thermal: fix Mediatek thermal controller build
[linux/fpc-iii.git] / arch / x86 / include / asm / mmu_context.h
blob84280029cafd73a83e64efd3133a8f9d9575bcb3
1 #ifndef _ASM_X86_MMU_CONTEXT_H
2 #define _ASM_X86_MMU_CONTEXT_H
4 #include <asm/desc.h>
5 #include <linux/atomic.h>
6 #include <linux/mm_types.h>
8 #include <trace/events/tlb.h>
10 #include <asm/pgalloc.h>
11 #include <asm/tlbflush.h>
12 #include <asm/paravirt.h>
13 #include <asm/mpx.h>
14 #ifndef CONFIG_PARAVIRT
15 static inline void paravirt_activate_mm(struct mm_struct *prev,
16 struct mm_struct *next)
19 #endif /* !CONFIG_PARAVIRT */
21 #ifdef CONFIG_PERF_EVENTS
22 extern struct static_key rdpmc_always_available;
24 static inline void load_mm_cr4(struct mm_struct *mm)
26 if (static_key_false(&rdpmc_always_available) ||
27 atomic_read(&mm->context.perf_rdpmc_allowed))
28 cr4_set_bits(X86_CR4_PCE);
29 else
30 cr4_clear_bits(X86_CR4_PCE);
32 #else
33 static inline void load_mm_cr4(struct mm_struct *mm) {}
34 #endif
36 #ifdef CONFIG_MODIFY_LDT_SYSCALL
38 * ldt_structs can be allocated, used, and freed, but they are never
39 * modified while live.
41 struct ldt_struct {
43 * Xen requires page-aligned LDTs with special permissions. This is
44 * needed to prevent us from installing evil descriptors such as
45 * call gates. On native, we could merge the ldt_struct and LDT
46 * allocations, but it's not worth trying to optimize.
48 struct desc_struct *entries;
49 int size;
53 * Used for LDT copy/destruction.
55 int init_new_context_ldt(struct task_struct *tsk, struct mm_struct *mm);
56 void destroy_context_ldt(struct mm_struct *mm);
57 #else /* CONFIG_MODIFY_LDT_SYSCALL */
58 static inline int init_new_context_ldt(struct task_struct *tsk,
59 struct mm_struct *mm)
61 return 0;
63 static inline void destroy_context_ldt(struct mm_struct *mm) {}
64 #endif
66 static inline void load_mm_ldt(struct mm_struct *mm)
68 #ifdef CONFIG_MODIFY_LDT_SYSCALL
69 struct ldt_struct *ldt;
71 /* lockless_dereference synchronizes with smp_store_release */
72 ldt = lockless_dereference(mm->context.ldt);
75 * Any change to mm->context.ldt is followed by an IPI to all
76 * CPUs with the mm active. The LDT will not be freed until
77 * after the IPI is handled by all such CPUs. This means that,
78 * if the ldt_struct changes before we return, the values we see
79 * will be safe, and the new values will be loaded before we run
80 * any user code.
82 * NB: don't try to convert this to use RCU without extreme care.
83 * We would still need IRQs off, because we don't want to change
84 * the local LDT after an IPI loaded a newer value than the one
85 * that we can see.
88 if (unlikely(ldt))
89 set_ldt(ldt->entries, ldt->size);
90 else
91 clear_LDT();
92 #else
93 clear_LDT();
94 #endif
96 DEBUG_LOCKS_WARN_ON(preemptible());
99 static inline void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
101 #ifdef CONFIG_SMP
102 if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_OK)
103 this_cpu_write(cpu_tlbstate.state, TLBSTATE_LAZY);
104 #endif
107 static inline int init_new_context(struct task_struct *tsk,
108 struct mm_struct *mm)
110 init_new_context_ldt(tsk, mm);
111 return 0;
113 static inline void destroy_context(struct mm_struct *mm)
115 destroy_context_ldt(mm);
118 static inline void switch_mm(struct mm_struct *prev, struct mm_struct *next,
119 struct task_struct *tsk)
121 unsigned cpu = smp_processor_id();
123 if (likely(prev != next)) {
124 #ifdef CONFIG_SMP
125 this_cpu_write(cpu_tlbstate.state, TLBSTATE_OK);
126 this_cpu_write(cpu_tlbstate.active_mm, next);
127 #endif
128 cpumask_set_cpu(cpu, mm_cpumask(next));
131 * Re-load page tables.
133 * This logic has an ordering constraint:
135 * CPU 0: Write to a PTE for 'next'
136 * CPU 0: load bit 1 in mm_cpumask. if nonzero, send IPI.
137 * CPU 1: set bit 1 in next's mm_cpumask
138 * CPU 1: load from the PTE that CPU 0 writes (implicit)
140 * We need to prevent an outcome in which CPU 1 observes
141 * the new PTE value and CPU 0 observes bit 1 clear in
142 * mm_cpumask. (If that occurs, then the IPI will never
143 * be sent, and CPU 0's TLB will contain a stale entry.)
145 * The bad outcome can occur if either CPU's load is
146 * reordered before that CPU's store, so both CPUs must
147 * execute full barriers to prevent this from happening.
149 * Thus, switch_mm needs a full barrier between the
150 * store to mm_cpumask and any operation that could load
151 * from next->pgd. TLB fills are special and can happen
152 * due to instruction fetches or for no reason at all,
153 * and neither LOCK nor MFENCE orders them.
154 * Fortunately, load_cr3() is serializing and gives the
155 * ordering guarantee we need.
158 load_cr3(next->pgd);
160 trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
162 /* Stop flush ipis for the previous mm */
163 cpumask_clear_cpu(cpu, mm_cpumask(prev));
165 /* Load per-mm CR4 state */
166 load_mm_cr4(next);
168 #ifdef CONFIG_MODIFY_LDT_SYSCALL
170 * Load the LDT, if the LDT is different.
172 * It's possible that prev->context.ldt doesn't match
173 * the LDT register. This can happen if leave_mm(prev)
174 * was called and then modify_ldt changed
175 * prev->context.ldt but suppressed an IPI to this CPU.
176 * In this case, prev->context.ldt != NULL, because we
177 * never set context.ldt to NULL while the mm still
178 * exists. That means that next->context.ldt !=
179 * prev->context.ldt, because mms never share an LDT.
181 if (unlikely(prev->context.ldt != next->context.ldt))
182 load_mm_ldt(next);
183 #endif
185 #ifdef CONFIG_SMP
186 else {
187 this_cpu_write(cpu_tlbstate.state, TLBSTATE_OK);
188 BUG_ON(this_cpu_read(cpu_tlbstate.active_mm) != next);
190 if (!cpumask_test_cpu(cpu, mm_cpumask(next))) {
192 * On established mms, the mm_cpumask is only changed
193 * from irq context, from ptep_clear_flush() while in
194 * lazy tlb mode, and here. Irqs are blocked during
195 * schedule, protecting us from simultaneous changes.
197 cpumask_set_cpu(cpu, mm_cpumask(next));
200 * We were in lazy tlb mode and leave_mm disabled
201 * tlb flush IPI delivery. We must reload CR3
202 * to make sure to use no freed page tables.
204 * As above, load_cr3() is serializing and orders TLB
205 * fills with respect to the mm_cpumask write.
207 load_cr3(next->pgd);
208 trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
209 load_mm_cr4(next);
210 load_mm_ldt(next);
213 #endif
216 #define activate_mm(prev, next) \
217 do { \
218 paravirt_activate_mm((prev), (next)); \
219 switch_mm((prev), (next), NULL); \
220 } while (0);
222 #ifdef CONFIG_X86_32
223 #define deactivate_mm(tsk, mm) \
224 do { \
225 lazy_load_gs(0); \
226 } while (0)
227 #else
228 #define deactivate_mm(tsk, mm) \
229 do { \
230 load_gs_index(0); \
231 loadsegment(fs, 0); \
232 } while (0)
233 #endif
235 static inline void arch_dup_mmap(struct mm_struct *oldmm,
236 struct mm_struct *mm)
238 paravirt_arch_dup_mmap(oldmm, mm);
241 static inline void arch_exit_mmap(struct mm_struct *mm)
243 paravirt_arch_exit_mmap(mm);
246 #ifdef CONFIG_X86_64
247 static inline bool is_64bit_mm(struct mm_struct *mm)
249 return !config_enabled(CONFIG_IA32_EMULATION) ||
250 !(mm->context.ia32_compat == TIF_IA32);
252 #else
253 static inline bool is_64bit_mm(struct mm_struct *mm)
255 return false;
257 #endif
259 static inline void arch_bprm_mm_init(struct mm_struct *mm,
260 struct vm_area_struct *vma)
262 mpx_mm_init(mm);
265 static inline void arch_unmap(struct mm_struct *mm, struct vm_area_struct *vma,
266 unsigned long start, unsigned long end)
269 * mpx_notify_unmap() goes and reads a rarely-hot
270 * cacheline in the mm_struct. That can be expensive
271 * enough to be seen in profiles.
273 * The mpx_notify_unmap() call and its contents have been
274 * observed to affect munmap() performance on hardware
275 * where MPX is not present.
277 * The unlikely() optimizes for the fast case: no MPX
278 * in the CPU, or no MPX use in the process. Even if
279 * we get this wrong (in the unlikely event that MPX
280 * is widely enabled on some system) the overhead of
281 * MPX itself (reading bounds tables) is expected to
282 * overwhelm the overhead of getting this unlikely()
283 * consistently wrong.
285 if (unlikely(cpu_feature_enabled(X86_FEATURE_MPX)))
286 mpx_notify_unmap(mm, vma, start, end);
289 static inline int vma_pkey(struct vm_area_struct *vma)
291 u16 pkey = 0;
292 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
293 unsigned long vma_pkey_mask = VM_PKEY_BIT0 | VM_PKEY_BIT1 |
294 VM_PKEY_BIT2 | VM_PKEY_BIT3;
295 pkey = (vma->vm_flags & vma_pkey_mask) >> VM_PKEY_SHIFT;
296 #endif
297 return pkey;
300 static inline bool __pkru_allows_pkey(u16 pkey, bool write)
302 u32 pkru = read_pkru();
304 if (!__pkru_allows_read(pkru, pkey))
305 return false;
306 if (write && !__pkru_allows_write(pkru, pkey))
307 return false;
309 return true;
313 * We only want to enforce protection keys on the current process
314 * because we effectively have no access to PKRU for other
315 * processes or any way to tell *which * PKRU in a threaded
316 * process we could use.
318 * So do not enforce things if the VMA is not from the current
319 * mm, or if we are in a kernel thread.
321 static inline bool vma_is_foreign(struct vm_area_struct *vma)
323 if (!current->mm)
324 return true;
326 * Should PKRU be enforced on the access to this VMA? If
327 * the VMA is from another process, then PKRU has no
328 * relevance and should not be enforced.
330 if (current->mm != vma->vm_mm)
331 return true;
333 return false;
336 static inline bool arch_vma_access_permitted(struct vm_area_struct *vma,
337 bool write, bool execute, bool foreign)
339 /* pkeys never affect instruction fetches */
340 if (execute)
341 return true;
342 /* allow access if the VMA is not one from this process */
343 if (foreign || vma_is_foreign(vma))
344 return true;
345 return __pkru_allows_pkey(vma_pkey(vma), write);
348 static inline bool arch_pte_access_permitted(pte_t pte, bool write)
350 return __pkru_allows_pkey(pte_flags_pkey(pte_flags(pte)), write);
353 #endif /* _ASM_X86_MMU_CONTEXT_H */