2 * This program is free software; you can redistribute it and/or modify it
3 * under the terms of the GNU General Public License as published by the
4 * Free Software Foundation; either version 2, or (at your option) any
7 * This program is distributed in the hope that it will be useful, but
8 * WITHOUT ANY WARRANTY; without even the implied warranty of
9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
10 * General Public License for more details.
15 * Copyright (C) 2004 Amit S. Kale <amitkale@linsyssoft.com>
16 * Copyright (C) 2000-2001 VERITAS Software Corporation.
17 * Copyright (C) 2002 Andi Kleen, SuSE Labs
18 * Copyright (C) 2004 LinSysSoft Technologies Pvt. Ltd.
19 * Copyright (C) 2007 MontaVista Software, Inc.
20 * Copyright (C) 2007-2008 Jason Wessel, Wind River Systems, Inc.
22 /****************************************************************************
23 * Contributor: Lake Stevens Instrument Division$
24 * Written by: Glenn Engel $
25 * Updated by: Amit Kale<akale@veritas.com>
26 * Updated by: Tom Rini <trini@kernel.crashing.org>
27 * Updated by: Jason Wessel <jason.wessel@windriver.com>
28 * Modified for 386 by Jim Kingdon, Cygnus Support.
29 * Origianl kgdb, compatibility with 2.1.xx kernel by
30 * David Grothe <dave@gcom.com>
31 * Integrated into 2.2.5 kernel by Tigran Aivazian <tigran@sco.com>
32 * X86_64 changes from Andi Kleen's patch merged by Jim Houston
34 #include <linux/spinlock.h>
35 #include <linux/kdebug.h>
36 #include <linux/string.h>
37 #include <linux/kernel.h>
38 #include <linux/ptrace.h>
39 #include <linux/sched.h>
40 #include <linux/delay.h>
41 #include <linux/kgdb.h>
42 #include <linux/smp.h>
43 #include <linux/nmi.h>
44 #include <linux/hw_breakpoint.h>
45 #include <linux/uaccess.h>
46 #include <linux/memory.h>
48 #include <asm/debugreg.h>
49 #include <asm/apicdef.h>
53 struct dbg_reg_def_t dbg_reg_def
[DBG_MAX_REG_NUM
] =
56 { "ax", 4, offsetof(struct pt_regs
, ax
) },
57 { "cx", 4, offsetof(struct pt_regs
, cx
) },
58 { "dx", 4, offsetof(struct pt_regs
, dx
) },
59 { "bx", 4, offsetof(struct pt_regs
, bx
) },
60 { "sp", 4, offsetof(struct pt_regs
, sp
) },
61 { "bp", 4, offsetof(struct pt_regs
, bp
) },
62 { "si", 4, offsetof(struct pt_regs
, si
) },
63 { "di", 4, offsetof(struct pt_regs
, di
) },
64 { "ip", 4, offsetof(struct pt_regs
, ip
) },
65 { "flags", 4, offsetof(struct pt_regs
, flags
) },
66 { "cs", 4, offsetof(struct pt_regs
, cs
) },
67 { "ss", 4, offsetof(struct pt_regs
, ss
) },
68 { "ds", 4, offsetof(struct pt_regs
, ds
) },
69 { "es", 4, offsetof(struct pt_regs
, es
) },
71 { "ax", 8, offsetof(struct pt_regs
, ax
) },
72 { "bx", 8, offsetof(struct pt_regs
, bx
) },
73 { "cx", 8, offsetof(struct pt_regs
, cx
) },
74 { "dx", 8, offsetof(struct pt_regs
, dx
) },
75 { "si", 8, offsetof(struct pt_regs
, si
) },
76 { "di", 8, offsetof(struct pt_regs
, di
) },
77 { "bp", 8, offsetof(struct pt_regs
, bp
) },
78 { "sp", 8, offsetof(struct pt_regs
, sp
) },
79 { "r8", 8, offsetof(struct pt_regs
, r8
) },
80 { "r9", 8, offsetof(struct pt_regs
, r9
) },
81 { "r10", 8, offsetof(struct pt_regs
, r10
) },
82 { "r11", 8, offsetof(struct pt_regs
, r11
) },
83 { "r12", 8, offsetof(struct pt_regs
, r12
) },
84 { "r13", 8, offsetof(struct pt_regs
, r13
) },
85 { "r14", 8, offsetof(struct pt_regs
, r14
) },
86 { "r15", 8, offsetof(struct pt_regs
, r15
) },
87 { "ip", 8, offsetof(struct pt_regs
, ip
) },
88 { "flags", 4, offsetof(struct pt_regs
, flags
) },
89 { "cs", 4, offsetof(struct pt_regs
, cs
) },
90 { "ss", 4, offsetof(struct pt_regs
, ss
) },
98 int dbg_set_reg(int regno
, void *mem
, struct pt_regs
*regs
)
102 regno
== GDB_SS
|| regno
== GDB_FS
|| regno
== GDB_GS
||
104 regno
== GDB_SP
|| regno
== GDB_ORIG_AX
)
107 if (dbg_reg_def
[regno
].offset
!= -1)
108 memcpy((void *)regs
+ dbg_reg_def
[regno
].offset
, mem
,
109 dbg_reg_def
[regno
].size
);
113 char *dbg_get_reg(int regno
, void *mem
, struct pt_regs
*regs
)
115 if (regno
== GDB_ORIG_AX
) {
116 memcpy(mem
, ®s
->orig_ax
, sizeof(regs
->orig_ax
));
119 if (regno
>= DBG_MAX_REG_NUM
|| regno
< 0)
122 if (dbg_reg_def
[regno
].offset
!= -1)
123 memcpy(mem
, (void *)regs
+ dbg_reg_def
[regno
].offset
,
124 dbg_reg_def
[regno
].size
);
129 if (!user_mode(regs
))
130 *(unsigned long *)mem
= __KERNEL_DS
;
133 if (!user_mode(regs
))
134 *(unsigned long *)mem
= kernel_stack_pointer(regs
);
138 *(unsigned long *)mem
= 0xFFFF;
142 return dbg_reg_def
[regno
].name
;
146 * sleeping_thread_to_gdb_regs - Convert ptrace regs to GDB regs
147 * @gdb_regs: A pointer to hold the registers in the order GDB wants.
148 * @p: The &struct task_struct of the desired process.
150 * Convert the register values of the sleeping process in @p to
151 * the format that GDB expects.
152 * This function is called when kgdb does not have access to the
153 * &struct pt_regs and therefore it should fill the gdb registers
154 * @gdb_regs with what has been saved in &struct thread_struct
155 * thread field during switch_to.
157 void sleeping_thread_to_gdb_regs(unsigned long *gdb_regs
, struct task_struct
*p
)
159 #ifndef CONFIG_X86_32
160 u32
*gdb_regs32
= (u32
*)gdb_regs
;
162 gdb_regs
[GDB_AX
] = 0;
163 gdb_regs
[GDB_BX
] = 0;
164 gdb_regs
[GDB_CX
] = 0;
165 gdb_regs
[GDB_DX
] = 0;
166 gdb_regs
[GDB_SI
] = 0;
167 gdb_regs
[GDB_DI
] = 0;
168 gdb_regs
[GDB_BP
] = *(unsigned long *)p
->thread
.sp
;
170 gdb_regs
[GDB_DS
] = __KERNEL_DS
;
171 gdb_regs
[GDB_ES
] = __KERNEL_DS
;
172 gdb_regs
[GDB_PS
] = 0;
173 gdb_regs
[GDB_CS
] = __KERNEL_CS
;
174 gdb_regs
[GDB_PC
] = p
->thread
.ip
;
175 gdb_regs
[GDB_SS
] = __KERNEL_DS
;
176 gdb_regs
[GDB_FS
] = 0xFFFF;
177 gdb_regs
[GDB_GS
] = 0xFFFF;
179 gdb_regs32
[GDB_PS
] = *(unsigned long *)(p
->thread
.sp
+ 8);
180 gdb_regs32
[GDB_CS
] = __KERNEL_CS
;
181 gdb_regs32
[GDB_SS
] = __KERNEL_DS
;
182 gdb_regs
[GDB_PC
] = 0;
183 gdb_regs
[GDB_R8
] = 0;
184 gdb_regs
[GDB_R9
] = 0;
185 gdb_regs
[GDB_R10
] = 0;
186 gdb_regs
[GDB_R11
] = 0;
187 gdb_regs
[GDB_R12
] = 0;
188 gdb_regs
[GDB_R13
] = 0;
189 gdb_regs
[GDB_R14
] = 0;
190 gdb_regs
[GDB_R15
] = 0;
192 gdb_regs
[GDB_SP
] = p
->thread
.sp
;
195 static struct hw_breakpoint
{
200 struct perf_event
* __percpu
*pev
;
201 } breakinfo
[HBP_NUM
];
203 static unsigned long early_dr7
;
205 static void kgdb_correct_hw_break(void)
209 for (breakno
= 0; breakno
< HBP_NUM
; breakno
++) {
210 struct perf_event
*bp
;
211 struct arch_hw_breakpoint
*info
;
213 int cpu
= raw_smp_processor_id();
214 if (!breakinfo
[breakno
].enabled
)
217 set_debugreg(breakinfo
[breakno
].addr
, breakno
);
218 early_dr7
|= encode_dr7(breakno
,
219 breakinfo
[breakno
].len
,
220 breakinfo
[breakno
].type
);
221 set_debugreg(early_dr7
, 7);
224 bp
= *per_cpu_ptr(breakinfo
[breakno
].pev
, cpu
);
225 info
= counter_arch_bp(bp
);
226 if (bp
->attr
.disabled
!= 1)
228 bp
->attr
.bp_addr
= breakinfo
[breakno
].addr
;
229 bp
->attr
.bp_len
= breakinfo
[breakno
].len
;
230 bp
->attr
.bp_type
= breakinfo
[breakno
].type
;
231 info
->address
= breakinfo
[breakno
].addr
;
232 info
->len
= breakinfo
[breakno
].len
;
233 info
->type
= breakinfo
[breakno
].type
;
234 val
= arch_install_hw_breakpoint(bp
);
236 bp
->attr
.disabled
= 0;
239 hw_breakpoint_restore();
242 static int hw_break_reserve_slot(int breakno
)
246 struct perf_event
**pevent
;
251 for_each_online_cpu(cpu
) {
253 pevent
= per_cpu_ptr(breakinfo
[breakno
].pev
, cpu
);
254 if (dbg_reserve_bp_slot(*pevent
))
261 for_each_online_cpu(cpu
) {
265 pevent
= per_cpu_ptr(breakinfo
[breakno
].pev
, cpu
);
266 dbg_release_bp_slot(*pevent
);
271 static int hw_break_release_slot(int breakno
)
273 struct perf_event
**pevent
;
279 for_each_online_cpu(cpu
) {
280 pevent
= per_cpu_ptr(breakinfo
[breakno
].pev
, cpu
);
281 if (dbg_release_bp_slot(*pevent
))
283 * The debugger is responsible for handing the retry on
292 kgdb_remove_hw_break(unsigned long addr
, int len
, enum kgdb_bptype bptype
)
296 for (i
= 0; i
< HBP_NUM
; i
++)
297 if (breakinfo
[i
].addr
== addr
&& breakinfo
[i
].enabled
)
302 if (hw_break_release_slot(i
)) {
303 printk(KERN_ERR
"Cannot remove hw breakpoint at %lx\n", addr
);
306 breakinfo
[i
].enabled
= 0;
311 static void kgdb_remove_all_hw_break(void)
314 int cpu
= raw_smp_processor_id();
315 struct perf_event
*bp
;
317 for (i
= 0; i
< HBP_NUM
; i
++) {
318 if (!breakinfo
[i
].enabled
)
320 bp
= *per_cpu_ptr(breakinfo
[i
].pev
, cpu
);
321 if (!bp
->attr
.disabled
) {
322 arch_uninstall_hw_breakpoint(bp
);
323 bp
->attr
.disabled
= 1;
327 early_dr7
&= ~encode_dr7(i
, breakinfo
[i
].len
,
329 else if (hw_break_release_slot(i
))
330 printk(KERN_ERR
"KGDB: hw bpt remove failed %lx\n",
332 breakinfo
[i
].enabled
= 0;
337 kgdb_set_hw_break(unsigned long addr
, int len
, enum kgdb_bptype bptype
)
341 for (i
= 0; i
< HBP_NUM
; i
++)
342 if (!breakinfo
[i
].enabled
)
348 case BP_HARDWARE_BREAKPOINT
:
350 breakinfo
[i
].type
= X86_BREAKPOINT_EXECUTE
;
352 case BP_WRITE_WATCHPOINT
:
353 breakinfo
[i
].type
= X86_BREAKPOINT_WRITE
;
355 case BP_ACCESS_WATCHPOINT
:
356 breakinfo
[i
].type
= X86_BREAKPOINT_RW
;
363 breakinfo
[i
].len
= X86_BREAKPOINT_LEN_1
;
366 breakinfo
[i
].len
= X86_BREAKPOINT_LEN_2
;
369 breakinfo
[i
].len
= X86_BREAKPOINT_LEN_4
;
373 breakinfo
[i
].len
= X86_BREAKPOINT_LEN_8
;
379 breakinfo
[i
].addr
= addr
;
380 if (hw_break_reserve_slot(i
)) {
381 breakinfo
[i
].addr
= 0;
384 breakinfo
[i
].enabled
= 1;
390 * kgdb_disable_hw_debug - Disable hardware debugging while we in kgdb.
391 * @regs: Current &struct pt_regs.
393 * This function will be called if the particular architecture must
394 * disable hardware debugging while it is processing gdb packets or
395 * handling exception.
397 static void kgdb_disable_hw_debug(struct pt_regs
*regs
)
400 int cpu
= raw_smp_processor_id();
401 struct perf_event
*bp
;
403 /* Disable hardware debugging while we are in kgdb: */
404 set_debugreg(0UL, 7);
405 for (i
= 0; i
< HBP_NUM
; i
++) {
406 if (!breakinfo
[i
].enabled
)
409 early_dr7
&= ~encode_dr7(i
, breakinfo
[i
].len
,
413 bp
= *per_cpu_ptr(breakinfo
[i
].pev
, cpu
);
414 if (bp
->attr
.disabled
== 1)
416 arch_uninstall_hw_breakpoint(bp
);
417 bp
->attr
.disabled
= 1;
423 * kgdb_roundup_cpus - Get other CPUs into a holding pattern
424 * @flags: Current IRQ state
426 * On SMP systems, we need to get the attention of the other CPUs
427 * and get them be in a known state. This should do what is needed
428 * to get the other CPUs to call kgdb_wait(). Note that on some arches,
429 * the NMI approach is not used for rounding up all the CPUs. For example,
430 * in case of MIPS, smp_call_function() is used to roundup CPUs. In
431 * this case, we have to make sure that interrupts are enabled before
432 * calling smp_call_function(). The argument to this function is
433 * the flags that will be used when restoring the interrupts. There is
434 * local_irq_save() call before kgdb_roundup_cpus().
436 * On non-SMP systems, this is not called.
438 void kgdb_roundup_cpus(unsigned long flags
)
440 apic
->send_IPI_allbutself(APIC_DM_NMI
);
445 * kgdb_arch_handle_exception - Handle architecture specific GDB packets.
446 * @e_vector: The error vector of the exception that happened.
447 * @signo: The signal number of the exception that happened.
448 * @err_code: The error code of the exception that happened.
449 * @remcomInBuffer: The buffer of the packet we have read.
450 * @remcomOutBuffer: The buffer of %BUFMAX bytes to write a packet into.
451 * @linux_regs: The &struct pt_regs of the current process.
453 * This function MUST handle the 'c' and 's' command packets,
454 * as well packets to set / remove a hardware breakpoint, if used.
455 * If there are additional packets which the hardware needs to handle,
456 * they are handled here. The code should return -1 if it wants to
457 * process more packets, and a %0 or %1 if it wants to exit from the
460 int kgdb_arch_handle_exception(int e_vector
, int signo
, int err_code
,
461 char *remcomInBuffer
, char *remcomOutBuffer
,
462 struct pt_regs
*linux_regs
)
467 switch (remcomInBuffer
[0]) {
470 /* try to read optional parameter, pc unchanged if no parm */
471 ptr
= &remcomInBuffer
[1];
472 if (kgdb_hex2long(&ptr
, &addr
))
473 linux_regs
->ip
= addr
;
476 /* clear the trace bit */
477 linux_regs
->flags
&= ~X86_EFLAGS_TF
;
478 atomic_set(&kgdb_cpu_doing_single_step
, -1);
480 /* set the trace bit if we're stepping */
481 if (remcomInBuffer
[0] == 's') {
482 linux_regs
->flags
|= X86_EFLAGS_TF
;
483 atomic_set(&kgdb_cpu_doing_single_step
,
484 raw_smp_processor_id());
490 /* this means that we do not want to exit from the handler: */
495 single_step_cont(struct pt_regs
*regs
, struct die_args
*args
)
498 * Single step exception from kernel space to user space so
499 * eat the exception and continue the process:
501 printk(KERN_ERR
"KGDB: trap/step from kernel to user space, "
503 kgdb_arch_handle_exception(args
->trapnr
, args
->signr
,
504 args
->err
, "c", "", regs
);
506 * Reset the BS bit in dr6 (pointed by args->err) to
507 * denote completion of processing
509 (*(unsigned long *)ERR_PTR(args
->err
)) &= ~DR_STEP
;
514 static DECLARE_BITMAP(was_in_debug_nmi
, NR_CPUS
);
516 static int kgdb_nmi_handler(unsigned int cmd
, struct pt_regs
*regs
)
522 if (atomic_read(&kgdb_active
) != -1) {
523 /* KGDB CPU roundup */
524 cpu
= raw_smp_processor_id();
525 kgdb_nmicallback(cpu
, regs
);
526 set_bit(cpu
, was_in_debug_nmi
);
527 touch_nmi_watchdog();
534 cpu
= raw_smp_processor_id();
536 if (__test_and_clear_bit(cpu
, was_in_debug_nmi
))
547 static int __kgdb_notify(struct die_args
*args
, unsigned long cmd
)
549 struct pt_regs
*regs
= args
->regs
;
553 if (atomic_read(&kgdb_cpu_doing_single_step
) != -1) {
555 return single_step_cont(regs
, args
);
557 } else if (test_thread_flag(TIF_SINGLESTEP
))
558 /* This means a user thread is single stepping
559 * a system call which should be ignored
568 if (kgdb_handle_exception(args
->trapnr
, args
->signr
, cmd
, regs
))
571 /* Must touch watchdog before return to normal operation */
572 touch_nmi_watchdog();
576 int kgdb_ll_trap(int cmd
, const char *str
,
577 struct pt_regs
*regs
, long err
, int trap
, int sig
)
579 struct die_args args
= {
588 if (!kgdb_io_module_registered
)
591 return __kgdb_notify(&args
, cmd
);
595 kgdb_notify(struct notifier_block
*self
, unsigned long cmd
, void *ptr
)
600 local_irq_save(flags
);
601 ret
= __kgdb_notify(ptr
, cmd
);
602 local_irq_restore(flags
);
607 static struct notifier_block kgdb_notifier
= {
608 .notifier_call
= kgdb_notify
,
612 * kgdb_arch_init - Perform any architecture specific initialization.
614 * This function will handle the initialization of any architecture
615 * specific callbacks.
617 int kgdb_arch_init(void)
621 retval
= register_die_notifier(&kgdb_notifier
);
625 retval
= register_nmi_handler(NMI_LOCAL
, kgdb_nmi_handler
,
630 retval
= register_nmi_handler(NMI_UNKNOWN
, kgdb_nmi_handler
,
639 unregister_nmi_handler(NMI_LOCAL
, "kgdb");
641 unregister_die_notifier(&kgdb_notifier
);
646 static void kgdb_hw_overflow_handler(struct perf_event
*event
,
647 struct perf_sample_data
*data
, struct pt_regs
*regs
)
649 struct task_struct
*tsk
= current
;
652 for (i
= 0; i
< 4; i
++)
653 if (breakinfo
[i
].enabled
)
654 tsk
->thread
.debugreg6
|= (DR_TRAP0
<< i
);
657 void kgdb_arch_late(void)
660 struct perf_event_attr attr
;
661 struct perf_event
**pevent
;
664 * Pre-allocate the hw breakpoint structions in the non-atomic
665 * portion of kgdb because this operation requires mutexs to
668 hw_breakpoint_init(&attr
);
669 attr
.bp_addr
= (unsigned long)kgdb_arch_init
;
670 attr
.bp_len
= HW_BREAKPOINT_LEN_1
;
671 attr
.bp_type
= HW_BREAKPOINT_W
;
673 for (i
= 0; i
< HBP_NUM
; i
++) {
674 if (breakinfo
[i
].pev
)
676 breakinfo
[i
].pev
= register_wide_hw_breakpoint(&attr
, NULL
, NULL
);
677 if (IS_ERR((void * __force
)breakinfo
[i
].pev
)) {
678 printk(KERN_ERR
"kgdb: Could not allocate hw"
679 "breakpoints\nDisabling the kernel debugger\n");
680 breakinfo
[i
].pev
= NULL
;
684 for_each_online_cpu(cpu
) {
685 pevent
= per_cpu_ptr(breakinfo
[i
].pev
, cpu
);
686 pevent
[0]->hw
.sample_period
= 1;
687 pevent
[0]->overflow_handler
= kgdb_hw_overflow_handler
;
688 if (pevent
[0]->destroy
!= NULL
) {
689 pevent
[0]->destroy
= NULL
;
690 release_bp_slot(*pevent
);
697 * kgdb_arch_exit - Perform any architecture specific uninitalization.
699 * This function will handle the uninitalization of any architecture
700 * specific callbacks, for dynamic registration and unregistration.
702 void kgdb_arch_exit(void)
705 for (i
= 0; i
< 4; i
++) {
706 if (breakinfo
[i
].pev
) {
707 unregister_wide_hw_breakpoint(breakinfo
[i
].pev
);
708 breakinfo
[i
].pev
= NULL
;
711 unregister_nmi_handler(NMI_UNKNOWN
, "kgdb");
712 unregister_nmi_handler(NMI_LOCAL
, "kgdb");
713 unregister_die_notifier(&kgdb_notifier
);
718 * kgdb_skipexception - Bail out of KGDB when we've been triggered.
719 * @exception: Exception vector number
720 * @regs: Current &struct pt_regs.
722 * On some architectures we need to skip a breakpoint exception when
723 * it occurs after a breakpoint has been removed.
725 * Skip an int3 exception when it occurs after a breakpoint has been
726 * removed. Backtrack eip by 1 since the int3 would have caused it to
729 int kgdb_skipexception(int exception
, struct pt_regs
*regs
)
731 if (exception
== 3 && kgdb_isremovedbreak(regs
->ip
- 1)) {
738 unsigned long kgdb_arch_pc(int exception
, struct pt_regs
*regs
)
741 return instruction_pointer(regs
) - 1;
742 return instruction_pointer(regs
);
745 void kgdb_arch_set_pc(struct pt_regs
*regs
, unsigned long ip
)
750 int kgdb_arch_set_breakpoint(struct kgdb_bkpt
*bpt
)
753 char opc
[BREAK_INSTR_SIZE
];
755 bpt
->type
= BP_BREAKPOINT
;
756 err
= probe_kernel_read(bpt
->saved_instr
, (char *)bpt
->bpt_addr
,
760 err
= probe_kernel_write((char *)bpt
->bpt_addr
,
761 arch_kgdb_ops
.gdb_bpt_instr
, BREAK_INSTR_SIZE
);
765 * It is safe to call text_poke() because normal kernel execution
766 * is stopped on all cores, so long as the text_mutex is not locked.
768 if (mutex_is_locked(&text_mutex
))
770 text_poke((void *)bpt
->bpt_addr
, arch_kgdb_ops
.gdb_bpt_instr
,
772 err
= probe_kernel_read(opc
, (char *)bpt
->bpt_addr
, BREAK_INSTR_SIZE
);
775 if (memcmp(opc
, arch_kgdb_ops
.gdb_bpt_instr
, BREAK_INSTR_SIZE
))
777 bpt
->type
= BP_POKE_BREAKPOINT
;
782 int kgdb_arch_remove_breakpoint(struct kgdb_bkpt
*bpt
)
785 char opc
[BREAK_INSTR_SIZE
];
787 if (bpt
->type
!= BP_POKE_BREAKPOINT
)
790 * It is safe to call text_poke() because normal kernel execution
791 * is stopped on all cores, so long as the text_mutex is not locked.
793 if (mutex_is_locked(&text_mutex
))
795 text_poke((void *)bpt
->bpt_addr
, bpt
->saved_instr
, BREAK_INSTR_SIZE
);
796 err
= probe_kernel_read(opc
, (char *)bpt
->bpt_addr
, BREAK_INSTR_SIZE
);
797 if (err
|| memcmp(opc
, bpt
->saved_instr
, BREAK_INSTR_SIZE
))
802 return probe_kernel_write((char *)bpt
->bpt_addr
,
803 (char *)bpt
->saved_instr
, BREAK_INSTR_SIZE
);
806 struct kgdb_arch arch_kgdb_ops
= {
807 /* Breakpoint instruction: */
808 .gdb_bpt_instr
= { 0xcc },
809 .flags
= KGDB_HW_BREAKPOINT
,
810 .set_hw_breakpoint
= kgdb_set_hw_break
,
811 .remove_hw_breakpoint
= kgdb_remove_hw_break
,
812 .disable_hw_break
= kgdb_disable_hw_debug
,
813 .remove_all_hw_break
= kgdb_remove_all_hw_break
,
814 .correct_hw_break
= kgdb_correct_hw_break
,