2 * linux/mm/memory_hotplug.c
7 #include <linux/stddef.h>
9 #include <linux/sched/signal.h>
10 #include <linux/swap.h>
11 #include <linux/interrupt.h>
12 #include <linux/pagemap.h>
13 #include <linux/compiler.h>
14 #include <linux/export.h>
15 #include <linux/pagevec.h>
16 #include <linux/writeback.h>
17 #include <linux/slab.h>
18 #include <linux/sysctl.h>
19 #include <linux/cpu.h>
20 #include <linux/memory.h>
21 #include <linux/memremap.h>
22 #include <linux/memory_hotplug.h>
23 #include <linux/highmem.h>
24 #include <linux/vmalloc.h>
25 #include <linux/ioport.h>
26 #include <linux/delay.h>
27 #include <linux/migrate.h>
28 #include <linux/page-isolation.h>
29 #include <linux/pfn.h>
30 #include <linux/suspend.h>
31 #include <linux/mm_inline.h>
32 #include <linux/firmware-map.h>
33 #include <linux/stop_machine.h>
34 #include <linux/hugetlb.h>
35 #include <linux/memblock.h>
36 #include <linux/bootmem.h>
37 #include <linux/compaction.h>
39 #include <asm/tlbflush.h>
44 * online_page_callback contains pointer to current page onlining function.
45 * Initially it is generic_online_page(). If it is required it could be
46 * changed by calling set_online_page_callback() for callback registration
47 * and restore_online_page_callback() for generic callback restore.
50 static void generic_online_page(struct page
*page
);
52 static online_page_callback_t online_page_callback
= generic_online_page
;
53 static DEFINE_MUTEX(online_page_callback_lock
);
55 DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock
);
57 void get_online_mems(void)
59 percpu_down_read(&mem_hotplug_lock
);
62 void put_online_mems(void)
64 percpu_up_read(&mem_hotplug_lock
);
67 bool movable_node_enabled
= false;
69 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
70 bool memhp_auto_online
;
72 bool memhp_auto_online
= true;
74 EXPORT_SYMBOL_GPL(memhp_auto_online
);
76 static int __init
setup_memhp_default_state(char *str
)
78 if (!strcmp(str
, "online"))
79 memhp_auto_online
= true;
80 else if (!strcmp(str
, "offline"))
81 memhp_auto_online
= false;
85 __setup("memhp_default_state=", setup_memhp_default_state
);
87 void mem_hotplug_begin(void)
90 percpu_down_write(&mem_hotplug_lock
);
93 void mem_hotplug_done(void)
95 percpu_up_write(&mem_hotplug_lock
);
99 /* add this memory to iomem resource */
100 static struct resource
*register_memory_resource(u64 start
, u64 size
)
102 struct resource
*res
, *conflict
;
103 res
= kzalloc(sizeof(struct resource
), GFP_KERNEL
);
105 return ERR_PTR(-ENOMEM
);
107 res
->name
= "System RAM";
109 res
->end
= start
+ size
- 1;
110 res
->flags
= IORESOURCE_SYSTEM_RAM
| IORESOURCE_BUSY
;
111 conflict
= request_resource_conflict(&iomem_resource
, res
);
113 if (conflict
->desc
== IORES_DESC_DEVICE_PRIVATE_MEMORY
) {
114 pr_debug("Device unaddressable memory block "
115 "memory hotplug at %#010llx !\n",
116 (unsigned long long)start
);
118 pr_debug("System RAM resource %pR cannot be added\n", res
);
120 return ERR_PTR(-EEXIST
);
125 static void release_memory_resource(struct resource
*res
)
129 release_resource(res
);
134 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
135 void get_page_bootmem(unsigned long info
, struct page
*page
,
138 page
->freelist
= (void *)type
;
139 SetPagePrivate(page
);
140 set_page_private(page
, info
);
144 void put_page_bootmem(struct page
*page
)
148 type
= (unsigned long) page
->freelist
;
149 BUG_ON(type
< MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE
||
150 type
> MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE
);
152 if (page_ref_dec_return(page
) == 1) {
153 page
->freelist
= NULL
;
154 ClearPagePrivate(page
);
155 set_page_private(page
, 0);
156 INIT_LIST_HEAD(&page
->lru
);
157 free_reserved_page(page
);
161 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
162 #ifndef CONFIG_SPARSEMEM_VMEMMAP
163 static void register_page_bootmem_info_section(unsigned long start_pfn
)
165 unsigned long *usemap
, mapsize
, section_nr
, i
;
166 struct mem_section
*ms
;
167 struct page
*page
, *memmap
;
169 section_nr
= pfn_to_section_nr(start_pfn
);
170 ms
= __nr_to_section(section_nr
);
172 /* Get section's memmap address */
173 memmap
= sparse_decode_mem_map(ms
->section_mem_map
, section_nr
);
176 * Get page for the memmap's phys address
177 * XXX: need more consideration for sparse_vmemmap...
179 page
= virt_to_page(memmap
);
180 mapsize
= sizeof(struct page
) * PAGES_PER_SECTION
;
181 mapsize
= PAGE_ALIGN(mapsize
) >> PAGE_SHIFT
;
183 /* remember memmap's page */
184 for (i
= 0; i
< mapsize
; i
++, page
++)
185 get_page_bootmem(section_nr
, page
, SECTION_INFO
);
187 usemap
= ms
->pageblock_flags
;
188 page
= virt_to_page(usemap
);
190 mapsize
= PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT
;
192 for (i
= 0; i
< mapsize
; i
++, page
++)
193 get_page_bootmem(section_nr
, page
, MIX_SECTION_INFO
);
196 #else /* CONFIG_SPARSEMEM_VMEMMAP */
197 static void register_page_bootmem_info_section(unsigned long start_pfn
)
199 unsigned long *usemap
, mapsize
, section_nr
, i
;
200 struct mem_section
*ms
;
201 struct page
*page
, *memmap
;
203 section_nr
= pfn_to_section_nr(start_pfn
);
204 ms
= __nr_to_section(section_nr
);
206 memmap
= sparse_decode_mem_map(ms
->section_mem_map
, section_nr
);
208 register_page_bootmem_memmap(section_nr
, memmap
, PAGES_PER_SECTION
);
210 usemap
= ms
->pageblock_flags
;
211 page
= virt_to_page(usemap
);
213 mapsize
= PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT
;
215 for (i
= 0; i
< mapsize
; i
++, page
++)
216 get_page_bootmem(section_nr
, page
, MIX_SECTION_INFO
);
218 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
220 void __init
register_page_bootmem_info_node(struct pglist_data
*pgdat
)
222 unsigned long i
, pfn
, end_pfn
, nr_pages
;
223 int node
= pgdat
->node_id
;
226 nr_pages
= PAGE_ALIGN(sizeof(struct pglist_data
)) >> PAGE_SHIFT
;
227 page
= virt_to_page(pgdat
);
229 for (i
= 0; i
< nr_pages
; i
++, page
++)
230 get_page_bootmem(node
, page
, NODE_INFO
);
232 pfn
= pgdat
->node_start_pfn
;
233 end_pfn
= pgdat_end_pfn(pgdat
);
235 /* register section info */
236 for (; pfn
< end_pfn
; pfn
+= PAGES_PER_SECTION
) {
238 * Some platforms can assign the same pfn to multiple nodes - on
239 * node0 as well as nodeN. To avoid registering a pfn against
240 * multiple nodes we check that this pfn does not already
241 * reside in some other nodes.
243 if (pfn_valid(pfn
) && (early_pfn_to_nid(pfn
) == node
))
244 register_page_bootmem_info_section(pfn
);
247 #endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */
249 static int __meminit
__add_section(int nid
, unsigned long phys_start_pfn
,
250 struct vmem_altmap
*altmap
, bool want_memblock
)
254 if (pfn_valid(phys_start_pfn
))
257 ret
= sparse_add_one_section(NODE_DATA(nid
), phys_start_pfn
, altmap
);
264 return hotplug_memory_register(nid
, __pfn_to_section(phys_start_pfn
));
268 * Reasonably generic function for adding memory. It is
269 * expected that archs that support memory hotplug will
270 * call this function after deciding the zone to which to
273 int __ref
__add_pages(int nid
, unsigned long phys_start_pfn
,
274 unsigned long nr_pages
, struct vmem_altmap
*altmap
,
279 int start_sec
, end_sec
;
281 /* during initialize mem_map, align hot-added range to section */
282 start_sec
= pfn_to_section_nr(phys_start_pfn
);
283 end_sec
= pfn_to_section_nr(phys_start_pfn
+ nr_pages
- 1);
287 * Validate altmap is within bounds of the total request
289 if (altmap
->base_pfn
!= phys_start_pfn
290 || vmem_altmap_offset(altmap
) > nr_pages
) {
291 pr_warn_once("memory add fail, invalid altmap\n");
298 for (i
= start_sec
; i
<= end_sec
; i
++) {
299 err
= __add_section(nid
, section_nr_to_pfn(i
), altmap
,
303 * EEXIST is finally dealt with by ioresource collision
304 * check. see add_memory() => register_memory_resource()
305 * Warning will be printed if there is collision.
307 if (err
&& (err
!= -EEXIST
))
312 vmemmap_populate_print_last();
317 #ifdef CONFIG_MEMORY_HOTREMOVE
318 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */
319 static unsigned long find_smallest_section_pfn(int nid
, struct zone
*zone
,
320 unsigned long start_pfn
,
321 unsigned long end_pfn
)
323 struct mem_section
*ms
;
325 for (; start_pfn
< end_pfn
; start_pfn
+= PAGES_PER_SECTION
) {
326 ms
= __pfn_to_section(start_pfn
);
328 if (unlikely(!valid_section(ms
)))
331 if (unlikely(pfn_to_nid(start_pfn
) != nid
))
334 if (zone
&& zone
!= page_zone(pfn_to_page(start_pfn
)))
343 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */
344 static unsigned long find_biggest_section_pfn(int nid
, struct zone
*zone
,
345 unsigned long start_pfn
,
346 unsigned long end_pfn
)
348 struct mem_section
*ms
;
351 /* pfn is the end pfn of a memory section. */
353 for (; pfn
>= start_pfn
; pfn
-= PAGES_PER_SECTION
) {
354 ms
= __pfn_to_section(pfn
);
356 if (unlikely(!valid_section(ms
)))
359 if (unlikely(pfn_to_nid(pfn
) != nid
))
362 if (zone
&& zone
!= page_zone(pfn_to_page(pfn
)))
371 static void shrink_zone_span(struct zone
*zone
, unsigned long start_pfn
,
372 unsigned long end_pfn
)
374 unsigned long zone_start_pfn
= zone
->zone_start_pfn
;
375 unsigned long z
= zone_end_pfn(zone
); /* zone_end_pfn namespace clash */
376 unsigned long zone_end_pfn
= z
;
378 struct mem_section
*ms
;
379 int nid
= zone_to_nid(zone
);
381 zone_span_writelock(zone
);
382 if (zone_start_pfn
== start_pfn
) {
384 * If the section is smallest section in the zone, it need
385 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
386 * In this case, we find second smallest valid mem_section
387 * for shrinking zone.
389 pfn
= find_smallest_section_pfn(nid
, zone
, end_pfn
,
392 zone
->zone_start_pfn
= pfn
;
393 zone
->spanned_pages
= zone_end_pfn
- pfn
;
395 } else if (zone_end_pfn
== end_pfn
) {
397 * If the section is biggest section in the zone, it need
398 * shrink zone->spanned_pages.
399 * In this case, we find second biggest valid mem_section for
402 pfn
= find_biggest_section_pfn(nid
, zone
, zone_start_pfn
,
405 zone
->spanned_pages
= pfn
- zone_start_pfn
+ 1;
409 * The section is not biggest or smallest mem_section in the zone, it
410 * only creates a hole in the zone. So in this case, we need not
411 * change the zone. But perhaps, the zone has only hole data. Thus
412 * it check the zone has only hole or not.
414 pfn
= zone_start_pfn
;
415 for (; pfn
< zone_end_pfn
; pfn
+= PAGES_PER_SECTION
) {
416 ms
= __pfn_to_section(pfn
);
418 if (unlikely(!valid_section(ms
)))
421 if (page_zone(pfn_to_page(pfn
)) != zone
)
424 /* If the section is current section, it continues the loop */
425 if (start_pfn
== pfn
)
428 /* If we find valid section, we have nothing to do */
429 zone_span_writeunlock(zone
);
433 /* The zone has no valid section */
434 zone
->zone_start_pfn
= 0;
435 zone
->spanned_pages
= 0;
436 zone_span_writeunlock(zone
);
439 static void shrink_pgdat_span(struct pglist_data
*pgdat
,
440 unsigned long start_pfn
, unsigned long end_pfn
)
442 unsigned long pgdat_start_pfn
= pgdat
->node_start_pfn
;
443 unsigned long p
= pgdat_end_pfn(pgdat
); /* pgdat_end_pfn namespace clash */
444 unsigned long pgdat_end_pfn
= p
;
446 struct mem_section
*ms
;
447 int nid
= pgdat
->node_id
;
449 if (pgdat_start_pfn
== start_pfn
) {
451 * If the section is smallest section in the pgdat, it need
452 * shrink pgdat->node_start_pfn and pgdat->node_spanned_pages.
453 * In this case, we find second smallest valid mem_section
454 * for shrinking zone.
456 pfn
= find_smallest_section_pfn(nid
, NULL
, end_pfn
,
459 pgdat
->node_start_pfn
= pfn
;
460 pgdat
->node_spanned_pages
= pgdat_end_pfn
- pfn
;
462 } else if (pgdat_end_pfn
== end_pfn
) {
464 * If the section is biggest section in the pgdat, it need
465 * shrink pgdat->node_spanned_pages.
466 * In this case, we find second biggest valid mem_section for
469 pfn
= find_biggest_section_pfn(nid
, NULL
, pgdat_start_pfn
,
472 pgdat
->node_spanned_pages
= pfn
- pgdat_start_pfn
+ 1;
476 * If the section is not biggest or smallest mem_section in the pgdat,
477 * it only creates a hole in the pgdat. So in this case, we need not
479 * But perhaps, the pgdat has only hole data. Thus it check the pgdat
480 * has only hole or not.
482 pfn
= pgdat_start_pfn
;
483 for (; pfn
< pgdat_end_pfn
; pfn
+= PAGES_PER_SECTION
) {
484 ms
= __pfn_to_section(pfn
);
486 if (unlikely(!valid_section(ms
)))
489 if (pfn_to_nid(pfn
) != nid
)
492 /* If the section is current section, it continues the loop */
493 if (start_pfn
== pfn
)
496 /* If we find valid section, we have nothing to do */
500 /* The pgdat has no valid section */
501 pgdat
->node_start_pfn
= 0;
502 pgdat
->node_spanned_pages
= 0;
505 static void __remove_zone(struct zone
*zone
, unsigned long start_pfn
)
507 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
508 int nr_pages
= PAGES_PER_SECTION
;
511 pgdat_resize_lock(zone
->zone_pgdat
, &flags
);
512 shrink_zone_span(zone
, start_pfn
, start_pfn
+ nr_pages
);
513 shrink_pgdat_span(pgdat
, start_pfn
, start_pfn
+ nr_pages
);
514 pgdat_resize_unlock(zone
->zone_pgdat
, &flags
);
517 static int __remove_section(struct zone
*zone
, struct mem_section
*ms
,
518 unsigned long map_offset
, struct vmem_altmap
*altmap
)
520 unsigned long start_pfn
;
524 if (!valid_section(ms
))
527 ret
= unregister_memory_section(ms
);
531 scn_nr
= __section_nr(ms
);
532 start_pfn
= section_nr_to_pfn((unsigned long)scn_nr
);
533 __remove_zone(zone
, start_pfn
);
535 sparse_remove_one_section(zone
, ms
, map_offset
, altmap
);
540 * __remove_pages() - remove sections of pages from a zone
541 * @zone: zone from which pages need to be removed
542 * @phys_start_pfn: starting pageframe (must be aligned to start of a section)
543 * @nr_pages: number of pages to remove (must be multiple of section size)
544 * @altmap: alternative device page map or %NULL if default memmap is used
546 * Generic helper function to remove section mappings and sysfs entries
547 * for the section of the memory we are removing. Caller needs to make
548 * sure that pages are marked reserved and zones are adjust properly by
549 * calling offline_pages().
551 int __remove_pages(struct zone
*zone
, unsigned long phys_start_pfn
,
552 unsigned long nr_pages
, struct vmem_altmap
*altmap
)
555 unsigned long map_offset
= 0;
556 int sections_to_remove
, ret
= 0;
558 /* In the ZONE_DEVICE case device driver owns the memory region */
559 if (is_dev_zone(zone
)) {
561 map_offset
= vmem_altmap_offset(altmap
);
563 resource_size_t start
, size
;
565 start
= phys_start_pfn
<< PAGE_SHIFT
;
566 size
= nr_pages
* PAGE_SIZE
;
568 ret
= release_mem_region_adjustable(&iomem_resource
, start
,
571 resource_size_t endres
= start
+ size
- 1;
573 pr_warn("Unable to release resource <%pa-%pa> (%d)\n",
574 &start
, &endres
, ret
);
578 clear_zone_contiguous(zone
);
581 * We can only remove entire sections
583 BUG_ON(phys_start_pfn
& ~PAGE_SECTION_MASK
);
584 BUG_ON(nr_pages
% PAGES_PER_SECTION
);
586 sections_to_remove
= nr_pages
/ PAGES_PER_SECTION
;
587 for (i
= 0; i
< sections_to_remove
; i
++) {
588 unsigned long pfn
= phys_start_pfn
+ i
*PAGES_PER_SECTION
;
590 ret
= __remove_section(zone
, __pfn_to_section(pfn
), map_offset
,
597 set_zone_contiguous(zone
);
601 #endif /* CONFIG_MEMORY_HOTREMOVE */
603 int set_online_page_callback(online_page_callback_t callback
)
608 mutex_lock(&online_page_callback_lock
);
610 if (online_page_callback
== generic_online_page
) {
611 online_page_callback
= callback
;
615 mutex_unlock(&online_page_callback_lock
);
620 EXPORT_SYMBOL_GPL(set_online_page_callback
);
622 int restore_online_page_callback(online_page_callback_t callback
)
627 mutex_lock(&online_page_callback_lock
);
629 if (online_page_callback
== callback
) {
630 online_page_callback
= generic_online_page
;
634 mutex_unlock(&online_page_callback_lock
);
639 EXPORT_SYMBOL_GPL(restore_online_page_callback
);
641 void __online_page_set_limits(struct page
*page
)
644 EXPORT_SYMBOL_GPL(__online_page_set_limits
);
646 void __online_page_increment_counters(struct page
*page
)
648 adjust_managed_page_count(page
, 1);
650 EXPORT_SYMBOL_GPL(__online_page_increment_counters
);
652 void __online_page_free(struct page
*page
)
654 __free_reserved_page(page
);
656 EXPORT_SYMBOL_GPL(__online_page_free
);
658 static void generic_online_page(struct page
*page
)
660 __online_page_set_limits(page
);
661 __online_page_increment_counters(page
);
662 __online_page_free(page
);
665 static int online_pages_range(unsigned long start_pfn
, unsigned long nr_pages
,
669 unsigned long onlined_pages
= *(unsigned long *)arg
;
672 if (PageReserved(pfn_to_page(start_pfn
)))
673 for (i
= 0; i
< nr_pages
; i
++) {
674 page
= pfn_to_page(start_pfn
+ i
);
675 (*online_page_callback
)(page
);
679 online_mem_sections(start_pfn
, start_pfn
+ nr_pages
);
681 *(unsigned long *)arg
= onlined_pages
;
685 /* check which state of node_states will be changed when online memory */
686 static void node_states_check_changes_online(unsigned long nr_pages
,
687 struct zone
*zone
, struct memory_notify
*arg
)
689 int nid
= zone_to_nid(zone
);
690 enum zone_type zone_last
= ZONE_NORMAL
;
693 * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY]
694 * contains nodes which have zones of 0...ZONE_NORMAL,
695 * set zone_last to ZONE_NORMAL.
697 * If we don't have HIGHMEM nor movable node,
698 * node_states[N_NORMAL_MEMORY] contains nodes which have zones of
699 * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE.
701 if (N_MEMORY
== N_NORMAL_MEMORY
)
702 zone_last
= ZONE_MOVABLE
;
705 * if the memory to be online is in a zone of 0...zone_last, and
706 * the zones of 0...zone_last don't have memory before online, we will
707 * need to set the node to node_states[N_NORMAL_MEMORY] after
708 * the memory is online.
710 if (zone_idx(zone
) <= zone_last
&& !node_state(nid
, N_NORMAL_MEMORY
))
711 arg
->status_change_nid_normal
= nid
;
713 arg
->status_change_nid_normal
= -1;
715 #ifdef CONFIG_HIGHMEM
717 * If we have movable node, node_states[N_HIGH_MEMORY]
718 * contains nodes which have zones of 0...ZONE_HIGHMEM,
719 * set zone_last to ZONE_HIGHMEM.
721 * If we don't have movable node, node_states[N_NORMAL_MEMORY]
722 * contains nodes which have zones of 0...ZONE_MOVABLE,
723 * set zone_last to ZONE_MOVABLE.
725 zone_last
= ZONE_HIGHMEM
;
726 if (N_MEMORY
== N_HIGH_MEMORY
)
727 zone_last
= ZONE_MOVABLE
;
729 if (zone_idx(zone
) <= zone_last
&& !node_state(nid
, N_HIGH_MEMORY
))
730 arg
->status_change_nid_high
= nid
;
732 arg
->status_change_nid_high
= -1;
734 arg
->status_change_nid_high
= arg
->status_change_nid_normal
;
738 * if the node don't have memory befor online, we will need to
739 * set the node to node_states[N_MEMORY] after the memory
742 if (!node_state(nid
, N_MEMORY
))
743 arg
->status_change_nid
= nid
;
745 arg
->status_change_nid
= -1;
748 static void node_states_set_node(int node
, struct memory_notify
*arg
)
750 if (arg
->status_change_nid_normal
>= 0)
751 node_set_state(node
, N_NORMAL_MEMORY
);
753 if (arg
->status_change_nid_high
>= 0)
754 node_set_state(node
, N_HIGH_MEMORY
);
756 node_set_state(node
, N_MEMORY
);
759 static void __meminit
resize_zone_range(struct zone
*zone
, unsigned long start_pfn
,
760 unsigned long nr_pages
)
762 unsigned long old_end_pfn
= zone_end_pfn(zone
);
764 if (zone_is_empty(zone
) || start_pfn
< zone
->zone_start_pfn
)
765 zone
->zone_start_pfn
= start_pfn
;
767 zone
->spanned_pages
= max(start_pfn
+ nr_pages
, old_end_pfn
) - zone
->zone_start_pfn
;
770 static void __meminit
resize_pgdat_range(struct pglist_data
*pgdat
, unsigned long start_pfn
,
771 unsigned long nr_pages
)
773 unsigned long old_end_pfn
= pgdat_end_pfn(pgdat
);
775 if (!pgdat
->node_spanned_pages
|| start_pfn
< pgdat
->node_start_pfn
)
776 pgdat
->node_start_pfn
= start_pfn
;
778 pgdat
->node_spanned_pages
= max(start_pfn
+ nr_pages
, old_end_pfn
) - pgdat
->node_start_pfn
;
781 void __ref
move_pfn_range_to_zone(struct zone
*zone
, unsigned long start_pfn
,
782 unsigned long nr_pages
, struct vmem_altmap
*altmap
)
784 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
785 int nid
= pgdat
->node_id
;
788 if (zone_is_empty(zone
))
789 init_currently_empty_zone(zone
, start_pfn
, nr_pages
);
791 clear_zone_contiguous(zone
);
793 /* TODO Huh pgdat is irqsave while zone is not. It used to be like that before */
794 pgdat_resize_lock(pgdat
, &flags
);
795 zone_span_writelock(zone
);
796 resize_zone_range(zone
, start_pfn
, nr_pages
);
797 zone_span_writeunlock(zone
);
798 resize_pgdat_range(pgdat
, start_pfn
, nr_pages
);
799 pgdat_resize_unlock(pgdat
, &flags
);
802 * TODO now we have a visible range of pages which are not associated
803 * with their zone properly. Not nice but set_pfnblock_flags_mask
804 * expects the zone spans the pfn range. All the pages in the range
805 * are reserved so nobody should be touching them so we should be safe
807 memmap_init_zone(nr_pages
, nid
, zone_idx(zone
), start_pfn
,
808 MEMMAP_HOTPLUG
, altmap
);
810 set_zone_contiguous(zone
);
814 * Returns a default kernel memory zone for the given pfn range.
815 * If no kernel zone covers this pfn range it will automatically go
816 * to the ZONE_NORMAL.
818 static struct zone
*default_kernel_zone_for_pfn(int nid
, unsigned long start_pfn
,
819 unsigned long nr_pages
)
821 struct pglist_data
*pgdat
= NODE_DATA(nid
);
824 for (zid
= 0; zid
<= ZONE_NORMAL
; zid
++) {
825 struct zone
*zone
= &pgdat
->node_zones
[zid
];
827 if (zone_intersects(zone
, start_pfn
, nr_pages
))
831 return &pgdat
->node_zones
[ZONE_NORMAL
];
834 static inline struct zone
*default_zone_for_pfn(int nid
, unsigned long start_pfn
,
835 unsigned long nr_pages
)
837 struct zone
*kernel_zone
= default_kernel_zone_for_pfn(nid
, start_pfn
,
839 struct zone
*movable_zone
= &NODE_DATA(nid
)->node_zones
[ZONE_MOVABLE
];
840 bool in_kernel
= zone_intersects(kernel_zone
, start_pfn
, nr_pages
);
841 bool in_movable
= zone_intersects(movable_zone
, start_pfn
, nr_pages
);
844 * We inherit the existing zone in a simple case where zones do not
845 * overlap in the given range
847 if (in_kernel
^ in_movable
)
848 return (in_kernel
) ? kernel_zone
: movable_zone
;
851 * If the range doesn't belong to any zone or two zones overlap in the
852 * given range then we use movable zone only if movable_node is
853 * enabled because we always online to a kernel zone by default.
855 return movable_node_enabled
? movable_zone
: kernel_zone
;
858 struct zone
* zone_for_pfn_range(int online_type
, int nid
, unsigned start_pfn
,
859 unsigned long nr_pages
)
861 if (online_type
== MMOP_ONLINE_KERNEL
)
862 return default_kernel_zone_for_pfn(nid
, start_pfn
, nr_pages
);
864 if (online_type
== MMOP_ONLINE_MOVABLE
)
865 return &NODE_DATA(nid
)->node_zones
[ZONE_MOVABLE
];
867 return default_zone_for_pfn(nid
, start_pfn
, nr_pages
);
871 * Associates the given pfn range with the given node and the zone appropriate
872 * for the given online type.
874 static struct zone
* __meminit
move_pfn_range(int online_type
, int nid
,
875 unsigned long start_pfn
, unsigned long nr_pages
)
879 zone
= zone_for_pfn_range(online_type
, nid
, start_pfn
, nr_pages
);
880 move_pfn_range_to_zone(zone
, start_pfn
, nr_pages
, NULL
);
884 /* Must be protected by mem_hotplug_begin() or a device_lock */
885 int __ref
online_pages(unsigned long pfn
, unsigned long nr_pages
, int online_type
)
888 unsigned long onlined_pages
= 0;
890 int need_zonelists_rebuild
= 0;
893 struct memory_notify arg
;
894 struct memory_block
*mem
;
897 * We can't use pfn_to_nid() because nid might be stored in struct page
898 * which is not yet initialized. Instead, we find nid from memory block.
900 mem
= find_memory_block(__pfn_to_section(pfn
));
903 /* associate pfn range with the zone */
904 zone
= move_pfn_range(online_type
, nid
, pfn
, nr_pages
);
907 arg
.nr_pages
= nr_pages
;
908 node_states_check_changes_online(nr_pages
, zone
, &arg
);
910 ret
= memory_notify(MEM_GOING_ONLINE
, &arg
);
911 ret
= notifier_to_errno(ret
);
913 goto failed_addition
;
916 * If this zone is not populated, then it is not in zonelist.
917 * This means the page allocator ignores this zone.
918 * So, zonelist must be updated after online.
920 if (!populated_zone(zone
)) {
921 need_zonelists_rebuild
= 1;
922 setup_zone_pageset(zone
);
925 ret
= walk_system_ram_range(pfn
, nr_pages
, &onlined_pages
,
928 if (need_zonelists_rebuild
)
929 zone_pcp_reset(zone
);
930 goto failed_addition
;
933 zone
->present_pages
+= onlined_pages
;
935 pgdat_resize_lock(zone
->zone_pgdat
, &flags
);
936 zone
->zone_pgdat
->node_present_pages
+= onlined_pages
;
937 pgdat_resize_unlock(zone
->zone_pgdat
, &flags
);
940 node_states_set_node(nid
, &arg
);
941 if (need_zonelists_rebuild
)
942 build_all_zonelists(NULL
);
944 zone_pcp_update(zone
);
947 init_per_zone_wmark_min();
954 vm_total_pages
= nr_free_pagecache_pages();
956 writeback_set_ratelimit();
959 memory_notify(MEM_ONLINE
, &arg
);
963 pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
964 (unsigned long long) pfn
<< PAGE_SHIFT
,
965 (((unsigned long long) pfn
+ nr_pages
) << PAGE_SHIFT
) - 1);
966 memory_notify(MEM_CANCEL_ONLINE
, &arg
);
969 #endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
971 static void reset_node_present_pages(pg_data_t
*pgdat
)
975 for (z
= pgdat
->node_zones
; z
< pgdat
->node_zones
+ MAX_NR_ZONES
; z
++)
976 z
->present_pages
= 0;
978 pgdat
->node_present_pages
= 0;
981 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
982 static pg_data_t __ref
*hotadd_new_pgdat(int nid
, u64 start
)
984 struct pglist_data
*pgdat
;
985 unsigned long start_pfn
= PFN_DOWN(start
);
987 pgdat
= NODE_DATA(nid
);
989 pgdat
= arch_alloc_nodedata(nid
);
993 arch_refresh_nodedata(nid
, pgdat
);
996 * Reset the nr_zones, order and classzone_idx before reuse.
997 * Note that kswapd will init kswapd_classzone_idx properly
998 * when it starts in the near future.
1000 pgdat
->nr_zones
= 0;
1001 pgdat
->kswapd_order
= 0;
1002 pgdat
->kswapd_classzone_idx
= 0;
1005 /* we can use NODE_DATA(nid) from here */
1007 pgdat
->node_id
= nid
;
1008 pgdat
->node_start_pfn
= start_pfn
;
1010 /* init node's zones as empty zones, we don't have any present pages.*/
1011 free_area_init_core_hotplug(nid
);
1012 pgdat
->per_cpu_nodestats
= alloc_percpu(struct per_cpu_nodestat
);
1015 * The node we allocated has no zone fallback lists. For avoiding
1016 * to access not-initialized zonelist, build here.
1018 build_all_zonelists(pgdat
);
1021 * When memory is hot-added, all the memory is in offline state. So
1022 * clear all zones' present_pages because they will be updated in
1023 * online_pages() and offline_pages().
1025 reset_node_managed_pages(pgdat
);
1026 reset_node_present_pages(pgdat
);
1031 static void rollback_node_hotadd(int nid
)
1033 pg_data_t
*pgdat
= NODE_DATA(nid
);
1035 arch_refresh_nodedata(nid
, NULL
);
1036 free_percpu(pgdat
->per_cpu_nodestats
);
1037 arch_free_nodedata(pgdat
);
1043 * try_online_node - online a node if offlined
1045 * @start: start addr of the node
1046 * @set_node_online: Whether we want to online the node
1047 * called by cpu_up() to online a node without onlined memory.
1050 * 1 -> a new node has been allocated
1051 * 0 -> the node is already online
1052 * -ENOMEM -> the node could not be allocated
1054 static int __try_online_node(int nid
, u64 start
, bool set_node_online
)
1059 if (node_online(nid
))
1062 pgdat
= hotadd_new_pgdat(nid
, start
);
1064 pr_err("Cannot online node %d due to NULL pgdat\n", nid
);
1069 if (set_node_online
) {
1070 node_set_online(nid
);
1071 ret
= register_one_node(nid
);
1079 * Users of this function always want to online/register the node
1081 int try_online_node(int nid
)
1085 mem_hotplug_begin();
1086 ret
= __try_online_node(nid
, 0, true);
1091 static int check_hotplug_memory_range(u64 start
, u64 size
)
1093 unsigned long block_sz
= memory_block_size_bytes();
1094 u64 block_nr_pages
= block_sz
>> PAGE_SHIFT
;
1095 u64 nr_pages
= size
>> PAGE_SHIFT
;
1096 u64 start_pfn
= PFN_DOWN(start
);
1098 /* memory range must be block size aligned */
1099 if (!nr_pages
|| !IS_ALIGNED(start_pfn
, block_nr_pages
) ||
1100 !IS_ALIGNED(nr_pages
, block_nr_pages
)) {
1101 pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx",
1102 block_sz
, start
, size
);
1109 static int online_memory_block(struct memory_block
*mem
, void *arg
)
1111 return device_online(&mem
->dev
);
1114 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1115 int __ref
add_memory_resource(int nid
, struct resource
*res
, bool online
)
1118 bool new_node
= false;
1122 size
= resource_size(res
);
1124 ret
= check_hotplug_memory_range(start
, size
);
1128 mem_hotplug_begin();
1131 * Add new range to memblock so that when hotadd_new_pgdat() is called
1132 * to allocate new pgdat, get_pfn_range_for_nid() will be able to find
1133 * this new range and calculate total pages correctly. The range will
1134 * be removed at hot-remove time.
1136 memblock_add_node(start
, size
, nid
);
1138 ret
= __try_online_node(nid
, start
, false);
1143 /* call arch's memory hotadd */
1144 ret
= arch_add_memory(nid
, start
, size
, NULL
, true);
1149 /* If sysfs file of new node can't be created, cpu on the node
1150 * can't be hot-added. There is no rollback way now.
1151 * So, check by BUG_ON() to catch it reluctantly..
1152 * We online node here. We can't roll back from here.
1154 node_set_online(nid
);
1155 ret
= __register_one_node(nid
);
1159 /* link memory sections under this node.*/
1160 ret
= link_mem_sections(nid
, PFN_DOWN(start
), PFN_UP(start
+ size
- 1));
1163 /* create new memmap entry */
1164 firmware_map_add_hotplug(start
, start
+ size
, "System RAM");
1166 /* online pages if requested */
1168 walk_memory_range(PFN_DOWN(start
), PFN_UP(start
+ size
- 1),
1169 NULL
, online_memory_block
);
1174 /* rollback pgdat allocation and others */
1176 rollback_node_hotadd(nid
);
1177 memblock_remove(start
, size
);
1183 EXPORT_SYMBOL_GPL(add_memory_resource
);
1185 int __ref
add_memory(int nid
, u64 start
, u64 size
)
1187 struct resource
*res
;
1190 res
= register_memory_resource(start
, size
);
1192 return PTR_ERR(res
);
1194 ret
= add_memory_resource(nid
, res
, memhp_auto_online
);
1196 release_memory_resource(res
);
1199 EXPORT_SYMBOL_GPL(add_memory
);
1201 #ifdef CONFIG_MEMORY_HOTREMOVE
1203 * A free page on the buddy free lists (not the per-cpu lists) has PageBuddy
1204 * set and the size of the free page is given by page_order(). Using this,
1205 * the function determines if the pageblock contains only free pages.
1206 * Due to buddy contraints, a free page at least the size of a pageblock will
1207 * be located at the start of the pageblock
1209 static inline int pageblock_free(struct page
*page
)
1211 return PageBuddy(page
) && page_order(page
) >= pageblock_order
;
1214 /* Return the start of the next active pageblock after a given page */
1215 static struct page
*next_active_pageblock(struct page
*page
)
1217 /* Ensure the starting page is pageblock-aligned */
1218 BUG_ON(page_to_pfn(page
) & (pageblock_nr_pages
- 1));
1220 /* If the entire pageblock is free, move to the end of free page */
1221 if (pageblock_free(page
)) {
1223 /* be careful. we don't have locks, page_order can be changed.*/
1224 order
= page_order(page
);
1225 if ((order
< MAX_ORDER
) && (order
>= pageblock_order
))
1226 return page
+ (1 << order
);
1229 return page
+ pageblock_nr_pages
;
1232 static bool is_pageblock_removable_nolock(struct page
*page
)
1238 * We have to be careful here because we are iterating over memory
1239 * sections which are not zone aware so we might end up outside of
1240 * the zone but still within the section.
1241 * We have to take care about the node as well. If the node is offline
1242 * its NODE_DATA will be NULL - see page_zone.
1244 if (!node_online(page_to_nid(page
)))
1247 zone
= page_zone(page
);
1248 pfn
= page_to_pfn(page
);
1249 if (!zone_spans_pfn(zone
, pfn
))
1252 return !has_unmovable_pages(zone
, page
, 0, MIGRATE_MOVABLE
, true);
1255 /* Checks if this range of memory is likely to be hot-removable. */
1256 bool is_mem_section_removable(unsigned long start_pfn
, unsigned long nr_pages
)
1258 struct page
*page
= pfn_to_page(start_pfn
);
1259 struct page
*end_page
= page
+ nr_pages
;
1261 /* Check the starting page of each pageblock within the range */
1262 for (; page
< end_page
; page
= next_active_pageblock(page
)) {
1263 if (!is_pageblock_removable_nolock(page
))
1268 /* All pageblocks in the memory block are likely to be hot-removable */
1273 * Confirm all pages in a range [start, end) belong to the same zone.
1274 * When true, return its valid [start, end).
1276 int test_pages_in_a_zone(unsigned long start_pfn
, unsigned long end_pfn
,
1277 unsigned long *valid_start
, unsigned long *valid_end
)
1279 unsigned long pfn
, sec_end_pfn
;
1280 unsigned long start
, end
;
1281 struct zone
*zone
= NULL
;
1284 for (pfn
= start_pfn
, sec_end_pfn
= SECTION_ALIGN_UP(start_pfn
+ 1);
1286 pfn
= sec_end_pfn
, sec_end_pfn
+= PAGES_PER_SECTION
) {
1287 /* Make sure the memory section is present first */
1288 if (!present_section_nr(pfn_to_section_nr(pfn
)))
1290 for (; pfn
< sec_end_pfn
&& pfn
< end_pfn
;
1291 pfn
+= MAX_ORDER_NR_PAGES
) {
1293 /* This is just a CONFIG_HOLES_IN_ZONE check.*/
1294 while ((i
< MAX_ORDER_NR_PAGES
) &&
1295 !pfn_valid_within(pfn
+ i
))
1297 if (i
== MAX_ORDER_NR_PAGES
|| pfn
+ i
>= end_pfn
)
1299 page
= pfn_to_page(pfn
+ i
);
1300 if (zone
&& page_zone(page
) != zone
)
1304 zone
= page_zone(page
);
1305 end
= pfn
+ MAX_ORDER_NR_PAGES
;
1310 *valid_start
= start
;
1311 *valid_end
= min(end
, end_pfn
);
1319 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
1320 * non-lru movable pages and hugepages). We scan pfn because it's much
1321 * easier than scanning over linked list. This function returns the pfn
1322 * of the first found movable page if it's found, otherwise 0.
1324 static unsigned long scan_movable_pages(unsigned long start
, unsigned long end
)
1328 for (pfn
= start
; pfn
< end
; pfn
++) {
1329 if (pfn_valid(pfn
)) {
1330 page
= pfn_to_page(pfn
);
1333 if (__PageMovable(page
))
1335 if (PageHuge(page
)) {
1336 if (page_huge_active(page
))
1339 pfn
= round_up(pfn
+ 1,
1340 1 << compound_order(page
)) - 1;
1347 static struct page
*new_node_page(struct page
*page
, unsigned long private)
1349 int nid
= page_to_nid(page
);
1350 nodemask_t nmask
= node_states
[N_MEMORY
];
1353 * try to allocate from a different node but reuse this node if there
1354 * are no other online nodes to be used (e.g. we are offlining a part
1355 * of the only existing node)
1357 node_clear(nid
, nmask
);
1358 if (nodes_empty(nmask
))
1359 node_set(nid
, nmask
);
1361 return new_page_nodemask(page
, nid
, &nmask
);
1364 #define NR_OFFLINE_AT_ONCE_PAGES (256)
1366 do_migrate_range(unsigned long start_pfn
, unsigned long end_pfn
)
1370 int move_pages
= NR_OFFLINE_AT_ONCE_PAGES
;
1371 int not_managed
= 0;
1375 for (pfn
= start_pfn
; pfn
< end_pfn
&& move_pages
> 0; pfn
++) {
1376 if (!pfn_valid(pfn
))
1378 page
= pfn_to_page(pfn
);
1380 if (PageHuge(page
)) {
1381 struct page
*head
= compound_head(page
);
1382 pfn
= page_to_pfn(head
) + (1<<compound_order(head
)) - 1;
1383 if (compound_order(head
) > PFN_SECTION_SHIFT
) {
1387 if (isolate_huge_page(page
, &source
))
1388 move_pages
-= 1 << compound_order(head
);
1390 } else if (PageTransHuge(page
))
1391 pfn
= page_to_pfn(compound_head(page
))
1392 + hpage_nr_pages(page
) - 1;
1394 if (!get_page_unless_zero(page
))
1397 * We can skip free pages. And we can deal with pages on
1398 * LRU and non-lru movable pages.
1401 ret
= isolate_lru_page(page
);
1403 ret
= isolate_movable_page(page
, ISOLATE_UNEVICTABLE
);
1404 if (!ret
) { /* Success */
1406 list_add_tail(&page
->lru
, &source
);
1408 if (!__PageMovable(page
))
1409 inc_node_page_state(page
, NR_ISOLATED_ANON
+
1410 page_is_file_cache(page
));
1413 #ifdef CONFIG_DEBUG_VM
1414 pr_alert("failed to isolate pfn %lx\n", pfn
);
1415 dump_page(page
, "isolation failed");
1418 /* Because we don't have big zone->lock. we should
1419 check this again here. */
1420 if (page_count(page
)) {
1427 if (!list_empty(&source
)) {
1429 putback_movable_pages(&source
);
1433 /* Allocate a new page from the nearest neighbor node */
1434 ret
= migrate_pages(&source
, new_node_page
, NULL
, 0,
1435 MIGRATE_SYNC
, MR_MEMORY_HOTPLUG
);
1437 putback_movable_pages(&source
);
1444 * remove from free_area[] and mark all as Reserved.
1447 offline_isolated_pages_cb(unsigned long start
, unsigned long nr_pages
,
1450 __offline_isolated_pages(start
, start
+ nr_pages
);
1455 offline_isolated_pages(unsigned long start_pfn
, unsigned long end_pfn
)
1457 walk_system_ram_range(start_pfn
, end_pfn
- start_pfn
, NULL
,
1458 offline_isolated_pages_cb
);
1462 * Check all pages in range, recoreded as memory resource, are isolated.
1465 check_pages_isolated_cb(unsigned long start_pfn
, unsigned long nr_pages
,
1469 long offlined
= *(long *)data
;
1470 ret
= test_pages_isolated(start_pfn
, start_pfn
+ nr_pages
, true);
1471 offlined
= nr_pages
;
1473 *(long *)data
+= offlined
;
1478 check_pages_isolated(unsigned long start_pfn
, unsigned long end_pfn
)
1483 ret
= walk_system_ram_range(start_pfn
, end_pfn
- start_pfn
, &offlined
,
1484 check_pages_isolated_cb
);
1486 offlined
= (long)ret
;
1490 static int __init
cmdline_parse_movable_node(char *p
)
1492 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1493 movable_node_enabled
= true;
1495 pr_warn("movable_node parameter depends on CONFIG_HAVE_MEMBLOCK_NODE_MAP to work properly\n");
1499 early_param("movable_node", cmdline_parse_movable_node
);
1501 /* check which state of node_states will be changed when offline memory */
1502 static void node_states_check_changes_offline(unsigned long nr_pages
,
1503 struct zone
*zone
, struct memory_notify
*arg
)
1505 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
1506 unsigned long present_pages
= 0;
1507 enum zone_type zt
, zone_last
= ZONE_NORMAL
;
1510 * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY]
1511 * contains nodes which have zones of 0...ZONE_NORMAL,
1512 * set zone_last to ZONE_NORMAL.
1514 * If we don't have HIGHMEM nor movable node,
1515 * node_states[N_NORMAL_MEMORY] contains nodes which have zones of
1516 * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE.
1518 if (N_MEMORY
== N_NORMAL_MEMORY
)
1519 zone_last
= ZONE_MOVABLE
;
1522 * check whether node_states[N_NORMAL_MEMORY] will be changed.
1523 * If the memory to be offline is in a zone of 0...zone_last,
1524 * and it is the last present memory, 0...zone_last will
1525 * become empty after offline , thus we can determind we will
1526 * need to clear the node from node_states[N_NORMAL_MEMORY].
1528 for (zt
= 0; zt
<= zone_last
; zt
++)
1529 present_pages
+= pgdat
->node_zones
[zt
].present_pages
;
1530 if (zone_idx(zone
) <= zone_last
&& nr_pages
>= present_pages
)
1531 arg
->status_change_nid_normal
= zone_to_nid(zone
);
1533 arg
->status_change_nid_normal
= -1;
1535 #ifdef CONFIG_HIGHMEM
1537 * If we have movable node, node_states[N_HIGH_MEMORY]
1538 * contains nodes which have zones of 0...ZONE_HIGHMEM,
1539 * set zone_last to ZONE_HIGHMEM.
1541 * If we don't have movable node, node_states[N_NORMAL_MEMORY]
1542 * contains nodes which have zones of 0...ZONE_MOVABLE,
1543 * set zone_last to ZONE_MOVABLE.
1545 zone_last
= ZONE_HIGHMEM
;
1546 if (N_MEMORY
== N_HIGH_MEMORY
)
1547 zone_last
= ZONE_MOVABLE
;
1549 for (; zt
<= zone_last
; zt
++)
1550 present_pages
+= pgdat
->node_zones
[zt
].present_pages
;
1551 if (zone_idx(zone
) <= zone_last
&& nr_pages
>= present_pages
)
1552 arg
->status_change_nid_high
= zone_to_nid(zone
);
1554 arg
->status_change_nid_high
= -1;
1556 arg
->status_change_nid_high
= arg
->status_change_nid_normal
;
1560 * node_states[N_HIGH_MEMORY] contains nodes which have 0...ZONE_MOVABLE
1562 zone_last
= ZONE_MOVABLE
;
1565 * check whether node_states[N_HIGH_MEMORY] will be changed
1566 * If we try to offline the last present @nr_pages from the node,
1567 * we can determind we will need to clear the node from
1568 * node_states[N_HIGH_MEMORY].
1570 for (; zt
<= zone_last
; zt
++)
1571 present_pages
+= pgdat
->node_zones
[zt
].present_pages
;
1572 if (nr_pages
>= present_pages
)
1573 arg
->status_change_nid
= zone_to_nid(zone
);
1575 arg
->status_change_nid
= -1;
1578 static void node_states_clear_node(int node
, struct memory_notify
*arg
)
1580 if (arg
->status_change_nid_normal
>= 0)
1581 node_clear_state(node
, N_NORMAL_MEMORY
);
1583 if ((N_MEMORY
!= N_NORMAL_MEMORY
) &&
1584 (arg
->status_change_nid_high
>= 0))
1585 node_clear_state(node
, N_HIGH_MEMORY
);
1587 if ((N_MEMORY
!= N_HIGH_MEMORY
) &&
1588 (arg
->status_change_nid
>= 0))
1589 node_clear_state(node
, N_MEMORY
);
1592 static int __ref
__offline_pages(unsigned long start_pfn
,
1593 unsigned long end_pfn
)
1595 unsigned long pfn
, nr_pages
;
1596 long offlined_pages
;
1598 unsigned long flags
;
1599 unsigned long valid_start
, valid_end
;
1601 struct memory_notify arg
;
1603 /* at least, alignment against pageblock is necessary */
1604 if (!IS_ALIGNED(start_pfn
, pageblock_nr_pages
))
1606 if (!IS_ALIGNED(end_pfn
, pageblock_nr_pages
))
1608 /* This makes hotplug much easier...and readable.
1609 we assume this for now. .*/
1610 if (!test_pages_in_a_zone(start_pfn
, end_pfn
, &valid_start
, &valid_end
))
1613 zone
= page_zone(pfn_to_page(valid_start
));
1614 node
= zone_to_nid(zone
);
1615 nr_pages
= end_pfn
- start_pfn
;
1617 /* set above range as isolated */
1618 ret
= start_isolate_page_range(start_pfn
, end_pfn
,
1619 MIGRATE_MOVABLE
, true);
1623 arg
.start_pfn
= start_pfn
;
1624 arg
.nr_pages
= nr_pages
;
1625 node_states_check_changes_offline(nr_pages
, zone
, &arg
);
1627 ret
= memory_notify(MEM_GOING_OFFLINE
, &arg
);
1628 ret
= notifier_to_errno(ret
);
1630 goto failed_removal
;
1634 /* start memory hot removal */
1636 if (signal_pending(current
))
1637 goto failed_removal
;
1640 lru_add_drain_all();
1641 drain_all_pages(zone
);
1643 pfn
= scan_movable_pages(start_pfn
, end_pfn
);
1644 if (pfn
) { /* We have movable pages */
1645 ret
= do_migrate_range(pfn
, end_pfn
);
1650 * dissolve free hugepages in the memory block before doing offlining
1651 * actually in order to make hugetlbfs's object counting consistent.
1653 ret
= dissolve_free_huge_pages(start_pfn
, end_pfn
);
1655 goto failed_removal
;
1657 offlined_pages
= check_pages_isolated(start_pfn
, end_pfn
);
1658 if (offlined_pages
< 0)
1660 pr_info("Offlined Pages %ld\n", offlined_pages
);
1661 /* Ok, all of our target is isolated.
1662 We cannot do rollback at this point. */
1663 offline_isolated_pages(start_pfn
, end_pfn
);
1664 /* reset pagetype flags and makes migrate type to be MOVABLE */
1665 undo_isolate_page_range(start_pfn
, end_pfn
, MIGRATE_MOVABLE
);
1666 /* removal success */
1667 adjust_managed_page_count(pfn_to_page(start_pfn
), -offlined_pages
);
1668 zone
->present_pages
-= offlined_pages
;
1670 pgdat_resize_lock(zone
->zone_pgdat
, &flags
);
1671 zone
->zone_pgdat
->node_present_pages
-= offlined_pages
;
1672 pgdat_resize_unlock(zone
->zone_pgdat
, &flags
);
1674 init_per_zone_wmark_min();
1676 if (!populated_zone(zone
)) {
1677 zone_pcp_reset(zone
);
1678 build_all_zonelists(NULL
);
1680 zone_pcp_update(zone
);
1682 node_states_clear_node(node
, &arg
);
1683 if (arg
.status_change_nid
>= 0) {
1685 kcompactd_stop(node
);
1688 vm_total_pages
= nr_free_pagecache_pages();
1689 writeback_set_ratelimit();
1691 memory_notify(MEM_OFFLINE
, &arg
);
1695 pr_debug("memory offlining [mem %#010llx-%#010llx] failed\n",
1696 (unsigned long long) start_pfn
<< PAGE_SHIFT
,
1697 ((unsigned long long) end_pfn
<< PAGE_SHIFT
) - 1);
1698 memory_notify(MEM_CANCEL_OFFLINE
, &arg
);
1699 /* pushback to free area */
1700 undo_isolate_page_range(start_pfn
, end_pfn
, MIGRATE_MOVABLE
);
1704 /* Must be protected by mem_hotplug_begin() or a device_lock */
1705 int offline_pages(unsigned long start_pfn
, unsigned long nr_pages
)
1707 return __offline_pages(start_pfn
, start_pfn
+ nr_pages
);
1709 #endif /* CONFIG_MEMORY_HOTREMOVE */
1712 * walk_memory_range - walks through all mem sections in [start_pfn, end_pfn)
1713 * @start_pfn: start pfn of the memory range
1714 * @end_pfn: end pfn of the memory range
1715 * @arg: argument passed to func
1716 * @func: callback for each memory section walked
1718 * This function walks through all present mem sections in range
1719 * [start_pfn, end_pfn) and call func on each mem section.
1721 * Returns the return value of func.
1723 int walk_memory_range(unsigned long start_pfn
, unsigned long end_pfn
,
1724 void *arg
, int (*func
)(struct memory_block
*, void *))
1726 struct memory_block
*mem
= NULL
;
1727 struct mem_section
*section
;
1728 unsigned long pfn
, section_nr
;
1731 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= PAGES_PER_SECTION
) {
1732 section_nr
= pfn_to_section_nr(pfn
);
1733 if (!present_section_nr(section_nr
))
1736 section
= __nr_to_section(section_nr
);
1737 /* same memblock? */
1739 if ((section_nr
>= mem
->start_section_nr
) &&
1740 (section_nr
<= mem
->end_section_nr
))
1743 mem
= find_memory_block_hinted(section
, mem
);
1747 ret
= func(mem
, arg
);
1749 kobject_put(&mem
->dev
.kobj
);
1755 kobject_put(&mem
->dev
.kobj
);
1760 #ifdef CONFIG_MEMORY_HOTREMOVE
1761 static int check_memblock_offlined_cb(struct memory_block
*mem
, void *arg
)
1763 int ret
= !is_memblock_offlined(mem
);
1765 if (unlikely(ret
)) {
1766 phys_addr_t beginpa
, endpa
;
1768 beginpa
= PFN_PHYS(section_nr_to_pfn(mem
->start_section_nr
));
1769 endpa
= PFN_PHYS(section_nr_to_pfn(mem
->end_section_nr
+ 1))-1;
1770 pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
1777 static int check_cpu_on_node(pg_data_t
*pgdat
)
1781 for_each_present_cpu(cpu
) {
1782 if (cpu_to_node(cpu
) == pgdat
->node_id
)
1784 * the cpu on this node isn't removed, and we can't
1785 * offline this node.
1793 static void unmap_cpu_on_node(pg_data_t
*pgdat
)
1795 #ifdef CONFIG_ACPI_NUMA
1798 for_each_possible_cpu(cpu
)
1799 if (cpu_to_node(cpu
) == pgdat
->node_id
)
1800 numa_clear_node(cpu
);
1804 static int check_and_unmap_cpu_on_node(pg_data_t
*pgdat
)
1808 ret
= check_cpu_on_node(pgdat
);
1813 * the node will be offlined when we come here, so we can clear
1814 * the cpu_to_node() now.
1817 unmap_cpu_on_node(pgdat
);
1825 * Offline a node if all memory sections and cpus of the node are removed.
1827 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1828 * and online/offline operations before this call.
1830 void try_offline_node(int nid
)
1832 pg_data_t
*pgdat
= NODE_DATA(nid
);
1833 unsigned long start_pfn
= pgdat
->node_start_pfn
;
1834 unsigned long end_pfn
= start_pfn
+ pgdat
->node_spanned_pages
;
1837 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= PAGES_PER_SECTION
) {
1838 unsigned long section_nr
= pfn_to_section_nr(pfn
);
1840 if (!present_section_nr(section_nr
))
1843 if (pfn_to_nid(pfn
) != nid
)
1847 * some memory sections of this node are not removed, and we
1848 * can't offline node now.
1853 if (check_and_unmap_cpu_on_node(pgdat
))
1857 * all memory/cpu of this node are removed, we can offline this
1860 node_set_offline(nid
);
1861 unregister_one_node(nid
);
1863 EXPORT_SYMBOL(try_offline_node
);
1868 * @start: physical address of the region to remove
1869 * @size: size of the region to remove
1871 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1872 * and online/offline operations before this call, as required by
1873 * try_offline_node().
1875 void __ref
remove_memory(int nid
, u64 start
, u64 size
)
1879 BUG_ON(check_hotplug_memory_range(start
, size
));
1881 mem_hotplug_begin();
1884 * All memory blocks must be offlined before removing memory. Check
1885 * whether all memory blocks in question are offline and trigger a BUG()
1886 * if this is not the case.
1888 ret
= walk_memory_range(PFN_DOWN(start
), PFN_UP(start
+ size
- 1), NULL
,
1889 check_memblock_offlined_cb
);
1893 /* remove memmap entry */
1894 firmware_map_remove(start
, start
+ size
, "System RAM");
1895 memblock_free(start
, size
);
1896 memblock_remove(start
, size
);
1898 arch_remove_memory(start
, size
, NULL
);
1900 try_offline_node(nid
);
1904 EXPORT_SYMBOL_GPL(remove_memory
);
1905 #endif /* CONFIG_MEMORY_HOTREMOVE */