2 * Resizable virtual memory filesystem for Linux.
4 * Copyright (C) 2000 Linus Torvalds.
6 * 2000-2001 Christoph Rohland
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
21 * This file is released under the GPL.
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
40 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
42 static struct vfsmount
*shm_mnt
;
46 * This virtual memory filesystem is heavily based on the ramfs. It
47 * extends ramfs by the ability to use swap and honor resource limits
48 * which makes it a completely usable filesystem.
51 #include <linux/xattr.h>
52 #include <linux/exportfs.h>
53 #include <linux/posix_acl.h>
54 #include <linux/posix_acl_xattr.h>
55 #include <linux/mman.h>
56 #include <linux/string.h>
57 #include <linux/slab.h>
58 #include <linux/backing-dev.h>
59 #include <linux/shmem_fs.h>
60 #include <linux/writeback.h>
61 #include <linux/blkdev.h>
62 #include <linux/pagevec.h>
63 #include <linux/percpu_counter.h>
64 #include <linux/falloc.h>
65 #include <linux/splice.h>
66 #include <linux/security.h>
67 #include <linux/swapops.h>
68 #include <linux/mempolicy.h>
69 #include <linux/namei.h>
70 #include <linux/ctype.h>
71 #include <linux/migrate.h>
72 #include <linux/highmem.h>
73 #include <linux/seq_file.h>
74 #include <linux/magic.h>
75 #include <linux/syscalls.h>
76 #include <linux/fcntl.h>
77 #include <uapi/linux/memfd.h>
78 #include <linux/userfaultfd_k.h>
79 #include <linux/rmap.h>
80 #include <linux/uuid.h>
82 #include <linux/uaccess.h>
83 #include <asm/pgtable.h>
87 #define BLOCKS_PER_PAGE (PAGE_SIZE/512)
88 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
90 /* Pretend that each entry is of this size in directory's i_size */
91 #define BOGO_DIRENT_SIZE 20
93 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
94 #define SHORT_SYMLINK_LEN 128
97 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
98 * inode->i_private (with i_mutex making sure that it has only one user at
99 * a time): we would prefer not to enlarge the shmem inode just for that.
101 struct shmem_falloc
{
102 wait_queue_head_t
*waitq
; /* faults into hole wait for punch to end */
103 pgoff_t start
; /* start of range currently being fallocated */
104 pgoff_t next
; /* the next page offset to be fallocated */
105 pgoff_t nr_falloced
; /* how many new pages have been fallocated */
106 pgoff_t nr_unswapped
; /* how often writepage refused to swap out */
110 static unsigned long shmem_default_max_blocks(void)
112 return totalram_pages
/ 2;
115 static unsigned long shmem_default_max_inodes(void)
117 return min(totalram_pages
- totalhigh_pages
, totalram_pages
/ 2);
121 static bool shmem_should_replace_page(struct page
*page
, gfp_t gfp
);
122 static int shmem_replace_page(struct page
**pagep
, gfp_t gfp
,
123 struct shmem_inode_info
*info
, pgoff_t index
);
124 static int shmem_getpage_gfp(struct inode
*inode
, pgoff_t index
,
125 struct page
**pagep
, enum sgp_type sgp
,
126 gfp_t gfp
, struct vm_area_struct
*vma
,
127 struct vm_fault
*vmf
, vm_fault_t
*fault_type
);
129 int shmem_getpage(struct inode
*inode
, pgoff_t index
,
130 struct page
**pagep
, enum sgp_type sgp
)
132 return shmem_getpage_gfp(inode
, index
, pagep
, sgp
,
133 mapping_gfp_mask(inode
->i_mapping
), NULL
, NULL
, NULL
);
136 static inline struct shmem_sb_info
*SHMEM_SB(struct super_block
*sb
)
138 return sb
->s_fs_info
;
142 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
143 * for shared memory and for shared anonymous (/dev/zero) mappings
144 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
145 * consistent with the pre-accounting of private mappings ...
147 static inline int shmem_acct_size(unsigned long flags
, loff_t size
)
149 return (flags
& VM_NORESERVE
) ?
150 0 : security_vm_enough_memory_mm(current
->mm
, VM_ACCT(size
));
153 static inline void shmem_unacct_size(unsigned long flags
, loff_t size
)
155 if (!(flags
& VM_NORESERVE
))
156 vm_unacct_memory(VM_ACCT(size
));
159 static inline int shmem_reacct_size(unsigned long flags
,
160 loff_t oldsize
, loff_t newsize
)
162 if (!(flags
& VM_NORESERVE
)) {
163 if (VM_ACCT(newsize
) > VM_ACCT(oldsize
))
164 return security_vm_enough_memory_mm(current
->mm
,
165 VM_ACCT(newsize
) - VM_ACCT(oldsize
));
166 else if (VM_ACCT(newsize
) < VM_ACCT(oldsize
))
167 vm_unacct_memory(VM_ACCT(oldsize
) - VM_ACCT(newsize
));
173 * ... whereas tmpfs objects are accounted incrementally as
174 * pages are allocated, in order to allow large sparse files.
175 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
176 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
178 static inline int shmem_acct_block(unsigned long flags
, long pages
)
180 if (!(flags
& VM_NORESERVE
))
183 return security_vm_enough_memory_mm(current
->mm
,
184 pages
* VM_ACCT(PAGE_SIZE
));
187 static inline void shmem_unacct_blocks(unsigned long flags
, long pages
)
189 if (flags
& VM_NORESERVE
)
190 vm_unacct_memory(pages
* VM_ACCT(PAGE_SIZE
));
193 static inline bool shmem_inode_acct_block(struct inode
*inode
, long pages
)
195 struct shmem_inode_info
*info
= SHMEM_I(inode
);
196 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
198 if (shmem_acct_block(info
->flags
, pages
))
201 if (sbinfo
->max_blocks
) {
202 if (percpu_counter_compare(&sbinfo
->used_blocks
,
203 sbinfo
->max_blocks
- pages
) > 0)
205 percpu_counter_add(&sbinfo
->used_blocks
, pages
);
211 shmem_unacct_blocks(info
->flags
, pages
);
215 static inline void shmem_inode_unacct_blocks(struct inode
*inode
, long pages
)
217 struct shmem_inode_info
*info
= SHMEM_I(inode
);
218 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
220 if (sbinfo
->max_blocks
)
221 percpu_counter_sub(&sbinfo
->used_blocks
, pages
);
222 shmem_unacct_blocks(info
->flags
, pages
);
225 static const struct super_operations shmem_ops
;
226 static const struct address_space_operations shmem_aops
;
227 static const struct file_operations shmem_file_operations
;
228 static const struct inode_operations shmem_inode_operations
;
229 static const struct inode_operations shmem_dir_inode_operations
;
230 static const struct inode_operations shmem_special_inode_operations
;
231 static const struct vm_operations_struct shmem_vm_ops
;
232 static struct file_system_type shmem_fs_type
;
234 bool vma_is_shmem(struct vm_area_struct
*vma
)
236 return vma
->vm_ops
== &shmem_vm_ops
;
239 static LIST_HEAD(shmem_swaplist
);
240 static DEFINE_MUTEX(shmem_swaplist_mutex
);
242 static int shmem_reserve_inode(struct super_block
*sb
)
244 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
245 if (sbinfo
->max_inodes
) {
246 spin_lock(&sbinfo
->stat_lock
);
247 if (!sbinfo
->free_inodes
) {
248 spin_unlock(&sbinfo
->stat_lock
);
251 sbinfo
->free_inodes
--;
252 spin_unlock(&sbinfo
->stat_lock
);
257 static void shmem_free_inode(struct super_block
*sb
)
259 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
260 if (sbinfo
->max_inodes
) {
261 spin_lock(&sbinfo
->stat_lock
);
262 sbinfo
->free_inodes
++;
263 spin_unlock(&sbinfo
->stat_lock
);
268 * shmem_recalc_inode - recalculate the block usage of an inode
269 * @inode: inode to recalc
271 * We have to calculate the free blocks since the mm can drop
272 * undirtied hole pages behind our back.
274 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
275 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
277 * It has to be called with the spinlock held.
279 static void shmem_recalc_inode(struct inode
*inode
)
281 struct shmem_inode_info
*info
= SHMEM_I(inode
);
284 freed
= info
->alloced
- info
->swapped
- inode
->i_mapping
->nrpages
;
286 info
->alloced
-= freed
;
287 inode
->i_blocks
-= freed
* BLOCKS_PER_PAGE
;
288 shmem_inode_unacct_blocks(inode
, freed
);
292 bool shmem_charge(struct inode
*inode
, long pages
)
294 struct shmem_inode_info
*info
= SHMEM_I(inode
);
297 if (!shmem_inode_acct_block(inode
, pages
))
300 spin_lock_irqsave(&info
->lock
, flags
);
301 info
->alloced
+= pages
;
302 inode
->i_blocks
+= pages
* BLOCKS_PER_PAGE
;
303 shmem_recalc_inode(inode
);
304 spin_unlock_irqrestore(&info
->lock
, flags
);
305 inode
->i_mapping
->nrpages
+= pages
;
310 void shmem_uncharge(struct inode
*inode
, long pages
)
312 struct shmem_inode_info
*info
= SHMEM_I(inode
);
315 spin_lock_irqsave(&info
->lock
, flags
);
316 info
->alloced
-= pages
;
317 inode
->i_blocks
-= pages
* BLOCKS_PER_PAGE
;
318 shmem_recalc_inode(inode
);
319 spin_unlock_irqrestore(&info
->lock
, flags
);
321 shmem_inode_unacct_blocks(inode
, pages
);
325 * Replace item expected in radix tree by a new item, while holding tree lock.
327 static int shmem_radix_tree_replace(struct address_space
*mapping
,
328 pgoff_t index
, void *expected
, void *replacement
)
330 struct radix_tree_node
*node
;
334 VM_BUG_ON(!expected
);
335 VM_BUG_ON(!replacement
);
336 item
= __radix_tree_lookup(&mapping
->i_pages
, index
, &node
, &pslot
);
339 if (item
!= expected
)
341 __radix_tree_replace(&mapping
->i_pages
, node
, pslot
,
347 * Sometimes, before we decide whether to proceed or to fail, we must check
348 * that an entry was not already brought back from swap by a racing thread.
350 * Checking page is not enough: by the time a SwapCache page is locked, it
351 * might be reused, and again be SwapCache, using the same swap as before.
353 static bool shmem_confirm_swap(struct address_space
*mapping
,
354 pgoff_t index
, swp_entry_t swap
)
359 item
= radix_tree_lookup(&mapping
->i_pages
, index
);
361 return item
== swp_to_radix_entry(swap
);
365 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
368 * disables huge pages for the mount;
370 * enables huge pages for the mount;
371 * SHMEM_HUGE_WITHIN_SIZE:
372 * only allocate huge pages if the page will be fully within i_size,
373 * also respect fadvise()/madvise() hints;
375 * only allocate huge pages if requested with fadvise()/madvise();
378 #define SHMEM_HUGE_NEVER 0
379 #define SHMEM_HUGE_ALWAYS 1
380 #define SHMEM_HUGE_WITHIN_SIZE 2
381 #define SHMEM_HUGE_ADVISE 3
385 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
388 * disables huge on shm_mnt and all mounts, for emergency use;
390 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
393 #define SHMEM_HUGE_DENY (-1)
394 #define SHMEM_HUGE_FORCE (-2)
396 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
397 /* ifdef here to avoid bloating shmem.o when not necessary */
399 static int shmem_huge __read_mostly
;
401 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
402 static int shmem_parse_huge(const char *str
)
404 if (!strcmp(str
, "never"))
405 return SHMEM_HUGE_NEVER
;
406 if (!strcmp(str
, "always"))
407 return SHMEM_HUGE_ALWAYS
;
408 if (!strcmp(str
, "within_size"))
409 return SHMEM_HUGE_WITHIN_SIZE
;
410 if (!strcmp(str
, "advise"))
411 return SHMEM_HUGE_ADVISE
;
412 if (!strcmp(str
, "deny"))
413 return SHMEM_HUGE_DENY
;
414 if (!strcmp(str
, "force"))
415 return SHMEM_HUGE_FORCE
;
419 static const char *shmem_format_huge(int huge
)
422 case SHMEM_HUGE_NEVER
:
424 case SHMEM_HUGE_ALWAYS
:
426 case SHMEM_HUGE_WITHIN_SIZE
:
427 return "within_size";
428 case SHMEM_HUGE_ADVISE
:
430 case SHMEM_HUGE_DENY
:
432 case SHMEM_HUGE_FORCE
:
441 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info
*sbinfo
,
442 struct shrink_control
*sc
, unsigned long nr_to_split
)
444 LIST_HEAD(list
), *pos
, *next
;
445 LIST_HEAD(to_remove
);
447 struct shmem_inode_info
*info
;
449 unsigned long batch
= sc
? sc
->nr_to_scan
: 128;
450 int removed
= 0, split
= 0;
452 if (list_empty(&sbinfo
->shrinklist
))
455 spin_lock(&sbinfo
->shrinklist_lock
);
456 list_for_each_safe(pos
, next
, &sbinfo
->shrinklist
) {
457 info
= list_entry(pos
, struct shmem_inode_info
, shrinklist
);
460 inode
= igrab(&info
->vfs_inode
);
462 /* inode is about to be evicted */
464 list_del_init(&info
->shrinklist
);
469 /* Check if there's anything to gain */
470 if (round_up(inode
->i_size
, PAGE_SIZE
) ==
471 round_up(inode
->i_size
, HPAGE_PMD_SIZE
)) {
472 list_move(&info
->shrinklist
, &to_remove
);
477 list_move(&info
->shrinklist
, &list
);
482 spin_unlock(&sbinfo
->shrinklist_lock
);
484 list_for_each_safe(pos
, next
, &to_remove
) {
485 info
= list_entry(pos
, struct shmem_inode_info
, shrinklist
);
486 inode
= &info
->vfs_inode
;
487 list_del_init(&info
->shrinklist
);
491 list_for_each_safe(pos
, next
, &list
) {
494 info
= list_entry(pos
, struct shmem_inode_info
, shrinklist
);
495 inode
= &info
->vfs_inode
;
497 if (nr_to_split
&& split
>= nr_to_split
)
500 page
= find_get_page(inode
->i_mapping
,
501 (inode
->i_size
& HPAGE_PMD_MASK
) >> PAGE_SHIFT
);
505 /* No huge page at the end of the file: nothing to split */
506 if (!PageTransHuge(page
)) {
512 * Leave the inode on the list if we failed to lock
513 * the page at this time.
515 * Waiting for the lock may lead to deadlock in the
518 if (!trylock_page(page
)) {
523 ret
= split_huge_page(page
);
527 /* If split failed leave the inode on the list */
533 list_del_init(&info
->shrinklist
);
539 spin_lock(&sbinfo
->shrinklist_lock
);
540 list_splice_tail(&list
, &sbinfo
->shrinklist
);
541 sbinfo
->shrinklist_len
-= removed
;
542 spin_unlock(&sbinfo
->shrinklist_lock
);
547 static long shmem_unused_huge_scan(struct super_block
*sb
,
548 struct shrink_control
*sc
)
550 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
552 if (!READ_ONCE(sbinfo
->shrinklist_len
))
555 return shmem_unused_huge_shrink(sbinfo
, sc
, 0);
558 static long shmem_unused_huge_count(struct super_block
*sb
,
559 struct shrink_control
*sc
)
561 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
562 return READ_ONCE(sbinfo
->shrinklist_len
);
564 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
566 #define shmem_huge SHMEM_HUGE_DENY
568 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info
*sbinfo
,
569 struct shrink_control
*sc
, unsigned long nr_to_split
)
573 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
575 static inline bool is_huge_enabled(struct shmem_sb_info
*sbinfo
)
577 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
) &&
578 (shmem_huge
== SHMEM_HUGE_FORCE
|| sbinfo
->huge
) &&
579 shmem_huge
!= SHMEM_HUGE_DENY
)
585 * Like add_to_page_cache_locked, but error if expected item has gone.
587 static int shmem_add_to_page_cache(struct page
*page
,
588 struct address_space
*mapping
,
589 pgoff_t index
, void *expected
)
591 int error
, nr
= hpage_nr_pages(page
);
593 VM_BUG_ON_PAGE(PageTail(page
), page
);
594 VM_BUG_ON_PAGE(index
!= round_down(index
, nr
), page
);
595 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
596 VM_BUG_ON_PAGE(!PageSwapBacked(page
), page
);
597 VM_BUG_ON(expected
&& PageTransHuge(page
));
599 page_ref_add(page
, nr
);
600 page
->mapping
= mapping
;
603 xa_lock_irq(&mapping
->i_pages
);
604 if (PageTransHuge(page
)) {
605 void __rcu
**results
;
610 if (radix_tree_gang_lookup_slot(&mapping
->i_pages
,
611 &results
, &idx
, index
, 1) &&
612 idx
< index
+ HPAGE_PMD_NR
) {
617 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
618 error
= radix_tree_insert(&mapping
->i_pages
,
619 index
+ i
, page
+ i
);
622 count_vm_event(THP_FILE_ALLOC
);
624 } else if (!expected
) {
625 error
= radix_tree_insert(&mapping
->i_pages
, index
, page
);
627 error
= shmem_radix_tree_replace(mapping
, index
, expected
,
632 mapping
->nrpages
+= nr
;
633 if (PageTransHuge(page
))
634 __inc_node_page_state(page
, NR_SHMEM_THPS
);
635 __mod_node_page_state(page_pgdat(page
), NR_FILE_PAGES
, nr
);
636 __mod_node_page_state(page_pgdat(page
), NR_SHMEM
, nr
);
637 xa_unlock_irq(&mapping
->i_pages
);
639 page
->mapping
= NULL
;
640 xa_unlock_irq(&mapping
->i_pages
);
641 page_ref_sub(page
, nr
);
647 * Like delete_from_page_cache, but substitutes swap for page.
649 static void shmem_delete_from_page_cache(struct page
*page
, void *radswap
)
651 struct address_space
*mapping
= page
->mapping
;
654 VM_BUG_ON_PAGE(PageCompound(page
), page
);
656 xa_lock_irq(&mapping
->i_pages
);
657 error
= shmem_radix_tree_replace(mapping
, page
->index
, page
, radswap
);
658 page
->mapping
= NULL
;
660 __dec_node_page_state(page
, NR_FILE_PAGES
);
661 __dec_node_page_state(page
, NR_SHMEM
);
662 xa_unlock_irq(&mapping
->i_pages
);
668 * Remove swap entry from radix tree, free the swap and its page cache.
670 static int shmem_free_swap(struct address_space
*mapping
,
671 pgoff_t index
, void *radswap
)
675 xa_lock_irq(&mapping
->i_pages
);
676 old
= radix_tree_delete_item(&mapping
->i_pages
, index
, radswap
);
677 xa_unlock_irq(&mapping
->i_pages
);
680 free_swap_and_cache(radix_to_swp_entry(radswap
));
685 * Determine (in bytes) how many of the shmem object's pages mapped by the
686 * given offsets are swapped out.
688 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
689 * as long as the inode doesn't go away and racy results are not a problem.
691 unsigned long shmem_partial_swap_usage(struct address_space
*mapping
,
692 pgoff_t start
, pgoff_t end
)
694 struct radix_tree_iter iter
;
697 unsigned long swapped
= 0;
701 radix_tree_for_each_slot(slot
, &mapping
->i_pages
, &iter
, start
) {
702 if (iter
.index
>= end
)
705 page
= radix_tree_deref_slot(slot
);
707 if (radix_tree_deref_retry(page
)) {
708 slot
= radix_tree_iter_retry(&iter
);
712 if (radix_tree_exceptional_entry(page
))
715 if (need_resched()) {
716 slot
= radix_tree_iter_resume(slot
, &iter
);
723 return swapped
<< PAGE_SHIFT
;
727 * Determine (in bytes) how many of the shmem object's pages mapped by the
728 * given vma is swapped out.
730 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
731 * as long as the inode doesn't go away and racy results are not a problem.
733 unsigned long shmem_swap_usage(struct vm_area_struct
*vma
)
735 struct inode
*inode
= file_inode(vma
->vm_file
);
736 struct shmem_inode_info
*info
= SHMEM_I(inode
);
737 struct address_space
*mapping
= inode
->i_mapping
;
738 unsigned long swapped
;
740 /* Be careful as we don't hold info->lock */
741 swapped
= READ_ONCE(info
->swapped
);
744 * The easier cases are when the shmem object has nothing in swap, or
745 * the vma maps it whole. Then we can simply use the stats that we
751 if (!vma
->vm_pgoff
&& vma
->vm_end
- vma
->vm_start
>= inode
->i_size
)
752 return swapped
<< PAGE_SHIFT
;
754 /* Here comes the more involved part */
755 return shmem_partial_swap_usage(mapping
,
756 linear_page_index(vma
, vma
->vm_start
),
757 linear_page_index(vma
, vma
->vm_end
));
761 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
763 void shmem_unlock_mapping(struct address_space
*mapping
)
766 pgoff_t indices
[PAGEVEC_SIZE
];
771 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
773 while (!mapping_unevictable(mapping
)) {
775 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
776 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
778 pvec
.nr
= find_get_entries(mapping
, index
,
779 PAGEVEC_SIZE
, pvec
.pages
, indices
);
782 index
= indices
[pvec
.nr
- 1] + 1;
783 pagevec_remove_exceptionals(&pvec
);
784 check_move_unevictable_pages(pvec
.pages
, pvec
.nr
);
785 pagevec_release(&pvec
);
791 * Remove range of pages and swap entries from radix tree, and free them.
792 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
794 static void shmem_undo_range(struct inode
*inode
, loff_t lstart
, loff_t lend
,
797 struct address_space
*mapping
= inode
->i_mapping
;
798 struct shmem_inode_info
*info
= SHMEM_I(inode
);
799 pgoff_t start
= (lstart
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
800 pgoff_t end
= (lend
+ 1) >> PAGE_SHIFT
;
801 unsigned int partial_start
= lstart
& (PAGE_SIZE
- 1);
802 unsigned int partial_end
= (lend
+ 1) & (PAGE_SIZE
- 1);
804 pgoff_t indices
[PAGEVEC_SIZE
];
805 long nr_swaps_freed
= 0;
810 end
= -1; /* unsigned, so actually very big */
814 while (index
< end
) {
815 pvec
.nr
= find_get_entries(mapping
, index
,
816 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
),
817 pvec
.pages
, indices
);
820 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
821 struct page
*page
= pvec
.pages
[i
];
827 if (radix_tree_exceptional_entry(page
)) {
830 nr_swaps_freed
+= !shmem_free_swap(mapping
,
835 VM_BUG_ON_PAGE(page_to_pgoff(page
) != index
, page
);
837 if (!trylock_page(page
))
840 if (PageTransTail(page
)) {
841 /* Middle of THP: zero out the page */
842 clear_highpage(page
);
845 } else if (PageTransHuge(page
)) {
846 if (index
== round_down(end
, HPAGE_PMD_NR
)) {
848 * Range ends in the middle of THP:
851 clear_highpage(page
);
855 index
+= HPAGE_PMD_NR
- 1;
856 i
+= HPAGE_PMD_NR
- 1;
859 if (!unfalloc
|| !PageUptodate(page
)) {
860 VM_BUG_ON_PAGE(PageTail(page
), page
);
861 if (page_mapping(page
) == mapping
) {
862 VM_BUG_ON_PAGE(PageWriteback(page
), page
);
863 truncate_inode_page(mapping
, page
);
868 pagevec_remove_exceptionals(&pvec
);
869 pagevec_release(&pvec
);
875 struct page
*page
= NULL
;
876 shmem_getpage(inode
, start
- 1, &page
, SGP_READ
);
878 unsigned int top
= PAGE_SIZE
;
883 zero_user_segment(page
, partial_start
, top
);
884 set_page_dirty(page
);
890 struct page
*page
= NULL
;
891 shmem_getpage(inode
, end
, &page
, SGP_READ
);
893 zero_user_segment(page
, 0, partial_end
);
894 set_page_dirty(page
);
903 while (index
< end
) {
906 pvec
.nr
= find_get_entries(mapping
, index
,
907 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
),
908 pvec
.pages
, indices
);
910 /* If all gone or hole-punch or unfalloc, we're done */
911 if (index
== start
|| end
!= -1)
913 /* But if truncating, restart to make sure all gone */
917 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
918 struct page
*page
= pvec
.pages
[i
];
924 if (radix_tree_exceptional_entry(page
)) {
927 if (shmem_free_swap(mapping
, index
, page
)) {
928 /* Swap was replaced by page: retry */
938 if (PageTransTail(page
)) {
939 /* Middle of THP: zero out the page */
940 clear_highpage(page
);
943 * Partial thp truncate due 'start' in middle
944 * of THP: don't need to look on these pages
945 * again on !pvec.nr restart.
947 if (index
!= round_down(end
, HPAGE_PMD_NR
))
950 } else if (PageTransHuge(page
)) {
951 if (index
== round_down(end
, HPAGE_PMD_NR
)) {
953 * Range ends in the middle of THP:
956 clear_highpage(page
);
960 index
+= HPAGE_PMD_NR
- 1;
961 i
+= HPAGE_PMD_NR
- 1;
964 if (!unfalloc
|| !PageUptodate(page
)) {
965 VM_BUG_ON_PAGE(PageTail(page
), page
);
966 if (page_mapping(page
) == mapping
) {
967 VM_BUG_ON_PAGE(PageWriteback(page
), page
);
968 truncate_inode_page(mapping
, page
);
970 /* Page was replaced by swap: retry */
978 pagevec_remove_exceptionals(&pvec
);
979 pagevec_release(&pvec
);
983 spin_lock_irq(&info
->lock
);
984 info
->swapped
-= nr_swaps_freed
;
985 shmem_recalc_inode(inode
);
986 spin_unlock_irq(&info
->lock
);
989 void shmem_truncate_range(struct inode
*inode
, loff_t lstart
, loff_t lend
)
991 shmem_undo_range(inode
, lstart
, lend
, false);
992 inode
->i_ctime
= inode
->i_mtime
= current_time(inode
);
994 EXPORT_SYMBOL_GPL(shmem_truncate_range
);
996 static int shmem_getattr(const struct path
*path
, struct kstat
*stat
,
997 u32 request_mask
, unsigned int query_flags
)
999 struct inode
*inode
= path
->dentry
->d_inode
;
1000 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1001 struct shmem_sb_info
*sb_info
= SHMEM_SB(inode
->i_sb
);
1003 if (info
->alloced
- info
->swapped
!= inode
->i_mapping
->nrpages
) {
1004 spin_lock_irq(&info
->lock
);
1005 shmem_recalc_inode(inode
);
1006 spin_unlock_irq(&info
->lock
);
1008 generic_fillattr(inode
, stat
);
1010 if (is_huge_enabled(sb_info
))
1011 stat
->blksize
= HPAGE_PMD_SIZE
;
1016 static int shmem_setattr(struct dentry
*dentry
, struct iattr
*attr
)
1018 struct inode
*inode
= d_inode(dentry
);
1019 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1020 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
1023 error
= setattr_prepare(dentry
, attr
);
1027 if (S_ISREG(inode
->i_mode
) && (attr
->ia_valid
& ATTR_SIZE
)) {
1028 loff_t oldsize
= inode
->i_size
;
1029 loff_t newsize
= attr
->ia_size
;
1031 /* protected by i_mutex */
1032 if ((newsize
< oldsize
&& (info
->seals
& F_SEAL_SHRINK
)) ||
1033 (newsize
> oldsize
&& (info
->seals
& F_SEAL_GROW
)))
1036 if (newsize
!= oldsize
) {
1037 error
= shmem_reacct_size(SHMEM_I(inode
)->flags
,
1041 i_size_write(inode
, newsize
);
1042 inode
->i_ctime
= inode
->i_mtime
= current_time(inode
);
1044 if (newsize
<= oldsize
) {
1045 loff_t holebegin
= round_up(newsize
, PAGE_SIZE
);
1046 if (oldsize
> holebegin
)
1047 unmap_mapping_range(inode
->i_mapping
,
1050 shmem_truncate_range(inode
,
1051 newsize
, (loff_t
)-1);
1052 /* unmap again to remove racily COWed private pages */
1053 if (oldsize
> holebegin
)
1054 unmap_mapping_range(inode
->i_mapping
,
1058 * Part of the huge page can be beyond i_size: subject
1059 * to shrink under memory pressure.
1061 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
)) {
1062 spin_lock(&sbinfo
->shrinklist_lock
);
1064 * _careful to defend against unlocked access to
1065 * ->shrink_list in shmem_unused_huge_shrink()
1067 if (list_empty_careful(&info
->shrinklist
)) {
1068 list_add_tail(&info
->shrinklist
,
1069 &sbinfo
->shrinklist
);
1070 sbinfo
->shrinklist_len
++;
1072 spin_unlock(&sbinfo
->shrinklist_lock
);
1077 setattr_copy(inode
, attr
);
1078 if (attr
->ia_valid
& ATTR_MODE
)
1079 error
= posix_acl_chmod(inode
, inode
->i_mode
);
1083 static void shmem_evict_inode(struct inode
*inode
)
1085 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1086 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
1088 if (inode
->i_mapping
->a_ops
== &shmem_aops
) {
1089 shmem_unacct_size(info
->flags
, inode
->i_size
);
1091 shmem_truncate_range(inode
, 0, (loff_t
)-1);
1092 if (!list_empty(&info
->shrinklist
)) {
1093 spin_lock(&sbinfo
->shrinklist_lock
);
1094 if (!list_empty(&info
->shrinklist
)) {
1095 list_del_init(&info
->shrinklist
);
1096 sbinfo
->shrinklist_len
--;
1098 spin_unlock(&sbinfo
->shrinklist_lock
);
1100 if (!list_empty(&info
->swaplist
)) {
1101 mutex_lock(&shmem_swaplist_mutex
);
1102 list_del_init(&info
->swaplist
);
1103 mutex_unlock(&shmem_swaplist_mutex
);
1107 simple_xattrs_free(&info
->xattrs
);
1108 WARN_ON(inode
->i_blocks
);
1109 shmem_free_inode(inode
->i_sb
);
1113 static unsigned long find_swap_entry(struct radix_tree_root
*root
, void *item
)
1115 struct radix_tree_iter iter
;
1117 unsigned long found
= -1;
1118 unsigned int checked
= 0;
1121 radix_tree_for_each_slot(slot
, root
, &iter
, 0) {
1122 void *entry
= radix_tree_deref_slot(slot
);
1124 if (radix_tree_deref_retry(entry
)) {
1125 slot
= radix_tree_iter_retry(&iter
);
1128 if (entry
== item
) {
1133 if ((checked
% 4096) != 0)
1135 slot
= radix_tree_iter_resume(slot
, &iter
);
1144 * If swap found in inode, free it and move page from swapcache to filecache.
1146 static int shmem_unuse_inode(struct shmem_inode_info
*info
,
1147 swp_entry_t swap
, struct page
**pagep
)
1149 struct address_space
*mapping
= info
->vfs_inode
.i_mapping
;
1155 radswap
= swp_to_radix_entry(swap
);
1156 index
= find_swap_entry(&mapping
->i_pages
, radswap
);
1158 return -EAGAIN
; /* tell shmem_unuse we found nothing */
1161 * Move _head_ to start search for next from here.
1162 * But be careful: shmem_evict_inode checks list_empty without taking
1163 * mutex, and there's an instant in list_move_tail when info->swaplist
1164 * would appear empty, if it were the only one on shmem_swaplist.
1166 if (shmem_swaplist
.next
!= &info
->swaplist
)
1167 list_move_tail(&shmem_swaplist
, &info
->swaplist
);
1169 gfp
= mapping_gfp_mask(mapping
);
1170 if (shmem_should_replace_page(*pagep
, gfp
)) {
1171 mutex_unlock(&shmem_swaplist_mutex
);
1172 error
= shmem_replace_page(pagep
, gfp
, info
, index
);
1173 mutex_lock(&shmem_swaplist_mutex
);
1175 * We needed to drop mutex to make that restrictive page
1176 * allocation, but the inode might have been freed while we
1177 * dropped it: although a racing shmem_evict_inode() cannot
1178 * complete without emptying the radix_tree, our page lock
1179 * on this swapcache page is not enough to prevent that -
1180 * free_swap_and_cache() of our swap entry will only
1181 * trylock_page(), removing swap from radix_tree whatever.
1183 * We must not proceed to shmem_add_to_page_cache() if the
1184 * inode has been freed, but of course we cannot rely on
1185 * inode or mapping or info to check that. However, we can
1186 * safely check if our swap entry is still in use (and here
1187 * it can't have got reused for another page): if it's still
1188 * in use, then the inode cannot have been freed yet, and we
1189 * can safely proceed (if it's no longer in use, that tells
1190 * nothing about the inode, but we don't need to unuse swap).
1192 if (!page_swapcount(*pagep
))
1197 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1198 * but also to hold up shmem_evict_inode(): so inode cannot be freed
1199 * beneath us (pagelock doesn't help until the page is in pagecache).
1202 error
= shmem_add_to_page_cache(*pagep
, mapping
, index
,
1204 if (error
!= -ENOMEM
) {
1206 * Truncation and eviction use free_swap_and_cache(), which
1207 * only does trylock page: if we raced, best clean up here.
1209 delete_from_swap_cache(*pagep
);
1210 set_page_dirty(*pagep
);
1212 spin_lock_irq(&info
->lock
);
1214 spin_unlock_irq(&info
->lock
);
1222 * Search through swapped inodes to find and replace swap by page.
1224 int shmem_unuse(swp_entry_t swap
, struct page
*page
)
1226 struct list_head
*this, *next
;
1227 struct shmem_inode_info
*info
;
1228 struct mem_cgroup
*memcg
;
1232 * There's a faint possibility that swap page was replaced before
1233 * caller locked it: caller will come back later with the right page.
1235 if (unlikely(!PageSwapCache(page
) || page_private(page
) != swap
.val
))
1239 * Charge page using GFP_KERNEL while we can wait, before taking
1240 * the shmem_swaplist_mutex which might hold up shmem_writepage().
1241 * Charged back to the user (not to caller) when swap account is used.
1243 error
= mem_cgroup_try_charge_delay(page
, current
->mm
, GFP_KERNEL
,
1247 /* No radix_tree_preload: swap entry keeps a place for page in tree */
1250 mutex_lock(&shmem_swaplist_mutex
);
1251 list_for_each_safe(this, next
, &shmem_swaplist
) {
1252 info
= list_entry(this, struct shmem_inode_info
, swaplist
);
1254 error
= shmem_unuse_inode(info
, swap
, &page
);
1256 list_del_init(&info
->swaplist
);
1258 if (error
!= -EAGAIN
)
1260 /* found nothing in this: move on to search the next */
1262 mutex_unlock(&shmem_swaplist_mutex
);
1265 if (error
!= -ENOMEM
)
1267 mem_cgroup_cancel_charge(page
, memcg
, false);
1269 mem_cgroup_commit_charge(page
, memcg
, true, false);
1277 * Move the page from the page cache to the swap cache.
1279 static int shmem_writepage(struct page
*page
, struct writeback_control
*wbc
)
1281 struct shmem_inode_info
*info
;
1282 struct address_space
*mapping
;
1283 struct inode
*inode
;
1287 VM_BUG_ON_PAGE(PageCompound(page
), page
);
1288 BUG_ON(!PageLocked(page
));
1289 mapping
= page
->mapping
;
1290 index
= page
->index
;
1291 inode
= mapping
->host
;
1292 info
= SHMEM_I(inode
);
1293 if (info
->flags
& VM_LOCKED
)
1295 if (!total_swap_pages
)
1299 * Our capabilities prevent regular writeback or sync from ever calling
1300 * shmem_writepage; but a stacking filesystem might use ->writepage of
1301 * its underlying filesystem, in which case tmpfs should write out to
1302 * swap only in response to memory pressure, and not for the writeback
1305 if (!wbc
->for_reclaim
) {
1306 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1311 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1312 * value into swapfile.c, the only way we can correctly account for a
1313 * fallocated page arriving here is now to initialize it and write it.
1315 * That's okay for a page already fallocated earlier, but if we have
1316 * not yet completed the fallocation, then (a) we want to keep track
1317 * of this page in case we have to undo it, and (b) it may not be a
1318 * good idea to continue anyway, once we're pushing into swap. So
1319 * reactivate the page, and let shmem_fallocate() quit when too many.
1321 if (!PageUptodate(page
)) {
1322 if (inode
->i_private
) {
1323 struct shmem_falloc
*shmem_falloc
;
1324 spin_lock(&inode
->i_lock
);
1325 shmem_falloc
= inode
->i_private
;
1327 !shmem_falloc
->waitq
&&
1328 index
>= shmem_falloc
->start
&&
1329 index
< shmem_falloc
->next
)
1330 shmem_falloc
->nr_unswapped
++;
1332 shmem_falloc
= NULL
;
1333 spin_unlock(&inode
->i_lock
);
1337 clear_highpage(page
);
1338 flush_dcache_page(page
);
1339 SetPageUptodate(page
);
1342 swap
= get_swap_page(page
);
1347 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1348 * if it's not already there. Do it now before the page is
1349 * moved to swap cache, when its pagelock no longer protects
1350 * the inode from eviction. But don't unlock the mutex until
1351 * we've incremented swapped, because shmem_unuse_inode() will
1352 * prune a !swapped inode from the swaplist under this mutex.
1354 mutex_lock(&shmem_swaplist_mutex
);
1355 if (list_empty(&info
->swaplist
))
1356 list_add_tail(&info
->swaplist
, &shmem_swaplist
);
1358 if (add_to_swap_cache(page
, swap
, GFP_ATOMIC
) == 0) {
1359 spin_lock_irq(&info
->lock
);
1360 shmem_recalc_inode(inode
);
1362 spin_unlock_irq(&info
->lock
);
1364 swap_shmem_alloc(swap
);
1365 shmem_delete_from_page_cache(page
, swp_to_radix_entry(swap
));
1367 mutex_unlock(&shmem_swaplist_mutex
);
1368 BUG_ON(page_mapped(page
));
1369 swap_writepage(page
, wbc
);
1373 mutex_unlock(&shmem_swaplist_mutex
);
1374 put_swap_page(page
, swap
);
1376 set_page_dirty(page
);
1377 if (wbc
->for_reclaim
)
1378 return AOP_WRITEPAGE_ACTIVATE
; /* Return with page locked */
1383 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1384 static void shmem_show_mpol(struct seq_file
*seq
, struct mempolicy
*mpol
)
1388 if (!mpol
|| mpol
->mode
== MPOL_DEFAULT
)
1389 return; /* show nothing */
1391 mpol_to_str(buffer
, sizeof(buffer
), mpol
);
1393 seq_printf(seq
, ",mpol=%s", buffer
);
1396 static struct mempolicy
*shmem_get_sbmpol(struct shmem_sb_info
*sbinfo
)
1398 struct mempolicy
*mpol
= NULL
;
1400 spin_lock(&sbinfo
->stat_lock
); /* prevent replace/use races */
1401 mpol
= sbinfo
->mpol
;
1403 spin_unlock(&sbinfo
->stat_lock
);
1407 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1408 static inline void shmem_show_mpol(struct seq_file
*seq
, struct mempolicy
*mpol
)
1411 static inline struct mempolicy
*shmem_get_sbmpol(struct shmem_sb_info
*sbinfo
)
1415 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1417 #define vm_policy vm_private_data
1420 static void shmem_pseudo_vma_init(struct vm_area_struct
*vma
,
1421 struct shmem_inode_info
*info
, pgoff_t index
)
1423 /* Create a pseudo vma that just contains the policy */
1424 vma_init(vma
, NULL
);
1425 /* Bias interleave by inode number to distribute better across nodes */
1426 vma
->vm_pgoff
= index
+ info
->vfs_inode
.i_ino
;
1427 vma
->vm_policy
= mpol_shared_policy_lookup(&info
->policy
, index
);
1430 static void shmem_pseudo_vma_destroy(struct vm_area_struct
*vma
)
1432 /* Drop reference taken by mpol_shared_policy_lookup() */
1433 mpol_cond_put(vma
->vm_policy
);
1436 static struct page
*shmem_swapin(swp_entry_t swap
, gfp_t gfp
,
1437 struct shmem_inode_info
*info
, pgoff_t index
)
1439 struct vm_area_struct pvma
;
1441 struct vm_fault vmf
;
1443 shmem_pseudo_vma_init(&pvma
, info
, index
);
1446 page
= swap_cluster_readahead(swap
, gfp
, &vmf
);
1447 shmem_pseudo_vma_destroy(&pvma
);
1452 static struct page
*shmem_alloc_hugepage(gfp_t gfp
,
1453 struct shmem_inode_info
*info
, pgoff_t index
)
1455 struct vm_area_struct pvma
;
1456 struct inode
*inode
= &info
->vfs_inode
;
1457 struct address_space
*mapping
= inode
->i_mapping
;
1458 pgoff_t idx
, hindex
;
1459 void __rcu
**results
;
1462 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
))
1465 hindex
= round_down(index
, HPAGE_PMD_NR
);
1467 if (radix_tree_gang_lookup_slot(&mapping
->i_pages
, &results
, &idx
,
1468 hindex
, 1) && idx
< hindex
+ HPAGE_PMD_NR
) {
1474 shmem_pseudo_vma_init(&pvma
, info
, hindex
);
1475 page
= alloc_pages_vma(gfp
| __GFP_COMP
| __GFP_NORETRY
| __GFP_NOWARN
,
1476 HPAGE_PMD_ORDER
, &pvma
, 0, numa_node_id(), true);
1477 shmem_pseudo_vma_destroy(&pvma
);
1479 prep_transhuge_page(page
);
1483 static struct page
*shmem_alloc_page(gfp_t gfp
,
1484 struct shmem_inode_info
*info
, pgoff_t index
)
1486 struct vm_area_struct pvma
;
1489 shmem_pseudo_vma_init(&pvma
, info
, index
);
1490 page
= alloc_page_vma(gfp
, &pvma
, 0);
1491 shmem_pseudo_vma_destroy(&pvma
);
1496 static struct page
*shmem_alloc_and_acct_page(gfp_t gfp
,
1497 struct inode
*inode
,
1498 pgoff_t index
, bool huge
)
1500 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1505 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
))
1507 nr
= huge
? HPAGE_PMD_NR
: 1;
1509 if (!shmem_inode_acct_block(inode
, nr
))
1513 page
= shmem_alloc_hugepage(gfp
, info
, index
);
1515 page
= shmem_alloc_page(gfp
, info
, index
);
1517 __SetPageLocked(page
);
1518 __SetPageSwapBacked(page
);
1523 shmem_inode_unacct_blocks(inode
, nr
);
1525 return ERR_PTR(err
);
1529 * When a page is moved from swapcache to shmem filecache (either by the
1530 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1531 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1532 * ignorance of the mapping it belongs to. If that mapping has special
1533 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1534 * we may need to copy to a suitable page before moving to filecache.
1536 * In a future release, this may well be extended to respect cpuset and
1537 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1538 * but for now it is a simple matter of zone.
1540 static bool shmem_should_replace_page(struct page
*page
, gfp_t gfp
)
1542 return page_zonenum(page
) > gfp_zone(gfp
);
1545 static int shmem_replace_page(struct page
**pagep
, gfp_t gfp
,
1546 struct shmem_inode_info
*info
, pgoff_t index
)
1548 struct page
*oldpage
, *newpage
;
1549 struct address_space
*swap_mapping
;
1554 swap_index
= page_private(oldpage
);
1555 swap_mapping
= page_mapping(oldpage
);
1558 * We have arrived here because our zones are constrained, so don't
1559 * limit chance of success by further cpuset and node constraints.
1561 gfp
&= ~GFP_CONSTRAINT_MASK
;
1562 newpage
= shmem_alloc_page(gfp
, info
, index
);
1567 copy_highpage(newpage
, oldpage
);
1568 flush_dcache_page(newpage
);
1570 __SetPageLocked(newpage
);
1571 __SetPageSwapBacked(newpage
);
1572 SetPageUptodate(newpage
);
1573 set_page_private(newpage
, swap_index
);
1574 SetPageSwapCache(newpage
);
1577 * Our caller will very soon move newpage out of swapcache, but it's
1578 * a nice clean interface for us to replace oldpage by newpage there.
1580 xa_lock_irq(&swap_mapping
->i_pages
);
1581 error
= shmem_radix_tree_replace(swap_mapping
, swap_index
, oldpage
,
1584 __inc_node_page_state(newpage
, NR_FILE_PAGES
);
1585 __dec_node_page_state(oldpage
, NR_FILE_PAGES
);
1587 xa_unlock_irq(&swap_mapping
->i_pages
);
1589 if (unlikely(error
)) {
1591 * Is this possible? I think not, now that our callers check
1592 * both PageSwapCache and page_private after getting page lock;
1593 * but be defensive. Reverse old to newpage for clear and free.
1597 mem_cgroup_migrate(oldpage
, newpage
);
1598 lru_cache_add_anon(newpage
);
1602 ClearPageSwapCache(oldpage
);
1603 set_page_private(oldpage
, 0);
1605 unlock_page(oldpage
);
1612 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1614 * If we allocate a new one we do not mark it dirty. That's up to the
1615 * vm. If we swap it in we mark it dirty since we also free the swap
1616 * entry since a page cannot live in both the swap and page cache.
1618 * fault_mm and fault_type are only supplied by shmem_fault:
1619 * otherwise they are NULL.
1621 static int shmem_getpage_gfp(struct inode
*inode
, pgoff_t index
,
1622 struct page
**pagep
, enum sgp_type sgp
, gfp_t gfp
,
1623 struct vm_area_struct
*vma
, struct vm_fault
*vmf
,
1624 vm_fault_t
*fault_type
)
1626 struct address_space
*mapping
= inode
->i_mapping
;
1627 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1628 struct shmem_sb_info
*sbinfo
;
1629 struct mm_struct
*charge_mm
;
1630 struct mem_cgroup
*memcg
;
1633 enum sgp_type sgp_huge
= sgp
;
1634 pgoff_t hindex
= index
;
1639 if (index
> (MAX_LFS_FILESIZE
>> PAGE_SHIFT
))
1641 if (sgp
== SGP_NOHUGE
|| sgp
== SGP_HUGE
)
1645 page
= find_lock_entry(mapping
, index
);
1646 if (radix_tree_exceptional_entry(page
)) {
1647 swap
= radix_to_swp_entry(page
);
1651 if (sgp
<= SGP_CACHE
&&
1652 ((loff_t
)index
<< PAGE_SHIFT
) >= i_size_read(inode
)) {
1657 if (page
&& sgp
== SGP_WRITE
)
1658 mark_page_accessed(page
);
1660 /* fallocated page? */
1661 if (page
&& !PageUptodate(page
)) {
1662 if (sgp
!= SGP_READ
)
1668 if (page
|| (sgp
== SGP_READ
&& !swap
.val
)) {
1674 * Fast cache lookup did not find it:
1675 * bring it back from swap or allocate.
1677 sbinfo
= SHMEM_SB(inode
->i_sb
);
1678 charge_mm
= vma
? vma
->vm_mm
: current
->mm
;
1681 /* Look it up and read it in.. */
1682 page
= lookup_swap_cache(swap
, NULL
, 0);
1684 /* Or update major stats only when swapin succeeds?? */
1686 *fault_type
|= VM_FAULT_MAJOR
;
1687 count_vm_event(PGMAJFAULT
);
1688 count_memcg_event_mm(charge_mm
, PGMAJFAULT
);
1690 /* Here we actually start the io */
1691 page
= shmem_swapin(swap
, gfp
, info
, index
);
1698 /* We have to do this with page locked to prevent races */
1700 if (!PageSwapCache(page
) || page_private(page
) != swap
.val
||
1701 !shmem_confirm_swap(mapping
, index
, swap
)) {
1702 error
= -EEXIST
; /* try again */
1705 if (!PageUptodate(page
)) {
1709 wait_on_page_writeback(page
);
1711 if (shmem_should_replace_page(page
, gfp
)) {
1712 error
= shmem_replace_page(&page
, gfp
, info
, index
);
1717 error
= mem_cgroup_try_charge_delay(page
, charge_mm
, gfp
, &memcg
,
1720 error
= shmem_add_to_page_cache(page
, mapping
, index
,
1721 swp_to_radix_entry(swap
));
1723 * We already confirmed swap under page lock, and make
1724 * no memory allocation here, so usually no possibility
1725 * of error; but free_swap_and_cache() only trylocks a
1726 * page, so it is just possible that the entry has been
1727 * truncated or holepunched since swap was confirmed.
1728 * shmem_undo_range() will have done some of the
1729 * unaccounting, now delete_from_swap_cache() will do
1731 * Reset swap.val? No, leave it so "failed" goes back to
1732 * "repeat": reading a hole and writing should succeed.
1735 mem_cgroup_cancel_charge(page
, memcg
, false);
1736 delete_from_swap_cache(page
);
1742 mem_cgroup_commit_charge(page
, memcg
, true, false);
1744 spin_lock_irq(&info
->lock
);
1746 shmem_recalc_inode(inode
);
1747 spin_unlock_irq(&info
->lock
);
1749 if (sgp
== SGP_WRITE
)
1750 mark_page_accessed(page
);
1752 delete_from_swap_cache(page
);
1753 set_page_dirty(page
);
1757 if (vma
&& userfaultfd_missing(vma
)) {
1758 *fault_type
= handle_userfault(vmf
, VM_UFFD_MISSING
);
1762 /* shmem_symlink() */
1763 if (mapping
->a_ops
!= &shmem_aops
)
1765 if (shmem_huge
== SHMEM_HUGE_DENY
|| sgp_huge
== SGP_NOHUGE
)
1767 if (shmem_huge
== SHMEM_HUGE_FORCE
)
1769 switch (sbinfo
->huge
) {
1772 case SHMEM_HUGE_NEVER
:
1774 case SHMEM_HUGE_WITHIN_SIZE
:
1775 off
= round_up(index
, HPAGE_PMD_NR
);
1776 i_size
= round_up(i_size_read(inode
), PAGE_SIZE
);
1777 if (i_size
>= HPAGE_PMD_SIZE
&&
1778 i_size
>> PAGE_SHIFT
>= off
)
1781 case SHMEM_HUGE_ADVISE
:
1782 if (sgp_huge
== SGP_HUGE
)
1784 /* TODO: implement fadvise() hints */
1789 page
= shmem_alloc_and_acct_page(gfp
, inode
, index
, true);
1791 alloc_nohuge
: page
= shmem_alloc_and_acct_page(gfp
, inode
,
1796 error
= PTR_ERR(page
);
1798 if (error
!= -ENOSPC
)
1801 * Try to reclaim some spece by splitting a huge page
1802 * beyond i_size on the filesystem.
1806 ret
= shmem_unused_huge_shrink(sbinfo
, NULL
, 1);
1807 if (ret
== SHRINK_STOP
)
1815 if (PageTransHuge(page
))
1816 hindex
= round_down(index
, HPAGE_PMD_NR
);
1820 if (sgp
== SGP_WRITE
)
1821 __SetPageReferenced(page
);
1823 error
= mem_cgroup_try_charge_delay(page
, charge_mm
, gfp
, &memcg
,
1824 PageTransHuge(page
));
1827 error
= radix_tree_maybe_preload_order(gfp
& GFP_RECLAIM_MASK
,
1828 compound_order(page
));
1830 error
= shmem_add_to_page_cache(page
, mapping
, hindex
,
1832 radix_tree_preload_end();
1835 mem_cgroup_cancel_charge(page
, memcg
,
1836 PageTransHuge(page
));
1839 mem_cgroup_commit_charge(page
, memcg
, false,
1840 PageTransHuge(page
));
1841 lru_cache_add_anon(page
);
1843 spin_lock_irq(&info
->lock
);
1844 info
->alloced
+= 1 << compound_order(page
);
1845 inode
->i_blocks
+= BLOCKS_PER_PAGE
<< compound_order(page
);
1846 shmem_recalc_inode(inode
);
1847 spin_unlock_irq(&info
->lock
);
1850 if (PageTransHuge(page
) &&
1851 DIV_ROUND_UP(i_size_read(inode
), PAGE_SIZE
) <
1852 hindex
+ HPAGE_PMD_NR
- 1) {
1854 * Part of the huge page is beyond i_size: subject
1855 * to shrink under memory pressure.
1857 spin_lock(&sbinfo
->shrinklist_lock
);
1859 * _careful to defend against unlocked access to
1860 * ->shrink_list in shmem_unused_huge_shrink()
1862 if (list_empty_careful(&info
->shrinklist
)) {
1863 list_add_tail(&info
->shrinklist
,
1864 &sbinfo
->shrinklist
);
1865 sbinfo
->shrinklist_len
++;
1867 spin_unlock(&sbinfo
->shrinklist_lock
);
1871 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1873 if (sgp
== SGP_FALLOC
)
1877 * Let SGP_WRITE caller clear ends if write does not fill page;
1878 * but SGP_FALLOC on a page fallocated earlier must initialize
1879 * it now, lest undo on failure cancel our earlier guarantee.
1881 if (sgp
!= SGP_WRITE
&& !PageUptodate(page
)) {
1882 struct page
*head
= compound_head(page
);
1885 for (i
= 0; i
< (1 << compound_order(head
)); i
++) {
1886 clear_highpage(head
+ i
);
1887 flush_dcache_page(head
+ i
);
1889 SetPageUptodate(head
);
1893 /* Perhaps the file has been truncated since we checked */
1894 if (sgp
<= SGP_CACHE
&&
1895 ((loff_t
)index
<< PAGE_SHIFT
) >= i_size_read(inode
)) {
1897 ClearPageDirty(page
);
1898 delete_from_page_cache(page
);
1899 spin_lock_irq(&info
->lock
);
1900 shmem_recalc_inode(inode
);
1901 spin_unlock_irq(&info
->lock
);
1906 *pagep
= page
+ index
- hindex
;
1913 shmem_inode_unacct_blocks(inode
, 1 << compound_order(page
));
1915 if (PageTransHuge(page
)) {
1921 if (swap
.val
&& !shmem_confirm_swap(mapping
, index
, swap
))
1928 if (error
== -ENOSPC
&& !once
++) {
1929 spin_lock_irq(&info
->lock
);
1930 shmem_recalc_inode(inode
);
1931 spin_unlock_irq(&info
->lock
);
1934 if (error
== -EEXIST
) /* from above or from radix_tree_insert */
1940 * This is like autoremove_wake_function, but it removes the wait queue
1941 * entry unconditionally - even if something else had already woken the
1944 static int synchronous_wake_function(wait_queue_entry_t
*wait
, unsigned mode
, int sync
, void *key
)
1946 int ret
= default_wake_function(wait
, mode
, sync
, key
);
1947 list_del_init(&wait
->entry
);
1951 static vm_fault_t
shmem_fault(struct vm_fault
*vmf
)
1953 struct vm_area_struct
*vma
= vmf
->vma
;
1954 struct inode
*inode
= file_inode(vma
->vm_file
);
1955 gfp_t gfp
= mapping_gfp_mask(inode
->i_mapping
);
1958 vm_fault_t ret
= VM_FAULT_LOCKED
;
1961 * Trinity finds that probing a hole which tmpfs is punching can
1962 * prevent the hole-punch from ever completing: which in turn
1963 * locks writers out with its hold on i_mutex. So refrain from
1964 * faulting pages into the hole while it's being punched. Although
1965 * shmem_undo_range() does remove the additions, it may be unable to
1966 * keep up, as each new page needs its own unmap_mapping_range() call,
1967 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1969 * It does not matter if we sometimes reach this check just before the
1970 * hole-punch begins, so that one fault then races with the punch:
1971 * we just need to make racing faults a rare case.
1973 * The implementation below would be much simpler if we just used a
1974 * standard mutex or completion: but we cannot take i_mutex in fault,
1975 * and bloating every shmem inode for this unlikely case would be sad.
1977 if (unlikely(inode
->i_private
)) {
1978 struct shmem_falloc
*shmem_falloc
;
1980 spin_lock(&inode
->i_lock
);
1981 shmem_falloc
= inode
->i_private
;
1983 shmem_falloc
->waitq
&&
1984 vmf
->pgoff
>= shmem_falloc
->start
&&
1985 vmf
->pgoff
< shmem_falloc
->next
) {
1986 wait_queue_head_t
*shmem_falloc_waitq
;
1987 DEFINE_WAIT_FUNC(shmem_fault_wait
, synchronous_wake_function
);
1989 ret
= VM_FAULT_NOPAGE
;
1990 if ((vmf
->flags
& FAULT_FLAG_ALLOW_RETRY
) &&
1991 !(vmf
->flags
& FAULT_FLAG_RETRY_NOWAIT
)) {
1992 /* It's polite to up mmap_sem if we can */
1993 up_read(&vma
->vm_mm
->mmap_sem
);
1994 ret
= VM_FAULT_RETRY
;
1997 shmem_falloc_waitq
= shmem_falloc
->waitq
;
1998 prepare_to_wait(shmem_falloc_waitq
, &shmem_fault_wait
,
1999 TASK_UNINTERRUPTIBLE
);
2000 spin_unlock(&inode
->i_lock
);
2004 * shmem_falloc_waitq points into the shmem_fallocate()
2005 * stack of the hole-punching task: shmem_falloc_waitq
2006 * is usually invalid by the time we reach here, but
2007 * finish_wait() does not dereference it in that case;
2008 * though i_lock needed lest racing with wake_up_all().
2010 spin_lock(&inode
->i_lock
);
2011 finish_wait(shmem_falloc_waitq
, &shmem_fault_wait
);
2012 spin_unlock(&inode
->i_lock
);
2015 spin_unlock(&inode
->i_lock
);
2020 if ((vma
->vm_flags
& VM_NOHUGEPAGE
) ||
2021 test_bit(MMF_DISABLE_THP
, &vma
->vm_mm
->flags
))
2023 else if (vma
->vm_flags
& VM_HUGEPAGE
)
2026 err
= shmem_getpage_gfp(inode
, vmf
->pgoff
, &vmf
->page
, sgp
,
2027 gfp
, vma
, vmf
, &ret
);
2029 return vmf_error(err
);
2033 unsigned long shmem_get_unmapped_area(struct file
*file
,
2034 unsigned long uaddr
, unsigned long len
,
2035 unsigned long pgoff
, unsigned long flags
)
2037 unsigned long (*get_area
)(struct file
*,
2038 unsigned long, unsigned long, unsigned long, unsigned long);
2040 unsigned long offset
;
2041 unsigned long inflated_len
;
2042 unsigned long inflated_addr
;
2043 unsigned long inflated_offset
;
2045 if (len
> TASK_SIZE
)
2048 get_area
= current
->mm
->get_unmapped_area
;
2049 addr
= get_area(file
, uaddr
, len
, pgoff
, flags
);
2051 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
))
2053 if (IS_ERR_VALUE(addr
))
2055 if (addr
& ~PAGE_MASK
)
2057 if (addr
> TASK_SIZE
- len
)
2060 if (shmem_huge
== SHMEM_HUGE_DENY
)
2062 if (len
< HPAGE_PMD_SIZE
)
2064 if (flags
& MAP_FIXED
)
2067 * Our priority is to support MAP_SHARED mapped hugely;
2068 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2069 * But if caller specified an address hint, respect that as before.
2074 if (shmem_huge
!= SHMEM_HUGE_FORCE
) {
2075 struct super_block
*sb
;
2078 VM_BUG_ON(file
->f_op
!= &shmem_file_operations
);
2079 sb
= file_inode(file
)->i_sb
;
2082 * Called directly from mm/mmap.c, or drivers/char/mem.c
2083 * for "/dev/zero", to create a shared anonymous object.
2085 if (IS_ERR(shm_mnt
))
2087 sb
= shm_mnt
->mnt_sb
;
2089 if (SHMEM_SB(sb
)->huge
== SHMEM_HUGE_NEVER
)
2093 offset
= (pgoff
<< PAGE_SHIFT
) & (HPAGE_PMD_SIZE
-1);
2094 if (offset
&& offset
+ len
< 2 * HPAGE_PMD_SIZE
)
2096 if ((addr
& (HPAGE_PMD_SIZE
-1)) == offset
)
2099 inflated_len
= len
+ HPAGE_PMD_SIZE
- PAGE_SIZE
;
2100 if (inflated_len
> TASK_SIZE
)
2102 if (inflated_len
< len
)
2105 inflated_addr
= get_area(NULL
, 0, inflated_len
, 0, flags
);
2106 if (IS_ERR_VALUE(inflated_addr
))
2108 if (inflated_addr
& ~PAGE_MASK
)
2111 inflated_offset
= inflated_addr
& (HPAGE_PMD_SIZE
-1);
2112 inflated_addr
+= offset
- inflated_offset
;
2113 if (inflated_offset
> offset
)
2114 inflated_addr
+= HPAGE_PMD_SIZE
;
2116 if (inflated_addr
> TASK_SIZE
- len
)
2118 return inflated_addr
;
2122 static int shmem_set_policy(struct vm_area_struct
*vma
, struct mempolicy
*mpol
)
2124 struct inode
*inode
= file_inode(vma
->vm_file
);
2125 return mpol_set_shared_policy(&SHMEM_I(inode
)->policy
, vma
, mpol
);
2128 static struct mempolicy
*shmem_get_policy(struct vm_area_struct
*vma
,
2131 struct inode
*inode
= file_inode(vma
->vm_file
);
2134 index
= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
) + vma
->vm_pgoff
;
2135 return mpol_shared_policy_lookup(&SHMEM_I(inode
)->policy
, index
);
2139 int shmem_lock(struct file
*file
, int lock
, struct user_struct
*user
)
2141 struct inode
*inode
= file_inode(file
);
2142 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2143 int retval
= -ENOMEM
;
2145 spin_lock_irq(&info
->lock
);
2146 if (lock
&& !(info
->flags
& VM_LOCKED
)) {
2147 if (!user_shm_lock(inode
->i_size
, user
))
2149 info
->flags
|= VM_LOCKED
;
2150 mapping_set_unevictable(file
->f_mapping
);
2152 if (!lock
&& (info
->flags
& VM_LOCKED
) && user
) {
2153 user_shm_unlock(inode
->i_size
, user
);
2154 info
->flags
&= ~VM_LOCKED
;
2155 mapping_clear_unevictable(file
->f_mapping
);
2160 spin_unlock_irq(&info
->lock
);
2164 static int shmem_mmap(struct file
*file
, struct vm_area_struct
*vma
)
2166 file_accessed(file
);
2167 vma
->vm_ops
= &shmem_vm_ops
;
2168 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
) &&
2169 ((vma
->vm_start
+ ~HPAGE_PMD_MASK
) & HPAGE_PMD_MASK
) <
2170 (vma
->vm_end
& HPAGE_PMD_MASK
)) {
2171 khugepaged_enter(vma
, vma
->vm_flags
);
2176 static struct inode
*shmem_get_inode(struct super_block
*sb
, const struct inode
*dir
,
2177 umode_t mode
, dev_t dev
, unsigned long flags
)
2179 struct inode
*inode
;
2180 struct shmem_inode_info
*info
;
2181 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
2183 if (shmem_reserve_inode(sb
))
2186 inode
= new_inode(sb
);
2188 inode
->i_ino
= get_next_ino();
2189 inode_init_owner(inode
, dir
, mode
);
2190 inode
->i_blocks
= 0;
2191 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= current_time(inode
);
2192 inode
->i_generation
= prandom_u32();
2193 info
= SHMEM_I(inode
);
2194 memset(info
, 0, (char *)inode
- (char *)info
);
2195 spin_lock_init(&info
->lock
);
2196 info
->seals
= F_SEAL_SEAL
;
2197 info
->flags
= flags
& VM_NORESERVE
;
2198 INIT_LIST_HEAD(&info
->shrinklist
);
2199 INIT_LIST_HEAD(&info
->swaplist
);
2200 simple_xattrs_init(&info
->xattrs
);
2201 cache_no_acl(inode
);
2203 switch (mode
& S_IFMT
) {
2205 inode
->i_op
= &shmem_special_inode_operations
;
2206 init_special_inode(inode
, mode
, dev
);
2209 inode
->i_mapping
->a_ops
= &shmem_aops
;
2210 inode
->i_op
= &shmem_inode_operations
;
2211 inode
->i_fop
= &shmem_file_operations
;
2212 mpol_shared_policy_init(&info
->policy
,
2213 shmem_get_sbmpol(sbinfo
));
2217 /* Some things misbehave if size == 0 on a directory */
2218 inode
->i_size
= 2 * BOGO_DIRENT_SIZE
;
2219 inode
->i_op
= &shmem_dir_inode_operations
;
2220 inode
->i_fop
= &simple_dir_operations
;
2224 * Must not load anything in the rbtree,
2225 * mpol_free_shared_policy will not be called.
2227 mpol_shared_policy_init(&info
->policy
, NULL
);
2231 shmem_free_inode(sb
);
2235 bool shmem_mapping(struct address_space
*mapping
)
2237 return mapping
->a_ops
== &shmem_aops
;
2240 static int shmem_mfill_atomic_pte(struct mm_struct
*dst_mm
,
2242 struct vm_area_struct
*dst_vma
,
2243 unsigned long dst_addr
,
2244 unsigned long src_addr
,
2246 struct page
**pagep
)
2248 struct inode
*inode
= file_inode(dst_vma
->vm_file
);
2249 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2250 struct address_space
*mapping
= inode
->i_mapping
;
2251 gfp_t gfp
= mapping_gfp_mask(mapping
);
2252 pgoff_t pgoff
= linear_page_index(dst_vma
, dst_addr
);
2253 struct mem_cgroup
*memcg
;
2257 pte_t _dst_pte
, *dst_pte
;
2261 if (!shmem_inode_acct_block(inode
, 1))
2265 page
= shmem_alloc_page(gfp
, info
, pgoff
);
2267 goto out_unacct_blocks
;
2269 if (!zeropage
) { /* mcopy_atomic */
2270 page_kaddr
= kmap_atomic(page
);
2271 ret
= copy_from_user(page_kaddr
,
2272 (const void __user
*)src_addr
,
2274 kunmap_atomic(page_kaddr
);
2276 /* fallback to copy_from_user outside mmap_sem */
2277 if (unlikely(ret
)) {
2279 shmem_inode_unacct_blocks(inode
, 1);
2280 /* don't free the page */
2283 } else { /* mfill_zeropage_atomic */
2284 clear_highpage(page
);
2291 VM_BUG_ON(PageLocked(page
) || PageSwapBacked(page
));
2292 __SetPageLocked(page
);
2293 __SetPageSwapBacked(page
);
2294 __SetPageUptodate(page
);
2296 ret
= mem_cgroup_try_charge_delay(page
, dst_mm
, gfp
, &memcg
, false);
2300 ret
= radix_tree_maybe_preload(gfp
& GFP_RECLAIM_MASK
);
2302 ret
= shmem_add_to_page_cache(page
, mapping
, pgoff
, NULL
);
2303 radix_tree_preload_end();
2306 goto out_release_uncharge
;
2308 mem_cgroup_commit_charge(page
, memcg
, false, false);
2310 _dst_pte
= mk_pte(page
, dst_vma
->vm_page_prot
);
2311 if (dst_vma
->vm_flags
& VM_WRITE
)
2312 _dst_pte
= pte_mkwrite(pte_mkdirty(_dst_pte
));
2315 dst_pte
= pte_offset_map_lock(dst_mm
, dst_pmd
, dst_addr
, &ptl
);
2316 if (!pte_none(*dst_pte
))
2317 goto out_release_uncharge_unlock
;
2319 lru_cache_add_anon(page
);
2321 spin_lock(&info
->lock
);
2323 inode
->i_blocks
+= BLOCKS_PER_PAGE
;
2324 shmem_recalc_inode(inode
);
2325 spin_unlock(&info
->lock
);
2327 inc_mm_counter(dst_mm
, mm_counter_file(page
));
2328 page_add_file_rmap(page
, false);
2329 set_pte_at(dst_mm
, dst_addr
, dst_pte
, _dst_pte
);
2331 /* No need to invalidate - it was non-present before */
2332 update_mmu_cache(dst_vma
, dst_addr
, dst_pte
);
2334 pte_unmap_unlock(dst_pte
, ptl
);
2338 out_release_uncharge_unlock
:
2339 pte_unmap_unlock(dst_pte
, ptl
);
2340 out_release_uncharge
:
2341 mem_cgroup_cancel_charge(page
, memcg
, false);
2346 shmem_inode_unacct_blocks(inode
, 1);
2350 int shmem_mcopy_atomic_pte(struct mm_struct
*dst_mm
,
2352 struct vm_area_struct
*dst_vma
,
2353 unsigned long dst_addr
,
2354 unsigned long src_addr
,
2355 struct page
**pagep
)
2357 return shmem_mfill_atomic_pte(dst_mm
, dst_pmd
, dst_vma
,
2358 dst_addr
, src_addr
, false, pagep
);
2361 int shmem_mfill_zeropage_pte(struct mm_struct
*dst_mm
,
2363 struct vm_area_struct
*dst_vma
,
2364 unsigned long dst_addr
)
2366 struct page
*page
= NULL
;
2368 return shmem_mfill_atomic_pte(dst_mm
, dst_pmd
, dst_vma
,
2369 dst_addr
, 0, true, &page
);
2373 static const struct inode_operations shmem_symlink_inode_operations
;
2374 static const struct inode_operations shmem_short_symlink_operations
;
2376 #ifdef CONFIG_TMPFS_XATTR
2377 static int shmem_initxattrs(struct inode
*, const struct xattr
*, void *);
2379 #define shmem_initxattrs NULL
2383 shmem_write_begin(struct file
*file
, struct address_space
*mapping
,
2384 loff_t pos
, unsigned len
, unsigned flags
,
2385 struct page
**pagep
, void **fsdata
)
2387 struct inode
*inode
= mapping
->host
;
2388 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2389 pgoff_t index
= pos
>> PAGE_SHIFT
;
2391 /* i_mutex is held by caller */
2392 if (unlikely(info
->seals
& (F_SEAL_WRITE
| F_SEAL_GROW
))) {
2393 if (info
->seals
& F_SEAL_WRITE
)
2395 if ((info
->seals
& F_SEAL_GROW
) && pos
+ len
> inode
->i_size
)
2399 return shmem_getpage(inode
, index
, pagep
, SGP_WRITE
);
2403 shmem_write_end(struct file
*file
, struct address_space
*mapping
,
2404 loff_t pos
, unsigned len
, unsigned copied
,
2405 struct page
*page
, void *fsdata
)
2407 struct inode
*inode
= mapping
->host
;
2409 if (pos
+ copied
> inode
->i_size
)
2410 i_size_write(inode
, pos
+ copied
);
2412 if (!PageUptodate(page
)) {
2413 struct page
*head
= compound_head(page
);
2414 if (PageTransCompound(page
)) {
2417 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
2418 if (head
+ i
== page
)
2420 clear_highpage(head
+ i
);
2421 flush_dcache_page(head
+ i
);
2424 if (copied
< PAGE_SIZE
) {
2425 unsigned from
= pos
& (PAGE_SIZE
- 1);
2426 zero_user_segments(page
, 0, from
,
2427 from
+ copied
, PAGE_SIZE
);
2429 SetPageUptodate(head
);
2431 set_page_dirty(page
);
2438 static ssize_t
shmem_file_read_iter(struct kiocb
*iocb
, struct iov_iter
*to
)
2440 struct file
*file
= iocb
->ki_filp
;
2441 struct inode
*inode
= file_inode(file
);
2442 struct address_space
*mapping
= inode
->i_mapping
;
2444 unsigned long offset
;
2445 enum sgp_type sgp
= SGP_READ
;
2448 loff_t
*ppos
= &iocb
->ki_pos
;
2451 * Might this read be for a stacking filesystem? Then when reading
2452 * holes of a sparse file, we actually need to allocate those pages,
2453 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2455 if (!iter_is_iovec(to
))
2458 index
= *ppos
>> PAGE_SHIFT
;
2459 offset
= *ppos
& ~PAGE_MASK
;
2462 struct page
*page
= NULL
;
2464 unsigned long nr
, ret
;
2465 loff_t i_size
= i_size_read(inode
);
2467 end_index
= i_size
>> PAGE_SHIFT
;
2468 if (index
> end_index
)
2470 if (index
== end_index
) {
2471 nr
= i_size
& ~PAGE_MASK
;
2476 error
= shmem_getpage(inode
, index
, &page
, sgp
);
2478 if (error
== -EINVAL
)
2483 if (sgp
== SGP_CACHE
)
2484 set_page_dirty(page
);
2489 * We must evaluate after, since reads (unlike writes)
2490 * are called without i_mutex protection against truncate
2493 i_size
= i_size_read(inode
);
2494 end_index
= i_size
>> PAGE_SHIFT
;
2495 if (index
== end_index
) {
2496 nr
= i_size
& ~PAGE_MASK
;
2507 * If users can be writing to this page using arbitrary
2508 * virtual addresses, take care about potential aliasing
2509 * before reading the page on the kernel side.
2511 if (mapping_writably_mapped(mapping
))
2512 flush_dcache_page(page
);
2514 * Mark the page accessed if we read the beginning.
2517 mark_page_accessed(page
);
2519 page
= ZERO_PAGE(0);
2524 * Ok, we have the page, and it's up-to-date, so
2525 * now we can copy it to user space...
2527 ret
= copy_page_to_iter(page
, offset
, nr
, to
);
2530 index
+= offset
>> PAGE_SHIFT
;
2531 offset
&= ~PAGE_MASK
;
2534 if (!iov_iter_count(to
))
2543 *ppos
= ((loff_t
) index
<< PAGE_SHIFT
) + offset
;
2544 file_accessed(file
);
2545 return retval
? retval
: error
;
2549 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
2551 static pgoff_t
shmem_seek_hole_data(struct address_space
*mapping
,
2552 pgoff_t index
, pgoff_t end
, int whence
)
2555 struct pagevec pvec
;
2556 pgoff_t indices
[PAGEVEC_SIZE
];
2560 pagevec_init(&pvec
);
2561 pvec
.nr
= 1; /* start small: we may be there already */
2563 pvec
.nr
= find_get_entries(mapping
, index
,
2564 pvec
.nr
, pvec
.pages
, indices
);
2566 if (whence
== SEEK_DATA
)
2570 for (i
= 0; i
< pvec
.nr
; i
++, index
++) {
2571 if (index
< indices
[i
]) {
2572 if (whence
== SEEK_HOLE
) {
2578 page
= pvec
.pages
[i
];
2579 if (page
&& !radix_tree_exceptional_entry(page
)) {
2580 if (!PageUptodate(page
))
2584 (page
&& whence
== SEEK_DATA
) ||
2585 (!page
&& whence
== SEEK_HOLE
)) {
2590 pagevec_remove_exceptionals(&pvec
);
2591 pagevec_release(&pvec
);
2592 pvec
.nr
= PAGEVEC_SIZE
;
2598 static loff_t
shmem_file_llseek(struct file
*file
, loff_t offset
, int whence
)
2600 struct address_space
*mapping
= file
->f_mapping
;
2601 struct inode
*inode
= mapping
->host
;
2605 if (whence
!= SEEK_DATA
&& whence
!= SEEK_HOLE
)
2606 return generic_file_llseek_size(file
, offset
, whence
,
2607 MAX_LFS_FILESIZE
, i_size_read(inode
));
2609 /* We're holding i_mutex so we can access i_size directly */
2613 else if (offset
>= inode
->i_size
)
2616 start
= offset
>> PAGE_SHIFT
;
2617 end
= (inode
->i_size
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2618 new_offset
= shmem_seek_hole_data(mapping
, start
, end
, whence
);
2619 new_offset
<<= PAGE_SHIFT
;
2620 if (new_offset
> offset
) {
2621 if (new_offset
< inode
->i_size
)
2622 offset
= new_offset
;
2623 else if (whence
== SEEK_DATA
)
2626 offset
= inode
->i_size
;
2631 offset
= vfs_setpos(file
, offset
, MAX_LFS_FILESIZE
);
2632 inode_unlock(inode
);
2636 static long shmem_fallocate(struct file
*file
, int mode
, loff_t offset
,
2639 struct inode
*inode
= file_inode(file
);
2640 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
2641 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2642 struct shmem_falloc shmem_falloc
;
2643 pgoff_t start
, index
, end
;
2646 if (mode
& ~(FALLOC_FL_KEEP_SIZE
| FALLOC_FL_PUNCH_HOLE
))
2651 if (mode
& FALLOC_FL_PUNCH_HOLE
) {
2652 struct address_space
*mapping
= file
->f_mapping
;
2653 loff_t unmap_start
= round_up(offset
, PAGE_SIZE
);
2654 loff_t unmap_end
= round_down(offset
+ len
, PAGE_SIZE
) - 1;
2655 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq
);
2657 /* protected by i_mutex */
2658 if (info
->seals
& F_SEAL_WRITE
) {
2663 shmem_falloc
.waitq
= &shmem_falloc_waitq
;
2664 shmem_falloc
.start
= unmap_start
>> PAGE_SHIFT
;
2665 shmem_falloc
.next
= (unmap_end
+ 1) >> PAGE_SHIFT
;
2666 spin_lock(&inode
->i_lock
);
2667 inode
->i_private
= &shmem_falloc
;
2668 spin_unlock(&inode
->i_lock
);
2670 if ((u64
)unmap_end
> (u64
)unmap_start
)
2671 unmap_mapping_range(mapping
, unmap_start
,
2672 1 + unmap_end
- unmap_start
, 0);
2673 shmem_truncate_range(inode
, offset
, offset
+ len
- 1);
2674 /* No need to unmap again: hole-punching leaves COWed pages */
2676 spin_lock(&inode
->i_lock
);
2677 inode
->i_private
= NULL
;
2678 wake_up_all(&shmem_falloc_waitq
);
2679 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq
.head
));
2680 spin_unlock(&inode
->i_lock
);
2685 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2686 error
= inode_newsize_ok(inode
, offset
+ len
);
2690 if ((info
->seals
& F_SEAL_GROW
) && offset
+ len
> inode
->i_size
) {
2695 start
= offset
>> PAGE_SHIFT
;
2696 end
= (offset
+ len
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2697 /* Try to avoid a swapstorm if len is impossible to satisfy */
2698 if (sbinfo
->max_blocks
&& end
- start
> sbinfo
->max_blocks
) {
2703 shmem_falloc
.waitq
= NULL
;
2704 shmem_falloc
.start
= start
;
2705 shmem_falloc
.next
= start
;
2706 shmem_falloc
.nr_falloced
= 0;
2707 shmem_falloc
.nr_unswapped
= 0;
2708 spin_lock(&inode
->i_lock
);
2709 inode
->i_private
= &shmem_falloc
;
2710 spin_unlock(&inode
->i_lock
);
2712 for (index
= start
; index
< end
; index
++) {
2716 * Good, the fallocate(2) manpage permits EINTR: we may have
2717 * been interrupted because we are using up too much memory.
2719 if (signal_pending(current
))
2721 else if (shmem_falloc
.nr_unswapped
> shmem_falloc
.nr_falloced
)
2724 error
= shmem_getpage(inode
, index
, &page
, SGP_FALLOC
);
2726 /* Remove the !PageUptodate pages we added */
2727 if (index
> start
) {
2728 shmem_undo_range(inode
,
2729 (loff_t
)start
<< PAGE_SHIFT
,
2730 ((loff_t
)index
<< PAGE_SHIFT
) - 1, true);
2736 * Inform shmem_writepage() how far we have reached.
2737 * No need for lock or barrier: we have the page lock.
2739 shmem_falloc
.next
++;
2740 if (!PageUptodate(page
))
2741 shmem_falloc
.nr_falloced
++;
2744 * If !PageUptodate, leave it that way so that freeable pages
2745 * can be recognized if we need to rollback on error later.
2746 * But set_page_dirty so that memory pressure will swap rather
2747 * than free the pages we are allocating (and SGP_CACHE pages
2748 * might still be clean: we now need to mark those dirty too).
2750 set_page_dirty(page
);
2756 if (!(mode
& FALLOC_FL_KEEP_SIZE
) && offset
+ len
> inode
->i_size
)
2757 i_size_write(inode
, offset
+ len
);
2758 inode
->i_ctime
= current_time(inode
);
2760 spin_lock(&inode
->i_lock
);
2761 inode
->i_private
= NULL
;
2762 spin_unlock(&inode
->i_lock
);
2764 inode_unlock(inode
);
2768 static int shmem_statfs(struct dentry
*dentry
, struct kstatfs
*buf
)
2770 struct shmem_sb_info
*sbinfo
= SHMEM_SB(dentry
->d_sb
);
2772 buf
->f_type
= TMPFS_MAGIC
;
2773 buf
->f_bsize
= PAGE_SIZE
;
2774 buf
->f_namelen
= NAME_MAX
;
2775 if (sbinfo
->max_blocks
) {
2776 buf
->f_blocks
= sbinfo
->max_blocks
;
2778 buf
->f_bfree
= sbinfo
->max_blocks
-
2779 percpu_counter_sum(&sbinfo
->used_blocks
);
2781 if (sbinfo
->max_inodes
) {
2782 buf
->f_files
= sbinfo
->max_inodes
;
2783 buf
->f_ffree
= sbinfo
->free_inodes
;
2785 /* else leave those fields 0 like simple_statfs */
2790 * File creation. Allocate an inode, and we're done..
2793 shmem_mknod(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
, dev_t dev
)
2795 struct inode
*inode
;
2796 int error
= -ENOSPC
;
2798 inode
= shmem_get_inode(dir
->i_sb
, dir
, mode
, dev
, VM_NORESERVE
);
2800 error
= simple_acl_create(dir
, inode
);
2803 error
= security_inode_init_security(inode
, dir
,
2805 shmem_initxattrs
, NULL
);
2806 if (error
&& error
!= -EOPNOTSUPP
)
2810 dir
->i_size
+= BOGO_DIRENT_SIZE
;
2811 dir
->i_ctime
= dir
->i_mtime
= current_time(dir
);
2812 d_instantiate(dentry
, inode
);
2813 dget(dentry
); /* Extra count - pin the dentry in core */
2822 shmem_tmpfile(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
2824 struct inode
*inode
;
2825 int error
= -ENOSPC
;
2827 inode
= shmem_get_inode(dir
->i_sb
, dir
, mode
, 0, VM_NORESERVE
);
2829 error
= security_inode_init_security(inode
, dir
,
2831 shmem_initxattrs
, NULL
);
2832 if (error
&& error
!= -EOPNOTSUPP
)
2834 error
= simple_acl_create(dir
, inode
);
2837 d_tmpfile(dentry
, inode
);
2845 static int shmem_mkdir(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
2849 if ((error
= shmem_mknod(dir
, dentry
, mode
| S_IFDIR
, 0)))
2855 static int shmem_create(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
,
2858 return shmem_mknod(dir
, dentry
, mode
| S_IFREG
, 0);
2864 static int shmem_link(struct dentry
*old_dentry
, struct inode
*dir
, struct dentry
*dentry
)
2866 struct inode
*inode
= d_inode(old_dentry
);
2870 * No ordinary (disk based) filesystem counts links as inodes;
2871 * but each new link needs a new dentry, pinning lowmem, and
2872 * tmpfs dentries cannot be pruned until they are unlinked.
2874 ret
= shmem_reserve_inode(inode
->i_sb
);
2878 dir
->i_size
+= BOGO_DIRENT_SIZE
;
2879 inode
->i_ctime
= dir
->i_ctime
= dir
->i_mtime
= current_time(inode
);
2881 ihold(inode
); /* New dentry reference */
2882 dget(dentry
); /* Extra pinning count for the created dentry */
2883 d_instantiate(dentry
, inode
);
2888 static int shmem_unlink(struct inode
*dir
, struct dentry
*dentry
)
2890 struct inode
*inode
= d_inode(dentry
);
2892 if (inode
->i_nlink
> 1 && !S_ISDIR(inode
->i_mode
))
2893 shmem_free_inode(inode
->i_sb
);
2895 dir
->i_size
-= BOGO_DIRENT_SIZE
;
2896 inode
->i_ctime
= dir
->i_ctime
= dir
->i_mtime
= current_time(inode
);
2898 dput(dentry
); /* Undo the count from "create" - this does all the work */
2902 static int shmem_rmdir(struct inode
*dir
, struct dentry
*dentry
)
2904 if (!simple_empty(dentry
))
2907 drop_nlink(d_inode(dentry
));
2909 return shmem_unlink(dir
, dentry
);
2912 static int shmem_exchange(struct inode
*old_dir
, struct dentry
*old_dentry
, struct inode
*new_dir
, struct dentry
*new_dentry
)
2914 bool old_is_dir
= d_is_dir(old_dentry
);
2915 bool new_is_dir
= d_is_dir(new_dentry
);
2917 if (old_dir
!= new_dir
&& old_is_dir
!= new_is_dir
) {
2919 drop_nlink(old_dir
);
2922 drop_nlink(new_dir
);
2926 old_dir
->i_ctime
= old_dir
->i_mtime
=
2927 new_dir
->i_ctime
= new_dir
->i_mtime
=
2928 d_inode(old_dentry
)->i_ctime
=
2929 d_inode(new_dentry
)->i_ctime
= current_time(old_dir
);
2934 static int shmem_whiteout(struct inode
*old_dir
, struct dentry
*old_dentry
)
2936 struct dentry
*whiteout
;
2939 whiteout
= d_alloc(old_dentry
->d_parent
, &old_dentry
->d_name
);
2943 error
= shmem_mknod(old_dir
, whiteout
,
2944 S_IFCHR
| WHITEOUT_MODE
, WHITEOUT_DEV
);
2950 * Cheat and hash the whiteout while the old dentry is still in
2951 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2953 * d_lookup() will consistently find one of them at this point,
2954 * not sure which one, but that isn't even important.
2961 * The VFS layer already does all the dentry stuff for rename,
2962 * we just have to decrement the usage count for the target if
2963 * it exists so that the VFS layer correctly free's it when it
2966 static int shmem_rename2(struct inode
*old_dir
, struct dentry
*old_dentry
, struct inode
*new_dir
, struct dentry
*new_dentry
, unsigned int flags
)
2968 struct inode
*inode
= d_inode(old_dentry
);
2969 int they_are_dirs
= S_ISDIR(inode
->i_mode
);
2971 if (flags
& ~(RENAME_NOREPLACE
| RENAME_EXCHANGE
| RENAME_WHITEOUT
))
2974 if (flags
& RENAME_EXCHANGE
)
2975 return shmem_exchange(old_dir
, old_dentry
, new_dir
, new_dentry
);
2977 if (!simple_empty(new_dentry
))
2980 if (flags
& RENAME_WHITEOUT
) {
2983 error
= shmem_whiteout(old_dir
, old_dentry
);
2988 if (d_really_is_positive(new_dentry
)) {
2989 (void) shmem_unlink(new_dir
, new_dentry
);
2990 if (they_are_dirs
) {
2991 drop_nlink(d_inode(new_dentry
));
2992 drop_nlink(old_dir
);
2994 } else if (they_are_dirs
) {
2995 drop_nlink(old_dir
);
2999 old_dir
->i_size
-= BOGO_DIRENT_SIZE
;
3000 new_dir
->i_size
+= BOGO_DIRENT_SIZE
;
3001 old_dir
->i_ctime
= old_dir
->i_mtime
=
3002 new_dir
->i_ctime
= new_dir
->i_mtime
=
3003 inode
->i_ctime
= current_time(old_dir
);
3007 static int shmem_symlink(struct inode
*dir
, struct dentry
*dentry
, const char *symname
)
3011 struct inode
*inode
;
3014 len
= strlen(symname
) + 1;
3015 if (len
> PAGE_SIZE
)
3016 return -ENAMETOOLONG
;
3018 inode
= shmem_get_inode(dir
->i_sb
, dir
, S_IFLNK
| 0777, 0,
3023 error
= security_inode_init_security(inode
, dir
, &dentry
->d_name
,
3024 shmem_initxattrs
, NULL
);
3026 if (error
!= -EOPNOTSUPP
) {
3033 inode
->i_size
= len
-1;
3034 if (len
<= SHORT_SYMLINK_LEN
) {
3035 inode
->i_link
= kmemdup(symname
, len
, GFP_KERNEL
);
3036 if (!inode
->i_link
) {
3040 inode
->i_op
= &shmem_short_symlink_operations
;
3042 inode_nohighmem(inode
);
3043 error
= shmem_getpage(inode
, 0, &page
, SGP_WRITE
);
3048 inode
->i_mapping
->a_ops
= &shmem_aops
;
3049 inode
->i_op
= &shmem_symlink_inode_operations
;
3050 memcpy(page_address(page
), symname
, len
);
3051 SetPageUptodate(page
);
3052 set_page_dirty(page
);
3056 dir
->i_size
+= BOGO_DIRENT_SIZE
;
3057 dir
->i_ctime
= dir
->i_mtime
= current_time(dir
);
3058 d_instantiate(dentry
, inode
);
3063 static void shmem_put_link(void *arg
)
3065 mark_page_accessed(arg
);
3069 static const char *shmem_get_link(struct dentry
*dentry
,
3070 struct inode
*inode
,
3071 struct delayed_call
*done
)
3073 struct page
*page
= NULL
;
3076 page
= find_get_page(inode
->i_mapping
, 0);
3078 return ERR_PTR(-ECHILD
);
3079 if (!PageUptodate(page
)) {
3081 return ERR_PTR(-ECHILD
);
3084 error
= shmem_getpage(inode
, 0, &page
, SGP_READ
);
3086 return ERR_PTR(error
);
3089 set_delayed_call(done
, shmem_put_link
, page
);
3090 return page_address(page
);
3093 #ifdef CONFIG_TMPFS_XATTR
3095 * Superblocks without xattr inode operations may get some security.* xattr
3096 * support from the LSM "for free". As soon as we have any other xattrs
3097 * like ACLs, we also need to implement the security.* handlers at
3098 * filesystem level, though.
3102 * Callback for security_inode_init_security() for acquiring xattrs.
3104 static int shmem_initxattrs(struct inode
*inode
,
3105 const struct xattr
*xattr_array
,
3108 struct shmem_inode_info
*info
= SHMEM_I(inode
);
3109 const struct xattr
*xattr
;
3110 struct simple_xattr
*new_xattr
;
3113 for (xattr
= xattr_array
; xattr
->name
!= NULL
; xattr
++) {
3114 new_xattr
= simple_xattr_alloc(xattr
->value
, xattr
->value_len
);
3118 len
= strlen(xattr
->name
) + 1;
3119 new_xattr
->name
= kmalloc(XATTR_SECURITY_PREFIX_LEN
+ len
,
3121 if (!new_xattr
->name
) {
3126 memcpy(new_xattr
->name
, XATTR_SECURITY_PREFIX
,
3127 XATTR_SECURITY_PREFIX_LEN
);
3128 memcpy(new_xattr
->name
+ XATTR_SECURITY_PREFIX_LEN
,
3131 simple_xattr_list_add(&info
->xattrs
, new_xattr
);
3137 static int shmem_xattr_handler_get(const struct xattr_handler
*handler
,
3138 struct dentry
*unused
, struct inode
*inode
,
3139 const char *name
, void *buffer
, size_t size
)
3141 struct shmem_inode_info
*info
= SHMEM_I(inode
);
3143 name
= xattr_full_name(handler
, name
);
3144 return simple_xattr_get(&info
->xattrs
, name
, buffer
, size
);
3147 static int shmem_xattr_handler_set(const struct xattr_handler
*handler
,
3148 struct dentry
*unused
, struct inode
*inode
,
3149 const char *name
, const void *value
,
3150 size_t size
, int flags
)
3152 struct shmem_inode_info
*info
= SHMEM_I(inode
);
3154 name
= xattr_full_name(handler
, name
);
3155 return simple_xattr_set(&info
->xattrs
, name
, value
, size
, flags
);
3158 static const struct xattr_handler shmem_security_xattr_handler
= {
3159 .prefix
= XATTR_SECURITY_PREFIX
,
3160 .get
= shmem_xattr_handler_get
,
3161 .set
= shmem_xattr_handler_set
,
3164 static const struct xattr_handler shmem_trusted_xattr_handler
= {
3165 .prefix
= XATTR_TRUSTED_PREFIX
,
3166 .get
= shmem_xattr_handler_get
,
3167 .set
= shmem_xattr_handler_set
,
3170 static const struct xattr_handler
*shmem_xattr_handlers
[] = {
3171 #ifdef CONFIG_TMPFS_POSIX_ACL
3172 &posix_acl_access_xattr_handler
,
3173 &posix_acl_default_xattr_handler
,
3175 &shmem_security_xattr_handler
,
3176 &shmem_trusted_xattr_handler
,
3180 static ssize_t
shmem_listxattr(struct dentry
*dentry
, char *buffer
, size_t size
)
3182 struct shmem_inode_info
*info
= SHMEM_I(d_inode(dentry
));
3183 return simple_xattr_list(d_inode(dentry
), &info
->xattrs
, buffer
, size
);
3185 #endif /* CONFIG_TMPFS_XATTR */
3187 static const struct inode_operations shmem_short_symlink_operations
= {
3188 .get_link
= simple_get_link
,
3189 #ifdef CONFIG_TMPFS_XATTR
3190 .listxattr
= shmem_listxattr
,
3194 static const struct inode_operations shmem_symlink_inode_operations
= {
3195 .get_link
= shmem_get_link
,
3196 #ifdef CONFIG_TMPFS_XATTR
3197 .listxattr
= shmem_listxattr
,
3201 static struct dentry
*shmem_get_parent(struct dentry
*child
)
3203 return ERR_PTR(-ESTALE
);
3206 static int shmem_match(struct inode
*ino
, void *vfh
)
3210 inum
= (inum
<< 32) | fh
[1];
3211 return ino
->i_ino
== inum
&& fh
[0] == ino
->i_generation
;
3214 /* Find any alias of inode, but prefer a hashed alias */
3215 static struct dentry
*shmem_find_alias(struct inode
*inode
)
3217 struct dentry
*alias
= d_find_alias(inode
);
3219 return alias
?: d_find_any_alias(inode
);
3223 static struct dentry
*shmem_fh_to_dentry(struct super_block
*sb
,
3224 struct fid
*fid
, int fh_len
, int fh_type
)
3226 struct inode
*inode
;
3227 struct dentry
*dentry
= NULL
;
3234 inum
= (inum
<< 32) | fid
->raw
[1];
3236 inode
= ilookup5(sb
, (unsigned long)(inum
+ fid
->raw
[0]),
3237 shmem_match
, fid
->raw
);
3239 dentry
= shmem_find_alias(inode
);
3246 static int shmem_encode_fh(struct inode
*inode
, __u32
*fh
, int *len
,
3247 struct inode
*parent
)
3251 return FILEID_INVALID
;
3254 if (inode_unhashed(inode
)) {
3255 /* Unfortunately insert_inode_hash is not idempotent,
3256 * so as we hash inodes here rather than at creation
3257 * time, we need a lock to ensure we only try
3260 static DEFINE_SPINLOCK(lock
);
3262 if (inode_unhashed(inode
))
3263 __insert_inode_hash(inode
,
3264 inode
->i_ino
+ inode
->i_generation
);
3268 fh
[0] = inode
->i_generation
;
3269 fh
[1] = inode
->i_ino
;
3270 fh
[2] = ((__u64
)inode
->i_ino
) >> 32;
3276 static const struct export_operations shmem_export_ops
= {
3277 .get_parent
= shmem_get_parent
,
3278 .encode_fh
= shmem_encode_fh
,
3279 .fh_to_dentry
= shmem_fh_to_dentry
,
3282 static int shmem_parse_options(char *options
, struct shmem_sb_info
*sbinfo
,
3285 char *this_char
, *value
, *rest
;
3286 struct mempolicy
*mpol
= NULL
;
3290 while (options
!= NULL
) {
3291 this_char
= options
;
3294 * NUL-terminate this option: unfortunately,
3295 * mount options form a comma-separated list,
3296 * but mpol's nodelist may also contain commas.
3298 options
= strchr(options
, ',');
3299 if (options
== NULL
)
3302 if (!isdigit(*options
)) {
3309 if ((value
= strchr(this_char
,'=')) != NULL
) {
3312 pr_err("tmpfs: No value for mount option '%s'\n",
3317 if (!strcmp(this_char
,"size")) {
3318 unsigned long long size
;
3319 size
= memparse(value
,&rest
);
3321 size
<<= PAGE_SHIFT
;
3322 size
*= totalram_pages
;
3328 sbinfo
->max_blocks
=
3329 DIV_ROUND_UP(size
, PAGE_SIZE
);
3330 } else if (!strcmp(this_char
,"nr_blocks")) {
3331 sbinfo
->max_blocks
= memparse(value
, &rest
);
3334 } else if (!strcmp(this_char
,"nr_inodes")) {
3335 sbinfo
->max_inodes
= memparse(value
, &rest
);
3338 } else if (!strcmp(this_char
,"mode")) {
3341 sbinfo
->mode
= simple_strtoul(value
, &rest
, 8) & 07777;
3344 } else if (!strcmp(this_char
,"uid")) {
3347 uid
= simple_strtoul(value
, &rest
, 0);
3350 sbinfo
->uid
= make_kuid(current_user_ns(), uid
);
3351 if (!uid_valid(sbinfo
->uid
))
3353 } else if (!strcmp(this_char
,"gid")) {
3356 gid
= simple_strtoul(value
, &rest
, 0);
3359 sbinfo
->gid
= make_kgid(current_user_ns(), gid
);
3360 if (!gid_valid(sbinfo
->gid
))
3362 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3363 } else if (!strcmp(this_char
, "huge")) {
3365 huge
= shmem_parse_huge(value
);
3368 if (!has_transparent_hugepage() &&
3369 huge
!= SHMEM_HUGE_NEVER
)
3371 sbinfo
->huge
= huge
;
3374 } else if (!strcmp(this_char
,"mpol")) {
3377 if (mpol_parse_str(value
, &mpol
))
3381 pr_err("tmpfs: Bad mount option %s\n", this_char
);
3385 sbinfo
->mpol
= mpol
;
3389 pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
3397 static int shmem_remount_fs(struct super_block
*sb
, int *flags
, char *data
)
3399 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
3400 struct shmem_sb_info config
= *sbinfo
;
3401 unsigned long inodes
;
3402 int error
= -EINVAL
;
3405 if (shmem_parse_options(data
, &config
, true))
3408 spin_lock(&sbinfo
->stat_lock
);
3409 inodes
= sbinfo
->max_inodes
- sbinfo
->free_inodes
;
3410 if (percpu_counter_compare(&sbinfo
->used_blocks
, config
.max_blocks
) > 0)
3412 if (config
.max_inodes
< inodes
)
3415 * Those tests disallow limited->unlimited while any are in use;
3416 * but we must separately disallow unlimited->limited, because
3417 * in that case we have no record of how much is already in use.
3419 if (config
.max_blocks
&& !sbinfo
->max_blocks
)
3421 if (config
.max_inodes
&& !sbinfo
->max_inodes
)
3425 sbinfo
->huge
= config
.huge
;
3426 sbinfo
->max_blocks
= config
.max_blocks
;
3427 sbinfo
->max_inodes
= config
.max_inodes
;
3428 sbinfo
->free_inodes
= config
.max_inodes
- inodes
;
3431 * Preserve previous mempolicy unless mpol remount option was specified.
3434 mpol_put(sbinfo
->mpol
);
3435 sbinfo
->mpol
= config
.mpol
; /* transfers initial ref */
3438 spin_unlock(&sbinfo
->stat_lock
);
3442 static int shmem_show_options(struct seq_file
*seq
, struct dentry
*root
)
3444 struct shmem_sb_info
*sbinfo
= SHMEM_SB(root
->d_sb
);
3446 if (sbinfo
->max_blocks
!= shmem_default_max_blocks())
3447 seq_printf(seq
, ",size=%luk",
3448 sbinfo
->max_blocks
<< (PAGE_SHIFT
- 10));
3449 if (sbinfo
->max_inodes
!= shmem_default_max_inodes())
3450 seq_printf(seq
, ",nr_inodes=%lu", sbinfo
->max_inodes
);
3451 if (sbinfo
->mode
!= (0777 | S_ISVTX
))
3452 seq_printf(seq
, ",mode=%03ho", sbinfo
->mode
);
3453 if (!uid_eq(sbinfo
->uid
, GLOBAL_ROOT_UID
))
3454 seq_printf(seq
, ",uid=%u",
3455 from_kuid_munged(&init_user_ns
, sbinfo
->uid
));
3456 if (!gid_eq(sbinfo
->gid
, GLOBAL_ROOT_GID
))
3457 seq_printf(seq
, ",gid=%u",
3458 from_kgid_munged(&init_user_ns
, sbinfo
->gid
));
3459 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3460 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3462 seq_printf(seq
, ",huge=%s", shmem_format_huge(sbinfo
->huge
));
3464 shmem_show_mpol(seq
, sbinfo
->mpol
);
3468 #endif /* CONFIG_TMPFS */
3470 static void shmem_put_super(struct super_block
*sb
)
3472 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
3474 percpu_counter_destroy(&sbinfo
->used_blocks
);
3475 mpol_put(sbinfo
->mpol
);
3477 sb
->s_fs_info
= NULL
;
3480 int shmem_fill_super(struct super_block
*sb
, void *data
, int silent
)
3482 struct inode
*inode
;
3483 struct shmem_sb_info
*sbinfo
;
3486 /* Round up to L1_CACHE_BYTES to resist false sharing */
3487 sbinfo
= kzalloc(max((int)sizeof(struct shmem_sb_info
),
3488 L1_CACHE_BYTES
), GFP_KERNEL
);
3492 sbinfo
->mode
= 0777 | S_ISVTX
;
3493 sbinfo
->uid
= current_fsuid();
3494 sbinfo
->gid
= current_fsgid();
3495 sb
->s_fs_info
= sbinfo
;
3499 * Per default we only allow half of the physical ram per
3500 * tmpfs instance, limiting inodes to one per page of lowmem;
3501 * but the internal instance is left unlimited.
3503 if (!(sb
->s_flags
& SB_KERNMOUNT
)) {
3504 sbinfo
->max_blocks
= shmem_default_max_blocks();
3505 sbinfo
->max_inodes
= shmem_default_max_inodes();
3506 if (shmem_parse_options(data
, sbinfo
, false)) {
3511 sb
->s_flags
|= SB_NOUSER
;
3513 sb
->s_export_op
= &shmem_export_ops
;
3514 sb
->s_flags
|= SB_NOSEC
;
3516 sb
->s_flags
|= SB_NOUSER
;
3519 spin_lock_init(&sbinfo
->stat_lock
);
3520 if (percpu_counter_init(&sbinfo
->used_blocks
, 0, GFP_KERNEL
))
3522 sbinfo
->free_inodes
= sbinfo
->max_inodes
;
3523 spin_lock_init(&sbinfo
->shrinklist_lock
);
3524 INIT_LIST_HEAD(&sbinfo
->shrinklist
);
3526 sb
->s_maxbytes
= MAX_LFS_FILESIZE
;
3527 sb
->s_blocksize
= PAGE_SIZE
;
3528 sb
->s_blocksize_bits
= PAGE_SHIFT
;
3529 sb
->s_magic
= TMPFS_MAGIC
;
3530 sb
->s_op
= &shmem_ops
;
3531 sb
->s_time_gran
= 1;
3532 #ifdef CONFIG_TMPFS_XATTR
3533 sb
->s_xattr
= shmem_xattr_handlers
;
3535 #ifdef CONFIG_TMPFS_POSIX_ACL
3536 sb
->s_flags
|= SB_POSIXACL
;
3538 uuid_gen(&sb
->s_uuid
);
3540 inode
= shmem_get_inode(sb
, NULL
, S_IFDIR
| sbinfo
->mode
, 0, VM_NORESERVE
);
3543 inode
->i_uid
= sbinfo
->uid
;
3544 inode
->i_gid
= sbinfo
->gid
;
3545 sb
->s_root
= d_make_root(inode
);
3551 shmem_put_super(sb
);
3555 static struct kmem_cache
*shmem_inode_cachep
;
3557 static struct inode
*shmem_alloc_inode(struct super_block
*sb
)
3559 struct shmem_inode_info
*info
;
3560 info
= kmem_cache_alloc(shmem_inode_cachep
, GFP_KERNEL
);
3563 return &info
->vfs_inode
;
3566 static void shmem_destroy_callback(struct rcu_head
*head
)
3568 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
3569 if (S_ISLNK(inode
->i_mode
))
3570 kfree(inode
->i_link
);
3571 kmem_cache_free(shmem_inode_cachep
, SHMEM_I(inode
));
3574 static void shmem_destroy_inode(struct inode
*inode
)
3576 if (S_ISREG(inode
->i_mode
))
3577 mpol_free_shared_policy(&SHMEM_I(inode
)->policy
);
3578 call_rcu(&inode
->i_rcu
, shmem_destroy_callback
);
3581 static void shmem_init_inode(void *foo
)
3583 struct shmem_inode_info
*info
= foo
;
3584 inode_init_once(&info
->vfs_inode
);
3587 static void shmem_init_inodecache(void)
3589 shmem_inode_cachep
= kmem_cache_create("shmem_inode_cache",
3590 sizeof(struct shmem_inode_info
),
3591 0, SLAB_PANIC
|SLAB_ACCOUNT
, shmem_init_inode
);
3594 static void shmem_destroy_inodecache(void)
3596 kmem_cache_destroy(shmem_inode_cachep
);
3599 static const struct address_space_operations shmem_aops
= {
3600 .writepage
= shmem_writepage
,
3601 .set_page_dirty
= __set_page_dirty_no_writeback
,
3603 .write_begin
= shmem_write_begin
,
3604 .write_end
= shmem_write_end
,
3606 #ifdef CONFIG_MIGRATION
3607 .migratepage
= migrate_page
,
3609 .error_remove_page
= generic_error_remove_page
,
3612 static const struct file_operations shmem_file_operations
= {
3614 .get_unmapped_area
= shmem_get_unmapped_area
,
3616 .llseek
= shmem_file_llseek
,
3617 .read_iter
= shmem_file_read_iter
,
3618 .write_iter
= generic_file_write_iter
,
3619 .fsync
= noop_fsync
,
3620 .splice_read
= generic_file_splice_read
,
3621 .splice_write
= iter_file_splice_write
,
3622 .fallocate
= shmem_fallocate
,
3626 static const struct inode_operations shmem_inode_operations
= {
3627 .getattr
= shmem_getattr
,
3628 .setattr
= shmem_setattr
,
3629 #ifdef CONFIG_TMPFS_XATTR
3630 .listxattr
= shmem_listxattr
,
3631 .set_acl
= simple_set_acl
,
3635 static const struct inode_operations shmem_dir_inode_operations
= {
3637 .create
= shmem_create
,
3638 .lookup
= simple_lookup
,
3640 .unlink
= shmem_unlink
,
3641 .symlink
= shmem_symlink
,
3642 .mkdir
= shmem_mkdir
,
3643 .rmdir
= shmem_rmdir
,
3644 .mknod
= shmem_mknod
,
3645 .rename
= shmem_rename2
,
3646 .tmpfile
= shmem_tmpfile
,
3648 #ifdef CONFIG_TMPFS_XATTR
3649 .listxattr
= shmem_listxattr
,
3651 #ifdef CONFIG_TMPFS_POSIX_ACL
3652 .setattr
= shmem_setattr
,
3653 .set_acl
= simple_set_acl
,
3657 static const struct inode_operations shmem_special_inode_operations
= {
3658 #ifdef CONFIG_TMPFS_XATTR
3659 .listxattr
= shmem_listxattr
,
3661 #ifdef CONFIG_TMPFS_POSIX_ACL
3662 .setattr
= shmem_setattr
,
3663 .set_acl
= simple_set_acl
,
3667 static const struct super_operations shmem_ops
= {
3668 .alloc_inode
= shmem_alloc_inode
,
3669 .destroy_inode
= shmem_destroy_inode
,
3671 .statfs
= shmem_statfs
,
3672 .remount_fs
= shmem_remount_fs
,
3673 .show_options
= shmem_show_options
,
3675 .evict_inode
= shmem_evict_inode
,
3676 .drop_inode
= generic_delete_inode
,
3677 .put_super
= shmem_put_super
,
3678 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3679 .nr_cached_objects
= shmem_unused_huge_count
,
3680 .free_cached_objects
= shmem_unused_huge_scan
,
3684 static const struct vm_operations_struct shmem_vm_ops
= {
3685 .fault
= shmem_fault
,
3686 .map_pages
= filemap_map_pages
,
3688 .set_policy
= shmem_set_policy
,
3689 .get_policy
= shmem_get_policy
,
3693 static struct dentry
*shmem_mount(struct file_system_type
*fs_type
,
3694 int flags
, const char *dev_name
, void *data
)
3696 return mount_nodev(fs_type
, flags
, data
, shmem_fill_super
);
3699 static struct file_system_type shmem_fs_type
= {
3700 .owner
= THIS_MODULE
,
3702 .mount
= shmem_mount
,
3703 .kill_sb
= kill_litter_super
,
3704 .fs_flags
= FS_USERNS_MOUNT
,
3707 int __init
shmem_init(void)
3711 /* If rootfs called this, don't re-init */
3712 if (shmem_inode_cachep
)
3715 shmem_init_inodecache();
3717 error
= register_filesystem(&shmem_fs_type
);
3719 pr_err("Could not register tmpfs\n");
3723 shm_mnt
= kern_mount(&shmem_fs_type
);
3724 if (IS_ERR(shm_mnt
)) {
3725 error
= PTR_ERR(shm_mnt
);
3726 pr_err("Could not kern_mount tmpfs\n");
3730 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3731 if (has_transparent_hugepage() && shmem_huge
> SHMEM_HUGE_DENY
)
3732 SHMEM_SB(shm_mnt
->mnt_sb
)->huge
= shmem_huge
;
3734 shmem_huge
= 0; /* just in case it was patched */
3739 unregister_filesystem(&shmem_fs_type
);
3741 shmem_destroy_inodecache();
3742 shm_mnt
= ERR_PTR(error
);
3746 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
3747 static ssize_t
shmem_enabled_show(struct kobject
*kobj
,
3748 struct kobj_attribute
*attr
, char *buf
)
3752 SHMEM_HUGE_WITHIN_SIZE
,
3760 for (i
= 0, count
= 0; i
< ARRAY_SIZE(values
); i
++) {
3761 const char *fmt
= shmem_huge
== values
[i
] ? "[%s] " : "%s ";
3763 count
+= sprintf(buf
+ count
, fmt
,
3764 shmem_format_huge(values
[i
]));
3766 buf
[count
- 1] = '\n';
3770 static ssize_t
shmem_enabled_store(struct kobject
*kobj
,
3771 struct kobj_attribute
*attr
, const char *buf
, size_t count
)
3776 if (count
+ 1 > sizeof(tmp
))
3778 memcpy(tmp
, buf
, count
);
3780 if (count
&& tmp
[count
- 1] == '\n')
3781 tmp
[count
- 1] = '\0';
3783 huge
= shmem_parse_huge(tmp
);
3784 if (huge
== -EINVAL
)
3786 if (!has_transparent_hugepage() &&
3787 huge
!= SHMEM_HUGE_NEVER
&& huge
!= SHMEM_HUGE_DENY
)
3791 if (shmem_huge
> SHMEM_HUGE_DENY
)
3792 SHMEM_SB(shm_mnt
->mnt_sb
)->huge
= shmem_huge
;
3796 struct kobj_attribute shmem_enabled_attr
=
3797 __ATTR(shmem_enabled
, 0644, shmem_enabled_show
, shmem_enabled_store
);
3798 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
3800 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3801 bool shmem_huge_enabled(struct vm_area_struct
*vma
)
3803 struct inode
*inode
= file_inode(vma
->vm_file
);
3804 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
3808 if (shmem_huge
== SHMEM_HUGE_FORCE
)
3810 if (shmem_huge
== SHMEM_HUGE_DENY
)
3812 switch (sbinfo
->huge
) {
3813 case SHMEM_HUGE_NEVER
:
3815 case SHMEM_HUGE_ALWAYS
:
3817 case SHMEM_HUGE_WITHIN_SIZE
:
3818 off
= round_up(vma
->vm_pgoff
, HPAGE_PMD_NR
);
3819 i_size
= round_up(i_size_read(inode
), PAGE_SIZE
);
3820 if (i_size
>= HPAGE_PMD_SIZE
&&
3821 i_size
>> PAGE_SHIFT
>= off
)
3824 case SHMEM_HUGE_ADVISE
:
3825 /* TODO: implement fadvise() hints */
3826 return (vma
->vm_flags
& VM_HUGEPAGE
);
3832 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
3834 #else /* !CONFIG_SHMEM */
3837 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3839 * This is intended for small system where the benefits of the full
3840 * shmem code (swap-backed and resource-limited) are outweighed by
3841 * their complexity. On systems without swap this code should be
3842 * effectively equivalent, but much lighter weight.
3845 static struct file_system_type shmem_fs_type
= {
3847 .mount
= ramfs_mount
,
3848 .kill_sb
= kill_litter_super
,
3849 .fs_flags
= FS_USERNS_MOUNT
,
3852 int __init
shmem_init(void)
3854 BUG_ON(register_filesystem(&shmem_fs_type
) != 0);
3856 shm_mnt
= kern_mount(&shmem_fs_type
);
3857 BUG_ON(IS_ERR(shm_mnt
));
3862 int shmem_unuse(swp_entry_t swap
, struct page
*page
)
3867 int shmem_lock(struct file
*file
, int lock
, struct user_struct
*user
)
3872 void shmem_unlock_mapping(struct address_space
*mapping
)
3877 unsigned long shmem_get_unmapped_area(struct file
*file
,
3878 unsigned long addr
, unsigned long len
,
3879 unsigned long pgoff
, unsigned long flags
)
3881 return current
->mm
->get_unmapped_area(file
, addr
, len
, pgoff
, flags
);
3885 void shmem_truncate_range(struct inode
*inode
, loff_t lstart
, loff_t lend
)
3887 truncate_inode_pages_range(inode
->i_mapping
, lstart
, lend
);
3889 EXPORT_SYMBOL_GPL(shmem_truncate_range
);
3891 #define shmem_vm_ops generic_file_vm_ops
3892 #define shmem_file_operations ramfs_file_operations
3893 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
3894 #define shmem_acct_size(flags, size) 0
3895 #define shmem_unacct_size(flags, size) do {} while (0)
3897 #endif /* CONFIG_SHMEM */
3901 static struct file
*__shmem_file_setup(struct vfsmount
*mnt
, const char *name
, loff_t size
,
3902 unsigned long flags
, unsigned int i_flags
)
3904 struct inode
*inode
;
3908 return ERR_CAST(mnt
);
3910 if (size
< 0 || size
> MAX_LFS_FILESIZE
)
3911 return ERR_PTR(-EINVAL
);
3913 if (shmem_acct_size(flags
, size
))
3914 return ERR_PTR(-ENOMEM
);
3916 inode
= shmem_get_inode(mnt
->mnt_sb
, NULL
, S_IFREG
| S_IRWXUGO
, 0,
3918 if (unlikely(!inode
)) {
3919 shmem_unacct_size(flags
, size
);
3920 return ERR_PTR(-ENOSPC
);
3922 inode
->i_flags
|= i_flags
;
3923 inode
->i_size
= size
;
3924 clear_nlink(inode
); /* It is unlinked */
3925 res
= ERR_PTR(ramfs_nommu_expand_for_mapping(inode
, size
));
3927 res
= alloc_file_pseudo(inode
, mnt
, name
, O_RDWR
,
3928 &shmem_file_operations
);
3935 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
3936 * kernel internal. There will be NO LSM permission checks against the
3937 * underlying inode. So users of this interface must do LSM checks at a
3938 * higher layer. The users are the big_key and shm implementations. LSM
3939 * checks are provided at the key or shm level rather than the inode.
3940 * @name: name for dentry (to be seen in /proc/<pid>/maps
3941 * @size: size to be set for the file
3942 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3944 struct file
*shmem_kernel_file_setup(const char *name
, loff_t size
, unsigned long flags
)
3946 return __shmem_file_setup(shm_mnt
, name
, size
, flags
, S_PRIVATE
);
3950 * shmem_file_setup - get an unlinked file living in tmpfs
3951 * @name: name for dentry (to be seen in /proc/<pid>/maps
3952 * @size: size to be set for the file
3953 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3955 struct file
*shmem_file_setup(const char *name
, loff_t size
, unsigned long flags
)
3957 return __shmem_file_setup(shm_mnt
, name
, size
, flags
, 0);
3959 EXPORT_SYMBOL_GPL(shmem_file_setup
);
3962 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
3963 * @mnt: the tmpfs mount where the file will be created
3964 * @name: name for dentry (to be seen in /proc/<pid>/maps
3965 * @size: size to be set for the file
3966 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3968 struct file
*shmem_file_setup_with_mnt(struct vfsmount
*mnt
, const char *name
,
3969 loff_t size
, unsigned long flags
)
3971 return __shmem_file_setup(mnt
, name
, size
, flags
, 0);
3973 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt
);
3976 * shmem_zero_setup - setup a shared anonymous mapping
3977 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3979 int shmem_zero_setup(struct vm_area_struct
*vma
)
3982 loff_t size
= vma
->vm_end
- vma
->vm_start
;
3985 * Cloning a new file under mmap_sem leads to a lock ordering conflict
3986 * between XFS directory reading and selinux: since this file is only
3987 * accessible to the user through its mapping, use S_PRIVATE flag to
3988 * bypass file security, in the same way as shmem_kernel_file_setup().
3990 file
= shmem_kernel_file_setup("dev/zero", size
, vma
->vm_flags
);
3992 return PTR_ERR(file
);
3996 vma
->vm_file
= file
;
3997 vma
->vm_ops
= &shmem_vm_ops
;
3999 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
) &&
4000 ((vma
->vm_start
+ ~HPAGE_PMD_MASK
) & HPAGE_PMD_MASK
) <
4001 (vma
->vm_end
& HPAGE_PMD_MASK
)) {
4002 khugepaged_enter(vma
, vma
->vm_flags
);
4009 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4010 * @mapping: the page's address_space
4011 * @index: the page index
4012 * @gfp: the page allocator flags to use if allocating
4014 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4015 * with any new page allocations done using the specified allocation flags.
4016 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4017 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4018 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4020 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4021 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4023 struct page
*shmem_read_mapping_page_gfp(struct address_space
*mapping
,
4024 pgoff_t index
, gfp_t gfp
)
4027 struct inode
*inode
= mapping
->host
;
4031 BUG_ON(mapping
->a_ops
!= &shmem_aops
);
4032 error
= shmem_getpage_gfp(inode
, index
, &page
, SGP_CACHE
,
4033 gfp
, NULL
, NULL
, NULL
);
4035 page
= ERR_PTR(error
);
4041 * The tiny !SHMEM case uses ramfs without swap
4043 return read_cache_page_gfp(mapping
, index
, gfp
);
4046 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp
);