thermal: fix Mediatek thermal controller build
[linux/fpc-iii.git] / arch / mips / kernel / smp-bmips.c
blob78cf8c2f1de0e8790923d25ab6e42a85e53a6fe9
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
6 * Copyright (C) 2011 by Kevin Cernekee (cernekee@gmail.com)
8 * SMP support for BMIPS
9 */
11 #include <linux/init.h>
12 #include <linux/sched.h>
13 #include <linux/mm.h>
14 #include <linux/delay.h>
15 #include <linux/smp.h>
16 #include <linux/interrupt.h>
17 #include <linux/spinlock.h>
18 #include <linux/cpu.h>
19 #include <linux/cpumask.h>
20 #include <linux/reboot.h>
21 #include <linux/io.h>
22 #include <linux/compiler.h>
23 #include <linux/linkage.h>
24 #include <linux/bug.h>
25 #include <linux/kernel.h>
27 #include <asm/time.h>
28 #include <asm/pgtable.h>
29 #include <asm/processor.h>
30 #include <asm/bootinfo.h>
31 #include <asm/pmon.h>
32 #include <asm/cacheflush.h>
33 #include <asm/tlbflush.h>
34 #include <asm/mipsregs.h>
35 #include <asm/bmips.h>
36 #include <asm/traps.h>
37 #include <asm/barrier.h>
38 #include <asm/cpu-features.h>
40 static int __maybe_unused max_cpus = 1;
42 /* these may be configured by the platform code */
43 int bmips_smp_enabled = 1;
44 int bmips_cpu_offset;
45 cpumask_t bmips_booted_mask;
46 unsigned long bmips_tp1_irqs = IE_IRQ1;
48 #define RESET_FROM_KSEG0 0x80080800
49 #define RESET_FROM_KSEG1 0xa0080800
51 static void bmips_set_reset_vec(int cpu, u32 val);
53 #ifdef CONFIG_SMP
55 /* initial $sp, $gp - used by arch/mips/kernel/bmips_vec.S */
56 unsigned long bmips_smp_boot_sp;
57 unsigned long bmips_smp_boot_gp;
59 static void bmips43xx_send_ipi_single(int cpu, unsigned int action);
60 static void bmips5000_send_ipi_single(int cpu, unsigned int action);
61 static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id);
62 static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id);
64 /* SW interrupts 0,1 are used for interprocessor signaling */
65 #define IPI0_IRQ (MIPS_CPU_IRQ_BASE + 0)
66 #define IPI1_IRQ (MIPS_CPU_IRQ_BASE + 1)
68 #define CPUNUM(cpu, shift) (((cpu) + bmips_cpu_offset) << (shift))
69 #define ACTION_CLR_IPI(cpu, ipi) (0x2000 | CPUNUM(cpu, 9) | ((ipi) << 8))
70 #define ACTION_SET_IPI(cpu, ipi) (0x3000 | CPUNUM(cpu, 9) | ((ipi) << 8))
71 #define ACTION_BOOT_THREAD(cpu) (0x08 | CPUNUM(cpu, 0))
73 static void __init bmips_smp_setup(void)
75 int i, cpu = 1, boot_cpu = 0;
76 int cpu_hw_intr;
78 switch (current_cpu_type()) {
79 case CPU_BMIPS4350:
80 case CPU_BMIPS4380:
81 /* arbitration priority */
82 clear_c0_brcm_cmt_ctrl(0x30);
84 /* NBK and weak order flags */
85 set_c0_brcm_config_0(0x30000);
87 /* Find out if we are running on TP0 or TP1 */
88 boot_cpu = !!(read_c0_brcm_cmt_local() & (1 << 31));
91 * MIPS interrupts 0,1 (SW INT 0,1) cross over to the other
92 * thread
93 * MIPS interrupt 2 (HW INT 0) is the CPU0 L1 controller output
94 * MIPS interrupt 3 (HW INT 1) is the CPU1 L1 controller output
96 if (boot_cpu == 0)
97 cpu_hw_intr = 0x02;
98 else
99 cpu_hw_intr = 0x1d;
101 change_c0_brcm_cmt_intr(0xf8018000,
102 (cpu_hw_intr << 27) | (0x03 << 15));
104 /* single core, 2 threads (2 pipelines) */
105 max_cpus = 2;
107 break;
108 case CPU_BMIPS5000:
109 /* enable raceless SW interrupts */
110 set_c0_brcm_config(0x03 << 22);
112 /* route HW interrupt 0 to CPU0, HW interrupt 1 to CPU1 */
113 change_c0_brcm_mode(0x1f << 27, 0x02 << 27);
115 /* N cores, 2 threads per core */
116 max_cpus = (((read_c0_brcm_config() >> 6) & 0x03) + 1) << 1;
118 /* clear any pending SW interrupts */
119 for (i = 0; i < max_cpus; i++) {
120 write_c0_brcm_action(ACTION_CLR_IPI(i, 0));
121 write_c0_brcm_action(ACTION_CLR_IPI(i, 1));
124 break;
125 default:
126 max_cpus = 1;
129 if (!bmips_smp_enabled)
130 max_cpus = 1;
132 /* this can be overridden by the BSP */
133 if (!board_ebase_setup)
134 board_ebase_setup = &bmips_ebase_setup;
136 __cpu_number_map[boot_cpu] = 0;
137 __cpu_logical_map[0] = boot_cpu;
139 for (i = 0; i < max_cpus; i++) {
140 if (i != boot_cpu) {
141 __cpu_number_map[i] = cpu;
142 __cpu_logical_map[cpu] = i;
143 cpu++;
145 set_cpu_possible(i, 1);
146 set_cpu_present(i, 1);
151 * IPI IRQ setup - runs on CPU0
153 static void bmips_prepare_cpus(unsigned int max_cpus)
155 irqreturn_t (*bmips_ipi_interrupt)(int irq, void *dev_id);
157 switch (current_cpu_type()) {
158 case CPU_BMIPS4350:
159 case CPU_BMIPS4380:
160 bmips_ipi_interrupt = bmips43xx_ipi_interrupt;
161 break;
162 case CPU_BMIPS5000:
163 bmips_ipi_interrupt = bmips5000_ipi_interrupt;
164 break;
165 default:
166 return;
169 if (request_irq(IPI0_IRQ, bmips_ipi_interrupt, IRQF_PERCPU,
170 "smp_ipi0", NULL))
171 panic("Can't request IPI0 interrupt");
172 if (request_irq(IPI1_IRQ, bmips_ipi_interrupt, IRQF_PERCPU,
173 "smp_ipi1", NULL))
174 panic("Can't request IPI1 interrupt");
178 * Tell the hardware to boot CPUx - runs on CPU0
180 static void bmips_boot_secondary(int cpu, struct task_struct *idle)
182 bmips_smp_boot_sp = __KSTK_TOS(idle);
183 bmips_smp_boot_gp = (unsigned long)task_thread_info(idle);
184 mb();
187 * Initial boot sequence for secondary CPU:
188 * bmips_reset_nmi_vec @ a000_0000 ->
189 * bmips_smp_entry ->
190 * plat_wired_tlb_setup (cached function call; optional) ->
191 * start_secondary (cached jump)
193 * Warm restart sequence:
194 * play_dead WAIT loop ->
195 * bmips_smp_int_vec @ BMIPS_WARM_RESTART_VEC ->
196 * eret to play_dead ->
197 * bmips_secondary_reentry ->
198 * start_secondary
201 pr_info("SMP: Booting CPU%d...\n", cpu);
203 if (cpumask_test_cpu(cpu, &bmips_booted_mask)) {
204 /* kseg1 might not exist if this CPU enabled XKS01 */
205 bmips_set_reset_vec(cpu, RESET_FROM_KSEG0);
207 switch (current_cpu_type()) {
208 case CPU_BMIPS4350:
209 case CPU_BMIPS4380:
210 bmips43xx_send_ipi_single(cpu, 0);
211 break;
212 case CPU_BMIPS5000:
213 bmips5000_send_ipi_single(cpu, 0);
214 break;
216 } else {
217 bmips_set_reset_vec(cpu, RESET_FROM_KSEG1);
219 switch (current_cpu_type()) {
220 case CPU_BMIPS4350:
221 case CPU_BMIPS4380:
222 /* Reset slave TP1 if booting from TP0 */
223 if (cpu_logical_map(cpu) == 1)
224 set_c0_brcm_cmt_ctrl(0x01);
225 break;
226 case CPU_BMIPS5000:
227 write_c0_brcm_action(ACTION_BOOT_THREAD(cpu));
228 break;
230 cpumask_set_cpu(cpu, &bmips_booted_mask);
235 * Early setup - runs on secondary CPU after cache probe
237 static void bmips_init_secondary(void)
239 switch (current_cpu_type()) {
240 case CPU_BMIPS4350:
241 case CPU_BMIPS4380:
242 clear_c0_cause(smp_processor_id() ? C_SW1 : C_SW0);
243 break;
244 case CPU_BMIPS5000:
245 write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), 0));
246 break;
251 * Late setup - runs on secondary CPU before entering the idle loop
253 static void bmips_smp_finish(void)
255 pr_info("SMP: CPU%d is running\n", smp_processor_id());
257 /* make sure there won't be a timer interrupt for a little while */
258 write_c0_compare(read_c0_count() + mips_hpt_frequency / HZ);
260 irq_enable_hazard();
261 set_c0_status(IE_SW0 | IE_SW1 | bmips_tp1_irqs | IE_IRQ5 | ST0_IE);
262 irq_enable_hazard();
266 * BMIPS5000 raceless IPIs
268 * Each CPU has two inbound SW IRQs which are independent of all other CPUs.
269 * IPI0 is used for SMP_RESCHEDULE_YOURSELF
270 * IPI1 is used for SMP_CALL_FUNCTION
273 static void bmips5000_send_ipi_single(int cpu, unsigned int action)
275 write_c0_brcm_action(ACTION_SET_IPI(cpu, action == SMP_CALL_FUNCTION));
278 static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id)
280 int action = irq - IPI0_IRQ;
282 write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), action));
284 if (action == 0)
285 scheduler_ipi();
286 else
287 generic_smp_call_function_interrupt();
289 return IRQ_HANDLED;
292 static void bmips5000_send_ipi_mask(const struct cpumask *mask,
293 unsigned int action)
295 unsigned int i;
297 for_each_cpu(i, mask)
298 bmips5000_send_ipi_single(i, action);
302 * BMIPS43xx racey IPIs
304 * We use one inbound SW IRQ for each CPU.
306 * A spinlock must be held in order to keep CPUx from accidentally clearing
307 * an incoming IPI when it writes CP0 CAUSE to raise an IPI on CPUy. The
308 * same spinlock is used to protect the action masks.
311 static DEFINE_SPINLOCK(ipi_lock);
312 static DEFINE_PER_CPU(int, ipi_action_mask);
314 static void bmips43xx_send_ipi_single(int cpu, unsigned int action)
316 unsigned long flags;
318 spin_lock_irqsave(&ipi_lock, flags);
319 set_c0_cause(cpu ? C_SW1 : C_SW0);
320 per_cpu(ipi_action_mask, cpu) |= action;
321 irq_enable_hazard();
322 spin_unlock_irqrestore(&ipi_lock, flags);
325 static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id)
327 unsigned long flags;
328 int action, cpu = irq - IPI0_IRQ;
330 spin_lock_irqsave(&ipi_lock, flags);
331 action = __this_cpu_read(ipi_action_mask);
332 per_cpu(ipi_action_mask, cpu) = 0;
333 clear_c0_cause(cpu ? C_SW1 : C_SW0);
334 spin_unlock_irqrestore(&ipi_lock, flags);
336 if (action & SMP_RESCHEDULE_YOURSELF)
337 scheduler_ipi();
338 if (action & SMP_CALL_FUNCTION)
339 generic_smp_call_function_interrupt();
341 return IRQ_HANDLED;
344 static void bmips43xx_send_ipi_mask(const struct cpumask *mask,
345 unsigned int action)
347 unsigned int i;
349 for_each_cpu(i, mask)
350 bmips43xx_send_ipi_single(i, action);
353 #ifdef CONFIG_HOTPLUG_CPU
355 static int bmips_cpu_disable(void)
357 unsigned int cpu = smp_processor_id();
359 if (cpu == 0)
360 return -EBUSY;
362 pr_info("SMP: CPU%d is offline\n", cpu);
364 set_cpu_online(cpu, false);
365 cpumask_clear_cpu(cpu, &cpu_callin_map);
366 clear_c0_status(IE_IRQ5);
368 local_flush_tlb_all();
369 local_flush_icache_range(0, ~0);
371 return 0;
374 static void bmips_cpu_die(unsigned int cpu)
378 void __ref play_dead(void)
380 idle_task_exit();
382 /* flush data cache */
383 _dma_cache_wback_inv(0, ~0);
386 * Wakeup is on SW0 or SW1; disable everything else
387 * Use BEV !IV (BMIPS_WARM_RESTART_VEC) to avoid the regular Linux
388 * IRQ handlers; this clears ST0_IE and returns immediately.
390 clear_c0_cause(CAUSEF_IV | C_SW0 | C_SW1);
391 change_c0_status(
392 IE_IRQ5 | bmips_tp1_irqs | IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV,
393 IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV);
394 irq_disable_hazard();
397 * wait for SW interrupt from bmips_boot_secondary(), then jump
398 * back to start_secondary()
400 __asm__ __volatile__(
401 " wait\n"
402 " j bmips_secondary_reentry\n"
403 : : : "memory");
406 #endif /* CONFIG_HOTPLUG_CPU */
408 struct plat_smp_ops bmips43xx_smp_ops = {
409 .smp_setup = bmips_smp_setup,
410 .prepare_cpus = bmips_prepare_cpus,
411 .boot_secondary = bmips_boot_secondary,
412 .smp_finish = bmips_smp_finish,
413 .init_secondary = bmips_init_secondary,
414 .send_ipi_single = bmips43xx_send_ipi_single,
415 .send_ipi_mask = bmips43xx_send_ipi_mask,
416 #ifdef CONFIG_HOTPLUG_CPU
417 .cpu_disable = bmips_cpu_disable,
418 .cpu_die = bmips_cpu_die,
419 #endif
422 struct plat_smp_ops bmips5000_smp_ops = {
423 .smp_setup = bmips_smp_setup,
424 .prepare_cpus = bmips_prepare_cpus,
425 .boot_secondary = bmips_boot_secondary,
426 .smp_finish = bmips_smp_finish,
427 .init_secondary = bmips_init_secondary,
428 .send_ipi_single = bmips5000_send_ipi_single,
429 .send_ipi_mask = bmips5000_send_ipi_mask,
430 #ifdef CONFIG_HOTPLUG_CPU
431 .cpu_disable = bmips_cpu_disable,
432 .cpu_die = bmips_cpu_die,
433 #endif
436 #endif /* CONFIG_SMP */
438 /***********************************************************************
439 * BMIPS vector relocation
440 * This is primarily used for SMP boot, but it is applicable to some
441 * UP BMIPS systems as well.
442 ***********************************************************************/
444 static void bmips_wr_vec(unsigned long dst, char *start, char *end)
446 memcpy((void *)dst, start, end - start);
447 dma_cache_wback(dst, end - start);
448 local_flush_icache_range(dst, dst + (end - start));
449 instruction_hazard();
452 static inline void bmips_nmi_handler_setup(void)
454 bmips_wr_vec(BMIPS_NMI_RESET_VEC, &bmips_reset_nmi_vec,
455 &bmips_reset_nmi_vec_end);
456 bmips_wr_vec(BMIPS_WARM_RESTART_VEC, &bmips_smp_int_vec,
457 &bmips_smp_int_vec_end);
460 struct reset_vec_info {
461 int cpu;
462 u32 val;
465 static void bmips_set_reset_vec_remote(void *vinfo)
467 struct reset_vec_info *info = vinfo;
468 int shift = info->cpu & 0x01 ? 16 : 0;
469 u32 mask = ~(0xffff << shift), val = info->val >> 16;
471 preempt_disable();
472 if (smp_processor_id() > 0) {
473 smp_call_function_single(0, &bmips_set_reset_vec_remote,
474 info, 1);
475 } else {
476 if (info->cpu & 0x02) {
477 /* BMIPS5200 "should" use mask/shift, but it's buggy */
478 bmips_write_zscm_reg(0xa0, (val << 16) | val);
479 bmips_read_zscm_reg(0xa0);
480 } else {
481 write_c0_brcm_bootvec((read_c0_brcm_bootvec() & mask) |
482 (val << shift));
485 preempt_enable();
488 static void bmips_set_reset_vec(int cpu, u32 val)
490 struct reset_vec_info info;
492 if (current_cpu_type() == CPU_BMIPS5000) {
493 /* this needs to run from CPU0 (which is always online) */
494 info.cpu = cpu;
495 info.val = val;
496 bmips_set_reset_vec_remote(&info);
497 } else {
498 void __iomem *cbr = BMIPS_GET_CBR();
500 if (cpu == 0)
501 __raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_0);
502 else {
503 if (current_cpu_type() != CPU_BMIPS4380)
504 return;
505 __raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_1);
508 __sync();
509 back_to_back_c0_hazard();
512 void bmips_ebase_setup(void)
514 unsigned long new_ebase = ebase;
516 BUG_ON(ebase != CKSEG0);
518 switch (current_cpu_type()) {
519 case CPU_BMIPS4350:
521 * BMIPS4350 cannot relocate the normal vectors, but it
522 * can relocate the BEV=1 vectors. So CPU1 starts up at
523 * the relocated BEV=1, IV=0 general exception vector @
524 * 0xa000_0380.
526 * set_uncached_handler() is used here because:
527 * - CPU1 will run this from uncached space
528 * - None of the cacheflush functions are set up yet
530 set_uncached_handler(BMIPS_WARM_RESTART_VEC - CKSEG0,
531 &bmips_smp_int_vec, 0x80);
532 __sync();
533 return;
534 case CPU_BMIPS3300:
535 case CPU_BMIPS4380:
537 * 0x8000_0000: reset/NMI (initially in kseg1)
538 * 0x8000_0400: normal vectors
540 new_ebase = 0x80000400;
541 bmips_set_reset_vec(0, RESET_FROM_KSEG0);
542 break;
543 case CPU_BMIPS5000:
545 * 0x8000_0000: reset/NMI (initially in kseg1)
546 * 0x8000_1000: normal vectors
548 new_ebase = 0x80001000;
549 bmips_set_reset_vec(0, RESET_FROM_KSEG0);
550 write_c0_ebase(new_ebase);
551 break;
552 default:
553 return;
556 board_nmi_handler_setup = &bmips_nmi_handler_setup;
557 ebase = new_ebase;
560 asmlinkage void __weak plat_wired_tlb_setup(void)
563 * Called when starting/restarting a secondary CPU.
564 * Kernel stacks and other important data might only be accessible
565 * once the wired entries are present.