2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
6 * SGI UV architectural definitions
8 * Copyright (C) 2007-2014 Silicon Graphics, Inc. All rights reserved.
11 #ifndef _ASM_X86_UV_UV_HUB_H
12 #define _ASM_X86_UV_UV_HUB_H
15 #include <linux/numa.h>
16 #include <linux/percpu.h>
17 #include <linux/timer.h>
19 #include <asm/types.h>
20 #include <asm/percpu.h>
21 #include <asm/uv/uv_mmrs.h>
22 #include <asm/irq_vectors.h>
23 #include <asm/io_apic.h>
27 * Addressing Terminology
29 * M - The low M bits of a physical address represent the offset
30 * into the blade local memory. RAM memory on a blade is physically
31 * contiguous (although various IO spaces may punch holes in
34 * N - Number of bits in the node portion of a socket physical
37 * NASID - network ID of a router, Mbrick or Cbrick. Nasid values of
38 * routers always have low bit of 1, C/MBricks have low bit
39 * equal to 0. Most addressing macros that target UV hub chips
40 * right shift the NASID by 1 to exclude the always-zero bit.
41 * NASIDs contain up to 15 bits.
43 * GNODE - NASID right shifted by 1 bit. Most mmrs contain gnodes instead
46 * PNODE - the low N bits of the GNODE. The PNODE is the most useful variant
47 * of the nasid for socket usage.
49 * GPA - (global physical address) a socket physical address converted
50 * so that it can be used by the GRU as a global address. Socket
51 * physical addresses 1) need additional NASID (node) bits added
52 * to the high end of the address, and 2) unaliased if the
53 * partition does not have a physical address 0. In addition, on
54 * UV2 rev 1, GPAs need the gnode left shifted to bits 39 or 40.
57 * NumaLink Global Physical Address Format:
58 * +--------------------------------+---------------------+
59 * |00..000| GNODE | NodeOffset |
60 * +--------------------------------+---------------------+
61 * |<-------53 - M bits --->|<--------M bits ----->
63 * M - number of node offset bits (35 .. 40)
66 * Memory/UV-HUB Processor Socket Address Format:
67 * +----------------+---------------+---------------------+
68 * |00..000000000000| PNODE | NodeOffset |
69 * +----------------+---------------+---------------------+
70 * <--- N bits --->|<--------M bits ----->
72 * M - number of node offset bits (35 .. 40)
73 * N - number of PNODE bits (0 .. 10)
75 * Note: M + N cannot currently exceed 44 (x86_64) or 46 (IA64).
76 * The actual values are configuration dependent and are set at
77 * boot time. M & N values are set by the hardware/BIOS at boot.
81 * NOTE!!!!!! This is the current format of the APICID. However, code
82 * should assume that this will change in the future. Use functions
83 * in this file for all APICID bit manipulations and conversion.
87 * pppppppppplc0cch Nehalem-EX (12 bits in hdw reg)
88 * ppppppppplcc0cch Westmere-EX (12 bits in hdw reg)
89 * pppppppppppcccch SandyBridge (15 bits in hdw reg)
93 * l = socket number on board
96 * s = bits that are in the SOCKET_ID CSR
98 * Note: Processor may support fewer bits in the APICID register. The ACPI
99 * tables hold all 16 bits. Software needs to be aware of this.
101 * Unless otherwise specified, all references to APICID refer to
102 * the FULL value contained in ACPI tables, not the subset in the
103 * processor APICID register.
108 * Maximum number of bricks in all partitions and in all coherency domains.
109 * This is the total number of bricks accessible in the numalink fabric. It
110 * includes all C & M bricks. Routers are NOT included.
112 * This value is also the value of the maximum number of non-router NASIDs
113 * in the numalink fabric.
115 * NOTE: a brick may contain 1 or 2 OS nodes. Don't get these confused.
117 #define UV_MAX_NUMALINK_BLADES 16384
120 * Maximum number of C/Mbricks within a software SSI (hardware may support
123 #define UV_MAX_SSI_BLADES 256
126 * The largest possible NASID of a C or M brick (+ 2)
128 #define UV_MAX_NASID_VALUE (UV_MAX_NUMALINK_BLADES * 2)
131 struct timer_list timer
;
132 unsigned long offset
;
134 unsigned long idle_on
;
135 unsigned long idle_off
;
137 unsigned char enabled
;
141 * The following defines attributes of the HUB chip. These attributes are
142 * frequently referenced and are kept in the per-cpu data areas of each cpu.
143 * They are kept together in a struct to minimize cache misses.
145 struct uv_hub_info_s
{
146 unsigned long global_mmr_base
;
147 unsigned long gpa_mask
;
148 unsigned int gnode_extra
;
149 unsigned char hub_revision
;
150 unsigned char apic_pnode_shift
;
151 unsigned char m_shift
;
152 unsigned char n_lshift
;
153 unsigned long gnode_upper
;
154 unsigned long lowmem_remap_top
;
155 unsigned long lowmem_remap_base
;
156 unsigned short pnode
;
157 unsigned short pnode_mask
;
158 unsigned short coherency_domain_number
;
159 unsigned short numa_blade_id
;
160 unsigned char blade_processor_id
;
163 struct uv_scir_s scir
;
166 DECLARE_PER_CPU(struct uv_hub_info_s
, __uv_hub_info
);
167 #define uv_hub_info this_cpu_ptr(&__uv_hub_info)
168 #define uv_cpu_hub_info(cpu) (&per_cpu(__uv_hub_info, cpu))
171 * Hub revisions less than UV2_HUB_REVISION_BASE are UV1 hubs. All UV2
172 * hubs have revision numbers greater than or equal to UV2_HUB_REVISION_BASE.
173 * This is a software convention - NOT the hardware revision numbers in
176 #define UV1_HUB_REVISION_BASE 1
177 #define UV2_HUB_REVISION_BASE 3
178 #define UV3_HUB_REVISION_BASE 5
180 static inline int is_uv1_hub(void)
182 return uv_hub_info
->hub_revision
< UV2_HUB_REVISION_BASE
;
185 static inline int is_uv2_hub(void)
187 return ((uv_hub_info
->hub_revision
>= UV2_HUB_REVISION_BASE
) &&
188 (uv_hub_info
->hub_revision
< UV3_HUB_REVISION_BASE
));
191 static inline int is_uv3_hub(void)
193 return uv_hub_info
->hub_revision
>= UV3_HUB_REVISION_BASE
;
196 static inline int is_uv_hub(void)
198 return uv_hub_info
->hub_revision
;
201 /* code common to uv2 and uv3 only */
202 static inline int is_uvx_hub(void)
204 return uv_hub_info
->hub_revision
>= UV2_HUB_REVISION_BASE
;
209 struct uvh_apicid_s
{
210 unsigned long local_apic_mask
: 24;
211 unsigned long local_apic_shift
: 5;
212 unsigned long unused1
: 3;
213 unsigned long pnode_mask
: 24;
214 unsigned long pnode_shift
: 5;
215 unsigned long unused2
: 3;
220 * Local & Global MMR space macros.
221 * Note: macros are intended to be used ONLY by inline functions
222 * in this file - not by other kernel code.
223 * n - NASID (full 15-bit global nasid)
224 * g - GNODE (full 15-bit global nasid, right shifted 1)
225 * p - PNODE (local part of nsids, right shifted 1)
227 #define UV_NASID_TO_PNODE(n) (((n) >> 1) & uv_hub_info->pnode_mask)
228 #define UV_PNODE_TO_GNODE(p) ((p) |uv_hub_info->gnode_extra)
229 #define UV_PNODE_TO_NASID(p) (UV_PNODE_TO_GNODE(p) << 1)
231 #define UV1_LOCAL_MMR_BASE 0xf4000000UL
232 #define UV1_GLOBAL_MMR32_BASE 0xf8000000UL
233 #define UV1_LOCAL_MMR_SIZE (64UL * 1024 * 1024)
234 #define UV1_GLOBAL_MMR32_SIZE (64UL * 1024 * 1024)
236 #define UV2_LOCAL_MMR_BASE 0xfa000000UL
237 #define UV2_GLOBAL_MMR32_BASE 0xfc000000UL
238 #define UV2_LOCAL_MMR_SIZE (32UL * 1024 * 1024)
239 #define UV2_GLOBAL_MMR32_SIZE (32UL * 1024 * 1024)
241 #define UV3_LOCAL_MMR_BASE 0xfa000000UL
242 #define UV3_GLOBAL_MMR32_BASE 0xfc000000UL
243 #define UV3_LOCAL_MMR_SIZE (32UL * 1024 * 1024)
244 #define UV3_GLOBAL_MMR32_SIZE (32UL * 1024 * 1024)
246 #define UV_LOCAL_MMR_BASE (is_uv1_hub() ? UV1_LOCAL_MMR_BASE : \
247 (is_uv2_hub() ? UV2_LOCAL_MMR_BASE : \
249 #define UV_GLOBAL_MMR32_BASE (is_uv1_hub() ? UV1_GLOBAL_MMR32_BASE :\
250 (is_uv2_hub() ? UV2_GLOBAL_MMR32_BASE :\
251 UV3_GLOBAL_MMR32_BASE))
252 #define UV_LOCAL_MMR_SIZE (is_uv1_hub() ? UV1_LOCAL_MMR_SIZE : \
253 (is_uv2_hub() ? UV2_LOCAL_MMR_SIZE : \
255 #define UV_GLOBAL_MMR32_SIZE (is_uv1_hub() ? UV1_GLOBAL_MMR32_SIZE :\
256 (is_uv2_hub() ? UV2_GLOBAL_MMR32_SIZE :\
257 UV3_GLOBAL_MMR32_SIZE))
258 #define UV_GLOBAL_MMR64_BASE (uv_hub_info->global_mmr_base)
260 #define UV_GLOBAL_GRU_MMR_BASE 0x4000000
262 #define UV_GLOBAL_MMR32_PNODE_SHIFT 15
263 #define UV_GLOBAL_MMR64_PNODE_SHIFT 26
265 #define UV_GLOBAL_MMR32_PNODE_BITS(p) ((p) << (UV_GLOBAL_MMR32_PNODE_SHIFT))
267 #define UV_GLOBAL_MMR64_PNODE_BITS(p) \
268 (((unsigned long)(p)) << UV_GLOBAL_MMR64_PNODE_SHIFT)
270 #define UVH_APICID 0x002D0E00L
271 #define UV_APIC_PNODE_SHIFT 6
273 #define UV_APICID_HIBIT_MASK 0xffff0000
275 /* Local Bus from cpu's perspective */
276 #define LOCAL_BUS_BASE 0x1c00000
277 #define LOCAL_BUS_SIZE (4 * 1024 * 1024)
280 * System Controller Interface Reg
282 * Note there are NO leds on a UV system. This register is only
283 * used by the system controller to monitor system-wide operation.
284 * There are 64 regs per node. With Nahelem cpus (2 cores per node,
285 * 8 cpus per core, 2 threads per cpu) there are 32 cpu threads on
288 * The window is located at top of ACPI MMR space
290 #define SCIR_WINDOW_COUNT 64
291 #define SCIR_LOCAL_MMR_BASE (LOCAL_BUS_BASE + \
295 #define SCIR_CPU_HEARTBEAT 0x01 /* timer interrupt */
296 #define SCIR_CPU_ACTIVITY 0x02 /* not idle */
297 #define SCIR_CPU_HB_INTERVAL (HZ) /* once per second */
299 /* Loop through all installed blades */
300 #define for_each_possible_blade(bid) \
301 for ((bid) = 0; (bid) < uv_num_possible_blades(); (bid)++)
304 * Macros for converting between kernel virtual addresses, socket local physical
305 * addresses, and UV global physical addresses.
306 * Note: use the standard __pa() & __va() macros for converting
307 * between socket virtual and socket physical addresses.
310 /* socket phys RAM --> UV global physical address */
311 static inline unsigned long uv_soc_phys_ram_to_gpa(unsigned long paddr
)
313 if (paddr
< uv_hub_info
->lowmem_remap_top
)
314 paddr
|= uv_hub_info
->lowmem_remap_base
;
315 paddr
|= uv_hub_info
->gnode_upper
;
316 paddr
= ((paddr
<< uv_hub_info
->m_shift
) >> uv_hub_info
->m_shift
) |
317 ((paddr
>> uv_hub_info
->m_val
) << uv_hub_info
->n_lshift
);
322 /* socket virtual --> UV global physical address */
323 static inline unsigned long uv_gpa(void *v
)
325 return uv_soc_phys_ram_to_gpa(__pa(v
));
328 /* Top two bits indicate the requested address is in MMR space. */
330 uv_gpa_in_mmr_space(unsigned long gpa
)
332 return (gpa
>> 62) == 0x3UL
;
335 /* UV global physical address --> socket phys RAM */
336 static inline unsigned long uv_gpa_to_soc_phys_ram(unsigned long gpa
)
339 unsigned long remap_base
= uv_hub_info
->lowmem_remap_base
;
340 unsigned long remap_top
= uv_hub_info
->lowmem_remap_top
;
342 gpa
= ((gpa
<< uv_hub_info
->m_shift
) >> uv_hub_info
->m_shift
) |
343 ((gpa
>> uv_hub_info
->n_lshift
) << uv_hub_info
->m_val
);
344 paddr
= gpa
& uv_hub_info
->gpa_mask
;
345 if (paddr
>= remap_base
&& paddr
< remap_base
+ remap_top
)
352 static inline unsigned long uv_gpa_to_gnode(unsigned long gpa
)
354 return gpa
>> uv_hub_info
->n_lshift
;
358 static inline int uv_gpa_to_pnode(unsigned long gpa
)
360 unsigned long n_mask
= (1UL << uv_hub_info
->n_val
) - 1;
362 return uv_gpa_to_gnode(gpa
) & n_mask
;
365 /* gpa -> node offset*/
366 static inline unsigned long uv_gpa_to_offset(unsigned long gpa
)
368 return (gpa
<< uv_hub_info
->m_shift
) >> uv_hub_info
->m_shift
;
371 /* pnode, offset --> socket virtual */
372 static inline void *uv_pnode_offset_to_vaddr(int pnode
, unsigned long offset
)
374 return __va(((unsigned long)pnode
<< uv_hub_info
->m_val
) | offset
);
379 * Extract a PNODE from an APICID (full apicid, not processor subset)
381 static inline int uv_apicid_to_pnode(int apicid
)
383 return (apicid
>> uv_hub_info
->apic_pnode_shift
);
387 * Convert an apicid to the socket number on the blade
389 static inline int uv_apicid_to_socket(int apicid
)
392 return (apicid
>> (uv_hub_info
->apic_pnode_shift
- 1)) & 1;
398 * Access global MMRs using the low memory MMR32 space. This region supports
399 * faster MMR access but not all MMRs are accessible in this space.
401 static inline unsigned long *uv_global_mmr32_address(int pnode
, unsigned long offset
)
403 return __va(UV_GLOBAL_MMR32_BASE
|
404 UV_GLOBAL_MMR32_PNODE_BITS(pnode
) | offset
);
407 static inline void uv_write_global_mmr32(int pnode
, unsigned long offset
, unsigned long val
)
409 writeq(val
, uv_global_mmr32_address(pnode
, offset
));
412 static inline unsigned long uv_read_global_mmr32(int pnode
, unsigned long offset
)
414 return readq(uv_global_mmr32_address(pnode
, offset
));
418 * Access Global MMR space using the MMR space located at the top of physical
421 static inline volatile void __iomem
*uv_global_mmr64_address(int pnode
, unsigned long offset
)
423 return __va(UV_GLOBAL_MMR64_BASE
|
424 UV_GLOBAL_MMR64_PNODE_BITS(pnode
) | offset
);
427 static inline void uv_write_global_mmr64(int pnode
, unsigned long offset
, unsigned long val
)
429 writeq(val
, uv_global_mmr64_address(pnode
, offset
));
432 static inline unsigned long uv_read_global_mmr64(int pnode
, unsigned long offset
)
434 return readq(uv_global_mmr64_address(pnode
, offset
));
438 * Global MMR space addresses when referenced by the GRU. (GRU does
439 * NOT use socket addressing).
441 static inline unsigned long uv_global_gru_mmr_address(int pnode
, unsigned long offset
)
443 return UV_GLOBAL_GRU_MMR_BASE
| offset
|
444 ((unsigned long)pnode
<< uv_hub_info
->m_val
);
447 static inline void uv_write_global_mmr8(int pnode
, unsigned long offset
, unsigned char val
)
449 writeb(val
, uv_global_mmr64_address(pnode
, offset
));
452 static inline unsigned char uv_read_global_mmr8(int pnode
, unsigned long offset
)
454 return readb(uv_global_mmr64_address(pnode
, offset
));
458 * Access hub local MMRs. Faster than using global space but only local MMRs
461 static inline unsigned long *uv_local_mmr_address(unsigned long offset
)
463 return __va(UV_LOCAL_MMR_BASE
| offset
);
466 static inline unsigned long uv_read_local_mmr(unsigned long offset
)
468 return readq(uv_local_mmr_address(offset
));
471 static inline void uv_write_local_mmr(unsigned long offset
, unsigned long val
)
473 writeq(val
, uv_local_mmr_address(offset
));
476 static inline unsigned char uv_read_local_mmr8(unsigned long offset
)
478 return readb(uv_local_mmr_address(offset
));
481 static inline void uv_write_local_mmr8(unsigned long offset
, unsigned char val
)
483 writeb(val
, uv_local_mmr_address(offset
));
487 * Structures and definitions for converting between cpu, node, pnode, and blade
490 struct uv_blade_info
{
491 unsigned short nr_possible_cpus
;
492 unsigned short nr_online_cpus
;
493 unsigned short pnode
;
495 spinlock_t nmi_lock
; /* obsolete, see uv_hub_nmi */
496 unsigned long nmi_count
; /* obsolete, see uv_hub_nmi */
498 extern struct uv_blade_info
*uv_blade_info
;
499 extern short *uv_node_to_blade
;
500 extern short *uv_cpu_to_blade
;
501 extern short uv_possible_blades
;
503 /* Blade-local cpu number of current cpu. Numbered 0 .. <# cpus on the blade> */
504 static inline int uv_blade_processor_id(void)
506 return uv_hub_info
->blade_processor_id
;
509 /* Blade number of current cpu. Numnbered 0 .. <#blades -1> */
510 static inline int uv_numa_blade_id(void)
512 return uv_hub_info
->numa_blade_id
;
515 /* Convert a cpu number to the the UV blade number */
516 static inline int uv_cpu_to_blade_id(int cpu
)
518 return uv_cpu_to_blade
[cpu
];
521 /* Convert linux node number to the UV blade number */
522 static inline int uv_node_to_blade_id(int nid
)
524 return uv_node_to_blade
[nid
];
527 /* Convert a blade id to the PNODE of the blade */
528 static inline int uv_blade_to_pnode(int bid
)
530 return uv_blade_info
[bid
].pnode
;
533 /* Nid of memory node on blade. -1 if no blade-local memory */
534 static inline int uv_blade_to_memory_nid(int bid
)
536 return uv_blade_info
[bid
].memory_nid
;
539 /* Determine the number of possible cpus on a blade */
540 static inline int uv_blade_nr_possible_cpus(int bid
)
542 return uv_blade_info
[bid
].nr_possible_cpus
;
545 /* Determine the number of online cpus on a blade */
546 static inline int uv_blade_nr_online_cpus(int bid
)
548 return uv_blade_info
[bid
].nr_online_cpus
;
551 /* Convert a cpu id to the PNODE of the blade containing the cpu */
552 static inline int uv_cpu_to_pnode(int cpu
)
554 return uv_blade_info
[uv_cpu_to_blade_id(cpu
)].pnode
;
557 /* Convert a linux node number to the PNODE of the blade */
558 static inline int uv_node_to_pnode(int nid
)
560 return uv_blade_info
[uv_node_to_blade_id(nid
)].pnode
;
563 /* Maximum possible number of blades */
564 static inline int uv_num_possible_blades(void)
566 return uv_possible_blades
;
569 /* Per Hub NMI support */
570 extern void uv_nmi_setup(void);
572 /* BMC sets a bit this MMR non-zero before sending an NMI */
573 #define UVH_NMI_MMR UVH_SCRATCH5
574 #define UVH_NMI_MMR_CLEAR UVH_SCRATCH5_ALIAS
575 #define UVH_NMI_MMR_SHIFT 63
576 #define UVH_NMI_MMR_TYPE "SCRATCH5"
578 /* Newer SMM NMI handler, not present in all systems */
579 #define UVH_NMI_MMRX UVH_EVENT_OCCURRED0
580 #define UVH_NMI_MMRX_CLEAR UVH_EVENT_OCCURRED0_ALIAS
581 #define UVH_NMI_MMRX_SHIFT (is_uv1_hub() ? \
582 UV1H_EVENT_OCCURRED0_EXTIO_INT0_SHFT :\
583 UVXH_EVENT_OCCURRED0_EXTIO_INT0_SHFT)
584 #define UVH_NMI_MMRX_TYPE "EXTIO_INT0"
586 /* Non-zero indicates newer SMM NMI handler present */
587 #define UVH_NMI_MMRX_SUPPORTED UVH_EXTIO_INT0_BROADCAST
589 /* Indicates to BIOS that we want to use the newer SMM NMI handler */
590 #define UVH_NMI_MMRX_REQ UVH_SCRATCH5_ALIAS_2
591 #define UVH_NMI_MMRX_REQ_SHIFT 62
593 struct uv_hub_nmi_s
{
594 raw_spinlock_t nmi_lock
;
595 atomic_t in_nmi
; /* flag this node in UV NMI IRQ */
596 atomic_t cpu_owner
; /* last locker of this struct */
597 atomic_t read_mmr_count
; /* count of MMR reads */
598 atomic_t nmi_count
; /* count of true UV NMIs */
599 unsigned long nmi_value
; /* last value read from NMI MMR */
602 struct uv_cpu_nmi_s
{
603 struct uv_hub_nmi_s
*hub
;
610 DECLARE_PER_CPU(struct uv_cpu_nmi_s
, uv_cpu_nmi
);
612 #define uv_hub_nmi this_cpu_read(uv_cpu_nmi.hub)
613 #define uv_cpu_nmi_per(cpu) (per_cpu(uv_cpu_nmi, cpu))
614 #define uv_hub_nmi_per(cpu) (uv_cpu_nmi_per(cpu).hub)
616 /* uv_cpu_nmi_states */
617 #define UV_NMI_STATE_OUT 0
618 #define UV_NMI_STATE_IN 1
619 #define UV_NMI_STATE_DUMP 2
620 #define UV_NMI_STATE_DUMP_DONE 3
622 /* Update SCIR state */
623 static inline void uv_set_scir_bits(unsigned char value
)
625 if (uv_hub_info
->scir
.state
!= value
) {
626 uv_hub_info
->scir
.state
= value
;
627 uv_write_local_mmr8(uv_hub_info
->scir
.offset
, value
);
631 static inline unsigned long uv_scir_offset(int apicid
)
633 return SCIR_LOCAL_MMR_BASE
| (apicid
& 0x3f);
636 static inline void uv_set_cpu_scir_bits(int cpu
, unsigned char value
)
638 if (uv_cpu_hub_info(cpu
)->scir
.state
!= value
) {
639 uv_write_global_mmr8(uv_cpu_to_pnode(cpu
),
640 uv_cpu_hub_info(cpu
)->scir
.offset
, value
);
641 uv_cpu_hub_info(cpu
)->scir
.state
= value
;
645 extern unsigned int uv_apicid_hibits
;
646 static unsigned long uv_hub_ipi_value(int apicid
, int vector
, int mode
)
648 apicid
|= uv_apicid_hibits
;
649 return (1UL << UVH_IPI_INT_SEND_SHFT
) |
650 ((apicid
) << UVH_IPI_INT_APIC_ID_SHFT
) |
651 (mode
<< UVH_IPI_INT_DELIVERY_MODE_SHFT
) |
652 (vector
<< UVH_IPI_INT_VECTOR_SHFT
);
655 static inline void uv_hub_send_ipi(int pnode
, int apicid
, int vector
)
658 unsigned long dmode
= dest_Fixed
;
660 if (vector
== NMI_VECTOR
)
663 val
= uv_hub_ipi_value(apicid
, vector
, dmode
);
664 uv_write_global_mmr64(pnode
, UVH_IPI_INT
, val
);
668 * Get the minimum revision number of the hub chips within the partition.
669 * 1 - UV1 rev 1.0 initial silicon
670 * 2 - UV1 rev 2.0 production silicon
671 * 3 - UV2 rev 1.0 initial silicon
672 * 5 - UV3 rev 1.0 initial silicon
674 static inline int uv_get_min_hub_revision_id(void)
676 return uv_hub_info
->hub_revision
;
679 #endif /* CONFIG_X86_64 */
680 #endif /* _ASM_X86_UV_UV_HUB_H */