdata->bss)) {
203 rcu_read_unlock();
204 /* this is safe as the caller must already hold
205 * another rcu read section or the mutex
207 return sta;
210 rcu_read_unlock();
211 return NULL;
214 struct sta_info *sta_info_get_by_idx(struct ieee80211_sub_if_data *sdata,
215 int idx)
217 struct ieee80211_local *local = sdata->local;
218 struct sta_info *sta;
219 int i = 0;
221 list_for_each_entry_rcu(sta, &local->sta_list, list) {
222 if (sdata != sta->sdata)
223 continue;
224 if (i < idx) {
225 ++i;
226 continue;
228 return sta;
231 return NULL;
235 * sta_info_free - free STA
237 * @local: pointer to the global information
238 * @sta: STA info to free
240 * This function must undo everything done by sta_info_alloc()
241 * that may happen before sta_info_insert(). It may only be
242 * called when sta_info_insert() has not been attempted (and
243 * if that fails, the station is freed anyway.)
245 void sta_info_free(struct ieee80211_local *local, struct sta_info *sta)
247 if (sta->rate_ctrl)
248 rate_control_free_sta(sta);
250 sta_dbg(sta->sdata, "Destroyed STA %pM\n", sta->sta.addr);
252 if (sta->sta.txq[0])
253 kfree(to_txq_info(sta->sta.txq[0]));
254 kfree(rcu_dereference_raw(sta->sta.rates));
255 #ifdef CONFIG_MAC80211_MESH
256 kfree(sta->mesh);
257 #endif
258 free_percpu(sta->pcpu_rx_stats);
259 kfree(sta);
262 /* Caller must hold local->sta_mtx */
263 static int sta_info_hash_add(struct ieee80211_local *local,
264 struct sta_info *sta)
266 return rhashtable_insert_fast(&local->sta_hash, &sta->hash_node,
267 sta_rht_params);
270 static void sta_deliver_ps_frames(struct work_struct *wk)
272 struct sta_info *sta;
274 sta = container_of(wk, struct sta_info, drv_deliver_wk);
276 if (sta->dead)
277 return;
279 local_bh_disable();
280 if (!test_sta_flag(sta, WLAN_STA_PS_STA))
281 ieee80211_sta_ps_deliver_wakeup(sta);
282 else if (test_and_clear_sta_flag(sta, WLAN_STA_PSPOLL))
283 ieee80211_sta_ps_deliver_poll_response(sta);
284 else if (test_and_clear_sta_flag(sta, WLAN_STA_UAPSD))
285 ieee80211_sta_ps_deliver_uapsd(sta);
286 local_bh_enable();
289 static int sta_prepare_rate_control(struct ieee80211_local *local,
290 struct sta_info *sta, gfp_t gfp)
292 if (ieee80211_hw_check(&local->hw, HAS_RATE_CONTROL))
293 return 0;
295 sta->rate_ctrl = local->rate_ctrl;
296 sta->rate_ctrl_priv = rate_control_alloc_sta(sta->rate_ctrl,
297 sta, gfp);
298 if (!sta->rate_ctrl_priv)
299 return -ENOMEM;
301 return 0;
304 struct sta_info *sta_info_alloc(struct ieee80211_sub_if_data *sdata,
305 const u8 *addr, gfp_t gfp)
307 struct ieee80211_local *local = sdata->local;
308 struct ieee80211_hw *hw = &local->hw;
309 struct sta_info *sta;
310 int i;
312 sta = kzalloc(sizeof(*sta) + hw->sta_data_size, gfp);
313 if (!sta)
314 return NULL;
316 if (ieee80211_hw_check(hw, USES_RSS)) {
317 sta->pcpu_rx_stats =
318 alloc_percpu(struct ieee80211_sta_rx_stats);
319 if (!sta->pcpu_rx_stats)
320 goto free;
323 spin_lock_init(&sta->lock);
324 spin_lock_init(&sta->ps_lock);
325 INIT_WORK(&sta->drv_deliver_wk, sta_deliver_ps_frames);
326 INIT_WORK(&sta->ampdu_mlme.work, ieee80211_ba_session_work);
327 mutex_init(&sta->ampdu_mlme.mtx);
328 #ifdef CONFIG_MAC80211_MESH
329 if (ieee80211_vif_is_mesh(&sdata->vif)) {
330 sta->mesh = kzalloc(sizeof(*sta->mesh), gfp);
331 if (!sta->mesh)
332 goto free;
333 spin_lock_init(&sta->mesh->plink_lock);
334 if (ieee80211_vif_is_mesh(&sdata->vif) &&
335 !sdata->u.mesh.user_mpm)
336 init_timer(&sta->mesh->plink_timer);
337 sta->mesh->nonpeer_pm = NL80211_MESH_POWER_ACTIVE;
339 #endif
341 memcpy(sta->addr, addr, ETH_ALEN);
342 memcpy(sta->sta.addr, addr, ETH_ALEN);
343 sta->local = local;
344 sta->sdata = sdata;
345 sta->rx_stats.last_rx = jiffies;
347 u64_stats_init(&sta->rx_stats.syncp);
349 sta->sta_state = IEEE80211_STA_NONE;
351 /* Mark TID as unreserved */
352 sta->reserved_tid = IEEE80211_TID_UNRESERVED;
354 sta->last_connected = ktime_get_seconds();
355 ewma_signal_init(&sta->rx_stats_avg.signal);
356 for (i = 0; i < ARRAY_SIZE(sta->rx_stats_avg.chain_signal); i++)
357 ewma_signal_init(&sta->rx_stats_avg.chain_signal[i]);
359 if (local->ops->wake_tx_queue) {
360 void *txq_data;
361 int size = sizeof(struct txq_info) +
362 ALIGN(hw->txq_data_size, sizeof(void *));
364 txq_data = kcalloc(ARRAY_SIZE(sta->sta.txq), size, gfp);
365 if (!txq_data)
366 goto free;
368 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) {
369 struct txq_info *txq = txq_data + i * size;
371 ieee80211_init_tx_queue(sdata, sta, txq, i);
375 if (sta_prepare_rate_control(local, sta, gfp))
376 goto free_txq;
378 for (i = 0; i < IEEE80211_NUM_TIDS; i++) {
380 * timer_to_tid must be initialized with identity mapping
381 * to enable session_timer's data differentiation. See
382 * sta_rx_agg_session_timer_expired for usage.
384 sta->timer_to_tid[i] = i;
386 for (i = 0; i < IEEE80211_NUM_ACS; i++) {
387 skb_queue_head_init(&sta->ps_tx_buf[i]);
388 skb_queue_head_init(&sta->tx_filtered[i]);
391 for (i = 0; i < IEEE80211_NUM_TIDS; i++)
392 sta->last_seq_ctrl[i] = cpu_to_le16(USHRT_MAX);
394 sta->sta.smps_mode = IEEE80211_SMPS_OFF;
395 if (sdata->vif.type == NL80211_IFTYPE_AP ||
396 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
397 struct ieee80211_supported_band *sband =
398 hw->wiphy->bands[ieee80211_get_sdata_band(sdata)];
399 u8 smps = (sband->ht_cap.cap & IEEE80211_HT_CAP_SM_PS) >>
400 IEEE80211_HT_CAP_SM_PS_SHIFT;
402 * Assume that hostapd advertises our caps in the beacon and
403 * this is the known_smps_mode for a station that just assciated
405 switch (smps) {
406 case WLAN_HT_SMPS_CONTROL_DISABLED:
407 sta->known_smps_mode = IEEE80211_SMPS_OFF;
408 break;
409 case WLAN_HT_SMPS_CONTROL_STATIC:
410 sta->known_smps_mode = IEEE80211_SMPS_STATIC;
411 break;
412 case WLAN_HT_SMPS_CONTROL_DYNAMIC:
413 sta->known_smps_mode = IEEE80211_SMPS_DYNAMIC;
414 break;
415 default:
416 WARN_ON(1);
420 sta->sta.max_rc_amsdu_len = IEEE80211_MAX_MPDU_LEN_HT_BA;
422 sta_dbg(sdata, "Allocated STA %pM\n", sta->sta.addr);
424 return sta;
426 free_txq:
427 if (sta->sta.txq[0])
428 kfree(to_txq_info(sta->sta.txq[0]));
429 free:
430 #ifdef CONFIG_MAC80211_MESH
431 kfree(sta->mesh);
432 #endif
433 kfree(sta);
434 return NULL;
437 static int sta_info_insert_check(struct sta_info *sta)
439 struct ieee80211_sub_if_data *sdata = sta->sdata;
442 * Can't be a WARN_ON because it can be triggered through a race:
443 * something inserts a STA (on one CPU) without holding the RTNL
444 * and another CPU turns off the net device.
446 if (unlikely(!ieee80211_sdata_running(sdata)))
447 return -ENETDOWN;
449 if (WARN_ON(ether_addr_equal(sta->sta.addr, sdata->vif.addr) ||
450 is_multicast_ether_addr(sta->sta.addr)))
451 return -EINVAL;
453 /* Strictly speaking this isn't necessary as we hold the mutex, but
454 * the rhashtable code can't really deal with that distinction. We
455 * do require the mutex for correctness though.
457 rcu_read_lock();
458 lockdep_assert_held(&sdata->local->sta_mtx);
459 if (ieee80211_hw_check(&sdata->local->hw, NEEDS_UNIQUE_STA_ADDR) &&
460 ieee80211_find_sta_by_ifaddr(&sdata->local->hw, sta->addr, NULL)) {
461 rcu_read_unlock();
462 return -ENOTUNIQ;
464 rcu_read_unlock();
466 return 0;
469 static int sta_info_insert_drv_state(struct ieee80211_local *local,
470 struct ieee80211_sub_if_data *sdata,
471 struct sta_info *sta)
473 enum ieee80211_sta_state state;
474 int err = 0;
476 for (state = IEEE80211_STA_NOTEXIST; state < sta->sta_state; state++) {
477 err = drv_sta_state(local, sdata, sta, state, state + 1);
478 if (err)
479 break;
482 if (!err) {
484 * Drivers using legacy sta_add/sta_remove callbacks only
485 * get uploaded set to true after sta_add is called.
487 if (!local->ops->sta_add)
488 sta->uploaded = true;
489 return 0;
492 if (sdata->vif.type == NL80211_IFTYPE_ADHOC) {
493 sdata_info(sdata,
494 "failed to move IBSS STA %pM to state %d (%d) - keeping it anyway\n",
495 sta->sta.addr, state + 1, err);
496 err = 0;
499 /* unwind on error */
500 for (; state > IEEE80211_STA_NOTEXIST; state--)
501 WARN_ON(drv_sta_state(local, sdata, sta, state, state - 1));
503 return err;
507 * should be called with sta_mtx locked
508 * this function replaces the mutex lock
509 * with a RCU lock
511 static int sta_info_insert_finish(struct sta_info *sta) __acquires(RCU)
513 struct ieee80211_local *local = sta->local;
514 struct ieee80211_sub_if_data *sdata = sta->sdata;
515 struct station_info *sinfo;
516 int err = 0;
518 lockdep_assert_held(&local->sta_mtx);
520 sinfo = kzalloc(sizeof(struct station_info), GFP_KERNEL);
521 if (!sinfo) {
522 err = -ENOMEM;
523 goto out_err;
526 /* check if STA exists already */
527 if (sta_info_get_bss(sdata, sta->sta.addr)) {
528 err = -EEXIST;
529 goto out_err;
532 local->num_sta++;
533 local->sta_generation++;
534 smp_mb();
536 /* simplify things and don't accept BA sessions yet */
537 set_sta_flag(sta, WLAN_STA_BLOCK_BA);
539 /* make the station visible */
540 err = sta_info_hash_add(local, sta);
541 if (err)
542 goto out_drop_sta;
544 list_add_tail_rcu(&sta->list, &local->sta_list);
546 /* notify driver */
547 err = sta_info_insert_drv_state(local, sdata, sta);
548 if (err)
549 goto out_remove;
551 set_sta_flag(sta, WLAN_STA_INSERTED);
552 /* accept BA sessions now */
553 clear_sta_flag(sta, WLAN_STA_BLOCK_BA);
555 ieee80211_sta_debugfs_add(sta);
556 rate_control_add_sta_debugfs(sta);
558 sinfo->generation = local->sta_generation;
559 cfg80211_new_sta(sdata->dev, sta->sta.addr, sinfo, GFP_KERNEL);
560 kfree(sinfo);
562 sta_dbg(sdata, "Inserted STA %pM\n", sta->sta.addr);
564 /* move reference to rcu-protected */
565 rcu_read_lock();
566 mutex_unlock(&local->sta_mtx);
568 if (ieee80211_vif_is_mesh(&sdata->vif))
569 mesh_accept_plinks_update(sdata);
571 return 0;
572 out_remove:
573 sta_info_hash_del(local, sta);
574 list_del_rcu(&sta->list);
575 out_drop_sta:
576 local->num_sta--;
577 synchronize_net();
578 __cleanup_single_sta(sta);
579 out_err:
580 mutex_unlock(&local->sta_mtx);
581 kfree(sinfo);
582 rcu_read_lock();
583 return err;
586 int sta_info_insert_rcu(struct sta_info *sta) __acquires(RCU)
588 struct ieee80211_local *local = sta->local;
589 int err;
591 might_sleep();
593 mutex_lock(&local->sta_mtx);
595 err = sta_info_insert_check(sta);
596 if (err) {
597 mutex_unlock(&local->sta_mtx);
598 rcu_read_lock();
599 goto out_free;
602 err = sta_info_insert_finish(sta);
603 if (err)
604 goto out_free;
606 return 0;
607 out_free:
608 sta_info_free(local, sta);
609 return err;
612 int sta_info_insert(struct sta_info *sta)
614 int err = sta_info_insert_rcu(sta);
616 rcu_read_unlock();
618 return err;
621 static inline void __bss_tim_set(u8 *tim, u16 id)
624 * This format has been mandated by the IEEE specifications,
625 * so this line may not be changed to use the __set_bit() format.
627 tim[id / 8] |= (1 << (id % 8));
630 static inline void __bss_tim_clear(u8 *tim, u16 id)
633 * This format has been mandated by the IEEE specifications,
634 * so this line may not be changed to use the __clear_bit() format.
636 tim[id / 8] &= ~(1 << (id % 8));
639 static inline bool __bss_tim_get(u8 *tim, u16 id)
642 * This format has been mandated by the IEEE specifications,
643 * so this line may not be changed to use the test_bit() format.
645 return tim[id / 8] & (1 << (id % 8));
648 static unsigned long ieee80211_tids_for_ac(int ac)
650 /* If we ever support TIDs > 7, this obviously needs to be adjusted */
651 switch (ac) {
652 case IEEE80211_AC_VO:
653 return BIT(6) | BIT(7);
654 case IEEE80211_AC_VI:
655 return BIT(4) | BIT(5);
656 case IEEE80211_AC_BE:
657 return BIT(0) | BIT(3);
658 case IEEE80211_AC_BK:
659 return BIT(1) | BIT(2);
660 default:
661 WARN_ON(1);
662 return 0;
666 static void __sta_info_recalc_tim(struct sta_info *sta, bool ignore_pending)
668 struct ieee80211_local *local = sta->local;
669 struct ps_data *ps;
670 bool indicate_tim = false;
671 u8 ignore_for_tim = sta->sta.uapsd_queues;
672 int ac;
673 u16 id = sta->sta.aid;
675 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
676 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
677 if (WARN_ON_ONCE(!sta->sdata->bss))
678 return;
680 ps = &sta->sdata->bss->ps;
681 #ifdef CONFIG_MAC80211_MESH
682 } else if (ieee80211_vif_is_mesh(&sta->sdata->vif)) {
683 ps = &sta->sdata->u.mesh.ps;
684 #endif
685 } else {
686 return;
689 /* No need to do anything if the driver does all */
690 if (ieee80211_hw_check(&local->hw, AP_LINK_PS))
691 return;
693 if (sta->dead)
694 goto done;
697 * If all ACs are delivery-enabled then we should build
698 * the TIM bit for all ACs anyway; if only some are then
699 * we ignore those and build the TIM bit using only the
700 * non-enabled ones.
702 if (ignore_for_tim == BIT(IEEE80211_NUM_ACS) - 1)
703 ignore_for_tim = 0;
705 if (ignore_pending)
706 ignore_for_tim = BIT(IEEE80211_NUM_ACS) - 1;
708 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
709 unsigned long tids;
711 if (ignore_for_tim & BIT(ac))
712 continue;
714 indicate_tim |= !skb_queue_empty(&sta->tx_filtered[ac]) ||
715 !skb_queue_empty(&sta->ps_tx_buf[ac]);
716 if (indicate_tim)
717 break;
719 tids = ieee80211_tids_for_ac(ac);
721 indicate_tim |=
722 sta->driver_buffered_tids & tids;
723 indicate_tim |=
724 sta->txq_buffered_tids & tids;
727 done:
728 spin_lock_bh(&local->tim_lock);
730 if (indicate_tim == __bss_tim_get(ps->tim, id))
731 goto out_unlock;
733 if (indicate_tim)
734 __bss_tim_set(ps->tim, id);
735 else
736 __bss_tim_clear(ps->tim, id);
738 if (local->ops->set_tim && !WARN_ON(sta->dead)) {
739 local->tim_in_locked_section = true;
740 drv_set_tim(local, &sta->sta, indicate_tim);
741 local->tim_in_locked_section = false;
744 out_unlock:
745 spin_unlock_bh(&local->tim_lock);
748 void sta_info_recalc_tim(struct sta_info *sta)
750 __sta_info_recalc_tim(sta, false);
753 static bool sta_info_buffer_expired(struct sta_info *sta, struct sk_buff *skb)
755 struct ieee80211_tx_info *info;
756 int timeout;
758 if (!skb)
759 return false;
761 info = IEEE80211_SKB_CB(skb);
763 /* Timeout: (2 * listen_interval * beacon_int * 1024 / 1000000) sec */
764 timeout = (sta->listen_interval *
765 sta->sdata->vif.bss_conf.beacon_int *
766 32 / 15625) * HZ;
767 if (timeout < STA_TX_BUFFER_EXPIRE)
768 timeout = STA_TX_BUFFER_EXPIRE;
769 return time_after(jiffies, info->control.jiffies + timeout);
773 static bool sta_info_cleanup_expire_buffered_ac(struct ieee80211_local *local,
774 struct sta_info *sta, int ac)
776 unsigned long flags;
777 struct sk_buff *skb;
780 * First check for frames that should expire on the filtered
781 * queue. Frames here were rejected by the driver and are on
782 * a separate queue to avoid reordering with normal PS-buffered
783 * frames. They also aren't accounted for right now in the
784 * total_ps_buffered counter.
786 for (;;) {
787 spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags);
788 skb = skb_peek(&sta->tx_filtered[ac]);
789 if (sta_info_buffer_expired(sta, skb))
790 skb = __skb_dequeue(&sta->tx_filtered[ac]);
791 else
792 skb = NULL;
793 spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags);
796 * Frames are queued in order, so if this one
797 * hasn't expired yet we can stop testing. If
798 * we actually reached the end of the queue we
799 * also need to stop, of course.
801 if (!skb)
802 break;
803 ieee80211_free_txskb(&local->hw, skb);
807 * Now also check the normal PS-buffered queue, this will
808 * only find something if the filtered queue was emptied
809 * since the filtered frames are all before the normal PS
810 * buffered frames.
812 for (;;) {
813 spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags);
814 skb = skb_peek(&sta->ps_tx_buf[ac]);
815 if (sta_info_buffer_expired(sta, skb))
816 skb = __skb_dequeue(&sta->ps_tx_buf[ac]);
817 else
818 skb = NULL;
819 spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags);
822 * frames are queued in order, so if this one
823 * hasn't expired yet (or we reached the end of
824 * the queue) we can stop testing
826 if (!skb)
827 break;
829 local->total_ps_buffered--;
830 ps_dbg(sta->sdata, "Buffered frame expired (STA %pM)\n",
831 sta->sta.addr);
832 ieee80211_free_txskb(&local->hw, skb);
836 * Finally, recalculate the TIM bit for this station -- it might
837 * now be clear because the station was too slow to retrieve its
838 * frames.
840 sta_info_recalc_tim(sta);
843 * Return whether there are any frames still buffered, this is
844 * used to check whether the cleanup timer still needs to run,
845 * if there are no frames we don't need to rearm the timer.
847 return !(skb_queue_empty(&sta->ps_tx_buf[ac]) &&
848 skb_queue_empty(&sta->tx_filtered[ac]));
851 static bool sta_info_cleanup_expire_buffered(struct ieee80211_local *local,
852 struct sta_info *sta)
854 bool have_buffered = false;
855 int ac;
857 /* This is only necessary for stations on BSS/MBSS interfaces */
858 if (!sta->sdata->bss &&
859 !ieee80211_vif_is_mesh(&sta->sdata->vif))
860 return false;
862 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
863 have_buffered |=
864 sta_info_cleanup_expire_buffered_ac(local, sta, ac);
866 return have_buffered;
869 static int __must_check __sta_info_destroy_part1(struct sta_info *sta)
871 struct ieee80211_local *local;
872 struct ieee80211_sub_if_data *sdata;
873 int ret;
875 might_sleep();
877 if (!sta)
878 return -ENOENT;
880 local = sta->local;
881 sdata = sta->sdata;
883 lockdep_assert_held(&local->sta_mtx);
886 * Before removing the station from the driver and
887 * rate control, it might still start new aggregation
888 * sessions -- block that to make sure the tear-down
889 * will be sufficient.
891 set_sta_flag(sta, WLAN_STA_BLOCK_BA);
892 ieee80211_sta_tear_down_BA_sessions(sta, AGG_STOP_DESTROY_STA);
895 * Before removing the station from the driver there might be pending
896 * rx frames on RSS queues sent prior to the disassociation - wait for
897 * all such frames to be processed.
899 drv_sync_rx_queues(local, sta);
901 ret = sta_info_hash_del(local, sta);
902 if (WARN_ON(ret))
903 return ret;
906 * for TDLS peers, make sure to return to the base channel before
907 * removal.
909 if (test_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL)) {
910 drv_tdls_cancel_channel_switch(local, sdata, &sta->sta);
911 clear_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL);
914 list_del_rcu(&sta->list);
915 sta->removed = true;
917 drv_sta_pre_rcu_remove(local, sta->sdata, sta);
919 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
920 rcu_access_pointer(sdata->u.vlan.sta) == sta)
921 RCU_INIT_POINTER(sdata->u.vlan.sta, NULL);
923 return 0;
926 static void __sta_info_destroy_part2(struct sta_info *sta)
928 struct ieee80211_local *local = sta->local;
929 struct ieee80211_sub_if_data *sdata = sta->sdata;
930 struct station_info *sinfo;
931 int ret;
934 * NOTE: This assumes at least synchronize_net() was done
935 * after _part1 and before _part2!
938 might_sleep();
939 lockdep_assert_held(&local->sta_mtx);
941 /* now keys can no longer be reached */
942 ieee80211_free_sta_keys(local, sta);
944 /* disable TIM bit - last chance to tell driver */
945 __sta_info_recalc_tim(sta, true);
947 sta->dead = true;
949 local->num_sta--;
950 local->sta_generation++;
952 while (sta->sta_state > IEEE80211_STA_NONE) {
953 ret = sta_info_move_state(sta, sta->sta_state - 1);
954 if (ret) {
955 WARN_ON_ONCE(1);
956 break;
960 if (sta->uploaded) {
961 ret = drv_sta_state(local, sdata, sta, IEEE80211_STA_NONE,
962 IEEE80211_STA_NOTEXIST);
963 WARN_ON_ONCE(ret != 0);
966 sta_dbg(sdata, "Removed STA %pM\n", sta->sta.addr);
968 sinfo = kzalloc(sizeof(*sinfo), GFP_KERNEL);
969 if (sinfo)
970 sta_set_sinfo(sta, sinfo);
971 cfg80211_del_sta_sinfo(sdata->dev, sta->sta.addr, sinfo, GFP_KERNEL);
972 kfree(sinfo);
974 rate_control_remove_sta_debugfs(sta);
975 ieee80211_sta_debugfs_remove(sta);
977 cleanup_single_sta(sta);
980 int __must_check __sta_info_destroy(struct sta_info *sta)
982 int err = __sta_info_destroy_part1(sta);
984 if (err)
985 return err;
987 synchronize_net();
989 __sta_info_destroy_part2(sta);
991 return 0;
994 int sta_info_destroy_addr(struct ieee80211_sub_if_data *sdata, const u8 *addr)
996 struct sta_info *sta;
997 int ret;
999 mutex_lock(&sdata->local->sta_mtx);
1000 sta = sta_info_get(sdata, addr);
1001 ret = __sta_info_destroy(sta);
1002 mutex_unlock(&sdata->local->sta_mtx);
1004 return ret;
1007 int sta_info_destroy_addr_bss(struct ieee80211_sub_if_data *sdata,
1008 const u8 *addr)
1010 struct sta_info *sta;
1011 int ret;
1013 mutex_lock(&sdata->local->sta_mtx);
1014 sta = sta_info_get_bss(sdata, addr);
1015 ret = __sta_info_destroy(sta);
1016 mutex_unlock(&sdata->local->sta_mtx);
1018 return ret;
1021 static void sta_info_cleanup(unsigned long data)
1023 struct ieee80211_local *local = (struct ieee80211_local *) data;
1024 struct sta_info *sta;
1025 bool timer_needed = false;
1027 rcu_read_lock();
1028 list_for_each_entry_rcu(sta, &local->sta_list, list)
1029 if (sta_info_cleanup_expire_buffered(local, sta))
1030 timer_needed = true;
1031 rcu_read_unlock();
1033 if (local->quiescing)
1034 return;
1036 if (!timer_needed)
1037 return;
1039 mod_timer(&local->sta_cleanup,
1040 round_jiffies(jiffies + STA_INFO_CLEANUP_INTERVAL));
1043 u32 sta_addr_hash(const void *key, u32 length, u32 seed)
1045 return jhash(key, ETH_ALEN, seed);
1048 int sta_info_init(struct ieee80211_local *local)
1050 int err;
1052 err = rhashtable_init(&local->sta_hash, &sta_rht_params);
1053 if (err)
1054 return err;
1056 spin_lock_init(&local->tim_lock);
1057 mutex_init(&local->sta_mtx);
1058 INIT_LIST_HEAD(&local->sta_list);
1060 setup_timer(&local->sta_cleanup, sta_info_cleanup,
1061 (unsigned long)local);
1062 return 0;
1065 void sta_info_stop(struct ieee80211_local *local)
1067 del_timer_sync(&local->sta_cleanup);
1068 rhashtable_destroy(&local->sta_hash);
1072 int __sta_info_flush(struct ieee80211_sub_if_data *sdata, bool vlans)
1074 struct ieee80211_local *local = sdata->local;
1075 struct sta_info *sta, *tmp;
1076 LIST_HEAD(free_list);
1077 int ret = 0;
1079 might_sleep();
1081 WARN_ON(vlans && sdata->vif.type != NL80211_IFTYPE_AP);
1082 WARN_ON(vlans && !sdata->bss);
1084 mutex_lock(&local->sta_mtx);
1085 list_for_each_entry_safe(sta, tmp, &local->sta_list, list) {
1086 if (sdata == sta->sdata ||
1087 (vlans && sdata->bss == sta->sdata->bss)) {
1088 if (!WARN_ON(__sta_info_destroy_part1(sta)))
1089 list_add(&sta->free_list, &free_list);
1090 ret++;
1094 if (!list_empty(&free_list)) {
1095 synchronize_net();
1096 list_for_each_entry_safe(sta, tmp, &free_list, free_list)
1097 __sta_info_destroy_part2(sta);
1099 mutex_unlock(&local->sta_mtx);
1101 return ret;
1104 void ieee80211_sta_expire(struct ieee80211_sub_if_data *sdata,
1105 unsigned long exp_time)
1107 struct ieee80211_local *local = sdata->local;
1108 struct sta_info *sta, *tmp;
1110 mutex_lock(&local->sta_mtx);
1112 list_for_each_entry_safe(sta, tmp, &local->sta_list, list) {
1113 unsigned long last_active = ieee80211_sta_last_active(sta);
1115 if (sdata != sta->sdata)
1116 continue;
1118 if (time_is_before_jiffies(last_active + exp_time)) {
1119 sta_dbg(sta->sdata, "expiring inactive STA %pM\n",
1120 sta->sta.addr);
1122 if (ieee80211_vif_is_mesh(&sdata->vif) &&
1123 test_sta_flag(sta, WLAN_STA_PS_STA))
1124 atomic_dec(&sdata->u.mesh.ps.num_sta_ps);
1126 WARN_ON(__sta_info_destroy(sta));
1130 mutex_unlock(&local->sta_mtx);
1133 struct ieee80211_sta *ieee80211_find_sta_by_ifaddr(struct ieee80211_hw *hw,
1134 const u8 *addr,
1135 const u8 *localaddr)
1137 struct ieee80211_local *local = hw_to_local(hw);
1138 struct sta_info *sta;
1139 struct rhash_head *tmp;
1140 const struct bucket_table *tbl;
1142 tbl = rht_dereference_rcu(local->sta_hash.tbl, &local->sta_hash);
1145 * Just return a random station if localaddr is NULL
1146 * ... first in list.
1148 for_each_sta_info(local, tbl, addr, sta, tmp) {
1149 if (localaddr &&
1150 !ether_addr_equal(sta->sdata->vif.addr, localaddr))
1151 continue;
1152 if (!sta->uploaded)
1153 return NULL;
1154 return &sta->sta;
1157 return NULL;
1159 EXPORT_SYMBOL_GPL(ieee80211_find_sta_by_ifaddr);
1161 struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_vif *vif,
1162 const u8 *addr)
1164 struct sta_info *sta;
1166 if (!vif)
1167 return NULL;
1169 sta = sta_info_get_bss(vif_to_sdata(vif), addr);
1170 if (!sta)
1171 return NULL;
1173 if (!sta->uploaded)
1174 return NULL;
1176 return &sta->sta;
1178 EXPORT_SYMBOL(ieee80211_find_sta);
1180 /* powersave support code */
1181 void ieee80211_sta_ps_deliver_wakeup(struct sta_info *sta)
1183 struct ieee80211_sub_if_data *sdata = sta->sdata;
1184 struct ieee80211_local *local = sdata->local;
1185 struct sk_buff_head pending;
1186 int filtered = 0, buffered = 0, ac, i;
1187 unsigned long flags;
1188 struct ps_data *ps;
1190 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1191 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
1192 u.ap);
1194 if (sdata->vif.type == NL80211_IFTYPE_AP)
1195 ps = &sdata->bss->ps;
1196 else if (ieee80211_vif_is_mesh(&sdata->vif))
1197 ps = &sdata->u.mesh.ps;
1198 else
1199 return;
1201 clear_sta_flag(sta, WLAN_STA_SP);
1203 BUILD_BUG_ON(BITS_TO_LONGS(IEEE80211_NUM_TIDS) > 1);
1204 sta->driver_buffered_tids = 0;
1205 sta->txq_buffered_tids = 0;
1207 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
1208 drv_sta_notify(local, sdata, STA_NOTIFY_AWAKE, &sta->sta);
1210 if (sta->sta.txq[0]) {
1211 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) {
1212 struct txq_info *txqi = to_txq_info(sta->sta.txq[i]);
1214 if (!skb_queue_len(&txqi->queue))
1215 continue;
1217 drv_wake_tx_queue(local, txqi);
1221 skb_queue_head_init(&pending);
1223 /* sync with ieee80211_tx_h_unicast_ps_buf */
1224 spin_lock(&sta->ps_lock);
1225 /* Send all buffered frames to the station */
1226 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1227 int count = skb_queue_len(&pending), tmp;
1229 spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags);
1230 skb_queue_splice_tail_init(&sta->tx_filtered[ac], &pending);
1231 spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags);
1232 tmp = skb_queue_len(&pending);
1233 filtered += tmp - count;
1234 count = tmp;
1236 spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags);
1237 skb_queue_splice_tail_init(&sta->ps_tx_buf[ac], &pending);
1238 spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags);
1239 tmp = skb_queue_len(&pending);
1240 buffered += tmp - count;
1243 ieee80211_add_pending_skbs(local, &pending);
1245 /* now we're no longer in the deliver code */
1246 clear_sta_flag(sta, WLAN_STA_PS_DELIVER);
1248 /* The station might have polled and then woken up before we responded,
1249 * so clear these flags now to avoid them sticking around.
1251 clear_sta_flag(sta, WLAN_STA_PSPOLL);
1252 clear_sta_flag(sta, WLAN_STA_UAPSD);
1253 spin_unlock(&sta->ps_lock);
1255 atomic_dec(&ps->num_sta_ps);
1257 /* This station just woke up and isn't aware of our SMPS state */
1258 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
1259 !ieee80211_smps_is_restrictive(sta->known_smps_mode,
1260 sdata->smps_mode) &&
1261 sta->known_smps_mode != sdata->bss->req_smps &&
1262 sta_info_tx_streams(sta) != 1) {
1263 ht_dbg(sdata,
1264 "%pM just woke up and MIMO capable - update SMPS\n",
1265 sta->sta.addr);
1266 ieee80211_send_smps_action(sdata, sdata->bss->req_smps,
1267 sta->sta.addr,
1268 sdata->vif.bss_conf.bssid);
1271 local->total_ps_buffered -= buffered;
1273 sta_info_recalc_tim(sta);
1275 ps_dbg(sdata,
1276 "STA %pM aid %d sending %d filtered/%d PS frames since STA not sleeping anymore\n",
1277 sta->sta.addr, sta->sta.aid, filtered, buffered);
1279 ieee80211_check_fast_xmit(sta);
1282 static void ieee80211_send_null_response(struct sta_info *sta, int tid,
1283 enum ieee80211_frame_release_type reason,
1284 bool call_driver, bool more_data)
1286 struct ieee80211_sub_if_data *sdata = sta->sdata;
1287 struct ieee80211_local *local = sdata->local;
1288 struct ieee80211_qos_hdr *nullfunc;
1289 struct sk_buff *skb;
1290 int size = sizeof(*nullfunc);
1291 __le16 fc;
1292 bool qos = sta->sta.wme;
1293 struct ieee80211_tx_info *info;
1294 struct ieee80211_chanctx_conf *chanctx_conf;
1296 if (qos) {
1297 fc = cpu_to_le16(IEEE80211_FTYPE_DATA |
1298 IEEE80211_STYPE_QOS_NULLFUNC |
1299 IEEE80211_FCTL_FROMDS);
1300 } else {
1301 size -= 2;
1302 fc = cpu_to_le16(IEEE80211_FTYPE_DATA |
1303 IEEE80211_STYPE_NULLFUNC |
1304 IEEE80211_FCTL_FROMDS);
1307 skb = dev_alloc_skb(local->hw.extra_tx_headroom + size);
1308 if (!skb)
1309 return;
1311 skb_reserve(skb, local->hw.extra_tx_headroom);
1313 nullfunc = (void *) skb_put(skb, size);
1314 nullfunc->frame_control = fc;
1315 nullfunc->duration_id = 0;
1316 memcpy(nullfunc->addr1, sta->sta.addr, ETH_ALEN);
1317 memcpy(nullfunc->addr2, sdata->vif.addr, ETH_ALEN);
1318 memcpy(nullfunc->addr3, sdata->vif.addr, ETH_ALEN);
1319 nullfunc->seq_ctrl = 0;
1321 skb->priority = tid;
1322 skb_set_queue_mapping(skb, ieee802_1d_to_ac[tid]);
1323 if (qos) {
1324 nullfunc->qos_ctrl = cpu_to_le16(tid);
1326 if (reason == IEEE80211_FRAME_RELEASE_UAPSD) {
1327 nullfunc->qos_ctrl |=
1328 cpu_to_le16(IEEE80211_QOS_CTL_EOSP);
1329 if (more_data)
1330 nullfunc->frame_control |=
1331 cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1335 info = IEEE80211_SKB_CB(skb);
1338 * Tell TX path to send this frame even though the
1339 * STA may still remain is PS mode after this frame
1340 * exchange. Also set EOSP to indicate this packet
1341 * ends the poll/service period.
1343 info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER |
1344 IEEE80211_TX_STATUS_EOSP |
1345 IEEE80211_TX_CTL_REQ_TX_STATUS;
1347 info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE;
1349 if (call_driver)
1350 drv_allow_buffered_frames(local, sta, BIT(tid), 1,
1351 reason, false);
1353 skb->dev = sdata->dev;
1355 rcu_read_lock();
1356 chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf);
1357 if (WARN_ON(!chanctx_conf)) {
1358 rcu_read_unlock();
1359 kfree_skb(skb);
1360 return;
1363 info->band = chanctx_conf->def.chan->band;
1364 ieee80211_xmit(sdata, sta, skb);
1365 rcu_read_unlock();
1368 static int find_highest_prio_tid(unsigned long tids)
1370 /* lower 3 TIDs aren't ordered perfectly */
1371 if (tids & 0xF8)
1372 return fls(tids) - 1;
1373 /* TID 0 is BE just like TID 3 */
1374 if (tids & BIT(0))
1375 return 0;
1376 return fls(tids) - 1;
1379 /* Indicates if the MORE_DATA bit should be set in the last
1380 * frame obtained by ieee80211_sta_ps_get_frames.
1381 * Note that driver_release_tids is relevant only if
1382 * reason = IEEE80211_FRAME_RELEASE_PSPOLL
1384 static bool
1385 ieee80211_sta_ps_more_data(struct sta_info *sta, u8 ignored_acs,
1386 enum ieee80211_frame_release_type reason,
1387 unsigned long driver_release_tids)
1389 int ac;
1391 /* If the driver has data on more than one TID then
1392 * certainly there's more data if we release just a
1393 * single frame now (from a single TID). This will
1394 * only happen for PS-Poll.
1396 if (reason == IEEE80211_FRAME_RELEASE_PSPOLL &&
1397 hweight16(driver_release_tids) > 1)
1398 return true;
1400 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1401 if (ignored_acs & BIT(ac))
1402 continue;
1404 if (!skb_queue_empty(&sta->tx_filtered[ac]) ||
1405 !skb_queue_empty(&sta->ps_tx_buf[ac]))
1406 return true;
1409 return false;
1412 static void
1413 ieee80211_sta_ps_get_frames(struct sta_info *sta, int n_frames, u8 ignored_acs,
1414 enum ieee80211_frame_release_type reason,
1415 struct sk_buff_head *frames,
1416 unsigned long *driver_release_tids)
1418 struct ieee80211_sub_if_data *sdata = sta->sdata;
1419 struct ieee80211_local *local = sdata->local;
1420 int ac;
1422 /* Get response frame(s) and more data bit for the last one. */
1423 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1424 unsigned long tids;
1426 if (ignored_acs & BIT(ac))
1427 continue;
1429 tids = ieee80211_tids_for_ac(ac);
1431 /* if we already have frames from software, then we can't also
1432 * release from hardware queues
1434 if (skb_queue_empty(frames)) {
1435 *driver_release_tids |=
1436 sta->driver_buffered_tids & tids;
1437 *driver_release_tids |= sta->txq_buffered_tids & tids;
1440 if (!*driver_release_tids) {
1441 struct sk_buff *skb;
1443 while (n_frames > 0) {
1444 skb = skb_dequeue(&sta->tx_filtered[ac]);
1445 if (!skb) {
1446 skb = skb_dequeue(
1447 &sta->ps_tx_buf[ac]);
1448 if (skb)
1449 local->total_ps_buffered--;
1451 if (!skb)
1452 break;
1453 n_frames--;
1454 __skb_queue_tail(frames, skb);
1458 /* If we have more frames buffered on this AC, then abort the
1459 * loop since we can't send more data from other ACs before
1460 * the buffered frames from this.
1462 if (!skb_queue_empty(&sta->tx_filtered[ac]) ||
1463 !skb_queue_empty(&sta->ps_tx_buf[ac]))
1464 break;
1468 static void
1469 ieee80211_sta_ps_deliver_response(struct sta_info *sta,
1470 int n_frames, u8 ignored_acs,
1471 enum ieee80211_frame_release_type reason)
1473 struct ieee80211_sub_if_data *sdata = sta->sdata;
1474 struct ieee80211_local *local = sdata->local;
1475 unsigned long driver_release_tids = 0;
1476 struct sk_buff_head frames;
1477 bool more_data;
1479 /* Service or PS-Poll period starts */
1480 set_sta_flag(sta, WLAN_STA_SP);
1482 __skb_queue_head_init(&frames);
1484 ieee80211_sta_ps_get_frames(sta, n_frames, ignored_acs, reason,
1485 &frames, &driver_release_tids);
1487 more_data = ieee80211_sta_ps_more_data(sta, ignored_acs, reason, driver_release_tids);
1489 if (driver_release_tids && reason == IEEE80211_FRAME_RELEASE_PSPOLL)
1490 driver_release_tids =
1491 BIT(find_highest_prio_tid(driver_release_tids));
1493 if (skb_queue_empty(&frames) && !driver_release_tids) {
1494 int tid;
1497 * For PS-Poll, this can only happen due to a race condition
1498 * when we set the TIM bit and the station notices it, but
1499 * before it can poll for the frame we expire it.
1501 * For uAPSD, this is said in the standard (11.2.1.5 h):
1502 * At each unscheduled SP for a non-AP STA, the AP shall
1503 * attempt to transmit at least one MSDU or MMPDU, but no
1504 * more than the value specified in the Max SP Length field
1505 * in the QoS Capability element from delivery-enabled ACs,
1506 * that are destined for the non-AP STA.
1508 * Since we have no other MSDU/MMPDU, transmit a QoS null frame.
1511 /* This will evaluate to 1, 3, 5 or 7. */
1512 tid = 7 - ((ffs(~ignored_acs) - 1) << 1);
1514 ieee80211_send_null_response(sta, tid, reason, true, false);
1515 } else if (!driver_release_tids) {
1516 struct sk_buff_head pending;
1517 struct sk_buff *skb;
1518 int num = 0;
1519 u16 tids = 0;
1520 bool need_null = false;
1522 skb_queue_head_init(&pending);
1524 while ((skb = __skb_dequeue(&frames))) {
1525 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1526 struct ieee80211_hdr *hdr = (void *) skb->data;
1527 u8 *qoshdr = NULL;
1529 num++;
1532 * Tell TX path to send this frame even though the
1533 * STA may still remain is PS mode after this frame
1534 * exchange.
1536 info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER;
1537 info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE;
1540 * Use MoreData flag to indicate whether there are
1541 * more buffered frames for this STA
1543 if (more_data || !skb_queue_empty(&frames))
1544 hdr->frame_control |=
1545 cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1546 else
1547 hdr->frame_control &=
1548 cpu_to_le16(~IEEE80211_FCTL_MOREDATA);
1550 if (ieee80211_is_data_qos(hdr->frame_control) ||
1551 ieee80211_is_qos_nullfunc(hdr->frame_control))
1552 qoshdr = ieee80211_get_qos_ctl(hdr);
1554 tids |= BIT(skb->priority);
1556 __skb_queue_tail(&pending, skb);
1558 /* end service period after last frame or add one */
1559 if (!skb_queue_empty(&frames))
1560 continue;
1562 if (reason != IEEE80211_FRAME_RELEASE_UAPSD) {
1563 /* for PS-Poll, there's only one frame */
1564 info->flags |= IEEE80211_TX_STATUS_EOSP |
1565 IEEE80211_TX_CTL_REQ_TX_STATUS;
1566 break;
1569 /* For uAPSD, things are a bit more complicated. If the
1570 * last frame has a QoS header (i.e. is a QoS-data or
1571 * QoS-nulldata frame) then just set the EOSP bit there
1572 * and be done.
1573 * If the frame doesn't have a QoS header (which means
1574 * it should be a bufferable MMPDU) then we can't set
1575 * the EOSP bit in the QoS header; add a QoS-nulldata
1576 * frame to the list to send it after the MMPDU.
1578 * Note that this code is only in the mac80211-release
1579 * code path, we assume that the driver will not buffer
1580 * anything but QoS-data frames, or if it does, will
1581 * create the QoS-nulldata frame by itself if needed.
1583 * Cf. 802.11-2012 10.2.1.10 (c).
1585 if (qoshdr) {
1586 *qoshdr |= IEEE80211_QOS_CTL_EOSP;
1588 info->flags |= IEEE80211_TX_STATUS_EOSP |
1589 IEEE80211_TX_CTL_REQ_TX_STATUS;
1590 } else {
1591 /* The standard isn't completely clear on this
1592 * as it says the more-data bit should be set
1593 * if there are more BUs. The QoS-Null frame
1594 * we're about to send isn't buffered yet, we
1595 * only create it below, but let's pretend it
1596 * was buffered just in case some clients only
1597 * expect more-data=0 when eosp=1.
1599 hdr->frame_control |=
1600 cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1601 need_null = true;
1602 num++;
1604 break;
1607 drv_allow_buffered_frames(local, sta, tids, num,
1608 reason, more_data);
1610 ieee80211_add_pending_skbs(local, &pending);
1612 if (need_null)
1613 ieee80211_send_null_response(
1614 sta, find_highest_prio_tid(tids),
1615 reason, false, false);
1617 sta_info_recalc_tim(sta);
1618 } else {
1619 unsigned long tids = sta->txq_buffered_tids & driver_release_tids;
1620 int tid;
1623 * We need to release a frame that is buffered somewhere in the
1624 * driver ... it'll have to handle that.
1625 * Note that the driver also has to check the number of frames
1626 * on the TIDs we're releasing from - if there are more than
1627 * n_frames it has to set the more-data bit (if we didn't ask
1628 * it to set it anyway due to other buffered frames); if there
1629 * are fewer than n_frames it has to make sure to adjust that
1630 * to allow the service period to end properly.
1632 drv_release_buffered_frames(local, sta, driver_release_tids,
1633 n_frames, reason, more_data);
1636 * Note that we don't recalculate the TIM bit here as it would
1637 * most likely have no effect at all unless the driver told us
1638 * that the TID(s) became empty before returning here from the
1639 * release function.
1640 * Either way, however, when the driver tells us that the TID(s)
1641 * became empty or we find that a txq became empty, we'll do the
1642 * TIM recalculation.
1645 if (!sta->sta.txq[0])
1646 return;
1648 for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) {
1649 struct txq_info *txqi = to_txq_info(sta->sta.txq[tid]);
1651 if (!(tids & BIT(tid)) || skb_queue_len(&txqi->queue))
1652 continue;
1654 sta_info_recalc_tim(sta);
1655 break;
1660 void ieee80211_sta_ps_deliver_poll_response(struct sta_info *sta)
1662 u8 ignore_for_response = sta->sta.uapsd_queues;
1665 * If all ACs are delivery-enabled then we should reply
1666 * from any of them, if only some are enabled we reply
1667 * only from the non-enabled ones.
1669 if (ignore_for_response == BIT(IEEE80211_NUM_ACS) - 1)
1670 ignore_for_response = 0;
1672 ieee80211_sta_ps_deliver_response(sta, 1, ignore_for_response,
1673 IEEE80211_FRAME_RELEASE_PSPOLL);
1676 void ieee80211_sta_ps_deliver_uapsd(struct sta_info *sta)
1678 int n_frames = sta->sta.max_sp;
1679 u8 delivery_enabled = sta->sta.uapsd_queues;
1682 * If we ever grow support for TSPEC this might happen if
1683 * the TSPEC update from hostapd comes in between a trigger
1684 * frame setting WLAN_STA_UAPSD in the RX path and this
1685 * actually getting called.
1687 if (!delivery_enabled)
1688 return;
1690 switch (sta->sta.max_sp) {
1691 case 1:
1692 n_frames = 2;
1693 break;
1694 case 2:
1695 n_frames = 4;
1696 break;
1697 case 3:
1698 n_frames = 6;
1699 break;
1700 case 0:
1701 /* XXX: what is a good value? */
1702 n_frames = 128;
1703 break;
1706 ieee80211_sta_ps_deliver_response(sta, n_frames, ~delivery_enabled,
1707 IEEE80211_FRAME_RELEASE_UAPSD);
1710 void ieee80211_sta_block_awake(struct ieee80211_hw *hw,
1711 struct ieee80211_sta *pubsta, bool block)
1713 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1715 trace_api_sta_block_awake(sta->local, pubsta, block);
1717 if (block) {
1718 set_sta_flag(sta, WLAN_STA_PS_DRIVER);
1719 ieee80211_clear_fast_xmit(sta);
1720 return;
1723 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1724 return;
1726 if (!test_sta_flag(sta, WLAN_STA_PS_STA)) {
1727 set_sta_flag(sta, WLAN_STA_PS_DELIVER);
1728 clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
1729 ieee80211_queue_work(hw, &sta->drv_deliver_wk);
1730 } else if (test_sta_flag(sta, WLAN_STA_PSPOLL) ||
1731 test_sta_flag(sta, WLAN_STA_UAPSD)) {
1732 /* must be asleep in this case */
1733 clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
1734 ieee80211_queue_work(hw, &sta->drv_deliver_wk);
1735 } else {
1736 clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
1737 ieee80211_check_fast_xmit(sta);
1740 EXPORT_SYMBOL(ieee80211_sta_block_awake);
1742 void ieee80211_sta_eosp(struct ieee80211_sta *pubsta)
1744 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1745 struct ieee80211_local *local = sta->local;
1747 trace_api_eosp(local, pubsta);
1749 clear_sta_flag(sta, WLAN_STA_SP);
1751 EXPORT_SYMBOL(ieee80211_sta_eosp);
1753 void ieee80211_send_eosp_nullfunc(struct ieee80211_sta *pubsta, int tid)
1755 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1756 enum ieee80211_frame_release_type reason;
1757 bool more_data;
1759 trace_api_send_eosp_nullfunc(sta->local, pubsta, tid);
1761 reason = IEEE80211_FRAME_RELEASE_UAPSD;
1762 more_data = ieee80211_sta_ps_more_data(sta, ~sta->sta.uapsd_queues,
1763 reason, 0);
1765 ieee80211_send_null_response(sta, tid, reason, false, more_data);
1767 EXPORT_SYMBOL(ieee80211_send_eosp_nullfunc);
1769 void ieee80211_sta_set_buffered(struct ieee80211_sta *pubsta,
1770 u8 tid, bool buffered)
1772 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1774 if (WARN_ON(tid >= IEEE80211_NUM_TIDS))
1775 return;
1777 trace_api_sta_set_buffered(sta->local, pubsta, tid, buffered);
1779 if (buffered)
1780 set_bit(tid, &sta->driver_buffered_tids);
1781 else
1782 clear_bit(tid, &sta->driver_buffered_tids);
1784 sta_info_recalc_tim(sta);
1786 EXPORT_SYMBOL(ieee80211_sta_set_buffered);
1788 static void
1789 ieee80211_recalc_p2p_go_ps_allowed(struct ieee80211_sub_if_data *sdata)
1791 struct ieee80211_local *local = sdata->local;
1792 bool allow_p2p_go_ps = sdata->vif.p2p;
1793 struct sta_info *sta;
1795 rcu_read_lock();
1796 list_for_each_entry_rcu(sta, &local->sta_list, list) {
1797 if (sdata != sta->sdata ||
1798 !test_sta_flag(sta, WLAN_STA_ASSOC))
1799 continue;
1800 if (!sta->sta.support_p2p_ps) {
1801 allow_p2p_go_ps = false;
1802 break;
1805 rcu_read_unlock();
1807 if (allow_p2p_go_ps != sdata->vif.bss_conf.allow_p2p_go_ps) {
1808 sdata->vif.bss_conf.allow_p2p_go_ps = allow_p2p_go_ps;
1809 ieee80211_bss_info_change_notify(sdata, BSS_CHANGED_P2P_PS);
1813 int sta_info_move_state(struct sta_info *sta,
1814 enum ieee80211_sta_state new_state)
1816 might_sleep();
1818 if (sta->sta_state == new_state)
1819 return 0;
1821 /* check allowed transitions first */
1823 switch (new_state) {
1824 case IEEE80211_STA_NONE:
1825 if (sta->sta_state != IEEE80211_STA_AUTH)
1826 return -EINVAL;
1827 break;
1828 case IEEE80211_STA_AUTH:
1829 if (sta->sta_state != IEEE80211_STA_NONE &&
1830 sta->sta_state != IEEE80211_STA_ASSOC)
1831 return -EINVAL;
1832 break;
1833 case IEEE80211_STA_ASSOC:
1834 if (sta->sta_state != IEEE80211_STA_AUTH &&
1835 sta->sta_state != IEEE80211_STA_AUTHORIZED)
1836 return -EINVAL;
1837 break;
1838 case IEEE80211_STA_AUTHORIZED:
1839 if (sta->sta_state != IEEE80211_STA_ASSOC)
1840 return -EINVAL;
1841 break;
1842 default:
1843 WARN(1, "invalid state %d", new_state);
1844 return -EINVAL;
1847 sta_dbg(sta->sdata, "moving STA %pM to state %d\n",
1848 sta->sta.addr, new_state);
1851 * notify the driver before the actual changes so it can
1852 * fail the transition
1854 if (test_sta_flag(sta, WLAN_STA_INSERTED)) {
1855 int err = drv_sta_state(sta->local, sta->sdata, sta,
1856 sta->sta_state, new_state);
1857 if (err)
1858 return err;
1861 /* reflect the change in all state variables */
1863 switch (new_state) {
1864 case IEEE80211_STA_NONE:
1865 if (sta->sta_state == IEEE80211_STA_AUTH)
1866 clear_bit(WLAN_STA_AUTH, &sta->_flags);
1867 break;
1868 case IEEE80211_STA_AUTH:
1869 if (sta->sta_state == IEEE80211_STA_NONE) {
1870 set_bit(WLAN_STA_AUTH, &sta->_flags);
1871 } else if (sta->sta_state == IEEE80211_STA_ASSOC) {
1872 clear_bit(WLAN_STA_ASSOC, &sta->_flags);
1873 ieee80211_recalc_min_chandef(sta->sdata);
1874 if (!sta->sta.support_p2p_ps)
1875 ieee80211_recalc_p2p_go_ps_allowed(sta->sdata);
1877 break;
1878 case IEEE80211_STA_ASSOC:
1879 if (sta->sta_state == IEEE80211_STA_AUTH) {
1880 set_bit(WLAN_STA_ASSOC, &sta->_flags);
1881 ieee80211_recalc_min_chandef(sta->sdata);
1882 if (!sta->sta.support_p2p_ps)
1883 ieee80211_recalc_p2p_go_ps_allowed(sta->sdata);
1884 } else if (sta->sta_state == IEEE80211_STA_AUTHORIZED) {
1885 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1886 (sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1887 !sta->sdata->u.vlan.sta))
1888 atomic_dec(&sta->sdata->bss->num_mcast_sta);
1889 clear_bit(WLAN_STA_AUTHORIZED, &sta->_flags);
1890 ieee80211_clear_fast_xmit(sta);
1891 ieee80211_clear_fast_rx(sta);
1893 break;
1894 case IEEE80211_STA_AUTHORIZED:
1895 if (sta->sta_state == IEEE80211_STA_ASSOC) {
1896 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1897 (sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1898 !sta->sdata->u.vlan.sta))
1899 atomic_inc(&sta->sdata->bss->num_mcast_sta);
1900 set_bit(WLAN_STA_AUTHORIZED, &sta->_flags);
1901 ieee80211_check_fast_xmit(sta);
1902 ieee80211_check_fast_rx(sta);
1904 break;
1905 default:
1906 break;
1909 sta->sta_state = new_state;
1911 return 0;
1914 u8 sta_info_tx_streams(struct sta_info *sta)
1916 struct ieee80211_sta_ht_cap *ht_cap = &sta->sta.ht_cap;
1917 u8 rx_streams;
1919 if (!sta->sta.ht_cap.ht_supported)
1920 return 1;
1922 if (sta->sta.vht_cap.vht_supported) {
1923 int i;
1924 u16 tx_mcs_map =
1925 le16_to_cpu(sta->sta.vht_cap.vht_mcs.tx_mcs_map);
1927 for (i = 7; i >= 0; i--)
1928 if ((tx_mcs_map & (0x3 << (i * 2))) !=
1929 IEEE80211_VHT_MCS_NOT_SUPPORTED)
1930 return i + 1;
1933 if (ht_cap->mcs.rx_mask[3])
1934 rx_streams = 4;
1935 else if (ht_cap->mcs.rx_mask[2])
1936 rx_streams = 3;
1937 else if (ht_cap->mcs.rx_mask[1])
1938 rx_streams = 2;
1939 else
1940 rx_streams = 1;
1942 if (!(ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_RX_DIFF))
1943 return rx_streams;
1945 return ((ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_MAX_STREAMS_MASK)
1946 >> IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT) + 1;
1949 static struct ieee80211_sta_rx_stats *
1950 sta_get_last_rx_stats(struct sta_info *sta)
1952 struct ieee80211_sta_rx_stats *stats = &sta->rx_stats;
1953 struct ieee80211_local *local = sta->local;
1954 int cpu;
1956 if (!ieee80211_hw_check(&local->hw, USES_RSS))
1957 return stats;
1959 for_each_possible_cpu(cpu) {
1960 struct ieee80211_sta_rx_stats *cpustats;
1962 cpustats = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
1964 if (time_after(cpustats->last_rx, stats->last_rx))
1965 stats = cpustats;
1968 return stats;
1971 static void sta_stats_decode_rate(struct ieee80211_local *local, u16 rate,
1972 struct rate_info *rinfo)
1974 rinfo->bw = (rate & STA_STATS_RATE_BW_MASK) >>
1975 STA_STATS_RATE_BW_SHIFT;
1977 if (rate & STA_STATS_RATE_VHT) {
1978 rinfo->flags = RATE_INFO_FLAGS_VHT_MCS;
1979 rinfo->mcs = rate & 0xf;
1980 rinfo->nss = (rate & 0xf0) >> 4;
1981 } else if (rate & STA_STATS_RATE_HT) {
1982 rinfo->flags = RATE_INFO_FLAGS_MCS;
1983 rinfo->mcs = rate & 0xff;
1984 } else if (rate & STA_STATS_RATE_LEGACY) {
1985 struct ieee80211_supported_band *sband;
1986 u16 brate;
1987 unsigned int shift;
1989 sband = local->hw.wiphy->bands[(rate >> 4) & 0xf];
1990 brate = sband->bitrates[rate & 0xf].bitrate;
1991 if (rinfo->bw == RATE_INFO_BW_5)
1992 shift = 2;
1993 else if (rinfo->bw == RATE_INFO_BW_10)
1994 shift = 1;
1995 else
1996 shift = 0;
1997 rinfo->legacy = DIV_ROUND_UP(brate, 1 << shift);
2000 if (rate & STA_STATS_RATE_SGI)
2001 rinfo->flags |= RATE_INFO_FLAGS_SHORT_GI;
2004 static void sta_set_rate_info_rx(struct sta_info *sta, struct rate_info *rinfo)
2006 u16 rate = ACCESS_ONCE(sta_get_last_rx_stats(sta)->last_rate);
2008 if (rate == STA_STATS_RATE_INVALID)
2009 rinfo->flags = 0;
2010 else
2011 sta_stats_decode_rate(sta->local, rate, rinfo);
2014 static void sta_set_tidstats(struct sta_info *sta,
2015 struct cfg80211_tid_stats *tidstats,
2016 int tid)
2018 struct ieee80211_local *local = sta->local;
2020 if (!(tidstats->filled & BIT(NL80211_TID_STATS_RX_MSDU))) {
2021 unsigned int start;
2023 do {
2024 start = u64_stats_fetch_begin(&sta->rx_stats.syncp);
2025 tidstats->rx_msdu = sta->rx_stats.msdu[tid];
2026 } while (u64_stats_fetch_retry(&sta->rx_stats.syncp, start));
2028 tidstats->filled |= BIT(NL80211_TID_STATS_RX_MSDU);
2031 if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU))) {
2032 tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU);
2033 tidstats->tx_msdu = sta->tx_stats.msdu[tid];
2036 if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU_RETRIES)) &&
2037 ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) {
2038 tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU_RETRIES);
2039 tidstats->tx_msdu_retries = sta->status_stats.msdu_retries[tid];
2042 if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU_FAILED)) &&
2043 ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) {
2044 tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU_FAILED);
2045 tidstats->tx_msdu_failed = sta->status_stats.msdu_failed[tid];
2049 static inline u64 sta_get_stats_bytes(struct ieee80211_sta_rx_stats *rxstats)
2051 unsigned int start;
2052 u64 value;
2054 do {
2055 start = u64_stats_fetch_begin(&rxstats->syncp);
2056 value = rxstats->bytes;
2057 } while (u64_stats_fetch_retry(&rxstats->syncp, start));
2059 return value;
2062 void sta_set_sinfo(struct sta_info *sta, struct station_info *sinfo)
2064 struct ieee80211_sub_if_data *sdata = sta->sdata;
2065 struct ieee80211_local *local = sdata->local;
2066 struct rate_control_ref *ref = NULL;
2067 u32 thr = 0;
2068 int i, ac, cpu;
2069 struct ieee80211_sta_rx_stats *last_rxstats;
2071 last_rxstats = sta_get_last_rx_stats(sta);
2073 if (test_sta_flag(sta, WLAN_STA_RATE_CONTROL))
2074 ref = local->rate_ctrl;
2076 sinfo->generation = sdata->local->sta_generation;
2078 /* do before driver, so beacon filtering drivers have a
2079 * chance to e.g. just add the number of filtered beacons
2080 * (or just modify the value entirely, of course)
2082 if (sdata->vif.type == NL80211_IFTYPE_STATION)
2083 sinfo->rx_beacon = sdata->u.mgd.count_beacon_signal;
2085 drv_sta_statistics(local, sdata, &sta->sta, sinfo);
2087 sinfo->filled |= BIT(NL80211_STA_INFO_INACTIVE_TIME) |
2088 BIT(NL80211_STA_INFO_STA_FLAGS) |
2089 BIT(NL80211_STA_INFO_BSS_PARAM) |
2090 BIT(NL80211_STA_INFO_CONNECTED_TIME) |
2091 BIT(NL80211_STA_INFO_RX_DROP_MISC);
2093 if (sdata->vif.type == NL80211_IFTYPE_STATION) {
2094 sinfo->beacon_loss_count = sdata->u.mgd.beacon_loss_count;
2095 sinfo->filled |= BIT(NL80211_STA_INFO_BEACON_LOSS);
2098 sinfo->connected_time = ktime_get_seconds() - sta->last_connected;
2099 sinfo->inactive_time =
2100 jiffies_to_msecs(jiffies - ieee80211_sta_last_active(sta));
2102 if (!(sinfo->filled & (BIT(NL80211_STA_INFO_TX_BYTES64) |
2103 BIT(NL80211_STA_INFO_TX_BYTES)))) {
2104 sinfo->tx_bytes = 0;
2105 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
2106 sinfo->tx_bytes += sta->tx_stats.bytes[ac];
2107 sinfo->filled |= BIT(NL80211_STA_INFO_TX_BYTES64);
2110 if (!(sinfo->filled & BIT(NL80211_STA_INFO_TX_PACKETS))) {
2111 sinfo->tx_packets = 0;
2112 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
2113 sinfo->tx_packets += sta->tx_stats.packets[ac];
2114 sinfo->filled |= BIT(NL80211_STA_INFO_TX_PACKETS);
2117 if (!(sinfo->filled & (BIT(NL80211_STA_INFO_RX_BYTES64) |
2118 BIT(NL80211_STA_INFO_RX_BYTES)))) {
2119 sinfo->rx_bytes += sta_get_stats_bytes(&sta->rx_stats);
2121 if (sta->pcpu_rx_stats) {
2122 for_each_possible_cpu(cpu) {
2123 struct ieee80211_sta_rx_stats *cpurxs;
2125 cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
2126 sinfo->rx_bytes += sta_get_stats_bytes(cpurxs);
2130 sinfo->filled |= BIT(NL80211_STA_INFO_RX_BYTES64);
2133 if (!(sinfo->filled & BIT(NL80211_STA_INFO_RX_PACKETS))) {
2134 sinfo->rx_packets = sta->rx_stats.packets;
2135 if (sta->pcpu_rx_stats) {
2136 for_each_possible_cpu(cpu) {
2137 struct ieee80211_sta_rx_stats *cpurxs;
2139 cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
2140 sinfo->rx_packets += cpurxs->packets;
2143 sinfo->filled |= BIT(NL80211_STA_INFO_RX_PACKETS);
2146 if (!(sinfo->filled & BIT(NL80211_STA_INFO_TX_RETRIES))) {
2147 sinfo->tx_retries = sta->status_stats.retry_count;
2148 sinfo->filled |= BIT(NL80211_STA_INFO_TX_RETRIES);
2151 if (!(sinfo->filled & BIT(NL80211_STA_INFO_TX_FAILED))) {
2152 sinfo->tx_failed = sta->status_stats.retry_failed;
2153 sinfo->filled |= BIT(NL80211_STA_INFO_TX_FAILED);
2156 sinfo->rx_dropped_misc = sta->rx_stats.dropped;
2157 if (sta->pcpu_rx_stats) {
2158 for_each_possible_cpu(cpu) {
2159 struct ieee80211_sta_rx_stats *cpurxs;
2161 cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
2162 sinfo->rx_packets += cpurxs->dropped;
2166 if (sdata->vif.type == NL80211_IFTYPE_STATION &&
2167 !(sdata->vif.driver_flags & IEEE80211_VIF_BEACON_FILTER)) {
2168 sinfo->filled |= BIT(NL80211_STA_INFO_BEACON_RX) |
2169 BIT(NL80211_STA_INFO_BEACON_SIGNAL_AVG);
2170 sinfo->rx_beacon_signal_avg = ieee80211_ave_rssi(&sdata->vif);
2173 if (ieee80211_hw_check(&sta->local->hw, SIGNAL_DBM) ||
2174 ieee80211_hw_check(&sta->local->hw, SIGNAL_UNSPEC)) {
2175 if (!(sinfo->filled & BIT(NL80211_STA_INFO_SIGNAL))) {
2176 sinfo->signal = (s8)last_rxstats->last_signal;
2177 sinfo->filled |= BIT(NL80211_STA_INFO_SIGNAL);
2180 if (!sta->pcpu_rx_stats &&
2181 !(sinfo->filled & BIT(NL80211_STA_INFO_SIGNAL_AVG))) {
2182 sinfo->signal_avg =
2183 -ewma_signal_read(&sta->rx_stats_avg.signal);
2184 sinfo->filled |= BIT(NL80211_STA_INFO_SIGNAL_AVG);
2188 /* for the average - if pcpu_rx_stats isn't set - rxstats must point to
2189 * the sta->rx_stats struct, so the check here is fine with and without
2190 * pcpu statistics
2192 if (last_rxstats->chains &&
2193 !(sinfo->filled & (BIT(NL80211_STA_INFO_CHAIN_SIGNAL) |
2194 BIT(NL80211_STA_INFO_CHAIN_SIGNAL_AVG)))) {
2195 sinfo->filled |= BIT(NL80211_STA_INFO_CHAIN_SIGNAL);
2196 if (!sta->pcpu_rx_stats)
2197 sinfo->filled |= BIT(NL80211_STA_INFO_CHAIN_SIGNAL_AVG);
2199 sinfo->chains = last_rxstats->chains;
2201 for (i = 0; i < ARRAY_SIZE(sinfo->chain_signal); i++) {
2202 sinfo->chain_signal[i] =
2203 last_rxstats->chain_signal_last[i];
2204 sinfo->chain_signal_avg[i] =
2205 -ewma_signal_read(&sta->rx_stats_avg.chain_signal[i]);
2209 if (!(sinfo->filled & BIT(NL80211_STA_INFO_TX_BITRATE))) {
2210 sta_set_rate_info_tx(sta, &sta->tx_stats.last_rate,
2211 &sinfo->txrate);
2212 sinfo->filled |= BIT(NL80211_STA_INFO_TX_BITRATE);
2215 if (!(sinfo->filled & BIT(NL80211_STA_INFO_RX_BITRATE))) {
2216 sta_set_rate_info_rx(sta, &sinfo->rxrate);
2217 sinfo->filled |= BIT(NL80211_STA_INFO_RX_BITRATE);
2220 sinfo->filled |= BIT(NL80211_STA_INFO_TID_STATS);
2221 for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++) {
2222 struct cfg80211_tid_stats *tidstats = &sinfo->pertid[i];
2224 sta_set_tidstats(sta, tidstats, i);
2227 if (ieee80211_vif_is_mesh(&sdata->vif)) {
2228 #ifdef CONFIG_MAC80211_MESH
2229 sinfo->filled |= BIT(NL80211_STA_INFO_LLID) |
2230 BIT(NL80211_STA_INFO_PLID) |
2231 BIT(NL80211_STA_INFO_PLINK_STATE) |
2232 BIT(NL80211_STA_INFO_LOCAL_PM) |
2233 BIT(NL80211_STA_INFO_PEER_PM) |
2234 BIT(NL80211_STA_INFO_NONPEER_PM);
2236 sinfo->llid = sta->mesh->llid;
2237 sinfo->plid = sta->mesh->plid;
2238 sinfo->plink_state = sta->mesh->plink_state;
2239 if (test_sta_flag(sta, WLAN_STA_TOFFSET_KNOWN)) {
2240 sinfo->filled |= BIT(NL80211_STA_INFO_T_OFFSET);
2241 sinfo->t_offset = sta->mesh->t_offset;
2243 sinfo->local_pm = sta->mesh->local_pm;
2244 sinfo->peer_pm = sta->mesh->peer_pm;
2245 sinfo->nonpeer_pm = sta->mesh->nonpeer_pm;
2246 #endif
2249 sinfo->bss_param.flags = 0;
2250 if (sdata->vif.bss_conf.use_cts_prot)
2251 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_CTS_PROT;
2252 if (sdata->vif.bss_conf.use_short_preamble)
2253 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_PREAMBLE;
2254 if (sdata->vif.bss_conf.use_short_slot)
2255 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_SLOT_TIME;
2256 sinfo->bss_param.dtim_period = sdata->vif.bss_conf.dtim_period;
2257 sinfo->bss_param.beacon_interval = sdata->vif.bss_conf.beacon_int;
2259 sinfo->sta_flags.set = 0;
2260 sinfo->sta_flags.mask = BIT(NL80211_STA_FLAG_AUTHORIZED) |
2261 BIT(NL80211_STA_FLAG_SHORT_PREAMBLE) |
2262 BIT(NL80211_STA_FLAG_WME) |
2263 BIT(NL80211_STA_FLAG_MFP) |
2264 BIT(NL80211_STA_FLAG_AUTHENTICATED) |
2265 BIT(NL80211_STA_FLAG_ASSOCIATED) |
2266 BIT(NL80211_STA_FLAG_TDLS_PEER);
2267 if (test_sta_flag(sta, WLAN_STA_AUTHORIZED))
2268 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHORIZED);
2269 if (test_sta_flag(sta, WLAN_STA_SHORT_PREAMBLE))
2270 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_SHORT_PREAMBLE);
2271 if (sta->sta.wme)
2272 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_WME);
2273 if (test_sta_flag(sta, WLAN_STA_MFP))
2274 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_MFP);
2275 if (test_sta_flag(sta, WLAN_STA_AUTH))
2276 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHENTICATED);
2277 if (test_sta_flag(sta, WLAN_STA_ASSOC))
2278 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_ASSOCIATED);
2279 if (test_sta_flag(sta, WLAN_STA_TDLS_PEER))
2280 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_TDLS_PEER);
2282 /* check if the driver has a SW RC implementation */
2283 if (ref && ref->ops->get_expected_throughput)
2284 thr = ref->ops->get_expected_throughput(sta->rate_ctrl_priv);
2285 else
2286 thr = drv_get_expected_throughput(local, &sta->sta);
2288 if (thr != 0) {
2289 sinfo->filled |= BIT(NL80211_STA_INFO_EXPECTED_THROUGHPUT);
2290 sinfo->expected_throughput = thr;
2294 unsigned long ieee80211_sta_last_active(struct sta_info *sta)
2296 struct ieee80211_sta_rx_stats *stats = sta_get_last_rx_stats(sta);
2298 if (time_after(stats->last_rx, sta->status_stats.last_ack))
2299 return stats->last_rx;
2300 return sta->status_stats.last_ack;