media: v4l2: async: Allow searching for asd of any type
[linux/fpc-iii.git] / mm / memcontrol.c
blob4ead5a4817de3ffbf1477cfe77b8f4f4802281c8
1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/sched/mm.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/hugetlb.h>
41 #include <linux/pagemap.h>
42 #include <linux/smp.h>
43 #include <linux/page-flags.h>
44 #include <linux/backing-dev.h>
45 #include <linux/bit_spinlock.h>
46 #include <linux/rcupdate.h>
47 #include <linux/limits.h>
48 #include <linux/export.h>
49 #include <linux/mutex.h>
50 #include <linux/rbtree.h>
51 #include <linux/slab.h>
52 #include <linux/swap.h>
53 #include <linux/swapops.h>
54 #include <linux/spinlock.h>
55 #include <linux/eventfd.h>
56 #include <linux/poll.h>
57 #include <linux/sort.h>
58 #include <linux/fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/vmpressure.h>
61 #include <linux/mm_inline.h>
62 #include <linux/swap_cgroup.h>
63 #include <linux/cpu.h>
64 #include <linux/oom.h>
65 #include <linux/lockdep.h>
66 #include <linux/file.h>
67 #include <linux/tracehook.h>
68 #include "internal.h"
69 #include <net/sock.h>
70 #include <net/ip.h>
71 #include "slab.h"
73 #include <linux/uaccess.h>
75 #include <trace/events/vmscan.h>
77 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
78 EXPORT_SYMBOL(memory_cgrp_subsys);
80 struct mem_cgroup *root_mem_cgroup __read_mostly;
82 #define MEM_CGROUP_RECLAIM_RETRIES 5
84 /* Socket memory accounting disabled? */
85 static bool cgroup_memory_nosocket;
87 /* Kernel memory accounting disabled? */
88 static bool cgroup_memory_nokmem;
90 /* Whether the swap controller is active */
91 #ifdef CONFIG_MEMCG_SWAP
92 int do_swap_account __read_mostly;
93 #else
94 #define do_swap_account 0
95 #endif
97 /* Whether legacy memory+swap accounting is active */
98 static bool do_memsw_account(void)
100 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
103 static const char *const mem_cgroup_lru_names[] = {
104 "inactive_anon",
105 "active_anon",
106 "inactive_file",
107 "active_file",
108 "unevictable",
111 #define THRESHOLDS_EVENTS_TARGET 128
112 #define SOFTLIMIT_EVENTS_TARGET 1024
113 #define NUMAINFO_EVENTS_TARGET 1024
116 * Cgroups above their limits are maintained in a RB-Tree, independent of
117 * their hierarchy representation
120 struct mem_cgroup_tree_per_node {
121 struct rb_root rb_root;
122 struct rb_node *rb_rightmost;
123 spinlock_t lock;
126 struct mem_cgroup_tree {
127 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
130 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
132 /* for OOM */
133 struct mem_cgroup_eventfd_list {
134 struct list_head list;
135 struct eventfd_ctx *eventfd;
139 * cgroup_event represents events which userspace want to receive.
141 struct mem_cgroup_event {
143 * memcg which the event belongs to.
145 struct mem_cgroup *memcg;
147 * eventfd to signal userspace about the event.
149 struct eventfd_ctx *eventfd;
151 * Each of these stored in a list by the cgroup.
153 struct list_head list;
155 * register_event() callback will be used to add new userspace
156 * waiter for changes related to this event. Use eventfd_signal()
157 * on eventfd to send notification to userspace.
159 int (*register_event)(struct mem_cgroup *memcg,
160 struct eventfd_ctx *eventfd, const char *args);
162 * unregister_event() callback will be called when userspace closes
163 * the eventfd or on cgroup removing. This callback must be set,
164 * if you want provide notification functionality.
166 void (*unregister_event)(struct mem_cgroup *memcg,
167 struct eventfd_ctx *eventfd);
169 * All fields below needed to unregister event when
170 * userspace closes eventfd.
172 poll_table pt;
173 wait_queue_head_t *wqh;
174 wait_queue_entry_t wait;
175 struct work_struct remove;
178 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
179 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
181 /* Stuffs for move charges at task migration. */
183 * Types of charges to be moved.
185 #define MOVE_ANON 0x1U
186 #define MOVE_FILE 0x2U
187 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
189 /* "mc" and its members are protected by cgroup_mutex */
190 static struct move_charge_struct {
191 spinlock_t lock; /* for from, to */
192 struct mm_struct *mm;
193 struct mem_cgroup *from;
194 struct mem_cgroup *to;
195 unsigned long flags;
196 unsigned long precharge;
197 unsigned long moved_charge;
198 unsigned long moved_swap;
199 struct task_struct *moving_task; /* a task moving charges */
200 wait_queue_head_t waitq; /* a waitq for other context */
201 } mc = {
202 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
203 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
207 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
208 * limit reclaim to prevent infinite loops, if they ever occur.
210 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
211 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
213 enum charge_type {
214 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
215 MEM_CGROUP_CHARGE_TYPE_ANON,
216 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
217 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
218 NR_CHARGE_TYPE,
221 /* for encoding cft->private value on file */
222 enum res_type {
223 _MEM,
224 _MEMSWAP,
225 _OOM_TYPE,
226 _KMEM,
227 _TCP,
230 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
231 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
232 #define MEMFILE_ATTR(val) ((val) & 0xffff)
233 /* Used for OOM nofiier */
234 #define OOM_CONTROL (0)
237 * Iteration constructs for visiting all cgroups (under a tree). If
238 * loops are exited prematurely (break), mem_cgroup_iter_break() must
239 * be used for reference counting.
241 #define for_each_mem_cgroup_tree(iter, root) \
242 for (iter = mem_cgroup_iter(root, NULL, NULL); \
243 iter != NULL; \
244 iter = mem_cgroup_iter(root, iter, NULL))
246 #define for_each_mem_cgroup(iter) \
247 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
248 iter != NULL; \
249 iter = mem_cgroup_iter(NULL, iter, NULL))
251 /* Some nice accessors for the vmpressure. */
252 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
254 if (!memcg)
255 memcg = root_mem_cgroup;
256 return &memcg->vmpressure;
259 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
261 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
264 #ifdef CONFIG_MEMCG_KMEM
266 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
267 * The main reason for not using cgroup id for this:
268 * this works better in sparse environments, where we have a lot of memcgs,
269 * but only a few kmem-limited. Or also, if we have, for instance, 200
270 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
271 * 200 entry array for that.
273 * The current size of the caches array is stored in memcg_nr_cache_ids. It
274 * will double each time we have to increase it.
276 static DEFINE_IDA(memcg_cache_ida);
277 int memcg_nr_cache_ids;
279 /* Protects memcg_nr_cache_ids */
280 static DECLARE_RWSEM(memcg_cache_ids_sem);
282 void memcg_get_cache_ids(void)
284 down_read(&memcg_cache_ids_sem);
287 void memcg_put_cache_ids(void)
289 up_read(&memcg_cache_ids_sem);
293 * MIN_SIZE is different than 1, because we would like to avoid going through
294 * the alloc/free process all the time. In a small machine, 4 kmem-limited
295 * cgroups is a reasonable guess. In the future, it could be a parameter or
296 * tunable, but that is strictly not necessary.
298 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
299 * this constant directly from cgroup, but it is understandable that this is
300 * better kept as an internal representation in cgroup.c. In any case, the
301 * cgrp_id space is not getting any smaller, and we don't have to necessarily
302 * increase ours as well if it increases.
304 #define MEMCG_CACHES_MIN_SIZE 4
305 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
308 * A lot of the calls to the cache allocation functions are expected to be
309 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
310 * conditional to this static branch, we'll have to allow modules that does
311 * kmem_cache_alloc and the such to see this symbol as well
313 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
314 EXPORT_SYMBOL(memcg_kmem_enabled_key);
316 struct workqueue_struct *memcg_kmem_cache_wq;
318 static int memcg_shrinker_map_size;
319 static DEFINE_MUTEX(memcg_shrinker_map_mutex);
321 static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
323 kvfree(container_of(head, struct memcg_shrinker_map, rcu));
326 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
327 int size, int old_size)
329 struct memcg_shrinker_map *new, *old;
330 int nid;
332 lockdep_assert_held(&memcg_shrinker_map_mutex);
334 for_each_node(nid) {
335 old = rcu_dereference_protected(
336 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
337 /* Not yet online memcg */
338 if (!old)
339 return 0;
341 new = kvmalloc(sizeof(*new) + size, GFP_KERNEL);
342 if (!new)
343 return -ENOMEM;
345 /* Set all old bits, clear all new bits */
346 memset(new->map, (int)0xff, old_size);
347 memset((void *)new->map + old_size, 0, size - old_size);
349 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
350 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
353 return 0;
356 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
358 struct mem_cgroup_per_node *pn;
359 struct memcg_shrinker_map *map;
360 int nid;
362 if (mem_cgroup_is_root(memcg))
363 return;
365 for_each_node(nid) {
366 pn = mem_cgroup_nodeinfo(memcg, nid);
367 map = rcu_dereference_protected(pn->shrinker_map, true);
368 if (map)
369 kvfree(map);
370 rcu_assign_pointer(pn->shrinker_map, NULL);
374 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
376 struct memcg_shrinker_map *map;
377 int nid, size, ret = 0;
379 if (mem_cgroup_is_root(memcg))
380 return 0;
382 mutex_lock(&memcg_shrinker_map_mutex);
383 size = memcg_shrinker_map_size;
384 for_each_node(nid) {
385 map = kvzalloc(sizeof(*map) + size, GFP_KERNEL);
386 if (!map) {
387 memcg_free_shrinker_maps(memcg);
388 ret = -ENOMEM;
389 break;
391 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
393 mutex_unlock(&memcg_shrinker_map_mutex);
395 return ret;
398 int memcg_expand_shrinker_maps(int new_id)
400 int size, old_size, ret = 0;
401 struct mem_cgroup *memcg;
403 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
404 old_size = memcg_shrinker_map_size;
405 if (size <= old_size)
406 return 0;
408 mutex_lock(&memcg_shrinker_map_mutex);
409 if (!root_mem_cgroup)
410 goto unlock;
412 for_each_mem_cgroup(memcg) {
413 if (mem_cgroup_is_root(memcg))
414 continue;
415 ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
416 if (ret)
417 goto unlock;
419 unlock:
420 if (!ret)
421 memcg_shrinker_map_size = size;
422 mutex_unlock(&memcg_shrinker_map_mutex);
423 return ret;
426 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
428 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
429 struct memcg_shrinker_map *map;
431 rcu_read_lock();
432 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
433 /* Pairs with smp mb in shrink_slab() */
434 smp_mb__before_atomic();
435 set_bit(shrinker_id, map->map);
436 rcu_read_unlock();
440 #else /* CONFIG_MEMCG_KMEM */
441 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
443 return 0;
445 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg) { }
446 #endif /* CONFIG_MEMCG_KMEM */
449 * mem_cgroup_css_from_page - css of the memcg associated with a page
450 * @page: page of interest
452 * If memcg is bound to the default hierarchy, css of the memcg associated
453 * with @page is returned. The returned css remains associated with @page
454 * until it is released.
456 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
457 * is returned.
459 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
461 struct mem_cgroup *memcg;
463 memcg = page->mem_cgroup;
465 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
466 memcg = root_mem_cgroup;
468 return &memcg->css;
472 * page_cgroup_ino - return inode number of the memcg a page is charged to
473 * @page: the page
475 * Look up the closest online ancestor of the memory cgroup @page is charged to
476 * and return its inode number or 0 if @page is not charged to any cgroup. It
477 * is safe to call this function without holding a reference to @page.
479 * Note, this function is inherently racy, because there is nothing to prevent
480 * the cgroup inode from getting torn down and potentially reallocated a moment
481 * after page_cgroup_ino() returns, so it only should be used by callers that
482 * do not care (such as procfs interfaces).
484 ino_t page_cgroup_ino(struct page *page)
486 struct mem_cgroup *memcg;
487 unsigned long ino = 0;
489 rcu_read_lock();
490 memcg = READ_ONCE(page->mem_cgroup);
491 while (memcg && !(memcg->css.flags & CSS_ONLINE))
492 memcg = parent_mem_cgroup(memcg);
493 if (memcg)
494 ino = cgroup_ino(memcg->css.cgroup);
495 rcu_read_unlock();
496 return ino;
499 static struct mem_cgroup_per_node *
500 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
502 int nid = page_to_nid(page);
504 return memcg->nodeinfo[nid];
507 static struct mem_cgroup_tree_per_node *
508 soft_limit_tree_node(int nid)
510 return soft_limit_tree.rb_tree_per_node[nid];
513 static struct mem_cgroup_tree_per_node *
514 soft_limit_tree_from_page(struct page *page)
516 int nid = page_to_nid(page);
518 return soft_limit_tree.rb_tree_per_node[nid];
521 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
522 struct mem_cgroup_tree_per_node *mctz,
523 unsigned long new_usage_in_excess)
525 struct rb_node **p = &mctz->rb_root.rb_node;
526 struct rb_node *parent = NULL;
527 struct mem_cgroup_per_node *mz_node;
528 bool rightmost = true;
530 if (mz->on_tree)
531 return;
533 mz->usage_in_excess = new_usage_in_excess;
534 if (!mz->usage_in_excess)
535 return;
536 while (*p) {
537 parent = *p;
538 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
539 tree_node);
540 if (mz->usage_in_excess < mz_node->usage_in_excess) {
541 p = &(*p)->rb_left;
542 rightmost = false;
546 * We can't avoid mem cgroups that are over their soft
547 * limit by the same amount
549 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
550 p = &(*p)->rb_right;
553 if (rightmost)
554 mctz->rb_rightmost = &mz->tree_node;
556 rb_link_node(&mz->tree_node, parent, p);
557 rb_insert_color(&mz->tree_node, &mctz->rb_root);
558 mz->on_tree = true;
561 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
562 struct mem_cgroup_tree_per_node *mctz)
564 if (!mz->on_tree)
565 return;
567 if (&mz->tree_node == mctz->rb_rightmost)
568 mctz->rb_rightmost = rb_prev(&mz->tree_node);
570 rb_erase(&mz->tree_node, &mctz->rb_root);
571 mz->on_tree = false;
574 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
575 struct mem_cgroup_tree_per_node *mctz)
577 unsigned long flags;
579 spin_lock_irqsave(&mctz->lock, flags);
580 __mem_cgroup_remove_exceeded(mz, mctz);
581 spin_unlock_irqrestore(&mctz->lock, flags);
584 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
586 unsigned long nr_pages = page_counter_read(&memcg->memory);
587 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
588 unsigned long excess = 0;
590 if (nr_pages > soft_limit)
591 excess = nr_pages - soft_limit;
593 return excess;
596 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
598 unsigned long excess;
599 struct mem_cgroup_per_node *mz;
600 struct mem_cgroup_tree_per_node *mctz;
602 mctz = soft_limit_tree_from_page(page);
603 if (!mctz)
604 return;
606 * Necessary to update all ancestors when hierarchy is used.
607 * because their event counter is not touched.
609 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
610 mz = mem_cgroup_page_nodeinfo(memcg, page);
611 excess = soft_limit_excess(memcg);
613 * We have to update the tree if mz is on RB-tree or
614 * mem is over its softlimit.
616 if (excess || mz->on_tree) {
617 unsigned long flags;
619 spin_lock_irqsave(&mctz->lock, flags);
620 /* if on-tree, remove it */
621 if (mz->on_tree)
622 __mem_cgroup_remove_exceeded(mz, mctz);
624 * Insert again. mz->usage_in_excess will be updated.
625 * If excess is 0, no tree ops.
627 __mem_cgroup_insert_exceeded(mz, mctz, excess);
628 spin_unlock_irqrestore(&mctz->lock, flags);
633 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
635 struct mem_cgroup_tree_per_node *mctz;
636 struct mem_cgroup_per_node *mz;
637 int nid;
639 for_each_node(nid) {
640 mz = mem_cgroup_nodeinfo(memcg, nid);
641 mctz = soft_limit_tree_node(nid);
642 if (mctz)
643 mem_cgroup_remove_exceeded(mz, mctz);
647 static struct mem_cgroup_per_node *
648 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
650 struct mem_cgroup_per_node *mz;
652 retry:
653 mz = NULL;
654 if (!mctz->rb_rightmost)
655 goto done; /* Nothing to reclaim from */
657 mz = rb_entry(mctz->rb_rightmost,
658 struct mem_cgroup_per_node, tree_node);
660 * Remove the node now but someone else can add it back,
661 * we will to add it back at the end of reclaim to its correct
662 * position in the tree.
664 __mem_cgroup_remove_exceeded(mz, mctz);
665 if (!soft_limit_excess(mz->memcg) ||
666 !css_tryget_online(&mz->memcg->css))
667 goto retry;
668 done:
669 return mz;
672 static struct mem_cgroup_per_node *
673 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
675 struct mem_cgroup_per_node *mz;
677 spin_lock_irq(&mctz->lock);
678 mz = __mem_cgroup_largest_soft_limit_node(mctz);
679 spin_unlock_irq(&mctz->lock);
680 return mz;
683 static unsigned long memcg_sum_events(struct mem_cgroup *memcg,
684 int event)
686 return atomic_long_read(&memcg->events[event]);
689 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
690 struct page *page,
691 bool compound, int nr_pages)
694 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
695 * counted as CACHE even if it's on ANON LRU.
697 if (PageAnon(page))
698 __mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
699 else {
700 __mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
701 if (PageSwapBacked(page))
702 __mod_memcg_state(memcg, NR_SHMEM, nr_pages);
705 if (compound) {
706 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
707 __mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
710 /* pagein of a big page is an event. So, ignore page size */
711 if (nr_pages > 0)
712 __count_memcg_events(memcg, PGPGIN, 1);
713 else {
714 __count_memcg_events(memcg, PGPGOUT, 1);
715 nr_pages = -nr_pages; /* for event */
718 __this_cpu_add(memcg->stat_cpu->nr_page_events, nr_pages);
721 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
722 int nid, unsigned int lru_mask)
724 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
725 unsigned long nr = 0;
726 enum lru_list lru;
728 VM_BUG_ON((unsigned)nid >= nr_node_ids);
730 for_each_lru(lru) {
731 if (!(BIT(lru) & lru_mask))
732 continue;
733 nr += mem_cgroup_get_lru_size(lruvec, lru);
735 return nr;
738 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
739 unsigned int lru_mask)
741 unsigned long nr = 0;
742 int nid;
744 for_each_node_state(nid, N_MEMORY)
745 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
746 return nr;
749 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
750 enum mem_cgroup_events_target target)
752 unsigned long val, next;
754 val = __this_cpu_read(memcg->stat_cpu->nr_page_events);
755 next = __this_cpu_read(memcg->stat_cpu->targets[target]);
756 /* from time_after() in jiffies.h */
757 if ((long)(next - val) < 0) {
758 switch (target) {
759 case MEM_CGROUP_TARGET_THRESH:
760 next = val + THRESHOLDS_EVENTS_TARGET;
761 break;
762 case MEM_CGROUP_TARGET_SOFTLIMIT:
763 next = val + SOFTLIMIT_EVENTS_TARGET;
764 break;
765 case MEM_CGROUP_TARGET_NUMAINFO:
766 next = val + NUMAINFO_EVENTS_TARGET;
767 break;
768 default:
769 break;
771 __this_cpu_write(memcg->stat_cpu->targets[target], next);
772 return true;
774 return false;
778 * Check events in order.
781 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
783 /* threshold event is triggered in finer grain than soft limit */
784 if (unlikely(mem_cgroup_event_ratelimit(memcg,
785 MEM_CGROUP_TARGET_THRESH))) {
786 bool do_softlimit;
787 bool do_numainfo __maybe_unused;
789 do_softlimit = mem_cgroup_event_ratelimit(memcg,
790 MEM_CGROUP_TARGET_SOFTLIMIT);
791 #if MAX_NUMNODES > 1
792 do_numainfo = mem_cgroup_event_ratelimit(memcg,
793 MEM_CGROUP_TARGET_NUMAINFO);
794 #endif
795 mem_cgroup_threshold(memcg);
796 if (unlikely(do_softlimit))
797 mem_cgroup_update_tree(memcg, page);
798 #if MAX_NUMNODES > 1
799 if (unlikely(do_numainfo))
800 atomic_inc(&memcg->numainfo_events);
801 #endif
805 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
808 * mm_update_next_owner() may clear mm->owner to NULL
809 * if it races with swapoff, page migration, etc.
810 * So this can be called with p == NULL.
812 if (unlikely(!p))
813 return NULL;
815 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
817 EXPORT_SYMBOL(mem_cgroup_from_task);
820 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
821 * @mm: mm from which memcg should be extracted. It can be NULL.
823 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
824 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
825 * returned.
827 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
829 struct mem_cgroup *memcg;
831 if (mem_cgroup_disabled())
832 return NULL;
834 rcu_read_lock();
835 do {
837 * Page cache insertions can happen withou an
838 * actual mm context, e.g. during disk probing
839 * on boot, loopback IO, acct() writes etc.
841 if (unlikely(!mm))
842 memcg = root_mem_cgroup;
843 else {
844 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
845 if (unlikely(!memcg))
846 memcg = root_mem_cgroup;
848 } while (!css_tryget_online(&memcg->css));
849 rcu_read_unlock();
850 return memcg;
852 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
855 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
856 * @page: page from which memcg should be extracted.
858 * Obtain a reference on page->memcg and returns it if successful. Otherwise
859 * root_mem_cgroup is returned.
861 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
863 struct mem_cgroup *memcg = page->mem_cgroup;
865 if (mem_cgroup_disabled())
866 return NULL;
868 rcu_read_lock();
869 if (!memcg || !css_tryget_online(&memcg->css))
870 memcg = root_mem_cgroup;
871 rcu_read_unlock();
872 return memcg;
874 EXPORT_SYMBOL(get_mem_cgroup_from_page);
877 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
879 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
881 if (unlikely(current->active_memcg)) {
882 struct mem_cgroup *memcg = root_mem_cgroup;
884 rcu_read_lock();
885 if (css_tryget_online(&current->active_memcg->css))
886 memcg = current->active_memcg;
887 rcu_read_unlock();
888 return memcg;
890 return get_mem_cgroup_from_mm(current->mm);
894 * mem_cgroup_iter - iterate over memory cgroup hierarchy
895 * @root: hierarchy root
896 * @prev: previously returned memcg, NULL on first invocation
897 * @reclaim: cookie for shared reclaim walks, NULL for full walks
899 * Returns references to children of the hierarchy below @root, or
900 * @root itself, or %NULL after a full round-trip.
902 * Caller must pass the return value in @prev on subsequent
903 * invocations for reference counting, or use mem_cgroup_iter_break()
904 * to cancel a hierarchy walk before the round-trip is complete.
906 * Reclaimers can specify a node and a priority level in @reclaim to
907 * divide up the memcgs in the hierarchy among all concurrent
908 * reclaimers operating on the same node and priority.
910 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
911 struct mem_cgroup *prev,
912 struct mem_cgroup_reclaim_cookie *reclaim)
914 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
915 struct cgroup_subsys_state *css = NULL;
916 struct mem_cgroup *memcg = NULL;
917 struct mem_cgroup *pos = NULL;
919 if (mem_cgroup_disabled())
920 return NULL;
922 if (!root)
923 root = root_mem_cgroup;
925 if (prev && !reclaim)
926 pos = prev;
928 if (!root->use_hierarchy && root != root_mem_cgroup) {
929 if (prev)
930 goto out;
931 return root;
934 rcu_read_lock();
936 if (reclaim) {
937 struct mem_cgroup_per_node *mz;
939 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
940 iter = &mz->iter[reclaim->priority];
942 if (prev && reclaim->generation != iter->generation)
943 goto out_unlock;
945 while (1) {
946 pos = READ_ONCE(iter->position);
947 if (!pos || css_tryget(&pos->css))
948 break;
950 * css reference reached zero, so iter->position will
951 * be cleared by ->css_released. However, we should not
952 * rely on this happening soon, because ->css_released
953 * is called from a work queue, and by busy-waiting we
954 * might block it. So we clear iter->position right
955 * away.
957 (void)cmpxchg(&iter->position, pos, NULL);
961 if (pos)
962 css = &pos->css;
964 for (;;) {
965 css = css_next_descendant_pre(css, &root->css);
966 if (!css) {
968 * Reclaimers share the hierarchy walk, and a
969 * new one might jump in right at the end of
970 * the hierarchy - make sure they see at least
971 * one group and restart from the beginning.
973 if (!prev)
974 continue;
975 break;
979 * Verify the css and acquire a reference. The root
980 * is provided by the caller, so we know it's alive
981 * and kicking, and don't take an extra reference.
983 memcg = mem_cgroup_from_css(css);
985 if (css == &root->css)
986 break;
988 if (css_tryget(css))
989 break;
991 memcg = NULL;
994 if (reclaim) {
996 * The position could have already been updated by a competing
997 * thread, so check that the value hasn't changed since we read
998 * it to avoid reclaiming from the same cgroup twice.
1000 (void)cmpxchg(&iter->position, pos, memcg);
1002 if (pos)
1003 css_put(&pos->css);
1005 if (!memcg)
1006 iter->generation++;
1007 else if (!prev)
1008 reclaim->generation = iter->generation;
1011 out_unlock:
1012 rcu_read_unlock();
1013 out:
1014 if (prev && prev != root)
1015 css_put(&prev->css);
1017 return memcg;
1021 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1022 * @root: hierarchy root
1023 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1025 void mem_cgroup_iter_break(struct mem_cgroup *root,
1026 struct mem_cgroup *prev)
1028 if (!root)
1029 root = root_mem_cgroup;
1030 if (prev && prev != root)
1031 css_put(&prev->css);
1034 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1036 struct mem_cgroup *memcg = dead_memcg;
1037 struct mem_cgroup_reclaim_iter *iter;
1038 struct mem_cgroup_per_node *mz;
1039 int nid;
1040 int i;
1042 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1043 for_each_node(nid) {
1044 mz = mem_cgroup_nodeinfo(memcg, nid);
1045 for (i = 0; i <= DEF_PRIORITY; i++) {
1046 iter = &mz->iter[i];
1047 cmpxchg(&iter->position,
1048 dead_memcg, NULL);
1055 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1056 * @memcg: hierarchy root
1057 * @fn: function to call for each task
1058 * @arg: argument passed to @fn
1060 * This function iterates over tasks attached to @memcg or to any of its
1061 * descendants and calls @fn for each task. If @fn returns a non-zero
1062 * value, the function breaks the iteration loop and returns the value.
1063 * Otherwise, it will iterate over all tasks and return 0.
1065 * This function must not be called for the root memory cgroup.
1067 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1068 int (*fn)(struct task_struct *, void *), void *arg)
1070 struct mem_cgroup *iter;
1071 int ret = 0;
1073 BUG_ON(memcg == root_mem_cgroup);
1075 for_each_mem_cgroup_tree(iter, memcg) {
1076 struct css_task_iter it;
1077 struct task_struct *task;
1079 css_task_iter_start(&iter->css, 0, &it);
1080 while (!ret && (task = css_task_iter_next(&it)))
1081 ret = fn(task, arg);
1082 css_task_iter_end(&it);
1083 if (ret) {
1084 mem_cgroup_iter_break(memcg, iter);
1085 break;
1088 return ret;
1092 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1093 * @page: the page
1094 * @pgdat: pgdat of the page
1096 * This function is only safe when following the LRU page isolation
1097 * and putback protocol: the LRU lock must be held, and the page must
1098 * either be PageLRU() or the caller must have isolated/allocated it.
1100 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
1102 struct mem_cgroup_per_node *mz;
1103 struct mem_cgroup *memcg;
1104 struct lruvec *lruvec;
1106 if (mem_cgroup_disabled()) {
1107 lruvec = &pgdat->lruvec;
1108 goto out;
1111 memcg = page->mem_cgroup;
1113 * Swapcache readahead pages are added to the LRU - and
1114 * possibly migrated - before they are charged.
1116 if (!memcg)
1117 memcg = root_mem_cgroup;
1119 mz = mem_cgroup_page_nodeinfo(memcg, page);
1120 lruvec = &mz->lruvec;
1121 out:
1123 * Since a node can be onlined after the mem_cgroup was created,
1124 * we have to be prepared to initialize lruvec->zone here;
1125 * and if offlined then reonlined, we need to reinitialize it.
1127 if (unlikely(lruvec->pgdat != pgdat))
1128 lruvec->pgdat = pgdat;
1129 return lruvec;
1133 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1134 * @lruvec: mem_cgroup per zone lru vector
1135 * @lru: index of lru list the page is sitting on
1136 * @zid: zone id of the accounted pages
1137 * @nr_pages: positive when adding or negative when removing
1139 * This function must be called under lru_lock, just before a page is added
1140 * to or just after a page is removed from an lru list (that ordering being
1141 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1143 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1144 int zid, int nr_pages)
1146 struct mem_cgroup_per_node *mz;
1147 unsigned long *lru_size;
1148 long size;
1150 if (mem_cgroup_disabled())
1151 return;
1153 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1154 lru_size = &mz->lru_zone_size[zid][lru];
1156 if (nr_pages < 0)
1157 *lru_size += nr_pages;
1159 size = *lru_size;
1160 if (WARN_ONCE(size < 0,
1161 "%s(%p, %d, %d): lru_size %ld\n",
1162 __func__, lruvec, lru, nr_pages, size)) {
1163 VM_BUG_ON(1);
1164 *lru_size = 0;
1167 if (nr_pages > 0)
1168 *lru_size += nr_pages;
1171 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1173 struct mem_cgroup *task_memcg;
1174 struct task_struct *p;
1175 bool ret;
1177 p = find_lock_task_mm(task);
1178 if (p) {
1179 task_memcg = get_mem_cgroup_from_mm(p->mm);
1180 task_unlock(p);
1181 } else {
1183 * All threads may have already detached their mm's, but the oom
1184 * killer still needs to detect if they have already been oom
1185 * killed to prevent needlessly killing additional tasks.
1187 rcu_read_lock();
1188 task_memcg = mem_cgroup_from_task(task);
1189 css_get(&task_memcg->css);
1190 rcu_read_unlock();
1192 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1193 css_put(&task_memcg->css);
1194 return ret;
1198 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1199 * @memcg: the memory cgroup
1201 * Returns the maximum amount of memory @mem can be charged with, in
1202 * pages.
1204 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1206 unsigned long margin = 0;
1207 unsigned long count;
1208 unsigned long limit;
1210 count = page_counter_read(&memcg->memory);
1211 limit = READ_ONCE(memcg->memory.max);
1212 if (count < limit)
1213 margin = limit - count;
1215 if (do_memsw_account()) {
1216 count = page_counter_read(&memcg->memsw);
1217 limit = READ_ONCE(memcg->memsw.max);
1218 if (count <= limit)
1219 margin = min(margin, limit - count);
1220 else
1221 margin = 0;
1224 return margin;
1228 * A routine for checking "mem" is under move_account() or not.
1230 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1231 * moving cgroups. This is for waiting at high-memory pressure
1232 * caused by "move".
1234 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1236 struct mem_cgroup *from;
1237 struct mem_cgroup *to;
1238 bool ret = false;
1240 * Unlike task_move routines, we access mc.to, mc.from not under
1241 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1243 spin_lock(&mc.lock);
1244 from = mc.from;
1245 to = mc.to;
1246 if (!from)
1247 goto unlock;
1249 ret = mem_cgroup_is_descendant(from, memcg) ||
1250 mem_cgroup_is_descendant(to, memcg);
1251 unlock:
1252 spin_unlock(&mc.lock);
1253 return ret;
1256 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1258 if (mc.moving_task && current != mc.moving_task) {
1259 if (mem_cgroup_under_move(memcg)) {
1260 DEFINE_WAIT(wait);
1261 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1262 /* moving charge context might have finished. */
1263 if (mc.moving_task)
1264 schedule();
1265 finish_wait(&mc.waitq, &wait);
1266 return true;
1269 return false;
1272 static const unsigned int memcg1_stats[] = {
1273 MEMCG_CACHE,
1274 MEMCG_RSS,
1275 MEMCG_RSS_HUGE,
1276 NR_SHMEM,
1277 NR_FILE_MAPPED,
1278 NR_FILE_DIRTY,
1279 NR_WRITEBACK,
1280 MEMCG_SWAP,
1283 static const char *const memcg1_stat_names[] = {
1284 "cache",
1285 "rss",
1286 "rss_huge",
1287 "shmem",
1288 "mapped_file",
1289 "dirty",
1290 "writeback",
1291 "swap",
1294 #define K(x) ((x) << (PAGE_SHIFT-10))
1296 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1297 * @memcg: The memory cgroup that went over limit
1298 * @p: Task that is going to be killed
1300 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1301 * enabled
1303 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1305 struct mem_cgroup *iter;
1306 unsigned int i;
1308 rcu_read_lock();
1310 if (p) {
1311 pr_info("Task in ");
1312 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1313 pr_cont(" killed as a result of limit of ");
1314 } else {
1315 pr_info("Memory limit reached of cgroup ");
1318 pr_cont_cgroup_path(memcg->css.cgroup);
1319 pr_cont("\n");
1321 rcu_read_unlock();
1323 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1324 K((u64)page_counter_read(&memcg->memory)),
1325 K((u64)memcg->memory.max), memcg->memory.failcnt);
1326 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1327 K((u64)page_counter_read(&memcg->memsw)),
1328 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1329 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1330 K((u64)page_counter_read(&memcg->kmem)),
1331 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1333 for_each_mem_cgroup_tree(iter, memcg) {
1334 pr_info("Memory cgroup stats for ");
1335 pr_cont_cgroup_path(iter->css.cgroup);
1336 pr_cont(":");
1338 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
1339 if (memcg1_stats[i] == MEMCG_SWAP && !do_swap_account)
1340 continue;
1341 pr_cont(" %s:%luKB", memcg1_stat_names[i],
1342 K(memcg_page_state(iter, memcg1_stats[i])));
1345 for (i = 0; i < NR_LRU_LISTS; i++)
1346 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1347 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1349 pr_cont("\n");
1354 * Return the memory (and swap, if configured) limit for a memcg.
1356 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1358 unsigned long max;
1360 max = memcg->memory.max;
1361 if (mem_cgroup_swappiness(memcg)) {
1362 unsigned long memsw_max;
1363 unsigned long swap_max;
1365 memsw_max = memcg->memsw.max;
1366 swap_max = memcg->swap.max;
1367 swap_max = min(swap_max, (unsigned long)total_swap_pages);
1368 max = min(max + swap_max, memsw_max);
1370 return max;
1373 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1374 int order)
1376 struct oom_control oc = {
1377 .zonelist = NULL,
1378 .nodemask = NULL,
1379 .memcg = memcg,
1380 .gfp_mask = gfp_mask,
1381 .order = order,
1383 bool ret;
1385 mutex_lock(&oom_lock);
1386 ret = out_of_memory(&oc);
1387 mutex_unlock(&oom_lock);
1388 return ret;
1391 #if MAX_NUMNODES > 1
1394 * test_mem_cgroup_node_reclaimable
1395 * @memcg: the target memcg
1396 * @nid: the node ID to be checked.
1397 * @noswap : specify true here if the user wants flle only information.
1399 * This function returns whether the specified memcg contains any
1400 * reclaimable pages on a node. Returns true if there are any reclaimable
1401 * pages in the node.
1403 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1404 int nid, bool noswap)
1406 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1407 return true;
1408 if (noswap || !total_swap_pages)
1409 return false;
1410 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1411 return true;
1412 return false;
1417 * Always updating the nodemask is not very good - even if we have an empty
1418 * list or the wrong list here, we can start from some node and traverse all
1419 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1422 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1424 int nid;
1426 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1427 * pagein/pageout changes since the last update.
1429 if (!atomic_read(&memcg->numainfo_events))
1430 return;
1431 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1432 return;
1434 /* make a nodemask where this memcg uses memory from */
1435 memcg->scan_nodes = node_states[N_MEMORY];
1437 for_each_node_mask(nid, node_states[N_MEMORY]) {
1439 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1440 node_clear(nid, memcg->scan_nodes);
1443 atomic_set(&memcg->numainfo_events, 0);
1444 atomic_set(&memcg->numainfo_updating, 0);
1448 * Selecting a node where we start reclaim from. Because what we need is just
1449 * reducing usage counter, start from anywhere is O,K. Considering
1450 * memory reclaim from current node, there are pros. and cons.
1452 * Freeing memory from current node means freeing memory from a node which
1453 * we'll use or we've used. So, it may make LRU bad. And if several threads
1454 * hit limits, it will see a contention on a node. But freeing from remote
1455 * node means more costs for memory reclaim because of memory latency.
1457 * Now, we use round-robin. Better algorithm is welcomed.
1459 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1461 int node;
1463 mem_cgroup_may_update_nodemask(memcg);
1464 node = memcg->last_scanned_node;
1466 node = next_node_in(node, memcg->scan_nodes);
1468 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1469 * last time it really checked all the LRUs due to rate limiting.
1470 * Fallback to the current node in that case for simplicity.
1472 if (unlikely(node == MAX_NUMNODES))
1473 node = numa_node_id();
1475 memcg->last_scanned_node = node;
1476 return node;
1478 #else
1479 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1481 return 0;
1483 #endif
1485 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1486 pg_data_t *pgdat,
1487 gfp_t gfp_mask,
1488 unsigned long *total_scanned)
1490 struct mem_cgroup *victim = NULL;
1491 int total = 0;
1492 int loop = 0;
1493 unsigned long excess;
1494 unsigned long nr_scanned;
1495 struct mem_cgroup_reclaim_cookie reclaim = {
1496 .pgdat = pgdat,
1497 .priority = 0,
1500 excess = soft_limit_excess(root_memcg);
1502 while (1) {
1503 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1504 if (!victim) {
1505 loop++;
1506 if (loop >= 2) {
1508 * If we have not been able to reclaim
1509 * anything, it might because there are
1510 * no reclaimable pages under this hierarchy
1512 if (!total)
1513 break;
1515 * We want to do more targeted reclaim.
1516 * excess >> 2 is not to excessive so as to
1517 * reclaim too much, nor too less that we keep
1518 * coming back to reclaim from this cgroup
1520 if (total >= (excess >> 2) ||
1521 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1522 break;
1524 continue;
1526 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1527 pgdat, &nr_scanned);
1528 *total_scanned += nr_scanned;
1529 if (!soft_limit_excess(root_memcg))
1530 break;
1532 mem_cgroup_iter_break(root_memcg, victim);
1533 return total;
1536 #ifdef CONFIG_LOCKDEP
1537 static struct lockdep_map memcg_oom_lock_dep_map = {
1538 .name = "memcg_oom_lock",
1540 #endif
1542 static DEFINE_SPINLOCK(memcg_oom_lock);
1545 * Check OOM-Killer is already running under our hierarchy.
1546 * If someone is running, return false.
1548 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1550 struct mem_cgroup *iter, *failed = NULL;
1552 spin_lock(&memcg_oom_lock);
1554 for_each_mem_cgroup_tree(iter, memcg) {
1555 if (iter->oom_lock) {
1557 * this subtree of our hierarchy is already locked
1558 * so we cannot give a lock.
1560 failed = iter;
1561 mem_cgroup_iter_break(memcg, iter);
1562 break;
1563 } else
1564 iter->oom_lock = true;
1567 if (failed) {
1569 * OK, we failed to lock the whole subtree so we have
1570 * to clean up what we set up to the failing subtree
1572 for_each_mem_cgroup_tree(iter, memcg) {
1573 if (iter == failed) {
1574 mem_cgroup_iter_break(memcg, iter);
1575 break;
1577 iter->oom_lock = false;
1579 } else
1580 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1582 spin_unlock(&memcg_oom_lock);
1584 return !failed;
1587 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1589 struct mem_cgroup *iter;
1591 spin_lock(&memcg_oom_lock);
1592 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1593 for_each_mem_cgroup_tree(iter, memcg)
1594 iter->oom_lock = false;
1595 spin_unlock(&memcg_oom_lock);
1598 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1600 struct mem_cgroup *iter;
1602 spin_lock(&memcg_oom_lock);
1603 for_each_mem_cgroup_tree(iter, memcg)
1604 iter->under_oom++;
1605 spin_unlock(&memcg_oom_lock);
1608 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1610 struct mem_cgroup *iter;
1613 * When a new child is created while the hierarchy is under oom,
1614 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1616 spin_lock(&memcg_oom_lock);
1617 for_each_mem_cgroup_tree(iter, memcg)
1618 if (iter->under_oom > 0)
1619 iter->under_oom--;
1620 spin_unlock(&memcg_oom_lock);
1623 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1625 struct oom_wait_info {
1626 struct mem_cgroup *memcg;
1627 wait_queue_entry_t wait;
1630 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1631 unsigned mode, int sync, void *arg)
1633 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1634 struct mem_cgroup *oom_wait_memcg;
1635 struct oom_wait_info *oom_wait_info;
1637 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1638 oom_wait_memcg = oom_wait_info->memcg;
1640 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1641 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1642 return 0;
1643 return autoremove_wake_function(wait, mode, sync, arg);
1646 static void memcg_oom_recover(struct mem_cgroup *memcg)
1649 * For the following lockless ->under_oom test, the only required
1650 * guarantee is that it must see the state asserted by an OOM when
1651 * this function is called as a result of userland actions
1652 * triggered by the notification of the OOM. This is trivially
1653 * achieved by invoking mem_cgroup_mark_under_oom() before
1654 * triggering notification.
1656 if (memcg && memcg->under_oom)
1657 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1660 enum oom_status {
1661 OOM_SUCCESS,
1662 OOM_FAILED,
1663 OOM_ASYNC,
1664 OOM_SKIPPED
1667 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1669 if (order > PAGE_ALLOC_COSTLY_ORDER)
1670 return OOM_SKIPPED;
1673 * We are in the middle of the charge context here, so we
1674 * don't want to block when potentially sitting on a callstack
1675 * that holds all kinds of filesystem and mm locks.
1677 * cgroup1 allows disabling the OOM killer and waiting for outside
1678 * handling until the charge can succeed; remember the context and put
1679 * the task to sleep at the end of the page fault when all locks are
1680 * released.
1682 * On the other hand, in-kernel OOM killer allows for an async victim
1683 * memory reclaim (oom_reaper) and that means that we are not solely
1684 * relying on the oom victim to make a forward progress and we can
1685 * invoke the oom killer here.
1687 * Please note that mem_cgroup_out_of_memory might fail to find a
1688 * victim and then we have to bail out from the charge path.
1690 if (memcg->oom_kill_disable) {
1691 if (!current->in_user_fault)
1692 return OOM_SKIPPED;
1693 css_get(&memcg->css);
1694 current->memcg_in_oom = memcg;
1695 current->memcg_oom_gfp_mask = mask;
1696 current->memcg_oom_order = order;
1698 return OOM_ASYNC;
1701 if (mem_cgroup_out_of_memory(memcg, mask, order))
1702 return OOM_SUCCESS;
1704 WARN(1,"Memory cgroup charge failed because of no reclaimable memory! "
1705 "This looks like a misconfiguration or a kernel bug.");
1706 return OOM_FAILED;
1710 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1711 * @handle: actually kill/wait or just clean up the OOM state
1713 * This has to be called at the end of a page fault if the memcg OOM
1714 * handler was enabled.
1716 * Memcg supports userspace OOM handling where failed allocations must
1717 * sleep on a waitqueue until the userspace task resolves the
1718 * situation. Sleeping directly in the charge context with all kinds
1719 * of locks held is not a good idea, instead we remember an OOM state
1720 * in the task and mem_cgroup_oom_synchronize() has to be called at
1721 * the end of the page fault to complete the OOM handling.
1723 * Returns %true if an ongoing memcg OOM situation was detected and
1724 * completed, %false otherwise.
1726 bool mem_cgroup_oom_synchronize(bool handle)
1728 struct mem_cgroup *memcg = current->memcg_in_oom;
1729 struct oom_wait_info owait;
1730 bool locked;
1732 /* OOM is global, do not handle */
1733 if (!memcg)
1734 return false;
1736 if (!handle)
1737 goto cleanup;
1739 owait.memcg = memcg;
1740 owait.wait.flags = 0;
1741 owait.wait.func = memcg_oom_wake_function;
1742 owait.wait.private = current;
1743 INIT_LIST_HEAD(&owait.wait.entry);
1745 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1746 mem_cgroup_mark_under_oom(memcg);
1748 locked = mem_cgroup_oom_trylock(memcg);
1750 if (locked)
1751 mem_cgroup_oom_notify(memcg);
1753 if (locked && !memcg->oom_kill_disable) {
1754 mem_cgroup_unmark_under_oom(memcg);
1755 finish_wait(&memcg_oom_waitq, &owait.wait);
1756 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1757 current->memcg_oom_order);
1758 } else {
1759 schedule();
1760 mem_cgroup_unmark_under_oom(memcg);
1761 finish_wait(&memcg_oom_waitq, &owait.wait);
1764 if (locked) {
1765 mem_cgroup_oom_unlock(memcg);
1767 * There is no guarantee that an OOM-lock contender
1768 * sees the wakeups triggered by the OOM kill
1769 * uncharges. Wake any sleepers explicitely.
1771 memcg_oom_recover(memcg);
1773 cleanup:
1774 current->memcg_in_oom = NULL;
1775 css_put(&memcg->css);
1776 return true;
1780 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1781 * @victim: task to be killed by the OOM killer
1782 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1784 * Returns a pointer to a memory cgroup, which has to be cleaned up
1785 * by killing all belonging OOM-killable tasks.
1787 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1789 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1790 struct mem_cgroup *oom_domain)
1792 struct mem_cgroup *oom_group = NULL;
1793 struct mem_cgroup *memcg;
1795 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1796 return NULL;
1798 if (!oom_domain)
1799 oom_domain = root_mem_cgroup;
1801 rcu_read_lock();
1803 memcg = mem_cgroup_from_task(victim);
1804 if (memcg == root_mem_cgroup)
1805 goto out;
1808 * Traverse the memory cgroup hierarchy from the victim task's
1809 * cgroup up to the OOMing cgroup (or root) to find the
1810 * highest-level memory cgroup with oom.group set.
1812 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1813 if (memcg->oom_group)
1814 oom_group = memcg;
1816 if (memcg == oom_domain)
1817 break;
1820 if (oom_group)
1821 css_get(&oom_group->css);
1822 out:
1823 rcu_read_unlock();
1825 return oom_group;
1828 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1830 pr_info("Tasks in ");
1831 pr_cont_cgroup_path(memcg->css.cgroup);
1832 pr_cont(" are going to be killed due to memory.oom.group set\n");
1836 * lock_page_memcg - lock a page->mem_cgroup binding
1837 * @page: the page
1839 * This function protects unlocked LRU pages from being moved to
1840 * another cgroup.
1842 * It ensures lifetime of the returned memcg. Caller is responsible
1843 * for the lifetime of the page; __unlock_page_memcg() is available
1844 * when @page might get freed inside the locked section.
1846 struct mem_cgroup *lock_page_memcg(struct page *page)
1848 struct mem_cgroup *memcg;
1849 unsigned long flags;
1852 * The RCU lock is held throughout the transaction. The fast
1853 * path can get away without acquiring the memcg->move_lock
1854 * because page moving starts with an RCU grace period.
1856 * The RCU lock also protects the memcg from being freed when
1857 * the page state that is going to change is the only thing
1858 * preventing the page itself from being freed. E.g. writeback
1859 * doesn't hold a page reference and relies on PG_writeback to
1860 * keep off truncation, migration and so forth.
1862 rcu_read_lock();
1864 if (mem_cgroup_disabled())
1865 return NULL;
1866 again:
1867 memcg = page->mem_cgroup;
1868 if (unlikely(!memcg))
1869 return NULL;
1871 if (atomic_read(&memcg->moving_account) <= 0)
1872 return memcg;
1874 spin_lock_irqsave(&memcg->move_lock, flags);
1875 if (memcg != page->mem_cgroup) {
1876 spin_unlock_irqrestore(&memcg->move_lock, flags);
1877 goto again;
1881 * When charge migration first begins, we can have locked and
1882 * unlocked page stat updates happening concurrently. Track
1883 * the task who has the lock for unlock_page_memcg().
1885 memcg->move_lock_task = current;
1886 memcg->move_lock_flags = flags;
1888 return memcg;
1890 EXPORT_SYMBOL(lock_page_memcg);
1893 * __unlock_page_memcg - unlock and unpin a memcg
1894 * @memcg: the memcg
1896 * Unlock and unpin a memcg returned by lock_page_memcg().
1898 void __unlock_page_memcg(struct mem_cgroup *memcg)
1900 if (memcg && memcg->move_lock_task == current) {
1901 unsigned long flags = memcg->move_lock_flags;
1903 memcg->move_lock_task = NULL;
1904 memcg->move_lock_flags = 0;
1906 spin_unlock_irqrestore(&memcg->move_lock, flags);
1909 rcu_read_unlock();
1913 * unlock_page_memcg - unlock a page->mem_cgroup binding
1914 * @page: the page
1916 void unlock_page_memcg(struct page *page)
1918 __unlock_page_memcg(page->mem_cgroup);
1920 EXPORT_SYMBOL(unlock_page_memcg);
1922 struct memcg_stock_pcp {
1923 struct mem_cgroup *cached; /* this never be root cgroup */
1924 unsigned int nr_pages;
1925 struct work_struct work;
1926 unsigned long flags;
1927 #define FLUSHING_CACHED_CHARGE 0
1929 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1930 static DEFINE_MUTEX(percpu_charge_mutex);
1933 * consume_stock: Try to consume stocked charge on this cpu.
1934 * @memcg: memcg to consume from.
1935 * @nr_pages: how many pages to charge.
1937 * The charges will only happen if @memcg matches the current cpu's memcg
1938 * stock, and at least @nr_pages are available in that stock. Failure to
1939 * service an allocation will refill the stock.
1941 * returns true if successful, false otherwise.
1943 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1945 struct memcg_stock_pcp *stock;
1946 unsigned long flags;
1947 bool ret = false;
1949 if (nr_pages > MEMCG_CHARGE_BATCH)
1950 return ret;
1952 local_irq_save(flags);
1954 stock = this_cpu_ptr(&memcg_stock);
1955 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1956 stock->nr_pages -= nr_pages;
1957 ret = true;
1960 local_irq_restore(flags);
1962 return ret;
1966 * Returns stocks cached in percpu and reset cached information.
1968 static void drain_stock(struct memcg_stock_pcp *stock)
1970 struct mem_cgroup *old = stock->cached;
1972 if (stock->nr_pages) {
1973 page_counter_uncharge(&old->memory, stock->nr_pages);
1974 if (do_memsw_account())
1975 page_counter_uncharge(&old->memsw, stock->nr_pages);
1976 css_put_many(&old->css, stock->nr_pages);
1977 stock->nr_pages = 0;
1979 stock->cached = NULL;
1982 static void drain_local_stock(struct work_struct *dummy)
1984 struct memcg_stock_pcp *stock;
1985 unsigned long flags;
1988 * The only protection from memory hotplug vs. drain_stock races is
1989 * that we always operate on local CPU stock here with IRQ disabled
1991 local_irq_save(flags);
1993 stock = this_cpu_ptr(&memcg_stock);
1994 drain_stock(stock);
1995 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1997 local_irq_restore(flags);
2001 * Cache charges(val) to local per_cpu area.
2002 * This will be consumed by consume_stock() function, later.
2004 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2006 struct memcg_stock_pcp *stock;
2007 unsigned long flags;
2009 local_irq_save(flags);
2011 stock = this_cpu_ptr(&memcg_stock);
2012 if (stock->cached != memcg) { /* reset if necessary */
2013 drain_stock(stock);
2014 stock->cached = memcg;
2016 stock->nr_pages += nr_pages;
2018 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2019 drain_stock(stock);
2021 local_irq_restore(flags);
2025 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2026 * of the hierarchy under it.
2028 static void drain_all_stock(struct mem_cgroup *root_memcg)
2030 int cpu, curcpu;
2032 /* If someone's already draining, avoid adding running more workers. */
2033 if (!mutex_trylock(&percpu_charge_mutex))
2034 return;
2036 * Notify other cpus that system-wide "drain" is running
2037 * We do not care about races with the cpu hotplug because cpu down
2038 * as well as workers from this path always operate on the local
2039 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2041 curcpu = get_cpu();
2042 for_each_online_cpu(cpu) {
2043 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2044 struct mem_cgroup *memcg;
2046 memcg = stock->cached;
2047 if (!memcg || !stock->nr_pages || !css_tryget(&memcg->css))
2048 continue;
2049 if (!mem_cgroup_is_descendant(memcg, root_memcg)) {
2050 css_put(&memcg->css);
2051 continue;
2053 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2054 if (cpu == curcpu)
2055 drain_local_stock(&stock->work);
2056 else
2057 schedule_work_on(cpu, &stock->work);
2059 css_put(&memcg->css);
2061 put_cpu();
2062 mutex_unlock(&percpu_charge_mutex);
2065 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2067 struct memcg_stock_pcp *stock;
2068 struct mem_cgroup *memcg;
2070 stock = &per_cpu(memcg_stock, cpu);
2071 drain_stock(stock);
2073 for_each_mem_cgroup(memcg) {
2074 int i;
2076 for (i = 0; i < MEMCG_NR_STAT; i++) {
2077 int nid;
2078 long x;
2080 x = this_cpu_xchg(memcg->stat_cpu->count[i], 0);
2081 if (x)
2082 atomic_long_add(x, &memcg->stat[i]);
2084 if (i >= NR_VM_NODE_STAT_ITEMS)
2085 continue;
2087 for_each_node(nid) {
2088 struct mem_cgroup_per_node *pn;
2090 pn = mem_cgroup_nodeinfo(memcg, nid);
2091 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2092 if (x)
2093 atomic_long_add(x, &pn->lruvec_stat[i]);
2097 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2098 long x;
2100 x = this_cpu_xchg(memcg->stat_cpu->events[i], 0);
2101 if (x)
2102 atomic_long_add(x, &memcg->events[i]);
2106 return 0;
2109 static void reclaim_high(struct mem_cgroup *memcg,
2110 unsigned int nr_pages,
2111 gfp_t gfp_mask)
2113 do {
2114 if (page_counter_read(&memcg->memory) <= memcg->high)
2115 continue;
2116 memcg_memory_event(memcg, MEMCG_HIGH);
2117 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2118 } while ((memcg = parent_mem_cgroup(memcg)));
2121 static void high_work_func(struct work_struct *work)
2123 struct mem_cgroup *memcg;
2125 memcg = container_of(work, struct mem_cgroup, high_work);
2126 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2130 * Scheduled by try_charge() to be executed from the userland return path
2131 * and reclaims memory over the high limit.
2133 void mem_cgroup_handle_over_high(void)
2135 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2136 struct mem_cgroup *memcg;
2138 if (likely(!nr_pages))
2139 return;
2141 memcg = get_mem_cgroup_from_mm(current->mm);
2142 reclaim_high(memcg, nr_pages, GFP_KERNEL);
2143 css_put(&memcg->css);
2144 current->memcg_nr_pages_over_high = 0;
2147 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2148 unsigned int nr_pages)
2150 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2151 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2152 struct mem_cgroup *mem_over_limit;
2153 struct page_counter *counter;
2154 unsigned long nr_reclaimed;
2155 bool may_swap = true;
2156 bool drained = false;
2157 bool oomed = false;
2158 enum oom_status oom_status;
2160 if (mem_cgroup_is_root(memcg))
2161 return 0;
2162 retry:
2163 if (consume_stock(memcg, nr_pages))
2164 return 0;
2166 if (!do_memsw_account() ||
2167 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2168 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2169 goto done_restock;
2170 if (do_memsw_account())
2171 page_counter_uncharge(&memcg->memsw, batch);
2172 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2173 } else {
2174 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2175 may_swap = false;
2178 if (batch > nr_pages) {
2179 batch = nr_pages;
2180 goto retry;
2184 * Unlike in global OOM situations, memcg is not in a physical
2185 * memory shortage. Allow dying and OOM-killed tasks to
2186 * bypass the last charges so that they can exit quickly and
2187 * free their memory.
2189 if (unlikely(tsk_is_oom_victim(current) ||
2190 fatal_signal_pending(current) ||
2191 current->flags & PF_EXITING))
2192 goto force;
2195 * Prevent unbounded recursion when reclaim operations need to
2196 * allocate memory. This might exceed the limits temporarily,
2197 * but we prefer facilitating memory reclaim and getting back
2198 * under the limit over triggering OOM kills in these cases.
2200 if (unlikely(current->flags & PF_MEMALLOC))
2201 goto force;
2203 if (unlikely(task_in_memcg_oom(current)))
2204 goto nomem;
2206 if (!gfpflags_allow_blocking(gfp_mask))
2207 goto nomem;
2209 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2211 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2212 gfp_mask, may_swap);
2214 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2215 goto retry;
2217 if (!drained) {
2218 drain_all_stock(mem_over_limit);
2219 drained = true;
2220 goto retry;
2223 if (gfp_mask & __GFP_NORETRY)
2224 goto nomem;
2226 * Even though the limit is exceeded at this point, reclaim
2227 * may have been able to free some pages. Retry the charge
2228 * before killing the task.
2230 * Only for regular pages, though: huge pages are rather
2231 * unlikely to succeed so close to the limit, and we fall back
2232 * to regular pages anyway in case of failure.
2234 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2235 goto retry;
2237 * At task move, charge accounts can be doubly counted. So, it's
2238 * better to wait until the end of task_move if something is going on.
2240 if (mem_cgroup_wait_acct_move(mem_over_limit))
2241 goto retry;
2243 if (nr_retries--)
2244 goto retry;
2246 if (gfp_mask & __GFP_RETRY_MAYFAIL && oomed)
2247 goto nomem;
2249 if (gfp_mask & __GFP_NOFAIL)
2250 goto force;
2252 if (fatal_signal_pending(current))
2253 goto force;
2255 memcg_memory_event(mem_over_limit, MEMCG_OOM);
2258 * keep retrying as long as the memcg oom killer is able to make
2259 * a forward progress or bypass the charge if the oom killer
2260 * couldn't make any progress.
2262 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2263 get_order(nr_pages * PAGE_SIZE));
2264 switch (oom_status) {
2265 case OOM_SUCCESS:
2266 nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2267 oomed = true;
2268 goto retry;
2269 case OOM_FAILED:
2270 goto force;
2271 default:
2272 goto nomem;
2274 nomem:
2275 if (!(gfp_mask & __GFP_NOFAIL))
2276 return -ENOMEM;
2277 force:
2279 * The allocation either can't fail or will lead to more memory
2280 * being freed very soon. Allow memory usage go over the limit
2281 * temporarily by force charging it.
2283 page_counter_charge(&memcg->memory, nr_pages);
2284 if (do_memsw_account())
2285 page_counter_charge(&memcg->memsw, nr_pages);
2286 css_get_many(&memcg->css, nr_pages);
2288 return 0;
2290 done_restock:
2291 css_get_many(&memcg->css, batch);
2292 if (batch > nr_pages)
2293 refill_stock(memcg, batch - nr_pages);
2296 * If the hierarchy is above the normal consumption range, schedule
2297 * reclaim on returning to userland. We can perform reclaim here
2298 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2299 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2300 * not recorded as it most likely matches current's and won't
2301 * change in the meantime. As high limit is checked again before
2302 * reclaim, the cost of mismatch is negligible.
2304 do {
2305 if (page_counter_read(&memcg->memory) > memcg->high) {
2306 /* Don't bother a random interrupted task */
2307 if (in_interrupt()) {
2308 schedule_work(&memcg->high_work);
2309 break;
2311 current->memcg_nr_pages_over_high += batch;
2312 set_notify_resume(current);
2313 break;
2315 } while ((memcg = parent_mem_cgroup(memcg)));
2317 return 0;
2320 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2322 if (mem_cgroup_is_root(memcg))
2323 return;
2325 page_counter_uncharge(&memcg->memory, nr_pages);
2326 if (do_memsw_account())
2327 page_counter_uncharge(&memcg->memsw, nr_pages);
2329 css_put_many(&memcg->css, nr_pages);
2332 static void lock_page_lru(struct page *page, int *isolated)
2334 struct zone *zone = page_zone(page);
2336 spin_lock_irq(zone_lru_lock(zone));
2337 if (PageLRU(page)) {
2338 struct lruvec *lruvec;
2340 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2341 ClearPageLRU(page);
2342 del_page_from_lru_list(page, lruvec, page_lru(page));
2343 *isolated = 1;
2344 } else
2345 *isolated = 0;
2348 static void unlock_page_lru(struct page *page, int isolated)
2350 struct zone *zone = page_zone(page);
2352 if (isolated) {
2353 struct lruvec *lruvec;
2355 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2356 VM_BUG_ON_PAGE(PageLRU(page), page);
2357 SetPageLRU(page);
2358 add_page_to_lru_list(page, lruvec, page_lru(page));
2360 spin_unlock_irq(zone_lru_lock(zone));
2363 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2364 bool lrucare)
2366 int isolated;
2368 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2371 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2372 * may already be on some other mem_cgroup's LRU. Take care of it.
2374 if (lrucare)
2375 lock_page_lru(page, &isolated);
2378 * Nobody should be changing or seriously looking at
2379 * page->mem_cgroup at this point:
2381 * - the page is uncharged
2383 * - the page is off-LRU
2385 * - an anonymous fault has exclusive page access, except for
2386 * a locked page table
2388 * - a page cache insertion, a swapin fault, or a migration
2389 * have the page locked
2391 page->mem_cgroup = memcg;
2393 if (lrucare)
2394 unlock_page_lru(page, isolated);
2397 #ifdef CONFIG_MEMCG_KMEM
2398 static int memcg_alloc_cache_id(void)
2400 int id, size;
2401 int err;
2403 id = ida_simple_get(&memcg_cache_ida,
2404 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2405 if (id < 0)
2406 return id;
2408 if (id < memcg_nr_cache_ids)
2409 return id;
2412 * There's no space for the new id in memcg_caches arrays,
2413 * so we have to grow them.
2415 down_write(&memcg_cache_ids_sem);
2417 size = 2 * (id + 1);
2418 if (size < MEMCG_CACHES_MIN_SIZE)
2419 size = MEMCG_CACHES_MIN_SIZE;
2420 else if (size > MEMCG_CACHES_MAX_SIZE)
2421 size = MEMCG_CACHES_MAX_SIZE;
2423 err = memcg_update_all_caches(size);
2424 if (!err)
2425 err = memcg_update_all_list_lrus(size);
2426 if (!err)
2427 memcg_nr_cache_ids = size;
2429 up_write(&memcg_cache_ids_sem);
2431 if (err) {
2432 ida_simple_remove(&memcg_cache_ida, id);
2433 return err;
2435 return id;
2438 static void memcg_free_cache_id(int id)
2440 ida_simple_remove(&memcg_cache_ida, id);
2443 struct memcg_kmem_cache_create_work {
2444 struct mem_cgroup *memcg;
2445 struct kmem_cache *cachep;
2446 struct work_struct work;
2449 static void memcg_kmem_cache_create_func(struct work_struct *w)
2451 struct memcg_kmem_cache_create_work *cw =
2452 container_of(w, struct memcg_kmem_cache_create_work, work);
2453 struct mem_cgroup *memcg = cw->memcg;
2454 struct kmem_cache *cachep = cw->cachep;
2456 memcg_create_kmem_cache(memcg, cachep);
2458 css_put(&memcg->css);
2459 kfree(cw);
2463 * Enqueue the creation of a per-memcg kmem_cache.
2465 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2466 struct kmem_cache *cachep)
2468 struct memcg_kmem_cache_create_work *cw;
2470 cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
2471 if (!cw)
2472 return;
2474 css_get(&memcg->css);
2476 cw->memcg = memcg;
2477 cw->cachep = cachep;
2478 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2480 queue_work(memcg_kmem_cache_wq, &cw->work);
2483 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2484 struct kmem_cache *cachep)
2487 * We need to stop accounting when we kmalloc, because if the
2488 * corresponding kmalloc cache is not yet created, the first allocation
2489 * in __memcg_schedule_kmem_cache_create will recurse.
2491 * However, it is better to enclose the whole function. Depending on
2492 * the debugging options enabled, INIT_WORK(), for instance, can
2493 * trigger an allocation. This too, will make us recurse. Because at
2494 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2495 * the safest choice is to do it like this, wrapping the whole function.
2497 current->memcg_kmem_skip_account = 1;
2498 __memcg_schedule_kmem_cache_create(memcg, cachep);
2499 current->memcg_kmem_skip_account = 0;
2502 static inline bool memcg_kmem_bypass(void)
2504 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2505 return true;
2506 return false;
2510 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2511 * @cachep: the original global kmem cache
2513 * Return the kmem_cache we're supposed to use for a slab allocation.
2514 * We try to use the current memcg's version of the cache.
2516 * If the cache does not exist yet, if we are the first user of it, we
2517 * create it asynchronously in a workqueue and let the current allocation
2518 * go through with the original cache.
2520 * This function takes a reference to the cache it returns to assure it
2521 * won't get destroyed while we are working with it. Once the caller is
2522 * done with it, memcg_kmem_put_cache() must be called to release the
2523 * reference.
2525 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2527 struct mem_cgroup *memcg;
2528 struct kmem_cache *memcg_cachep;
2529 int kmemcg_id;
2531 VM_BUG_ON(!is_root_cache(cachep));
2533 if (memcg_kmem_bypass())
2534 return cachep;
2536 if (current->memcg_kmem_skip_account)
2537 return cachep;
2539 memcg = get_mem_cgroup_from_current();
2540 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2541 if (kmemcg_id < 0)
2542 goto out;
2544 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2545 if (likely(memcg_cachep))
2546 return memcg_cachep;
2549 * If we are in a safe context (can wait, and not in interrupt
2550 * context), we could be be predictable and return right away.
2551 * This would guarantee that the allocation being performed
2552 * already belongs in the new cache.
2554 * However, there are some clashes that can arrive from locking.
2555 * For instance, because we acquire the slab_mutex while doing
2556 * memcg_create_kmem_cache, this means no further allocation
2557 * could happen with the slab_mutex held. So it's better to
2558 * defer everything.
2560 memcg_schedule_kmem_cache_create(memcg, cachep);
2561 out:
2562 css_put(&memcg->css);
2563 return cachep;
2567 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2568 * @cachep: the cache returned by memcg_kmem_get_cache
2570 void memcg_kmem_put_cache(struct kmem_cache *cachep)
2572 if (!is_root_cache(cachep))
2573 css_put(&cachep->memcg_params.memcg->css);
2577 * memcg_kmem_charge_memcg: charge a kmem page
2578 * @page: page to charge
2579 * @gfp: reclaim mode
2580 * @order: allocation order
2581 * @memcg: memory cgroup to charge
2583 * Returns 0 on success, an error code on failure.
2585 int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2586 struct mem_cgroup *memcg)
2588 unsigned int nr_pages = 1 << order;
2589 struct page_counter *counter;
2590 int ret;
2592 ret = try_charge(memcg, gfp, nr_pages);
2593 if (ret)
2594 return ret;
2596 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2597 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2598 cancel_charge(memcg, nr_pages);
2599 return -ENOMEM;
2602 page->mem_cgroup = memcg;
2604 return 0;
2608 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
2609 * @page: page to charge
2610 * @gfp: reclaim mode
2611 * @order: allocation order
2613 * Returns 0 on success, an error code on failure.
2615 int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2617 struct mem_cgroup *memcg;
2618 int ret = 0;
2620 if (memcg_kmem_bypass())
2621 return 0;
2623 memcg = get_mem_cgroup_from_current();
2624 if (!mem_cgroup_is_root(memcg)) {
2625 ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
2626 if (!ret)
2627 __SetPageKmemcg(page);
2629 css_put(&memcg->css);
2630 return ret;
2633 * memcg_kmem_uncharge: uncharge a kmem page
2634 * @page: page to uncharge
2635 * @order: allocation order
2637 void memcg_kmem_uncharge(struct page *page, int order)
2639 struct mem_cgroup *memcg = page->mem_cgroup;
2640 unsigned int nr_pages = 1 << order;
2642 if (!memcg)
2643 return;
2645 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2647 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2648 page_counter_uncharge(&memcg->kmem, nr_pages);
2650 page_counter_uncharge(&memcg->memory, nr_pages);
2651 if (do_memsw_account())
2652 page_counter_uncharge(&memcg->memsw, nr_pages);
2654 page->mem_cgroup = NULL;
2656 /* slab pages do not have PageKmemcg flag set */
2657 if (PageKmemcg(page))
2658 __ClearPageKmemcg(page);
2660 css_put_many(&memcg->css, nr_pages);
2662 #endif /* CONFIG_MEMCG_KMEM */
2664 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2667 * Because tail pages are not marked as "used", set it. We're under
2668 * zone_lru_lock and migration entries setup in all page mappings.
2670 void mem_cgroup_split_huge_fixup(struct page *head)
2672 int i;
2674 if (mem_cgroup_disabled())
2675 return;
2677 for (i = 1; i < HPAGE_PMD_NR; i++)
2678 head[i].mem_cgroup = head->mem_cgroup;
2680 __mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
2682 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2684 #ifdef CONFIG_MEMCG_SWAP
2686 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2687 * @entry: swap entry to be moved
2688 * @from: mem_cgroup which the entry is moved from
2689 * @to: mem_cgroup which the entry is moved to
2691 * It succeeds only when the swap_cgroup's record for this entry is the same
2692 * as the mem_cgroup's id of @from.
2694 * Returns 0 on success, -EINVAL on failure.
2696 * The caller must have charged to @to, IOW, called page_counter_charge() about
2697 * both res and memsw, and called css_get().
2699 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2700 struct mem_cgroup *from, struct mem_cgroup *to)
2702 unsigned short old_id, new_id;
2704 old_id = mem_cgroup_id(from);
2705 new_id = mem_cgroup_id(to);
2707 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2708 mod_memcg_state(from, MEMCG_SWAP, -1);
2709 mod_memcg_state(to, MEMCG_SWAP, 1);
2710 return 0;
2712 return -EINVAL;
2714 #else
2715 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2716 struct mem_cgroup *from, struct mem_cgroup *to)
2718 return -EINVAL;
2720 #endif
2722 static DEFINE_MUTEX(memcg_max_mutex);
2724 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
2725 unsigned long max, bool memsw)
2727 bool enlarge = false;
2728 bool drained = false;
2729 int ret;
2730 bool limits_invariant;
2731 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
2733 do {
2734 if (signal_pending(current)) {
2735 ret = -EINTR;
2736 break;
2739 mutex_lock(&memcg_max_mutex);
2741 * Make sure that the new limit (memsw or memory limit) doesn't
2742 * break our basic invariant rule memory.max <= memsw.max.
2744 limits_invariant = memsw ? max >= memcg->memory.max :
2745 max <= memcg->memsw.max;
2746 if (!limits_invariant) {
2747 mutex_unlock(&memcg_max_mutex);
2748 ret = -EINVAL;
2749 break;
2751 if (max > counter->max)
2752 enlarge = true;
2753 ret = page_counter_set_max(counter, max);
2754 mutex_unlock(&memcg_max_mutex);
2756 if (!ret)
2757 break;
2759 if (!drained) {
2760 drain_all_stock(memcg);
2761 drained = true;
2762 continue;
2765 if (!try_to_free_mem_cgroup_pages(memcg, 1,
2766 GFP_KERNEL, !memsw)) {
2767 ret = -EBUSY;
2768 break;
2770 } while (true);
2772 if (!ret && enlarge)
2773 memcg_oom_recover(memcg);
2775 return ret;
2778 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
2779 gfp_t gfp_mask,
2780 unsigned long *total_scanned)
2782 unsigned long nr_reclaimed = 0;
2783 struct mem_cgroup_per_node *mz, *next_mz = NULL;
2784 unsigned long reclaimed;
2785 int loop = 0;
2786 struct mem_cgroup_tree_per_node *mctz;
2787 unsigned long excess;
2788 unsigned long nr_scanned;
2790 if (order > 0)
2791 return 0;
2793 mctz = soft_limit_tree_node(pgdat->node_id);
2796 * Do not even bother to check the largest node if the root
2797 * is empty. Do it lockless to prevent lock bouncing. Races
2798 * are acceptable as soft limit is best effort anyway.
2800 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
2801 return 0;
2804 * This loop can run a while, specially if mem_cgroup's continuously
2805 * keep exceeding their soft limit and putting the system under
2806 * pressure
2808 do {
2809 if (next_mz)
2810 mz = next_mz;
2811 else
2812 mz = mem_cgroup_largest_soft_limit_node(mctz);
2813 if (!mz)
2814 break;
2816 nr_scanned = 0;
2817 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
2818 gfp_mask, &nr_scanned);
2819 nr_reclaimed += reclaimed;
2820 *total_scanned += nr_scanned;
2821 spin_lock_irq(&mctz->lock);
2822 __mem_cgroup_remove_exceeded(mz, mctz);
2825 * If we failed to reclaim anything from this memory cgroup
2826 * it is time to move on to the next cgroup
2828 next_mz = NULL;
2829 if (!reclaimed)
2830 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2832 excess = soft_limit_excess(mz->memcg);
2834 * One school of thought says that we should not add
2835 * back the node to the tree if reclaim returns 0.
2836 * But our reclaim could return 0, simply because due
2837 * to priority we are exposing a smaller subset of
2838 * memory to reclaim from. Consider this as a longer
2839 * term TODO.
2841 /* If excess == 0, no tree ops */
2842 __mem_cgroup_insert_exceeded(mz, mctz, excess);
2843 spin_unlock_irq(&mctz->lock);
2844 css_put(&mz->memcg->css);
2845 loop++;
2847 * Could not reclaim anything and there are no more
2848 * mem cgroups to try or we seem to be looping without
2849 * reclaiming anything.
2851 if (!nr_reclaimed &&
2852 (next_mz == NULL ||
2853 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2854 break;
2855 } while (!nr_reclaimed);
2856 if (next_mz)
2857 css_put(&next_mz->memcg->css);
2858 return nr_reclaimed;
2862 * Test whether @memcg has children, dead or alive. Note that this
2863 * function doesn't care whether @memcg has use_hierarchy enabled and
2864 * returns %true if there are child csses according to the cgroup
2865 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2867 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2869 bool ret;
2871 rcu_read_lock();
2872 ret = css_next_child(NULL, &memcg->css);
2873 rcu_read_unlock();
2874 return ret;
2878 * Reclaims as many pages from the given memcg as possible.
2880 * Caller is responsible for holding css reference for memcg.
2882 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2884 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2886 /* we call try-to-free pages for make this cgroup empty */
2887 lru_add_drain_all();
2889 drain_all_stock(memcg);
2891 /* try to free all pages in this cgroup */
2892 while (nr_retries && page_counter_read(&memcg->memory)) {
2893 int progress;
2895 if (signal_pending(current))
2896 return -EINTR;
2898 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2899 GFP_KERNEL, true);
2900 if (!progress) {
2901 nr_retries--;
2902 /* maybe some writeback is necessary */
2903 congestion_wait(BLK_RW_ASYNC, HZ/10);
2908 return 0;
2911 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2912 char *buf, size_t nbytes,
2913 loff_t off)
2915 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2917 if (mem_cgroup_is_root(memcg))
2918 return -EINVAL;
2919 return mem_cgroup_force_empty(memcg) ?: nbytes;
2922 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2923 struct cftype *cft)
2925 return mem_cgroup_from_css(css)->use_hierarchy;
2928 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2929 struct cftype *cft, u64 val)
2931 int retval = 0;
2932 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2933 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2935 if (memcg->use_hierarchy == val)
2936 return 0;
2939 * If parent's use_hierarchy is set, we can't make any modifications
2940 * in the child subtrees. If it is unset, then the change can
2941 * occur, provided the current cgroup has no children.
2943 * For the root cgroup, parent_mem is NULL, we allow value to be
2944 * set if there are no children.
2946 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2947 (val == 1 || val == 0)) {
2948 if (!memcg_has_children(memcg))
2949 memcg->use_hierarchy = val;
2950 else
2951 retval = -EBUSY;
2952 } else
2953 retval = -EINVAL;
2955 return retval;
2958 struct accumulated_stats {
2959 unsigned long stat[MEMCG_NR_STAT];
2960 unsigned long events[NR_VM_EVENT_ITEMS];
2961 unsigned long lru_pages[NR_LRU_LISTS];
2962 const unsigned int *stats_array;
2963 const unsigned int *events_array;
2964 int stats_size;
2965 int events_size;
2968 static void accumulate_memcg_tree(struct mem_cgroup *memcg,
2969 struct accumulated_stats *acc)
2971 struct mem_cgroup *mi;
2972 int i;
2974 for_each_mem_cgroup_tree(mi, memcg) {
2975 for (i = 0; i < acc->stats_size; i++)
2976 acc->stat[i] += memcg_page_state(mi,
2977 acc->stats_array ? acc->stats_array[i] : i);
2979 for (i = 0; i < acc->events_size; i++)
2980 acc->events[i] += memcg_sum_events(mi,
2981 acc->events_array ? acc->events_array[i] : i);
2983 for (i = 0; i < NR_LRU_LISTS; i++)
2984 acc->lru_pages[i] +=
2985 mem_cgroup_nr_lru_pages(mi, BIT(i));
2989 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2991 unsigned long val = 0;
2993 if (mem_cgroup_is_root(memcg)) {
2994 struct mem_cgroup *iter;
2996 for_each_mem_cgroup_tree(iter, memcg) {
2997 val += memcg_page_state(iter, MEMCG_CACHE);
2998 val += memcg_page_state(iter, MEMCG_RSS);
2999 if (swap)
3000 val += memcg_page_state(iter, MEMCG_SWAP);
3002 } else {
3003 if (!swap)
3004 val = page_counter_read(&memcg->memory);
3005 else
3006 val = page_counter_read(&memcg->memsw);
3008 return val;
3011 enum {
3012 RES_USAGE,
3013 RES_LIMIT,
3014 RES_MAX_USAGE,
3015 RES_FAILCNT,
3016 RES_SOFT_LIMIT,
3019 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3020 struct cftype *cft)
3022 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3023 struct page_counter *counter;
3025 switch (MEMFILE_TYPE(cft->private)) {
3026 case _MEM:
3027 counter = &memcg->memory;
3028 break;
3029 case _MEMSWAP:
3030 counter = &memcg->memsw;
3031 break;
3032 case _KMEM:
3033 counter = &memcg->kmem;
3034 break;
3035 case _TCP:
3036 counter = &memcg->tcpmem;
3037 break;
3038 default:
3039 BUG();
3042 switch (MEMFILE_ATTR(cft->private)) {
3043 case RES_USAGE:
3044 if (counter == &memcg->memory)
3045 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3046 if (counter == &memcg->memsw)
3047 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3048 return (u64)page_counter_read(counter) * PAGE_SIZE;
3049 case RES_LIMIT:
3050 return (u64)counter->max * PAGE_SIZE;
3051 case RES_MAX_USAGE:
3052 return (u64)counter->watermark * PAGE_SIZE;
3053 case RES_FAILCNT:
3054 return counter->failcnt;
3055 case RES_SOFT_LIMIT:
3056 return (u64)memcg->soft_limit * PAGE_SIZE;
3057 default:
3058 BUG();
3062 #ifdef CONFIG_MEMCG_KMEM
3063 static int memcg_online_kmem(struct mem_cgroup *memcg)
3065 int memcg_id;
3067 if (cgroup_memory_nokmem)
3068 return 0;
3070 BUG_ON(memcg->kmemcg_id >= 0);
3071 BUG_ON(memcg->kmem_state);
3073 memcg_id = memcg_alloc_cache_id();
3074 if (memcg_id < 0)
3075 return memcg_id;
3077 static_branch_inc(&memcg_kmem_enabled_key);
3079 * A memory cgroup is considered kmem-online as soon as it gets
3080 * kmemcg_id. Setting the id after enabling static branching will
3081 * guarantee no one starts accounting before all call sites are
3082 * patched.
3084 memcg->kmemcg_id = memcg_id;
3085 memcg->kmem_state = KMEM_ONLINE;
3086 INIT_LIST_HEAD(&memcg->kmem_caches);
3088 return 0;
3091 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3093 struct cgroup_subsys_state *css;
3094 struct mem_cgroup *parent, *child;
3095 int kmemcg_id;
3097 if (memcg->kmem_state != KMEM_ONLINE)
3098 return;
3100 * Clear the online state before clearing memcg_caches array
3101 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
3102 * guarantees that no cache will be created for this cgroup
3103 * after we are done (see memcg_create_kmem_cache()).
3105 memcg->kmem_state = KMEM_ALLOCATED;
3107 memcg_deactivate_kmem_caches(memcg);
3109 kmemcg_id = memcg->kmemcg_id;
3110 BUG_ON(kmemcg_id < 0);
3112 parent = parent_mem_cgroup(memcg);
3113 if (!parent)
3114 parent = root_mem_cgroup;
3117 * Change kmemcg_id of this cgroup and all its descendants to the
3118 * parent's id, and then move all entries from this cgroup's list_lrus
3119 * to ones of the parent. After we have finished, all list_lrus
3120 * corresponding to this cgroup are guaranteed to remain empty. The
3121 * ordering is imposed by list_lru_node->lock taken by
3122 * memcg_drain_all_list_lrus().
3124 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3125 css_for_each_descendant_pre(css, &memcg->css) {
3126 child = mem_cgroup_from_css(css);
3127 BUG_ON(child->kmemcg_id != kmemcg_id);
3128 child->kmemcg_id = parent->kmemcg_id;
3129 if (!memcg->use_hierarchy)
3130 break;
3132 rcu_read_unlock();
3134 memcg_drain_all_list_lrus(kmemcg_id, parent);
3136 memcg_free_cache_id(kmemcg_id);
3139 static void memcg_free_kmem(struct mem_cgroup *memcg)
3141 /* css_alloc() failed, offlining didn't happen */
3142 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3143 memcg_offline_kmem(memcg);
3145 if (memcg->kmem_state == KMEM_ALLOCATED) {
3146 memcg_destroy_kmem_caches(memcg);
3147 static_branch_dec(&memcg_kmem_enabled_key);
3148 WARN_ON(page_counter_read(&memcg->kmem));
3151 #else
3152 static int memcg_online_kmem(struct mem_cgroup *memcg)
3154 return 0;
3156 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3159 static void memcg_free_kmem(struct mem_cgroup *memcg)
3162 #endif /* CONFIG_MEMCG_KMEM */
3164 static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3165 unsigned long max)
3167 int ret;
3169 mutex_lock(&memcg_max_mutex);
3170 ret = page_counter_set_max(&memcg->kmem, max);
3171 mutex_unlock(&memcg_max_mutex);
3172 return ret;
3175 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3177 int ret;
3179 mutex_lock(&memcg_max_mutex);
3181 ret = page_counter_set_max(&memcg->tcpmem, max);
3182 if (ret)
3183 goto out;
3185 if (!memcg->tcpmem_active) {
3187 * The active flag needs to be written after the static_key
3188 * update. This is what guarantees that the socket activation
3189 * function is the last one to run. See mem_cgroup_sk_alloc()
3190 * for details, and note that we don't mark any socket as
3191 * belonging to this memcg until that flag is up.
3193 * We need to do this, because static_keys will span multiple
3194 * sites, but we can't control their order. If we mark a socket
3195 * as accounted, but the accounting functions are not patched in
3196 * yet, we'll lose accounting.
3198 * We never race with the readers in mem_cgroup_sk_alloc(),
3199 * because when this value change, the code to process it is not
3200 * patched in yet.
3202 static_branch_inc(&memcg_sockets_enabled_key);
3203 memcg->tcpmem_active = true;
3205 out:
3206 mutex_unlock(&memcg_max_mutex);
3207 return ret;
3211 * The user of this function is...
3212 * RES_LIMIT.
3214 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3215 char *buf, size_t nbytes, loff_t off)
3217 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3218 unsigned long nr_pages;
3219 int ret;
3221 buf = strstrip(buf);
3222 ret = page_counter_memparse(buf, "-1", &nr_pages);
3223 if (ret)
3224 return ret;
3226 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3227 case RES_LIMIT:
3228 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3229 ret = -EINVAL;
3230 break;
3232 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3233 case _MEM:
3234 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3235 break;
3236 case _MEMSWAP:
3237 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3238 break;
3239 case _KMEM:
3240 ret = memcg_update_kmem_max(memcg, nr_pages);
3241 break;
3242 case _TCP:
3243 ret = memcg_update_tcp_max(memcg, nr_pages);
3244 break;
3246 break;
3247 case RES_SOFT_LIMIT:
3248 memcg->soft_limit = nr_pages;
3249 ret = 0;
3250 break;
3252 return ret ?: nbytes;
3255 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3256 size_t nbytes, loff_t off)
3258 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3259 struct page_counter *counter;
3261 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3262 case _MEM:
3263 counter = &memcg->memory;
3264 break;
3265 case _MEMSWAP:
3266 counter = &memcg->memsw;
3267 break;
3268 case _KMEM:
3269 counter = &memcg->kmem;
3270 break;
3271 case _TCP:
3272 counter = &memcg->tcpmem;
3273 break;
3274 default:
3275 BUG();
3278 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3279 case RES_MAX_USAGE:
3280 page_counter_reset_watermark(counter);
3281 break;
3282 case RES_FAILCNT:
3283 counter->failcnt = 0;
3284 break;
3285 default:
3286 BUG();
3289 return nbytes;
3292 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3293 struct cftype *cft)
3295 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3298 #ifdef CONFIG_MMU
3299 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3300 struct cftype *cft, u64 val)
3302 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3304 if (val & ~MOVE_MASK)
3305 return -EINVAL;
3308 * No kind of locking is needed in here, because ->can_attach() will
3309 * check this value once in the beginning of the process, and then carry
3310 * on with stale data. This means that changes to this value will only
3311 * affect task migrations starting after the change.
3313 memcg->move_charge_at_immigrate = val;
3314 return 0;
3316 #else
3317 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3318 struct cftype *cft, u64 val)
3320 return -ENOSYS;
3322 #endif
3324 #ifdef CONFIG_NUMA
3325 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3327 struct numa_stat {
3328 const char *name;
3329 unsigned int lru_mask;
3332 static const struct numa_stat stats[] = {
3333 { "total", LRU_ALL },
3334 { "file", LRU_ALL_FILE },
3335 { "anon", LRU_ALL_ANON },
3336 { "unevictable", BIT(LRU_UNEVICTABLE) },
3338 const struct numa_stat *stat;
3339 int nid;
3340 unsigned long nr;
3341 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3343 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3344 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3345 seq_printf(m, "%s=%lu", stat->name, nr);
3346 for_each_node_state(nid, N_MEMORY) {
3347 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3348 stat->lru_mask);
3349 seq_printf(m, " N%d=%lu", nid, nr);
3351 seq_putc(m, '\n');
3354 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3355 struct mem_cgroup *iter;
3357 nr = 0;
3358 for_each_mem_cgroup_tree(iter, memcg)
3359 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3360 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3361 for_each_node_state(nid, N_MEMORY) {
3362 nr = 0;
3363 for_each_mem_cgroup_tree(iter, memcg)
3364 nr += mem_cgroup_node_nr_lru_pages(
3365 iter, nid, stat->lru_mask);
3366 seq_printf(m, " N%d=%lu", nid, nr);
3368 seq_putc(m, '\n');
3371 return 0;
3373 #endif /* CONFIG_NUMA */
3375 /* Universal VM events cgroup1 shows, original sort order */
3376 static const unsigned int memcg1_events[] = {
3377 PGPGIN,
3378 PGPGOUT,
3379 PGFAULT,
3380 PGMAJFAULT,
3383 static const char *const memcg1_event_names[] = {
3384 "pgpgin",
3385 "pgpgout",
3386 "pgfault",
3387 "pgmajfault",
3390 static int memcg_stat_show(struct seq_file *m, void *v)
3392 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3393 unsigned long memory, memsw;
3394 struct mem_cgroup *mi;
3395 unsigned int i;
3396 struct accumulated_stats acc;
3398 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3399 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3401 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3402 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3403 continue;
3404 seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
3405 memcg_page_state(memcg, memcg1_stats[i]) *
3406 PAGE_SIZE);
3409 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3410 seq_printf(m, "%s %lu\n", memcg1_event_names[i],
3411 memcg_sum_events(memcg, memcg1_events[i]));
3413 for (i = 0; i < NR_LRU_LISTS; i++)
3414 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3415 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3417 /* Hierarchical information */
3418 memory = memsw = PAGE_COUNTER_MAX;
3419 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3420 memory = min(memory, mi->memory.max);
3421 memsw = min(memsw, mi->memsw.max);
3423 seq_printf(m, "hierarchical_memory_limit %llu\n",
3424 (u64)memory * PAGE_SIZE);
3425 if (do_memsw_account())
3426 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3427 (u64)memsw * PAGE_SIZE);
3429 memset(&acc, 0, sizeof(acc));
3430 acc.stats_size = ARRAY_SIZE(memcg1_stats);
3431 acc.stats_array = memcg1_stats;
3432 acc.events_size = ARRAY_SIZE(memcg1_events);
3433 acc.events_array = memcg1_events;
3434 accumulate_memcg_tree(memcg, &acc);
3436 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3437 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3438 continue;
3439 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
3440 (u64)acc.stat[i] * PAGE_SIZE);
3443 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3444 seq_printf(m, "total_%s %llu\n", memcg1_event_names[i],
3445 (u64)acc.events[i]);
3447 for (i = 0; i < NR_LRU_LISTS; i++)
3448 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i],
3449 (u64)acc.lru_pages[i] * PAGE_SIZE);
3451 #ifdef CONFIG_DEBUG_VM
3453 pg_data_t *pgdat;
3454 struct mem_cgroup_per_node *mz;
3455 struct zone_reclaim_stat *rstat;
3456 unsigned long recent_rotated[2] = {0, 0};
3457 unsigned long recent_scanned[2] = {0, 0};
3459 for_each_online_pgdat(pgdat) {
3460 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3461 rstat = &mz->lruvec.reclaim_stat;
3463 recent_rotated[0] += rstat->recent_rotated[0];
3464 recent_rotated[1] += rstat->recent_rotated[1];
3465 recent_scanned[0] += rstat->recent_scanned[0];
3466 recent_scanned[1] += rstat->recent_scanned[1];
3468 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3469 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3470 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3471 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3473 #endif
3475 return 0;
3478 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3479 struct cftype *cft)
3481 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3483 return mem_cgroup_swappiness(memcg);
3486 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3487 struct cftype *cft, u64 val)
3489 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3491 if (val > 100)
3492 return -EINVAL;
3494 if (css->parent)
3495 memcg->swappiness = val;
3496 else
3497 vm_swappiness = val;
3499 return 0;
3502 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3504 struct mem_cgroup_threshold_ary *t;
3505 unsigned long usage;
3506 int i;
3508 rcu_read_lock();
3509 if (!swap)
3510 t = rcu_dereference(memcg->thresholds.primary);
3511 else
3512 t = rcu_dereference(memcg->memsw_thresholds.primary);
3514 if (!t)
3515 goto unlock;
3517 usage = mem_cgroup_usage(memcg, swap);
3520 * current_threshold points to threshold just below or equal to usage.
3521 * If it's not true, a threshold was crossed after last
3522 * call of __mem_cgroup_threshold().
3524 i = t->current_threshold;
3527 * Iterate backward over array of thresholds starting from
3528 * current_threshold and check if a threshold is crossed.
3529 * If none of thresholds below usage is crossed, we read
3530 * only one element of the array here.
3532 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3533 eventfd_signal(t->entries[i].eventfd, 1);
3535 /* i = current_threshold + 1 */
3536 i++;
3539 * Iterate forward over array of thresholds starting from
3540 * current_threshold+1 and check if a threshold is crossed.
3541 * If none of thresholds above usage is crossed, we read
3542 * only one element of the array here.
3544 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3545 eventfd_signal(t->entries[i].eventfd, 1);
3547 /* Update current_threshold */
3548 t->current_threshold = i - 1;
3549 unlock:
3550 rcu_read_unlock();
3553 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3555 while (memcg) {
3556 __mem_cgroup_threshold(memcg, false);
3557 if (do_memsw_account())
3558 __mem_cgroup_threshold(memcg, true);
3560 memcg = parent_mem_cgroup(memcg);
3564 static int compare_thresholds(const void *a, const void *b)
3566 const struct mem_cgroup_threshold *_a = a;
3567 const struct mem_cgroup_threshold *_b = b;
3569 if (_a->threshold > _b->threshold)
3570 return 1;
3572 if (_a->threshold < _b->threshold)
3573 return -1;
3575 return 0;
3578 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3580 struct mem_cgroup_eventfd_list *ev;
3582 spin_lock(&memcg_oom_lock);
3584 list_for_each_entry(ev, &memcg->oom_notify, list)
3585 eventfd_signal(ev->eventfd, 1);
3587 spin_unlock(&memcg_oom_lock);
3588 return 0;
3591 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3593 struct mem_cgroup *iter;
3595 for_each_mem_cgroup_tree(iter, memcg)
3596 mem_cgroup_oom_notify_cb(iter);
3599 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3600 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3602 struct mem_cgroup_thresholds *thresholds;
3603 struct mem_cgroup_threshold_ary *new;
3604 unsigned long threshold;
3605 unsigned long usage;
3606 int i, size, ret;
3608 ret = page_counter_memparse(args, "-1", &threshold);
3609 if (ret)
3610 return ret;
3612 mutex_lock(&memcg->thresholds_lock);
3614 if (type == _MEM) {
3615 thresholds = &memcg->thresholds;
3616 usage = mem_cgroup_usage(memcg, false);
3617 } else if (type == _MEMSWAP) {
3618 thresholds = &memcg->memsw_thresholds;
3619 usage = mem_cgroup_usage(memcg, true);
3620 } else
3621 BUG();
3623 /* Check if a threshold crossed before adding a new one */
3624 if (thresholds->primary)
3625 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3627 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3629 /* Allocate memory for new array of thresholds */
3630 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3631 GFP_KERNEL);
3632 if (!new) {
3633 ret = -ENOMEM;
3634 goto unlock;
3636 new->size = size;
3638 /* Copy thresholds (if any) to new array */
3639 if (thresholds->primary) {
3640 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3641 sizeof(struct mem_cgroup_threshold));
3644 /* Add new threshold */
3645 new->entries[size - 1].eventfd = eventfd;
3646 new->entries[size - 1].threshold = threshold;
3648 /* Sort thresholds. Registering of new threshold isn't time-critical */
3649 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3650 compare_thresholds, NULL);
3652 /* Find current threshold */
3653 new->current_threshold = -1;
3654 for (i = 0; i < size; i++) {
3655 if (new->entries[i].threshold <= usage) {
3657 * new->current_threshold will not be used until
3658 * rcu_assign_pointer(), so it's safe to increment
3659 * it here.
3661 ++new->current_threshold;
3662 } else
3663 break;
3666 /* Free old spare buffer and save old primary buffer as spare */
3667 kfree(thresholds->spare);
3668 thresholds->spare = thresholds->primary;
3670 rcu_assign_pointer(thresholds->primary, new);
3672 /* To be sure that nobody uses thresholds */
3673 synchronize_rcu();
3675 unlock:
3676 mutex_unlock(&memcg->thresholds_lock);
3678 return ret;
3681 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3682 struct eventfd_ctx *eventfd, const char *args)
3684 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3687 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3688 struct eventfd_ctx *eventfd, const char *args)
3690 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3693 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3694 struct eventfd_ctx *eventfd, enum res_type type)
3696 struct mem_cgroup_thresholds *thresholds;
3697 struct mem_cgroup_threshold_ary *new;
3698 unsigned long usage;
3699 int i, j, size;
3701 mutex_lock(&memcg->thresholds_lock);
3703 if (type == _MEM) {
3704 thresholds = &memcg->thresholds;
3705 usage = mem_cgroup_usage(memcg, false);
3706 } else if (type == _MEMSWAP) {
3707 thresholds = &memcg->memsw_thresholds;
3708 usage = mem_cgroup_usage(memcg, true);
3709 } else
3710 BUG();
3712 if (!thresholds->primary)
3713 goto unlock;
3715 /* Check if a threshold crossed before removing */
3716 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3718 /* Calculate new number of threshold */
3719 size = 0;
3720 for (i = 0; i < thresholds->primary->size; i++) {
3721 if (thresholds->primary->entries[i].eventfd != eventfd)
3722 size++;
3725 new = thresholds->spare;
3727 /* Set thresholds array to NULL if we don't have thresholds */
3728 if (!size) {
3729 kfree(new);
3730 new = NULL;
3731 goto swap_buffers;
3734 new->size = size;
3736 /* Copy thresholds and find current threshold */
3737 new->current_threshold = -1;
3738 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3739 if (thresholds->primary->entries[i].eventfd == eventfd)
3740 continue;
3742 new->entries[j] = thresholds->primary->entries[i];
3743 if (new->entries[j].threshold <= usage) {
3745 * new->current_threshold will not be used
3746 * until rcu_assign_pointer(), so it's safe to increment
3747 * it here.
3749 ++new->current_threshold;
3751 j++;
3754 swap_buffers:
3755 /* Swap primary and spare array */
3756 thresholds->spare = thresholds->primary;
3758 rcu_assign_pointer(thresholds->primary, new);
3760 /* To be sure that nobody uses thresholds */
3761 synchronize_rcu();
3763 /* If all events are unregistered, free the spare array */
3764 if (!new) {
3765 kfree(thresholds->spare);
3766 thresholds->spare = NULL;
3768 unlock:
3769 mutex_unlock(&memcg->thresholds_lock);
3772 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3773 struct eventfd_ctx *eventfd)
3775 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3778 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3779 struct eventfd_ctx *eventfd)
3781 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3784 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3785 struct eventfd_ctx *eventfd, const char *args)
3787 struct mem_cgroup_eventfd_list *event;
3789 event = kmalloc(sizeof(*event), GFP_KERNEL);
3790 if (!event)
3791 return -ENOMEM;
3793 spin_lock(&memcg_oom_lock);
3795 event->eventfd = eventfd;
3796 list_add(&event->list, &memcg->oom_notify);
3798 /* already in OOM ? */
3799 if (memcg->under_oom)
3800 eventfd_signal(eventfd, 1);
3801 spin_unlock(&memcg_oom_lock);
3803 return 0;
3806 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3807 struct eventfd_ctx *eventfd)
3809 struct mem_cgroup_eventfd_list *ev, *tmp;
3811 spin_lock(&memcg_oom_lock);
3813 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3814 if (ev->eventfd == eventfd) {
3815 list_del(&ev->list);
3816 kfree(ev);
3820 spin_unlock(&memcg_oom_lock);
3823 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3825 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3827 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3828 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3829 seq_printf(sf, "oom_kill %lu\n",
3830 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
3831 return 0;
3834 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3835 struct cftype *cft, u64 val)
3837 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3839 /* cannot set to root cgroup and only 0 and 1 are allowed */
3840 if (!css->parent || !((val == 0) || (val == 1)))
3841 return -EINVAL;
3843 memcg->oom_kill_disable = val;
3844 if (!val)
3845 memcg_oom_recover(memcg);
3847 return 0;
3850 #ifdef CONFIG_CGROUP_WRITEBACK
3852 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3854 return wb_domain_init(&memcg->cgwb_domain, gfp);
3857 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3859 wb_domain_exit(&memcg->cgwb_domain);
3862 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3864 wb_domain_size_changed(&memcg->cgwb_domain);
3867 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3869 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3871 if (!memcg->css.parent)
3872 return NULL;
3874 return &memcg->cgwb_domain;
3878 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3879 * @wb: bdi_writeback in question
3880 * @pfilepages: out parameter for number of file pages
3881 * @pheadroom: out parameter for number of allocatable pages according to memcg
3882 * @pdirty: out parameter for number of dirty pages
3883 * @pwriteback: out parameter for number of pages under writeback
3885 * Determine the numbers of file, headroom, dirty, and writeback pages in
3886 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3887 * is a bit more involved.
3889 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3890 * headroom is calculated as the lowest headroom of itself and the
3891 * ancestors. Note that this doesn't consider the actual amount of
3892 * available memory in the system. The caller should further cap
3893 * *@pheadroom accordingly.
3895 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3896 unsigned long *pheadroom, unsigned long *pdirty,
3897 unsigned long *pwriteback)
3899 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3900 struct mem_cgroup *parent;
3902 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
3904 /* this should eventually include NR_UNSTABLE_NFS */
3905 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
3906 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3907 (1 << LRU_ACTIVE_FILE));
3908 *pheadroom = PAGE_COUNTER_MAX;
3910 while ((parent = parent_mem_cgroup(memcg))) {
3911 unsigned long ceiling = min(memcg->memory.max, memcg->high);
3912 unsigned long used = page_counter_read(&memcg->memory);
3914 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3915 memcg = parent;
3919 #else /* CONFIG_CGROUP_WRITEBACK */
3921 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3923 return 0;
3926 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3930 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3934 #endif /* CONFIG_CGROUP_WRITEBACK */
3937 * DO NOT USE IN NEW FILES.
3939 * "cgroup.event_control" implementation.
3941 * This is way over-engineered. It tries to support fully configurable
3942 * events for each user. Such level of flexibility is completely
3943 * unnecessary especially in the light of the planned unified hierarchy.
3945 * Please deprecate this and replace with something simpler if at all
3946 * possible.
3950 * Unregister event and free resources.
3952 * Gets called from workqueue.
3954 static void memcg_event_remove(struct work_struct *work)
3956 struct mem_cgroup_event *event =
3957 container_of(work, struct mem_cgroup_event, remove);
3958 struct mem_cgroup *memcg = event->memcg;
3960 remove_wait_queue(event->wqh, &event->wait);
3962 event->unregister_event(memcg, event->eventfd);
3964 /* Notify userspace the event is going away. */
3965 eventfd_signal(event->eventfd, 1);
3967 eventfd_ctx_put(event->eventfd);
3968 kfree(event);
3969 css_put(&memcg->css);
3973 * Gets called on EPOLLHUP on eventfd when user closes it.
3975 * Called with wqh->lock held and interrupts disabled.
3977 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3978 int sync, void *key)
3980 struct mem_cgroup_event *event =
3981 container_of(wait, struct mem_cgroup_event, wait);
3982 struct mem_cgroup *memcg = event->memcg;
3983 __poll_t flags = key_to_poll(key);
3985 if (flags & EPOLLHUP) {
3987 * If the event has been detached at cgroup removal, we
3988 * can simply return knowing the other side will cleanup
3989 * for us.
3991 * We can't race against event freeing since the other
3992 * side will require wqh->lock via remove_wait_queue(),
3993 * which we hold.
3995 spin_lock(&memcg->event_list_lock);
3996 if (!list_empty(&event->list)) {
3997 list_del_init(&event->list);
3999 * We are in atomic context, but cgroup_event_remove()
4000 * may sleep, so we have to call it in workqueue.
4002 schedule_work(&event->remove);
4004 spin_unlock(&memcg->event_list_lock);
4007 return 0;
4010 static void memcg_event_ptable_queue_proc(struct file *file,
4011 wait_queue_head_t *wqh, poll_table *pt)
4013 struct mem_cgroup_event *event =
4014 container_of(pt, struct mem_cgroup_event, pt);
4016 event->wqh = wqh;
4017 add_wait_queue(wqh, &event->wait);
4021 * DO NOT USE IN NEW FILES.
4023 * Parse input and register new cgroup event handler.
4025 * Input must be in format '<event_fd> <control_fd> <args>'.
4026 * Interpretation of args is defined by control file implementation.
4028 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4029 char *buf, size_t nbytes, loff_t off)
4031 struct cgroup_subsys_state *css = of_css(of);
4032 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4033 struct mem_cgroup_event *event;
4034 struct cgroup_subsys_state *cfile_css;
4035 unsigned int efd, cfd;
4036 struct fd efile;
4037 struct fd cfile;
4038 const char *name;
4039 char *endp;
4040 int ret;
4042 buf = strstrip(buf);
4044 efd = simple_strtoul(buf, &endp, 10);
4045 if (*endp != ' ')
4046 return -EINVAL;
4047 buf = endp + 1;
4049 cfd = simple_strtoul(buf, &endp, 10);
4050 if ((*endp != ' ') && (*endp != '\0'))
4051 return -EINVAL;
4052 buf = endp + 1;
4054 event = kzalloc(sizeof(*event), GFP_KERNEL);
4055 if (!event)
4056 return -ENOMEM;
4058 event->memcg = memcg;
4059 INIT_LIST_HEAD(&event->list);
4060 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4061 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4062 INIT_WORK(&event->remove, memcg_event_remove);
4064 efile = fdget(efd);
4065 if (!efile.file) {
4066 ret = -EBADF;
4067 goto out_kfree;
4070 event->eventfd = eventfd_ctx_fileget(efile.file);
4071 if (IS_ERR(event->eventfd)) {
4072 ret = PTR_ERR(event->eventfd);
4073 goto out_put_efile;
4076 cfile = fdget(cfd);
4077 if (!cfile.file) {
4078 ret = -EBADF;
4079 goto out_put_eventfd;
4082 /* the process need read permission on control file */
4083 /* AV: shouldn't we check that it's been opened for read instead? */
4084 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4085 if (ret < 0)
4086 goto out_put_cfile;
4089 * Determine the event callbacks and set them in @event. This used
4090 * to be done via struct cftype but cgroup core no longer knows
4091 * about these events. The following is crude but the whole thing
4092 * is for compatibility anyway.
4094 * DO NOT ADD NEW FILES.
4096 name = cfile.file->f_path.dentry->d_name.name;
4098 if (!strcmp(name, "memory.usage_in_bytes")) {
4099 event->register_event = mem_cgroup_usage_register_event;
4100 event->unregister_event = mem_cgroup_usage_unregister_event;
4101 } else if (!strcmp(name, "memory.oom_control")) {
4102 event->register_event = mem_cgroup_oom_register_event;
4103 event->unregister_event = mem_cgroup_oom_unregister_event;
4104 } else if (!strcmp(name, "memory.pressure_level")) {
4105 event->register_event = vmpressure_register_event;
4106 event->unregister_event = vmpressure_unregister_event;
4107 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4108 event->register_event = memsw_cgroup_usage_register_event;
4109 event->unregister_event = memsw_cgroup_usage_unregister_event;
4110 } else {
4111 ret = -EINVAL;
4112 goto out_put_cfile;
4116 * Verify @cfile should belong to @css. Also, remaining events are
4117 * automatically removed on cgroup destruction but the removal is
4118 * asynchronous, so take an extra ref on @css.
4120 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4121 &memory_cgrp_subsys);
4122 ret = -EINVAL;
4123 if (IS_ERR(cfile_css))
4124 goto out_put_cfile;
4125 if (cfile_css != css) {
4126 css_put(cfile_css);
4127 goto out_put_cfile;
4130 ret = event->register_event(memcg, event->eventfd, buf);
4131 if (ret)
4132 goto out_put_css;
4134 vfs_poll(efile.file, &event->pt);
4136 spin_lock(&memcg->event_list_lock);
4137 list_add(&event->list, &memcg->event_list);
4138 spin_unlock(&memcg->event_list_lock);
4140 fdput(cfile);
4141 fdput(efile);
4143 return nbytes;
4145 out_put_css:
4146 css_put(css);
4147 out_put_cfile:
4148 fdput(cfile);
4149 out_put_eventfd:
4150 eventfd_ctx_put(event->eventfd);
4151 out_put_efile:
4152 fdput(efile);
4153 out_kfree:
4154 kfree(event);
4156 return ret;
4159 static struct cftype mem_cgroup_legacy_files[] = {
4161 .name = "usage_in_bytes",
4162 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4163 .read_u64 = mem_cgroup_read_u64,
4166 .name = "max_usage_in_bytes",
4167 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4168 .write = mem_cgroup_reset,
4169 .read_u64 = mem_cgroup_read_u64,
4172 .name = "limit_in_bytes",
4173 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4174 .write = mem_cgroup_write,
4175 .read_u64 = mem_cgroup_read_u64,
4178 .name = "soft_limit_in_bytes",
4179 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4180 .write = mem_cgroup_write,
4181 .read_u64 = mem_cgroup_read_u64,
4184 .name = "failcnt",
4185 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4186 .write = mem_cgroup_reset,
4187 .read_u64 = mem_cgroup_read_u64,
4190 .name = "stat",
4191 .seq_show = memcg_stat_show,
4194 .name = "force_empty",
4195 .write = mem_cgroup_force_empty_write,
4198 .name = "use_hierarchy",
4199 .write_u64 = mem_cgroup_hierarchy_write,
4200 .read_u64 = mem_cgroup_hierarchy_read,
4203 .name = "cgroup.event_control", /* XXX: for compat */
4204 .write = memcg_write_event_control,
4205 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4208 .name = "swappiness",
4209 .read_u64 = mem_cgroup_swappiness_read,
4210 .write_u64 = mem_cgroup_swappiness_write,
4213 .name = "move_charge_at_immigrate",
4214 .read_u64 = mem_cgroup_move_charge_read,
4215 .write_u64 = mem_cgroup_move_charge_write,
4218 .name = "oom_control",
4219 .seq_show = mem_cgroup_oom_control_read,
4220 .write_u64 = mem_cgroup_oom_control_write,
4221 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4224 .name = "pressure_level",
4226 #ifdef CONFIG_NUMA
4228 .name = "numa_stat",
4229 .seq_show = memcg_numa_stat_show,
4231 #endif
4233 .name = "kmem.limit_in_bytes",
4234 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4235 .write = mem_cgroup_write,
4236 .read_u64 = mem_cgroup_read_u64,
4239 .name = "kmem.usage_in_bytes",
4240 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4241 .read_u64 = mem_cgroup_read_u64,
4244 .name = "kmem.failcnt",
4245 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4246 .write = mem_cgroup_reset,
4247 .read_u64 = mem_cgroup_read_u64,
4250 .name = "kmem.max_usage_in_bytes",
4251 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4252 .write = mem_cgroup_reset,
4253 .read_u64 = mem_cgroup_read_u64,
4255 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
4257 .name = "kmem.slabinfo",
4258 .seq_start = memcg_slab_start,
4259 .seq_next = memcg_slab_next,
4260 .seq_stop = memcg_slab_stop,
4261 .seq_show = memcg_slab_show,
4263 #endif
4265 .name = "kmem.tcp.limit_in_bytes",
4266 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4267 .write = mem_cgroup_write,
4268 .read_u64 = mem_cgroup_read_u64,
4271 .name = "kmem.tcp.usage_in_bytes",
4272 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4273 .read_u64 = mem_cgroup_read_u64,
4276 .name = "kmem.tcp.failcnt",
4277 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4278 .write = mem_cgroup_reset,
4279 .read_u64 = mem_cgroup_read_u64,
4282 .name = "kmem.tcp.max_usage_in_bytes",
4283 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4284 .write = mem_cgroup_reset,
4285 .read_u64 = mem_cgroup_read_u64,
4287 { }, /* terminate */
4291 * Private memory cgroup IDR
4293 * Swap-out records and page cache shadow entries need to store memcg
4294 * references in constrained space, so we maintain an ID space that is
4295 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4296 * memory-controlled cgroups to 64k.
4298 * However, there usually are many references to the oflline CSS after
4299 * the cgroup has been destroyed, such as page cache or reclaimable
4300 * slab objects, that don't need to hang on to the ID. We want to keep
4301 * those dead CSS from occupying IDs, or we might quickly exhaust the
4302 * relatively small ID space and prevent the creation of new cgroups
4303 * even when there are much fewer than 64k cgroups - possibly none.
4305 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4306 * be freed and recycled when it's no longer needed, which is usually
4307 * when the CSS is offlined.
4309 * The only exception to that are records of swapped out tmpfs/shmem
4310 * pages that need to be attributed to live ancestors on swapin. But
4311 * those references are manageable from userspace.
4314 static DEFINE_IDR(mem_cgroup_idr);
4316 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
4318 if (memcg->id.id > 0) {
4319 idr_remove(&mem_cgroup_idr, memcg->id.id);
4320 memcg->id.id = 0;
4324 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4326 VM_BUG_ON(atomic_read(&memcg->id.ref) <= 0);
4327 atomic_add(n, &memcg->id.ref);
4330 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4332 VM_BUG_ON(atomic_read(&memcg->id.ref) < n);
4333 if (atomic_sub_and_test(n, &memcg->id.ref)) {
4334 mem_cgroup_id_remove(memcg);
4336 /* Memcg ID pins CSS */
4337 css_put(&memcg->css);
4341 static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4343 mem_cgroup_id_get_many(memcg, 1);
4346 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4348 mem_cgroup_id_put_many(memcg, 1);
4352 * mem_cgroup_from_id - look up a memcg from a memcg id
4353 * @id: the memcg id to look up
4355 * Caller must hold rcu_read_lock().
4357 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4359 WARN_ON_ONCE(!rcu_read_lock_held());
4360 return idr_find(&mem_cgroup_idr, id);
4363 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4365 struct mem_cgroup_per_node *pn;
4366 int tmp = node;
4368 * This routine is called against possible nodes.
4369 * But it's BUG to call kmalloc() against offline node.
4371 * TODO: this routine can waste much memory for nodes which will
4372 * never be onlined. It's better to use memory hotplug callback
4373 * function.
4375 if (!node_state(node, N_NORMAL_MEMORY))
4376 tmp = -1;
4377 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4378 if (!pn)
4379 return 1;
4381 pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
4382 if (!pn->lruvec_stat_cpu) {
4383 kfree(pn);
4384 return 1;
4387 lruvec_init(&pn->lruvec);
4388 pn->usage_in_excess = 0;
4389 pn->on_tree = false;
4390 pn->memcg = memcg;
4392 memcg->nodeinfo[node] = pn;
4393 return 0;
4396 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4398 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4400 if (!pn)
4401 return;
4403 free_percpu(pn->lruvec_stat_cpu);
4404 kfree(pn);
4407 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4409 int node;
4411 for_each_node(node)
4412 free_mem_cgroup_per_node_info(memcg, node);
4413 free_percpu(memcg->stat_cpu);
4414 kfree(memcg);
4417 static void mem_cgroup_free(struct mem_cgroup *memcg)
4419 memcg_wb_domain_exit(memcg);
4420 __mem_cgroup_free(memcg);
4423 static struct mem_cgroup *mem_cgroup_alloc(void)
4425 struct mem_cgroup *memcg;
4426 size_t size;
4427 int node;
4429 size = sizeof(struct mem_cgroup);
4430 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4432 memcg = kzalloc(size, GFP_KERNEL);
4433 if (!memcg)
4434 return NULL;
4436 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4437 1, MEM_CGROUP_ID_MAX,
4438 GFP_KERNEL);
4439 if (memcg->id.id < 0)
4440 goto fail;
4442 memcg->stat_cpu = alloc_percpu(struct mem_cgroup_stat_cpu);
4443 if (!memcg->stat_cpu)
4444 goto fail;
4446 for_each_node(node)
4447 if (alloc_mem_cgroup_per_node_info(memcg, node))
4448 goto fail;
4450 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4451 goto fail;
4453 INIT_WORK(&memcg->high_work, high_work_func);
4454 memcg->last_scanned_node = MAX_NUMNODES;
4455 INIT_LIST_HEAD(&memcg->oom_notify);
4456 mutex_init(&memcg->thresholds_lock);
4457 spin_lock_init(&memcg->move_lock);
4458 vmpressure_init(&memcg->vmpressure);
4459 INIT_LIST_HEAD(&memcg->event_list);
4460 spin_lock_init(&memcg->event_list_lock);
4461 memcg->socket_pressure = jiffies;
4462 #ifdef CONFIG_MEMCG_KMEM
4463 memcg->kmemcg_id = -1;
4464 #endif
4465 #ifdef CONFIG_CGROUP_WRITEBACK
4466 INIT_LIST_HEAD(&memcg->cgwb_list);
4467 #endif
4468 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4469 return memcg;
4470 fail:
4471 mem_cgroup_id_remove(memcg);
4472 __mem_cgroup_free(memcg);
4473 return NULL;
4476 static struct cgroup_subsys_state * __ref
4477 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4479 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4480 struct mem_cgroup *memcg;
4481 long error = -ENOMEM;
4483 memcg = mem_cgroup_alloc();
4484 if (!memcg)
4485 return ERR_PTR(error);
4487 memcg->high = PAGE_COUNTER_MAX;
4488 memcg->soft_limit = PAGE_COUNTER_MAX;
4489 if (parent) {
4490 memcg->swappiness = mem_cgroup_swappiness(parent);
4491 memcg->oom_kill_disable = parent->oom_kill_disable;
4493 if (parent && parent->use_hierarchy) {
4494 memcg->use_hierarchy = true;
4495 page_counter_init(&memcg->memory, &parent->memory);
4496 page_counter_init(&memcg->swap, &parent->swap);
4497 page_counter_init(&memcg->memsw, &parent->memsw);
4498 page_counter_init(&memcg->kmem, &parent->kmem);
4499 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4500 } else {
4501 page_counter_init(&memcg->memory, NULL);
4502 page_counter_init(&memcg->swap, NULL);
4503 page_counter_init(&memcg->memsw, NULL);
4504 page_counter_init(&memcg->kmem, NULL);
4505 page_counter_init(&memcg->tcpmem, NULL);
4507 * Deeper hierachy with use_hierarchy == false doesn't make
4508 * much sense so let cgroup subsystem know about this
4509 * unfortunate state in our controller.
4511 if (parent != root_mem_cgroup)
4512 memory_cgrp_subsys.broken_hierarchy = true;
4515 /* The following stuff does not apply to the root */
4516 if (!parent) {
4517 root_mem_cgroup = memcg;
4518 return &memcg->css;
4521 error = memcg_online_kmem(memcg);
4522 if (error)
4523 goto fail;
4525 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4526 static_branch_inc(&memcg_sockets_enabled_key);
4528 return &memcg->css;
4529 fail:
4530 mem_cgroup_id_remove(memcg);
4531 mem_cgroup_free(memcg);
4532 return ERR_PTR(-ENOMEM);
4535 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4537 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4540 * A memcg must be visible for memcg_expand_shrinker_maps()
4541 * by the time the maps are allocated. So, we allocate maps
4542 * here, when for_each_mem_cgroup() can't skip it.
4544 if (memcg_alloc_shrinker_maps(memcg)) {
4545 mem_cgroup_id_remove(memcg);
4546 return -ENOMEM;
4549 /* Online state pins memcg ID, memcg ID pins CSS */
4550 atomic_set(&memcg->id.ref, 1);
4551 css_get(css);
4552 return 0;
4555 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4557 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4558 struct mem_cgroup_event *event, *tmp;
4561 * Unregister events and notify userspace.
4562 * Notify userspace about cgroup removing only after rmdir of cgroup
4563 * directory to avoid race between userspace and kernelspace.
4565 spin_lock(&memcg->event_list_lock);
4566 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4567 list_del_init(&event->list);
4568 schedule_work(&event->remove);
4570 spin_unlock(&memcg->event_list_lock);
4572 page_counter_set_min(&memcg->memory, 0);
4573 page_counter_set_low(&memcg->memory, 0);
4575 memcg_offline_kmem(memcg);
4576 wb_memcg_offline(memcg);
4578 mem_cgroup_id_put(memcg);
4581 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4583 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4585 invalidate_reclaim_iterators(memcg);
4588 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4590 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4592 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4593 static_branch_dec(&memcg_sockets_enabled_key);
4595 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4596 static_branch_dec(&memcg_sockets_enabled_key);
4598 vmpressure_cleanup(&memcg->vmpressure);
4599 cancel_work_sync(&memcg->high_work);
4600 mem_cgroup_remove_from_trees(memcg);
4601 memcg_free_shrinker_maps(memcg);
4602 memcg_free_kmem(memcg);
4603 mem_cgroup_free(memcg);
4607 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4608 * @css: the target css
4610 * Reset the states of the mem_cgroup associated with @css. This is
4611 * invoked when the userland requests disabling on the default hierarchy
4612 * but the memcg is pinned through dependency. The memcg should stop
4613 * applying policies and should revert to the vanilla state as it may be
4614 * made visible again.
4616 * The current implementation only resets the essential configurations.
4617 * This needs to be expanded to cover all the visible parts.
4619 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4621 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4623 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
4624 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
4625 page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
4626 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
4627 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
4628 page_counter_set_min(&memcg->memory, 0);
4629 page_counter_set_low(&memcg->memory, 0);
4630 memcg->high = PAGE_COUNTER_MAX;
4631 memcg->soft_limit = PAGE_COUNTER_MAX;
4632 memcg_wb_domain_size_changed(memcg);
4635 #ifdef CONFIG_MMU
4636 /* Handlers for move charge at task migration. */
4637 static int mem_cgroup_do_precharge(unsigned long count)
4639 int ret;
4641 /* Try a single bulk charge without reclaim first, kswapd may wake */
4642 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4643 if (!ret) {
4644 mc.precharge += count;
4645 return ret;
4648 /* Try charges one by one with reclaim, but do not retry */
4649 while (count--) {
4650 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
4651 if (ret)
4652 return ret;
4653 mc.precharge++;
4654 cond_resched();
4656 return 0;
4659 union mc_target {
4660 struct page *page;
4661 swp_entry_t ent;
4664 enum mc_target_type {
4665 MC_TARGET_NONE = 0,
4666 MC_TARGET_PAGE,
4667 MC_TARGET_SWAP,
4668 MC_TARGET_DEVICE,
4671 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4672 unsigned long addr, pte_t ptent)
4674 struct page *page = _vm_normal_page(vma, addr, ptent, true);
4676 if (!page || !page_mapped(page))
4677 return NULL;
4678 if (PageAnon(page)) {
4679 if (!(mc.flags & MOVE_ANON))
4680 return NULL;
4681 } else {
4682 if (!(mc.flags & MOVE_FILE))
4683 return NULL;
4685 if (!get_page_unless_zero(page))
4686 return NULL;
4688 return page;
4691 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
4692 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4693 pte_t ptent, swp_entry_t *entry)
4695 struct page *page = NULL;
4696 swp_entry_t ent = pte_to_swp_entry(ptent);
4698 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4699 return NULL;
4702 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
4703 * a device and because they are not accessible by CPU they are store
4704 * as special swap entry in the CPU page table.
4706 if (is_device_private_entry(ent)) {
4707 page = device_private_entry_to_page(ent);
4709 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
4710 * a refcount of 1 when free (unlike normal page)
4712 if (!page_ref_add_unless(page, 1, 1))
4713 return NULL;
4714 return page;
4718 * Because lookup_swap_cache() updates some statistics counter,
4719 * we call find_get_page() with swapper_space directly.
4721 page = find_get_page(swap_address_space(ent), swp_offset(ent));
4722 if (do_memsw_account())
4723 entry->val = ent.val;
4725 return page;
4727 #else
4728 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4729 pte_t ptent, swp_entry_t *entry)
4731 return NULL;
4733 #endif
4735 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4736 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4738 struct page *page = NULL;
4739 struct address_space *mapping;
4740 pgoff_t pgoff;
4742 if (!vma->vm_file) /* anonymous vma */
4743 return NULL;
4744 if (!(mc.flags & MOVE_FILE))
4745 return NULL;
4747 mapping = vma->vm_file->f_mapping;
4748 pgoff = linear_page_index(vma, addr);
4750 /* page is moved even if it's not RSS of this task(page-faulted). */
4751 #ifdef CONFIG_SWAP
4752 /* shmem/tmpfs may report page out on swap: account for that too. */
4753 if (shmem_mapping(mapping)) {
4754 page = find_get_entry(mapping, pgoff);
4755 if (radix_tree_exceptional_entry(page)) {
4756 swp_entry_t swp = radix_to_swp_entry(page);
4757 if (do_memsw_account())
4758 *entry = swp;
4759 page = find_get_page(swap_address_space(swp),
4760 swp_offset(swp));
4762 } else
4763 page = find_get_page(mapping, pgoff);
4764 #else
4765 page = find_get_page(mapping, pgoff);
4766 #endif
4767 return page;
4771 * mem_cgroup_move_account - move account of the page
4772 * @page: the page
4773 * @compound: charge the page as compound or small page
4774 * @from: mem_cgroup which the page is moved from.
4775 * @to: mem_cgroup which the page is moved to. @from != @to.
4777 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4779 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4780 * from old cgroup.
4782 static int mem_cgroup_move_account(struct page *page,
4783 bool compound,
4784 struct mem_cgroup *from,
4785 struct mem_cgroup *to)
4787 unsigned long flags;
4788 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4789 int ret;
4790 bool anon;
4792 VM_BUG_ON(from == to);
4793 VM_BUG_ON_PAGE(PageLRU(page), page);
4794 VM_BUG_ON(compound && !PageTransHuge(page));
4797 * Prevent mem_cgroup_migrate() from looking at
4798 * page->mem_cgroup of its source page while we change it.
4800 ret = -EBUSY;
4801 if (!trylock_page(page))
4802 goto out;
4804 ret = -EINVAL;
4805 if (page->mem_cgroup != from)
4806 goto out_unlock;
4808 anon = PageAnon(page);
4810 spin_lock_irqsave(&from->move_lock, flags);
4812 if (!anon && page_mapped(page)) {
4813 __mod_memcg_state(from, NR_FILE_MAPPED, -nr_pages);
4814 __mod_memcg_state(to, NR_FILE_MAPPED, nr_pages);
4818 * move_lock grabbed above and caller set from->moving_account, so
4819 * mod_memcg_page_state will serialize updates to PageDirty.
4820 * So mapping should be stable for dirty pages.
4822 if (!anon && PageDirty(page)) {
4823 struct address_space *mapping = page_mapping(page);
4825 if (mapping_cap_account_dirty(mapping)) {
4826 __mod_memcg_state(from, NR_FILE_DIRTY, -nr_pages);
4827 __mod_memcg_state(to, NR_FILE_DIRTY, nr_pages);
4831 if (PageWriteback(page)) {
4832 __mod_memcg_state(from, NR_WRITEBACK, -nr_pages);
4833 __mod_memcg_state(to, NR_WRITEBACK, nr_pages);
4837 * It is safe to change page->mem_cgroup here because the page
4838 * is referenced, charged, and isolated - we can't race with
4839 * uncharging, charging, migration, or LRU putback.
4842 /* caller should have done css_get */
4843 page->mem_cgroup = to;
4844 spin_unlock_irqrestore(&from->move_lock, flags);
4846 ret = 0;
4848 local_irq_disable();
4849 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4850 memcg_check_events(to, page);
4851 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4852 memcg_check_events(from, page);
4853 local_irq_enable();
4854 out_unlock:
4855 unlock_page(page);
4856 out:
4857 return ret;
4861 * get_mctgt_type - get target type of moving charge
4862 * @vma: the vma the pte to be checked belongs
4863 * @addr: the address corresponding to the pte to be checked
4864 * @ptent: the pte to be checked
4865 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4867 * Returns
4868 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4869 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4870 * move charge. if @target is not NULL, the page is stored in target->page
4871 * with extra refcnt got(Callers should handle it).
4872 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4873 * target for charge migration. if @target is not NULL, the entry is stored
4874 * in target->ent.
4875 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PUBLIC
4876 * or MEMORY_DEVICE_PRIVATE (so ZONE_DEVICE page and thus not on the lru).
4877 * For now we such page is charge like a regular page would be as for all
4878 * intent and purposes it is just special memory taking the place of a
4879 * regular page.
4881 * See Documentations/vm/hmm.txt and include/linux/hmm.h
4883 * Called with pte lock held.
4886 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4887 unsigned long addr, pte_t ptent, union mc_target *target)
4889 struct page *page = NULL;
4890 enum mc_target_type ret = MC_TARGET_NONE;
4891 swp_entry_t ent = { .val = 0 };
4893 if (pte_present(ptent))
4894 page = mc_handle_present_pte(vma, addr, ptent);
4895 else if (is_swap_pte(ptent))
4896 page = mc_handle_swap_pte(vma, ptent, &ent);
4897 else if (pte_none(ptent))
4898 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4900 if (!page && !ent.val)
4901 return ret;
4902 if (page) {
4904 * Do only loose check w/o serialization.
4905 * mem_cgroup_move_account() checks the page is valid or
4906 * not under LRU exclusion.
4908 if (page->mem_cgroup == mc.from) {
4909 ret = MC_TARGET_PAGE;
4910 if (is_device_private_page(page) ||
4911 is_device_public_page(page))
4912 ret = MC_TARGET_DEVICE;
4913 if (target)
4914 target->page = page;
4916 if (!ret || !target)
4917 put_page(page);
4920 * There is a swap entry and a page doesn't exist or isn't charged.
4921 * But we cannot move a tail-page in a THP.
4923 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
4924 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4925 ret = MC_TARGET_SWAP;
4926 if (target)
4927 target->ent = ent;
4929 return ret;
4932 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4934 * We don't consider PMD mapped swapping or file mapped pages because THP does
4935 * not support them for now.
4936 * Caller should make sure that pmd_trans_huge(pmd) is true.
4938 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4939 unsigned long addr, pmd_t pmd, union mc_target *target)
4941 struct page *page = NULL;
4942 enum mc_target_type ret = MC_TARGET_NONE;
4944 if (unlikely(is_swap_pmd(pmd))) {
4945 VM_BUG_ON(thp_migration_supported() &&
4946 !is_pmd_migration_entry(pmd));
4947 return ret;
4949 page = pmd_page(pmd);
4950 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4951 if (!(mc.flags & MOVE_ANON))
4952 return ret;
4953 if (page->mem_cgroup == mc.from) {
4954 ret = MC_TARGET_PAGE;
4955 if (target) {
4956 get_page(page);
4957 target->page = page;
4960 return ret;
4962 #else
4963 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4964 unsigned long addr, pmd_t pmd, union mc_target *target)
4966 return MC_TARGET_NONE;
4968 #endif
4970 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4971 unsigned long addr, unsigned long end,
4972 struct mm_walk *walk)
4974 struct vm_area_struct *vma = walk->vma;
4975 pte_t *pte;
4976 spinlock_t *ptl;
4978 ptl = pmd_trans_huge_lock(pmd, vma);
4979 if (ptl) {
4981 * Note their can not be MC_TARGET_DEVICE for now as we do not
4982 * support transparent huge page with MEMORY_DEVICE_PUBLIC or
4983 * MEMORY_DEVICE_PRIVATE but this might change.
4985 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4986 mc.precharge += HPAGE_PMD_NR;
4987 spin_unlock(ptl);
4988 return 0;
4991 if (pmd_trans_unstable(pmd))
4992 return 0;
4993 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4994 for (; addr != end; pte++, addr += PAGE_SIZE)
4995 if (get_mctgt_type(vma, addr, *pte, NULL))
4996 mc.precharge++; /* increment precharge temporarily */
4997 pte_unmap_unlock(pte - 1, ptl);
4998 cond_resched();
5000 return 0;
5003 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5005 unsigned long precharge;
5007 struct mm_walk mem_cgroup_count_precharge_walk = {
5008 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5009 .mm = mm,
5011 down_read(&mm->mmap_sem);
5012 walk_page_range(0, mm->highest_vm_end,
5013 &mem_cgroup_count_precharge_walk);
5014 up_read(&mm->mmap_sem);
5016 precharge = mc.precharge;
5017 mc.precharge = 0;
5019 return precharge;
5022 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5024 unsigned long precharge = mem_cgroup_count_precharge(mm);
5026 VM_BUG_ON(mc.moving_task);
5027 mc.moving_task = current;
5028 return mem_cgroup_do_precharge(precharge);
5031 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5032 static void __mem_cgroup_clear_mc(void)
5034 struct mem_cgroup *from = mc.from;
5035 struct mem_cgroup *to = mc.to;
5037 /* we must uncharge all the leftover precharges from mc.to */
5038 if (mc.precharge) {
5039 cancel_charge(mc.to, mc.precharge);
5040 mc.precharge = 0;
5043 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5044 * we must uncharge here.
5046 if (mc.moved_charge) {
5047 cancel_charge(mc.from, mc.moved_charge);
5048 mc.moved_charge = 0;
5050 /* we must fixup refcnts and charges */
5051 if (mc.moved_swap) {
5052 /* uncharge swap account from the old cgroup */
5053 if (!mem_cgroup_is_root(mc.from))
5054 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5056 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5059 * we charged both to->memory and to->memsw, so we
5060 * should uncharge to->memory.
5062 if (!mem_cgroup_is_root(mc.to))
5063 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5065 mem_cgroup_id_get_many(mc.to, mc.moved_swap);
5066 css_put_many(&mc.to->css, mc.moved_swap);
5068 mc.moved_swap = 0;
5070 memcg_oom_recover(from);
5071 memcg_oom_recover(to);
5072 wake_up_all(&mc.waitq);
5075 static void mem_cgroup_clear_mc(void)
5077 struct mm_struct *mm = mc.mm;
5080 * we must clear moving_task before waking up waiters at the end of
5081 * task migration.
5083 mc.moving_task = NULL;
5084 __mem_cgroup_clear_mc();
5085 spin_lock(&mc.lock);
5086 mc.from = NULL;
5087 mc.to = NULL;
5088 mc.mm = NULL;
5089 spin_unlock(&mc.lock);
5091 mmput(mm);
5094 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5096 struct cgroup_subsys_state *css;
5097 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5098 struct mem_cgroup *from;
5099 struct task_struct *leader, *p;
5100 struct mm_struct *mm;
5101 unsigned long move_flags;
5102 int ret = 0;
5104 /* charge immigration isn't supported on the default hierarchy */
5105 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5106 return 0;
5109 * Multi-process migrations only happen on the default hierarchy
5110 * where charge immigration is not used. Perform charge
5111 * immigration if @tset contains a leader and whine if there are
5112 * multiple.
5114 p = NULL;
5115 cgroup_taskset_for_each_leader(leader, css, tset) {
5116 WARN_ON_ONCE(p);
5117 p = leader;
5118 memcg = mem_cgroup_from_css(css);
5120 if (!p)
5121 return 0;
5124 * We are now commited to this value whatever it is. Changes in this
5125 * tunable will only affect upcoming migrations, not the current one.
5126 * So we need to save it, and keep it going.
5128 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5129 if (!move_flags)
5130 return 0;
5132 from = mem_cgroup_from_task(p);
5134 VM_BUG_ON(from == memcg);
5136 mm = get_task_mm(p);
5137 if (!mm)
5138 return 0;
5139 /* We move charges only when we move a owner of the mm */
5140 if (mm->owner == p) {
5141 VM_BUG_ON(mc.from);
5142 VM_BUG_ON(mc.to);
5143 VM_BUG_ON(mc.precharge);
5144 VM_BUG_ON(mc.moved_charge);
5145 VM_BUG_ON(mc.moved_swap);
5147 spin_lock(&mc.lock);
5148 mc.mm = mm;
5149 mc.from = from;
5150 mc.to = memcg;
5151 mc.flags = move_flags;
5152 spin_unlock(&mc.lock);
5153 /* We set mc.moving_task later */
5155 ret = mem_cgroup_precharge_mc(mm);
5156 if (ret)
5157 mem_cgroup_clear_mc();
5158 } else {
5159 mmput(mm);
5161 return ret;
5164 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5166 if (mc.to)
5167 mem_cgroup_clear_mc();
5170 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5171 unsigned long addr, unsigned long end,
5172 struct mm_walk *walk)
5174 int ret = 0;
5175 struct vm_area_struct *vma = walk->vma;
5176 pte_t *pte;
5177 spinlock_t *ptl;
5178 enum mc_target_type target_type;
5179 union mc_target target;
5180 struct page *page;
5182 ptl = pmd_trans_huge_lock(pmd, vma);
5183 if (ptl) {
5184 if (mc.precharge < HPAGE_PMD_NR) {
5185 spin_unlock(ptl);
5186 return 0;
5188 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5189 if (target_type == MC_TARGET_PAGE) {
5190 page = target.page;
5191 if (!isolate_lru_page(page)) {
5192 if (!mem_cgroup_move_account(page, true,
5193 mc.from, mc.to)) {
5194 mc.precharge -= HPAGE_PMD_NR;
5195 mc.moved_charge += HPAGE_PMD_NR;
5197 putback_lru_page(page);
5199 put_page(page);
5200 } else if (target_type == MC_TARGET_DEVICE) {
5201 page = target.page;
5202 if (!mem_cgroup_move_account(page, true,
5203 mc.from, mc.to)) {
5204 mc.precharge -= HPAGE_PMD_NR;
5205 mc.moved_charge += HPAGE_PMD_NR;
5207 put_page(page);
5209 spin_unlock(ptl);
5210 return 0;
5213 if (pmd_trans_unstable(pmd))
5214 return 0;
5215 retry:
5216 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5217 for (; addr != end; addr += PAGE_SIZE) {
5218 pte_t ptent = *(pte++);
5219 bool device = false;
5220 swp_entry_t ent;
5222 if (!mc.precharge)
5223 break;
5225 switch (get_mctgt_type(vma, addr, ptent, &target)) {
5226 case MC_TARGET_DEVICE:
5227 device = true;
5228 /* fall through */
5229 case MC_TARGET_PAGE:
5230 page = target.page;
5232 * We can have a part of the split pmd here. Moving it
5233 * can be done but it would be too convoluted so simply
5234 * ignore such a partial THP and keep it in original
5235 * memcg. There should be somebody mapping the head.
5237 if (PageTransCompound(page))
5238 goto put;
5239 if (!device && isolate_lru_page(page))
5240 goto put;
5241 if (!mem_cgroup_move_account(page, false,
5242 mc.from, mc.to)) {
5243 mc.precharge--;
5244 /* we uncharge from mc.from later. */
5245 mc.moved_charge++;
5247 if (!device)
5248 putback_lru_page(page);
5249 put: /* get_mctgt_type() gets the page */
5250 put_page(page);
5251 break;
5252 case MC_TARGET_SWAP:
5253 ent = target.ent;
5254 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5255 mc.precharge--;
5256 /* we fixup refcnts and charges later. */
5257 mc.moved_swap++;
5259 break;
5260 default:
5261 break;
5264 pte_unmap_unlock(pte - 1, ptl);
5265 cond_resched();
5267 if (addr != end) {
5269 * We have consumed all precharges we got in can_attach().
5270 * We try charge one by one, but don't do any additional
5271 * charges to mc.to if we have failed in charge once in attach()
5272 * phase.
5274 ret = mem_cgroup_do_precharge(1);
5275 if (!ret)
5276 goto retry;
5279 return ret;
5282 static void mem_cgroup_move_charge(void)
5284 struct mm_walk mem_cgroup_move_charge_walk = {
5285 .pmd_entry = mem_cgroup_move_charge_pte_range,
5286 .mm = mc.mm,
5289 lru_add_drain_all();
5291 * Signal lock_page_memcg() to take the memcg's move_lock
5292 * while we're moving its pages to another memcg. Then wait
5293 * for already started RCU-only updates to finish.
5295 atomic_inc(&mc.from->moving_account);
5296 synchronize_rcu();
5297 retry:
5298 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
5300 * Someone who are holding the mmap_sem might be waiting in
5301 * waitq. So we cancel all extra charges, wake up all waiters,
5302 * and retry. Because we cancel precharges, we might not be able
5303 * to move enough charges, but moving charge is a best-effort
5304 * feature anyway, so it wouldn't be a big problem.
5306 __mem_cgroup_clear_mc();
5307 cond_resched();
5308 goto retry;
5311 * When we have consumed all precharges and failed in doing
5312 * additional charge, the page walk just aborts.
5314 walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);
5316 up_read(&mc.mm->mmap_sem);
5317 atomic_dec(&mc.from->moving_account);
5320 static void mem_cgroup_move_task(void)
5322 if (mc.to) {
5323 mem_cgroup_move_charge();
5324 mem_cgroup_clear_mc();
5327 #else /* !CONFIG_MMU */
5328 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5330 return 0;
5332 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5335 static void mem_cgroup_move_task(void)
5338 #endif
5341 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5342 * to verify whether we're attached to the default hierarchy on each mount
5343 * attempt.
5345 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5348 * use_hierarchy is forced on the default hierarchy. cgroup core
5349 * guarantees that @root doesn't have any children, so turning it
5350 * on for the root memcg is enough.
5352 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5353 root_mem_cgroup->use_hierarchy = true;
5354 else
5355 root_mem_cgroup->use_hierarchy = false;
5358 static u64 memory_current_read(struct cgroup_subsys_state *css,
5359 struct cftype *cft)
5361 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5363 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5366 static int memory_min_show(struct seq_file *m, void *v)
5368 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5369 unsigned long min = READ_ONCE(memcg->memory.min);
5371 if (min == PAGE_COUNTER_MAX)
5372 seq_puts(m, "max\n");
5373 else
5374 seq_printf(m, "%llu\n", (u64)min * PAGE_SIZE);
5376 return 0;
5379 static ssize_t memory_min_write(struct kernfs_open_file *of,
5380 char *buf, size_t nbytes, loff_t off)
5382 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5383 unsigned long min;
5384 int err;
5386 buf = strstrip(buf);
5387 err = page_counter_memparse(buf, "max", &min);
5388 if (err)
5389 return err;
5391 page_counter_set_min(&memcg->memory, min);
5393 return nbytes;
5396 static int memory_low_show(struct seq_file *m, void *v)
5398 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5399 unsigned long low = READ_ONCE(memcg->memory.low);
5401 if (low == PAGE_COUNTER_MAX)
5402 seq_puts(m, "max\n");
5403 else
5404 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5406 return 0;
5409 static ssize_t memory_low_write(struct kernfs_open_file *of,
5410 char *buf, size_t nbytes, loff_t off)
5412 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5413 unsigned long low;
5414 int err;
5416 buf = strstrip(buf);
5417 err = page_counter_memparse(buf, "max", &low);
5418 if (err)
5419 return err;
5421 page_counter_set_low(&memcg->memory, low);
5423 return nbytes;
5426 static int memory_high_show(struct seq_file *m, void *v)
5428 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5429 unsigned long high = READ_ONCE(memcg->high);
5431 if (high == PAGE_COUNTER_MAX)
5432 seq_puts(m, "max\n");
5433 else
5434 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5436 return 0;
5439 static ssize_t memory_high_write(struct kernfs_open_file *of,
5440 char *buf, size_t nbytes, loff_t off)
5442 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5443 unsigned long nr_pages;
5444 unsigned long high;
5445 int err;
5447 buf = strstrip(buf);
5448 err = page_counter_memparse(buf, "max", &high);
5449 if (err)
5450 return err;
5452 memcg->high = high;
5454 nr_pages = page_counter_read(&memcg->memory);
5455 if (nr_pages > high)
5456 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5457 GFP_KERNEL, true);
5459 memcg_wb_domain_size_changed(memcg);
5460 return nbytes;
5463 static int memory_max_show(struct seq_file *m, void *v)
5465 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5466 unsigned long max = READ_ONCE(memcg->memory.max);
5468 if (max == PAGE_COUNTER_MAX)
5469 seq_puts(m, "max\n");
5470 else
5471 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5473 return 0;
5476 static ssize_t memory_max_write(struct kernfs_open_file *of,
5477 char *buf, size_t nbytes, loff_t off)
5479 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5480 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5481 bool drained = false;
5482 unsigned long max;
5483 int err;
5485 buf = strstrip(buf);
5486 err = page_counter_memparse(buf, "max", &max);
5487 if (err)
5488 return err;
5490 xchg(&memcg->memory.max, max);
5492 for (;;) {
5493 unsigned long nr_pages = page_counter_read(&memcg->memory);
5495 if (nr_pages <= max)
5496 break;
5498 if (signal_pending(current)) {
5499 err = -EINTR;
5500 break;
5503 if (!drained) {
5504 drain_all_stock(memcg);
5505 drained = true;
5506 continue;
5509 if (nr_reclaims) {
5510 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5511 GFP_KERNEL, true))
5512 nr_reclaims--;
5513 continue;
5516 memcg_memory_event(memcg, MEMCG_OOM);
5517 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5518 break;
5521 memcg_wb_domain_size_changed(memcg);
5522 return nbytes;
5525 static int memory_events_show(struct seq_file *m, void *v)
5527 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5529 seq_printf(m, "low %lu\n",
5530 atomic_long_read(&memcg->memory_events[MEMCG_LOW]));
5531 seq_printf(m, "high %lu\n",
5532 atomic_long_read(&memcg->memory_events[MEMCG_HIGH]));
5533 seq_printf(m, "max %lu\n",
5534 atomic_long_read(&memcg->memory_events[MEMCG_MAX]));
5535 seq_printf(m, "oom %lu\n",
5536 atomic_long_read(&memcg->memory_events[MEMCG_OOM]));
5537 seq_printf(m, "oom_kill %lu\n",
5538 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
5540 return 0;
5543 static int memory_stat_show(struct seq_file *m, void *v)
5545 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5546 struct accumulated_stats acc;
5547 int i;
5550 * Provide statistics on the state of the memory subsystem as
5551 * well as cumulative event counters that show past behavior.
5553 * This list is ordered following a combination of these gradients:
5554 * 1) generic big picture -> specifics and details
5555 * 2) reflecting userspace activity -> reflecting kernel heuristics
5557 * Current memory state:
5560 memset(&acc, 0, sizeof(acc));
5561 acc.stats_size = MEMCG_NR_STAT;
5562 acc.events_size = NR_VM_EVENT_ITEMS;
5563 accumulate_memcg_tree(memcg, &acc);
5565 seq_printf(m, "anon %llu\n",
5566 (u64)acc.stat[MEMCG_RSS] * PAGE_SIZE);
5567 seq_printf(m, "file %llu\n",
5568 (u64)acc.stat[MEMCG_CACHE] * PAGE_SIZE);
5569 seq_printf(m, "kernel_stack %llu\n",
5570 (u64)acc.stat[MEMCG_KERNEL_STACK_KB] * 1024);
5571 seq_printf(m, "slab %llu\n",
5572 (u64)(acc.stat[NR_SLAB_RECLAIMABLE] +
5573 acc.stat[NR_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5574 seq_printf(m, "sock %llu\n",
5575 (u64)acc.stat[MEMCG_SOCK] * PAGE_SIZE);
5577 seq_printf(m, "shmem %llu\n",
5578 (u64)acc.stat[NR_SHMEM] * PAGE_SIZE);
5579 seq_printf(m, "file_mapped %llu\n",
5580 (u64)acc.stat[NR_FILE_MAPPED] * PAGE_SIZE);
5581 seq_printf(m, "file_dirty %llu\n",
5582 (u64)acc.stat[NR_FILE_DIRTY] * PAGE_SIZE);
5583 seq_printf(m, "file_writeback %llu\n",
5584 (u64)acc.stat[NR_WRITEBACK] * PAGE_SIZE);
5586 for (i = 0; i < NR_LRU_LISTS; i++)
5587 seq_printf(m, "%s %llu\n", mem_cgroup_lru_names[i],
5588 (u64)acc.lru_pages[i] * PAGE_SIZE);
5590 seq_printf(m, "slab_reclaimable %llu\n",
5591 (u64)acc.stat[NR_SLAB_RECLAIMABLE] * PAGE_SIZE);
5592 seq_printf(m, "slab_unreclaimable %llu\n",
5593 (u64)acc.stat[NR_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5595 /* Accumulated memory events */
5597 seq_printf(m, "pgfault %lu\n", acc.events[PGFAULT]);
5598 seq_printf(m, "pgmajfault %lu\n", acc.events[PGMAJFAULT]);
5600 seq_printf(m, "pgrefill %lu\n", acc.events[PGREFILL]);
5601 seq_printf(m, "pgscan %lu\n", acc.events[PGSCAN_KSWAPD] +
5602 acc.events[PGSCAN_DIRECT]);
5603 seq_printf(m, "pgsteal %lu\n", acc.events[PGSTEAL_KSWAPD] +
5604 acc.events[PGSTEAL_DIRECT]);
5605 seq_printf(m, "pgactivate %lu\n", acc.events[PGACTIVATE]);
5606 seq_printf(m, "pgdeactivate %lu\n", acc.events[PGDEACTIVATE]);
5607 seq_printf(m, "pglazyfree %lu\n", acc.events[PGLAZYFREE]);
5608 seq_printf(m, "pglazyfreed %lu\n", acc.events[PGLAZYFREED]);
5610 seq_printf(m, "workingset_refault %lu\n",
5611 acc.stat[WORKINGSET_REFAULT]);
5612 seq_printf(m, "workingset_activate %lu\n",
5613 acc.stat[WORKINGSET_ACTIVATE]);
5614 seq_printf(m, "workingset_nodereclaim %lu\n",
5615 acc.stat[WORKINGSET_NODERECLAIM]);
5617 return 0;
5620 static int memory_oom_group_show(struct seq_file *m, void *v)
5622 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5624 seq_printf(m, "%d\n", memcg->oom_group);
5626 return 0;
5629 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
5630 char *buf, size_t nbytes, loff_t off)
5632 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5633 int ret, oom_group;
5635 buf = strstrip(buf);
5636 if (!buf)
5637 return -EINVAL;
5639 ret = kstrtoint(buf, 0, &oom_group);
5640 if (ret)
5641 return ret;
5643 if (oom_group != 0 && oom_group != 1)
5644 return -EINVAL;
5646 memcg->oom_group = oom_group;
5648 return nbytes;
5651 static struct cftype memory_files[] = {
5653 .name = "current",
5654 .flags = CFTYPE_NOT_ON_ROOT,
5655 .read_u64 = memory_current_read,
5658 .name = "min",
5659 .flags = CFTYPE_NOT_ON_ROOT,
5660 .seq_show = memory_min_show,
5661 .write = memory_min_write,
5664 .name = "low",
5665 .flags = CFTYPE_NOT_ON_ROOT,
5666 .seq_show = memory_low_show,
5667 .write = memory_low_write,
5670 .name = "high",
5671 .flags = CFTYPE_NOT_ON_ROOT,
5672 .seq_show = memory_high_show,
5673 .write = memory_high_write,
5676 .name = "max",
5677 .flags = CFTYPE_NOT_ON_ROOT,
5678 .seq_show = memory_max_show,
5679 .write = memory_max_write,
5682 .name = "events",
5683 .flags = CFTYPE_NOT_ON_ROOT,
5684 .file_offset = offsetof(struct mem_cgroup, events_file),
5685 .seq_show = memory_events_show,
5688 .name = "stat",
5689 .flags = CFTYPE_NOT_ON_ROOT,
5690 .seq_show = memory_stat_show,
5693 .name = "oom.group",
5694 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
5695 .seq_show = memory_oom_group_show,
5696 .write = memory_oom_group_write,
5698 { } /* terminate */
5701 struct cgroup_subsys memory_cgrp_subsys = {
5702 .css_alloc = mem_cgroup_css_alloc,
5703 .css_online = mem_cgroup_css_online,
5704 .css_offline = mem_cgroup_css_offline,
5705 .css_released = mem_cgroup_css_released,
5706 .css_free = mem_cgroup_css_free,
5707 .css_reset = mem_cgroup_css_reset,
5708 .can_attach = mem_cgroup_can_attach,
5709 .cancel_attach = mem_cgroup_cancel_attach,
5710 .post_attach = mem_cgroup_move_task,
5711 .bind = mem_cgroup_bind,
5712 .dfl_cftypes = memory_files,
5713 .legacy_cftypes = mem_cgroup_legacy_files,
5714 .early_init = 0,
5718 * mem_cgroup_protected - check if memory consumption is in the normal range
5719 * @root: the top ancestor of the sub-tree being checked
5720 * @memcg: the memory cgroup to check
5722 * WARNING: This function is not stateless! It can only be used as part
5723 * of a top-down tree iteration, not for isolated queries.
5725 * Returns one of the following:
5726 * MEMCG_PROT_NONE: cgroup memory is not protected
5727 * MEMCG_PROT_LOW: cgroup memory is protected as long there is
5728 * an unprotected supply of reclaimable memory from other cgroups.
5729 * MEMCG_PROT_MIN: cgroup memory is protected
5731 * @root is exclusive; it is never protected when looked at directly
5733 * To provide a proper hierarchical behavior, effective memory.min/low values
5734 * are used. Below is the description of how effective memory.low is calculated.
5735 * Effective memory.min values is calculated in the same way.
5737 * Effective memory.low is always equal or less than the original memory.low.
5738 * If there is no memory.low overcommittment (which is always true for
5739 * top-level memory cgroups), these two values are equal.
5740 * Otherwise, it's a part of parent's effective memory.low,
5741 * calculated as a cgroup's memory.low usage divided by sum of sibling's
5742 * memory.low usages, where memory.low usage is the size of actually
5743 * protected memory.
5745 * low_usage
5746 * elow = min( memory.low, parent->elow * ------------------ ),
5747 * siblings_low_usage
5749 * | memory.current, if memory.current < memory.low
5750 * low_usage = |
5751 | 0, otherwise.
5754 * Such definition of the effective memory.low provides the expected
5755 * hierarchical behavior: parent's memory.low value is limiting
5756 * children, unprotected memory is reclaimed first and cgroups,
5757 * which are not using their guarantee do not affect actual memory
5758 * distribution.
5760 * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
5762 * A A/memory.low = 2G, A/memory.current = 6G
5763 * //\\
5764 * BC DE B/memory.low = 3G B/memory.current = 2G
5765 * C/memory.low = 1G C/memory.current = 2G
5766 * D/memory.low = 0 D/memory.current = 2G
5767 * E/memory.low = 10G E/memory.current = 0
5769 * and the memory pressure is applied, the following memory distribution
5770 * is expected (approximately):
5772 * A/memory.current = 2G
5774 * B/memory.current = 1.3G
5775 * C/memory.current = 0.6G
5776 * D/memory.current = 0
5777 * E/memory.current = 0
5779 * These calculations require constant tracking of the actual low usages
5780 * (see propagate_protected_usage()), as well as recursive calculation of
5781 * effective memory.low values. But as we do call mem_cgroup_protected()
5782 * path for each memory cgroup top-down from the reclaim,
5783 * it's possible to optimize this part, and save calculated elow
5784 * for next usage. This part is intentionally racy, but it's ok,
5785 * as memory.low is a best-effort mechanism.
5787 enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
5788 struct mem_cgroup *memcg)
5790 struct mem_cgroup *parent;
5791 unsigned long emin, parent_emin;
5792 unsigned long elow, parent_elow;
5793 unsigned long usage;
5795 if (mem_cgroup_disabled())
5796 return MEMCG_PROT_NONE;
5798 if (!root)
5799 root = root_mem_cgroup;
5800 if (memcg == root)
5801 return MEMCG_PROT_NONE;
5803 usage = page_counter_read(&memcg->memory);
5804 if (!usage)
5805 return MEMCG_PROT_NONE;
5807 emin = memcg->memory.min;
5808 elow = memcg->memory.low;
5810 parent = parent_mem_cgroup(memcg);
5811 /* No parent means a non-hierarchical mode on v1 memcg */
5812 if (!parent)
5813 return MEMCG_PROT_NONE;
5815 if (parent == root)
5816 goto exit;
5818 parent_emin = READ_ONCE(parent->memory.emin);
5819 emin = min(emin, parent_emin);
5820 if (emin && parent_emin) {
5821 unsigned long min_usage, siblings_min_usage;
5823 min_usage = min(usage, memcg->memory.min);
5824 siblings_min_usage = atomic_long_read(
5825 &parent->memory.children_min_usage);
5827 if (min_usage && siblings_min_usage)
5828 emin = min(emin, parent_emin * min_usage /
5829 siblings_min_usage);
5832 parent_elow = READ_ONCE(parent->memory.elow);
5833 elow = min(elow, parent_elow);
5834 if (elow && parent_elow) {
5835 unsigned long low_usage, siblings_low_usage;
5837 low_usage = min(usage, memcg->memory.low);
5838 siblings_low_usage = atomic_long_read(
5839 &parent->memory.children_low_usage);
5841 if (low_usage && siblings_low_usage)
5842 elow = min(elow, parent_elow * low_usage /
5843 siblings_low_usage);
5846 exit:
5847 memcg->memory.emin = emin;
5848 memcg->memory.elow = elow;
5850 if (usage <= emin)
5851 return MEMCG_PROT_MIN;
5852 else if (usage <= elow)
5853 return MEMCG_PROT_LOW;
5854 else
5855 return MEMCG_PROT_NONE;
5859 * mem_cgroup_try_charge - try charging a page
5860 * @page: page to charge
5861 * @mm: mm context of the victim
5862 * @gfp_mask: reclaim mode
5863 * @memcgp: charged memcg return
5864 * @compound: charge the page as compound or small page
5866 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5867 * pages according to @gfp_mask if necessary.
5869 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5870 * Otherwise, an error code is returned.
5872 * After page->mapping has been set up, the caller must finalize the
5873 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5874 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5876 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5877 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5878 bool compound)
5880 struct mem_cgroup *memcg = NULL;
5881 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5882 int ret = 0;
5884 if (mem_cgroup_disabled())
5885 goto out;
5887 if (PageSwapCache(page)) {
5889 * Every swap fault against a single page tries to charge the
5890 * page, bail as early as possible. shmem_unuse() encounters
5891 * already charged pages, too. The USED bit is protected by
5892 * the page lock, which serializes swap cache removal, which
5893 * in turn serializes uncharging.
5895 VM_BUG_ON_PAGE(!PageLocked(page), page);
5896 if (compound_head(page)->mem_cgroup)
5897 goto out;
5899 if (do_swap_account) {
5900 swp_entry_t ent = { .val = page_private(page), };
5901 unsigned short id = lookup_swap_cgroup_id(ent);
5903 rcu_read_lock();
5904 memcg = mem_cgroup_from_id(id);
5905 if (memcg && !css_tryget_online(&memcg->css))
5906 memcg = NULL;
5907 rcu_read_unlock();
5911 if (!memcg)
5912 memcg = get_mem_cgroup_from_mm(mm);
5914 ret = try_charge(memcg, gfp_mask, nr_pages);
5916 css_put(&memcg->css);
5917 out:
5918 *memcgp = memcg;
5919 return ret;
5922 int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
5923 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5924 bool compound)
5926 struct mem_cgroup *memcg;
5927 int ret;
5929 ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound);
5930 memcg = *memcgp;
5931 mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask);
5932 return ret;
5936 * mem_cgroup_commit_charge - commit a page charge
5937 * @page: page to charge
5938 * @memcg: memcg to charge the page to
5939 * @lrucare: page might be on LRU already
5940 * @compound: charge the page as compound or small page
5942 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5943 * after page->mapping has been set up. This must happen atomically
5944 * as part of the page instantiation, i.e. under the page table lock
5945 * for anonymous pages, under the page lock for page and swap cache.
5947 * In addition, the page must not be on the LRU during the commit, to
5948 * prevent racing with task migration. If it might be, use @lrucare.
5950 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5952 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5953 bool lrucare, bool compound)
5955 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5957 VM_BUG_ON_PAGE(!page->mapping, page);
5958 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5960 if (mem_cgroup_disabled())
5961 return;
5963 * Swap faults will attempt to charge the same page multiple
5964 * times. But reuse_swap_page() might have removed the page
5965 * from swapcache already, so we can't check PageSwapCache().
5967 if (!memcg)
5968 return;
5970 commit_charge(page, memcg, lrucare);
5972 local_irq_disable();
5973 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5974 memcg_check_events(memcg, page);
5975 local_irq_enable();
5977 if (do_memsw_account() && PageSwapCache(page)) {
5978 swp_entry_t entry = { .val = page_private(page) };
5980 * The swap entry might not get freed for a long time,
5981 * let's not wait for it. The page already received a
5982 * memory+swap charge, drop the swap entry duplicate.
5984 mem_cgroup_uncharge_swap(entry, nr_pages);
5989 * mem_cgroup_cancel_charge - cancel a page charge
5990 * @page: page to charge
5991 * @memcg: memcg to charge the page to
5992 * @compound: charge the page as compound or small page
5994 * Cancel a charge transaction started by mem_cgroup_try_charge().
5996 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5997 bool compound)
5999 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6001 if (mem_cgroup_disabled())
6002 return;
6004 * Swap faults will attempt to charge the same page multiple
6005 * times. But reuse_swap_page() might have removed the page
6006 * from swapcache already, so we can't check PageSwapCache().
6008 if (!memcg)
6009 return;
6011 cancel_charge(memcg, nr_pages);
6014 struct uncharge_gather {
6015 struct mem_cgroup *memcg;
6016 unsigned long pgpgout;
6017 unsigned long nr_anon;
6018 unsigned long nr_file;
6019 unsigned long nr_kmem;
6020 unsigned long nr_huge;
6021 unsigned long nr_shmem;
6022 struct page *dummy_page;
6025 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6027 memset(ug, 0, sizeof(*ug));
6030 static void uncharge_batch(const struct uncharge_gather *ug)
6032 unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
6033 unsigned long flags;
6035 if (!mem_cgroup_is_root(ug->memcg)) {
6036 page_counter_uncharge(&ug->memcg->memory, nr_pages);
6037 if (do_memsw_account())
6038 page_counter_uncharge(&ug->memcg->memsw, nr_pages);
6039 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6040 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6041 memcg_oom_recover(ug->memcg);
6044 local_irq_save(flags);
6045 __mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
6046 __mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
6047 __mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
6048 __mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
6049 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6050 __this_cpu_add(ug->memcg->stat_cpu->nr_page_events, nr_pages);
6051 memcg_check_events(ug->memcg, ug->dummy_page);
6052 local_irq_restore(flags);
6054 if (!mem_cgroup_is_root(ug->memcg))
6055 css_put_many(&ug->memcg->css, nr_pages);
6058 static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6060 VM_BUG_ON_PAGE(PageLRU(page), page);
6061 VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
6062 !PageHWPoison(page) , page);
6064 if (!page->mem_cgroup)
6065 return;
6068 * Nobody should be changing or seriously looking at
6069 * page->mem_cgroup at this point, we have fully
6070 * exclusive access to the page.
6073 if (ug->memcg != page->mem_cgroup) {
6074 if (ug->memcg) {
6075 uncharge_batch(ug);
6076 uncharge_gather_clear(ug);
6078 ug->memcg = page->mem_cgroup;
6081 if (!PageKmemcg(page)) {
6082 unsigned int nr_pages = 1;
6084 if (PageTransHuge(page)) {
6085 nr_pages <<= compound_order(page);
6086 ug->nr_huge += nr_pages;
6088 if (PageAnon(page))
6089 ug->nr_anon += nr_pages;
6090 else {
6091 ug->nr_file += nr_pages;
6092 if (PageSwapBacked(page))
6093 ug->nr_shmem += nr_pages;
6095 ug->pgpgout++;
6096 } else {
6097 ug->nr_kmem += 1 << compound_order(page);
6098 __ClearPageKmemcg(page);
6101 ug->dummy_page = page;
6102 page->mem_cgroup = NULL;
6105 static void uncharge_list(struct list_head *page_list)
6107 struct uncharge_gather ug;
6108 struct list_head *next;
6110 uncharge_gather_clear(&ug);
6113 * Note that the list can be a single page->lru; hence the
6114 * do-while loop instead of a simple list_for_each_entry().
6116 next = page_list->next;
6117 do {
6118 struct page *page;
6120 page = list_entry(next, struct page, lru);
6121 next = page->lru.next;
6123 uncharge_page(page, &ug);
6124 } while (next != page_list);
6126 if (ug.memcg)
6127 uncharge_batch(&ug);
6131 * mem_cgroup_uncharge - uncharge a page
6132 * @page: page to uncharge
6134 * Uncharge a page previously charged with mem_cgroup_try_charge() and
6135 * mem_cgroup_commit_charge().
6137 void mem_cgroup_uncharge(struct page *page)
6139 struct uncharge_gather ug;
6141 if (mem_cgroup_disabled())
6142 return;
6144 /* Don't touch page->lru of any random page, pre-check: */
6145 if (!page->mem_cgroup)
6146 return;
6148 uncharge_gather_clear(&ug);
6149 uncharge_page(page, &ug);
6150 uncharge_batch(&ug);
6154 * mem_cgroup_uncharge_list - uncharge a list of page
6155 * @page_list: list of pages to uncharge
6157 * Uncharge a list of pages previously charged with
6158 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6160 void mem_cgroup_uncharge_list(struct list_head *page_list)
6162 if (mem_cgroup_disabled())
6163 return;
6165 if (!list_empty(page_list))
6166 uncharge_list(page_list);
6170 * mem_cgroup_migrate - charge a page's replacement
6171 * @oldpage: currently circulating page
6172 * @newpage: replacement page
6174 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6175 * be uncharged upon free.
6177 * Both pages must be locked, @newpage->mapping must be set up.
6179 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6181 struct mem_cgroup *memcg;
6182 unsigned int nr_pages;
6183 bool compound;
6184 unsigned long flags;
6186 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6187 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6188 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6189 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6190 newpage);
6192 if (mem_cgroup_disabled())
6193 return;
6195 /* Page cache replacement: new page already charged? */
6196 if (newpage->mem_cgroup)
6197 return;
6199 /* Swapcache readahead pages can get replaced before being charged */
6200 memcg = oldpage->mem_cgroup;
6201 if (!memcg)
6202 return;
6204 /* Force-charge the new page. The old one will be freed soon */
6205 compound = PageTransHuge(newpage);
6206 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
6208 page_counter_charge(&memcg->memory, nr_pages);
6209 if (do_memsw_account())
6210 page_counter_charge(&memcg->memsw, nr_pages);
6211 css_get_many(&memcg->css, nr_pages);
6213 commit_charge(newpage, memcg, false);
6215 local_irq_save(flags);
6216 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
6217 memcg_check_events(memcg, newpage);
6218 local_irq_restore(flags);
6221 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6222 EXPORT_SYMBOL(memcg_sockets_enabled_key);
6224 void mem_cgroup_sk_alloc(struct sock *sk)
6226 struct mem_cgroup *memcg;
6228 if (!mem_cgroup_sockets_enabled)
6229 return;
6232 * Socket cloning can throw us here with sk_memcg already
6233 * filled. It won't however, necessarily happen from
6234 * process context. So the test for root memcg given
6235 * the current task's memcg won't help us in this case.
6237 * Respecting the original socket's memcg is a better
6238 * decision in this case.
6240 if (sk->sk_memcg) {
6241 css_get(&sk->sk_memcg->css);
6242 return;
6245 rcu_read_lock();
6246 memcg = mem_cgroup_from_task(current);
6247 if (memcg == root_mem_cgroup)
6248 goto out;
6249 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6250 goto out;
6251 if (css_tryget_online(&memcg->css))
6252 sk->sk_memcg = memcg;
6253 out:
6254 rcu_read_unlock();
6257 void mem_cgroup_sk_free(struct sock *sk)
6259 if (sk->sk_memcg)
6260 css_put(&sk->sk_memcg->css);
6264 * mem_cgroup_charge_skmem - charge socket memory
6265 * @memcg: memcg to charge
6266 * @nr_pages: number of pages to charge
6268 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6269 * @memcg's configured limit, %false if the charge had to be forced.
6271 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6273 gfp_t gfp_mask = GFP_KERNEL;
6275 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6276 struct page_counter *fail;
6278 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6279 memcg->tcpmem_pressure = 0;
6280 return true;
6282 page_counter_charge(&memcg->tcpmem, nr_pages);
6283 memcg->tcpmem_pressure = 1;
6284 return false;
6287 /* Don't block in the packet receive path */
6288 if (in_softirq())
6289 gfp_mask = GFP_NOWAIT;
6291 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
6293 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6294 return true;
6296 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
6297 return false;
6301 * mem_cgroup_uncharge_skmem - uncharge socket memory
6302 * @memcg: memcg to uncharge
6303 * @nr_pages: number of pages to uncharge
6305 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6307 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6308 page_counter_uncharge(&memcg->tcpmem, nr_pages);
6309 return;
6312 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
6314 refill_stock(memcg, nr_pages);
6317 static int __init cgroup_memory(char *s)
6319 char *token;
6321 while ((token = strsep(&s, ",")) != NULL) {
6322 if (!*token)
6323 continue;
6324 if (!strcmp(token, "nosocket"))
6325 cgroup_memory_nosocket = true;
6326 if (!strcmp(token, "nokmem"))
6327 cgroup_memory_nokmem = true;
6329 return 0;
6331 __setup("cgroup.memory=", cgroup_memory);
6334 * subsys_initcall() for memory controller.
6336 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
6337 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
6338 * basically everything that doesn't depend on a specific mem_cgroup structure
6339 * should be initialized from here.
6341 static int __init mem_cgroup_init(void)
6343 int cpu, node;
6345 #ifdef CONFIG_MEMCG_KMEM
6347 * Kmem cache creation is mostly done with the slab_mutex held,
6348 * so use a workqueue with limited concurrency to avoid stalling
6349 * all worker threads in case lots of cgroups are created and
6350 * destroyed simultaneously.
6352 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
6353 BUG_ON(!memcg_kmem_cache_wq);
6354 #endif
6356 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
6357 memcg_hotplug_cpu_dead);
6359 for_each_possible_cpu(cpu)
6360 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
6361 drain_local_stock);
6363 for_each_node(node) {
6364 struct mem_cgroup_tree_per_node *rtpn;
6366 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
6367 node_online(node) ? node : NUMA_NO_NODE);
6369 rtpn->rb_root = RB_ROOT;
6370 rtpn->rb_rightmost = NULL;
6371 spin_lock_init(&rtpn->lock);
6372 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6375 return 0;
6377 subsys_initcall(mem_cgroup_init);
6379 #ifdef CONFIG_MEMCG_SWAP
6380 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
6382 while (!atomic_inc_not_zero(&memcg->id.ref)) {
6384 * The root cgroup cannot be destroyed, so it's refcount must
6385 * always be >= 1.
6387 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
6388 VM_BUG_ON(1);
6389 break;
6391 memcg = parent_mem_cgroup(memcg);
6392 if (!memcg)
6393 memcg = root_mem_cgroup;
6395 return memcg;
6399 * mem_cgroup_swapout - transfer a memsw charge to swap
6400 * @page: page whose memsw charge to transfer
6401 * @entry: swap entry to move the charge to
6403 * Transfer the memsw charge of @page to @entry.
6405 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6407 struct mem_cgroup *memcg, *swap_memcg;
6408 unsigned int nr_entries;
6409 unsigned short oldid;
6411 VM_BUG_ON_PAGE(PageLRU(page), page);
6412 VM_BUG_ON_PAGE(page_count(page), page);
6414 if (!do_memsw_account())
6415 return;
6417 memcg = page->mem_cgroup;
6419 /* Readahead page, never charged */
6420 if (!memcg)
6421 return;
6424 * In case the memcg owning these pages has been offlined and doesn't
6425 * have an ID allocated to it anymore, charge the closest online
6426 * ancestor for the swap instead and transfer the memory+swap charge.
6428 swap_memcg = mem_cgroup_id_get_online(memcg);
6429 nr_entries = hpage_nr_pages(page);
6430 /* Get references for the tail pages, too */
6431 if (nr_entries > 1)
6432 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
6433 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
6434 nr_entries);
6435 VM_BUG_ON_PAGE(oldid, page);
6436 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
6438 page->mem_cgroup = NULL;
6440 if (!mem_cgroup_is_root(memcg))
6441 page_counter_uncharge(&memcg->memory, nr_entries);
6443 if (memcg != swap_memcg) {
6444 if (!mem_cgroup_is_root(swap_memcg))
6445 page_counter_charge(&swap_memcg->memsw, nr_entries);
6446 page_counter_uncharge(&memcg->memsw, nr_entries);
6450 * Interrupts should be disabled here because the caller holds the
6451 * i_pages lock which is taken with interrupts-off. It is
6452 * important here to have the interrupts disabled because it is the
6453 * only synchronisation we have for updating the per-CPU variables.
6455 VM_BUG_ON(!irqs_disabled());
6456 mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
6457 -nr_entries);
6458 memcg_check_events(memcg, page);
6460 if (!mem_cgroup_is_root(memcg))
6461 css_put_many(&memcg->css, nr_entries);
6465 * mem_cgroup_try_charge_swap - try charging swap space for a page
6466 * @page: page being added to swap
6467 * @entry: swap entry to charge
6469 * Try to charge @page's memcg for the swap space at @entry.
6471 * Returns 0 on success, -ENOMEM on failure.
6473 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
6475 unsigned int nr_pages = hpage_nr_pages(page);
6476 struct page_counter *counter;
6477 struct mem_cgroup *memcg;
6478 unsigned short oldid;
6480 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
6481 return 0;
6483 memcg = page->mem_cgroup;
6485 /* Readahead page, never charged */
6486 if (!memcg)
6487 return 0;
6489 if (!entry.val) {
6490 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6491 return 0;
6494 memcg = mem_cgroup_id_get_online(memcg);
6496 if (!mem_cgroup_is_root(memcg) &&
6497 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
6498 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
6499 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6500 mem_cgroup_id_put(memcg);
6501 return -ENOMEM;
6504 /* Get references for the tail pages, too */
6505 if (nr_pages > 1)
6506 mem_cgroup_id_get_many(memcg, nr_pages - 1);
6507 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
6508 VM_BUG_ON_PAGE(oldid, page);
6509 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
6511 return 0;
6515 * mem_cgroup_uncharge_swap - uncharge swap space
6516 * @entry: swap entry to uncharge
6517 * @nr_pages: the amount of swap space to uncharge
6519 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
6521 struct mem_cgroup *memcg;
6522 unsigned short id;
6524 if (!do_swap_account)
6525 return;
6527 id = swap_cgroup_record(entry, 0, nr_pages);
6528 rcu_read_lock();
6529 memcg = mem_cgroup_from_id(id);
6530 if (memcg) {
6531 if (!mem_cgroup_is_root(memcg)) {
6532 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6533 page_counter_uncharge(&memcg->swap, nr_pages);
6534 else
6535 page_counter_uncharge(&memcg->memsw, nr_pages);
6537 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
6538 mem_cgroup_id_put_many(memcg, nr_pages);
6540 rcu_read_unlock();
6543 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
6545 long nr_swap_pages = get_nr_swap_pages();
6547 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6548 return nr_swap_pages;
6549 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6550 nr_swap_pages = min_t(long, nr_swap_pages,
6551 READ_ONCE(memcg->swap.max) -
6552 page_counter_read(&memcg->swap));
6553 return nr_swap_pages;
6556 bool mem_cgroup_swap_full(struct page *page)
6558 struct mem_cgroup *memcg;
6560 VM_BUG_ON_PAGE(!PageLocked(page), page);
6562 if (vm_swap_full())
6563 return true;
6564 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6565 return false;
6567 memcg = page->mem_cgroup;
6568 if (!memcg)
6569 return false;
6571 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6572 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max)
6573 return true;
6575 return false;
6578 /* for remember boot option*/
6579 #ifdef CONFIG_MEMCG_SWAP_ENABLED
6580 static int really_do_swap_account __initdata = 1;
6581 #else
6582 static int really_do_swap_account __initdata;
6583 #endif
6585 static int __init enable_swap_account(char *s)
6587 if (!strcmp(s, "1"))
6588 really_do_swap_account = 1;
6589 else if (!strcmp(s, "0"))
6590 really_do_swap_account = 0;
6591 return 1;
6593 __setup("swapaccount=", enable_swap_account);
6595 static u64 swap_current_read(struct cgroup_subsys_state *css,
6596 struct cftype *cft)
6598 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6600 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
6603 static int swap_max_show(struct seq_file *m, void *v)
6605 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
6606 unsigned long max = READ_ONCE(memcg->swap.max);
6608 if (max == PAGE_COUNTER_MAX)
6609 seq_puts(m, "max\n");
6610 else
6611 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
6613 return 0;
6616 static ssize_t swap_max_write(struct kernfs_open_file *of,
6617 char *buf, size_t nbytes, loff_t off)
6619 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6620 unsigned long max;
6621 int err;
6623 buf = strstrip(buf);
6624 err = page_counter_memparse(buf, "max", &max);
6625 if (err)
6626 return err;
6628 xchg(&memcg->swap.max, max);
6630 return nbytes;
6633 static int swap_events_show(struct seq_file *m, void *v)
6635 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
6637 seq_printf(m, "max %lu\n",
6638 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
6639 seq_printf(m, "fail %lu\n",
6640 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
6642 return 0;
6645 static struct cftype swap_files[] = {
6647 .name = "swap.current",
6648 .flags = CFTYPE_NOT_ON_ROOT,
6649 .read_u64 = swap_current_read,
6652 .name = "swap.max",
6653 .flags = CFTYPE_NOT_ON_ROOT,
6654 .seq_show = swap_max_show,
6655 .write = swap_max_write,
6658 .name = "swap.events",
6659 .flags = CFTYPE_NOT_ON_ROOT,
6660 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
6661 .seq_show = swap_events_show,
6663 { } /* terminate */
6666 static struct cftype memsw_cgroup_files[] = {
6668 .name = "memsw.usage_in_bytes",
6669 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6670 .read_u64 = mem_cgroup_read_u64,
6673 .name = "memsw.max_usage_in_bytes",
6674 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6675 .write = mem_cgroup_reset,
6676 .read_u64 = mem_cgroup_read_u64,
6679 .name = "memsw.limit_in_bytes",
6680 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6681 .write = mem_cgroup_write,
6682 .read_u64 = mem_cgroup_read_u64,
6685 .name = "memsw.failcnt",
6686 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6687 .write = mem_cgroup_reset,
6688 .read_u64 = mem_cgroup_read_u64,
6690 { }, /* terminate */
6693 static int __init mem_cgroup_swap_init(void)
6695 if (!mem_cgroup_disabled() && really_do_swap_account) {
6696 do_swap_account = 1;
6697 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6698 swap_files));
6699 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6700 memsw_cgroup_files));
6702 return 0;
6704 subsys_initcall(mem_cgroup_swap_init);
6706 #endif /* CONFIG_MEMCG_SWAP */