thermal: fix Mediatek thermal controller build
[linux/fpc-iii.git] / arch / x86 / kernel / process.c
blob2915d54e9dd5f730558fba3ed2e7f3c9d4cd5a5b
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 #include <linux/errno.h>
4 #include <linux/kernel.h>
5 #include <linux/mm.h>
6 #include <linux/smp.h>
7 #include <linux/prctl.h>
8 #include <linux/slab.h>
9 #include <linux/sched.h>
10 #include <linux/module.h>
11 #include <linux/pm.h>
12 #include <linux/tick.h>
13 #include <linux/random.h>
14 #include <linux/user-return-notifier.h>
15 #include <linux/dmi.h>
16 #include <linux/utsname.h>
17 #include <linux/stackprotector.h>
18 #include <linux/tick.h>
19 #include <linux/cpuidle.h>
20 #include <trace/events/power.h>
21 #include <linux/hw_breakpoint.h>
22 #include <asm/cpu.h>
23 #include <asm/apic.h>
24 #include <asm/syscalls.h>
25 #include <asm/idle.h>
26 #include <asm/uaccess.h>
27 #include <asm/mwait.h>
28 #include <asm/fpu/internal.h>
29 #include <asm/debugreg.h>
30 #include <asm/nmi.h>
31 #include <asm/tlbflush.h>
32 #include <asm/mce.h>
33 #include <asm/vm86.h>
36 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
37 * no more per-task TSS's. The TSS size is kept cacheline-aligned
38 * so they are allowed to end up in the .data..cacheline_aligned
39 * section. Since TSS's are completely CPU-local, we want them
40 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
42 __visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, cpu_tss) = {
43 .x86_tss = {
44 .sp0 = TOP_OF_INIT_STACK,
45 #ifdef CONFIG_X86_32
46 .ss0 = __KERNEL_DS,
47 .ss1 = __KERNEL_CS,
48 .io_bitmap_base = INVALID_IO_BITMAP_OFFSET,
49 #endif
51 #ifdef CONFIG_X86_32
53 * Note that the .io_bitmap member must be extra-big. This is because
54 * the CPU will access an additional byte beyond the end of the IO
55 * permission bitmap. The extra byte must be all 1 bits, and must
56 * be within the limit.
58 .io_bitmap = { [0 ... IO_BITMAP_LONGS] = ~0 },
59 #endif
60 #ifdef CONFIG_X86_32
61 .SYSENTER_stack_canary = STACK_END_MAGIC,
62 #endif
64 EXPORT_PER_CPU_SYMBOL(cpu_tss);
66 #ifdef CONFIG_X86_64
67 static DEFINE_PER_CPU(unsigned char, is_idle);
68 static ATOMIC_NOTIFIER_HEAD(idle_notifier);
70 void idle_notifier_register(struct notifier_block *n)
72 atomic_notifier_chain_register(&idle_notifier, n);
74 EXPORT_SYMBOL_GPL(idle_notifier_register);
76 void idle_notifier_unregister(struct notifier_block *n)
78 atomic_notifier_chain_unregister(&idle_notifier, n);
80 EXPORT_SYMBOL_GPL(idle_notifier_unregister);
81 #endif
84 * this gets called so that we can store lazy state into memory and copy the
85 * current task into the new thread.
87 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
89 memcpy(dst, src, arch_task_struct_size);
90 #ifdef CONFIG_VM86
91 dst->thread.vm86 = NULL;
92 #endif
94 return fpu__copy(&dst->thread.fpu, &src->thread.fpu);
98 * Free current thread data structures etc..
100 void exit_thread(void)
102 struct task_struct *me = current;
103 struct thread_struct *t = &me->thread;
104 unsigned long *bp = t->io_bitmap_ptr;
105 struct fpu *fpu = &t->fpu;
107 if (bp) {
108 struct tss_struct *tss = &per_cpu(cpu_tss, get_cpu());
110 t->io_bitmap_ptr = NULL;
111 clear_thread_flag(TIF_IO_BITMAP);
113 * Careful, clear this in the TSS too:
115 memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
116 t->io_bitmap_max = 0;
117 put_cpu();
118 kfree(bp);
121 free_vm86(t);
123 fpu__drop(fpu);
126 void flush_thread(void)
128 struct task_struct *tsk = current;
130 flush_ptrace_hw_breakpoint(tsk);
131 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
133 fpu__clear(&tsk->thread.fpu);
136 static void hard_disable_TSC(void)
138 cr4_set_bits(X86_CR4_TSD);
141 void disable_TSC(void)
143 preempt_disable();
144 if (!test_and_set_thread_flag(TIF_NOTSC))
146 * Must flip the CPU state synchronously with
147 * TIF_NOTSC in the current running context.
149 hard_disable_TSC();
150 preempt_enable();
153 static void hard_enable_TSC(void)
155 cr4_clear_bits(X86_CR4_TSD);
158 static void enable_TSC(void)
160 preempt_disable();
161 if (test_and_clear_thread_flag(TIF_NOTSC))
163 * Must flip the CPU state synchronously with
164 * TIF_NOTSC in the current running context.
166 hard_enable_TSC();
167 preempt_enable();
170 int get_tsc_mode(unsigned long adr)
172 unsigned int val;
174 if (test_thread_flag(TIF_NOTSC))
175 val = PR_TSC_SIGSEGV;
176 else
177 val = PR_TSC_ENABLE;
179 return put_user(val, (unsigned int __user *)adr);
182 int set_tsc_mode(unsigned int val)
184 if (val == PR_TSC_SIGSEGV)
185 disable_TSC();
186 else if (val == PR_TSC_ENABLE)
187 enable_TSC();
188 else
189 return -EINVAL;
191 return 0;
194 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
195 struct tss_struct *tss)
197 struct thread_struct *prev, *next;
199 prev = &prev_p->thread;
200 next = &next_p->thread;
202 if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
203 test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
204 unsigned long debugctl = get_debugctlmsr();
206 debugctl &= ~DEBUGCTLMSR_BTF;
207 if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
208 debugctl |= DEBUGCTLMSR_BTF;
210 update_debugctlmsr(debugctl);
213 if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
214 test_tsk_thread_flag(next_p, TIF_NOTSC)) {
215 /* prev and next are different */
216 if (test_tsk_thread_flag(next_p, TIF_NOTSC))
217 hard_disable_TSC();
218 else
219 hard_enable_TSC();
222 if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
224 * Copy the relevant range of the IO bitmap.
225 * Normally this is 128 bytes or less:
227 memcpy(tss->io_bitmap, next->io_bitmap_ptr,
228 max(prev->io_bitmap_max, next->io_bitmap_max));
229 } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
231 * Clear any possible leftover bits:
233 memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
235 propagate_user_return_notify(prev_p, next_p);
239 * Idle related variables and functions
241 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
242 EXPORT_SYMBOL(boot_option_idle_override);
244 static void (*x86_idle)(void);
246 #ifndef CONFIG_SMP
247 static inline void play_dead(void)
249 BUG();
251 #endif
253 #ifdef CONFIG_X86_64
254 void enter_idle(void)
256 this_cpu_write(is_idle, 1);
257 atomic_notifier_call_chain(&idle_notifier, IDLE_START, NULL);
260 static void __exit_idle(void)
262 if (x86_test_and_clear_bit_percpu(0, is_idle) == 0)
263 return;
264 atomic_notifier_call_chain(&idle_notifier, IDLE_END, NULL);
267 /* Called from interrupts to signify idle end */
268 void exit_idle(void)
270 /* idle loop has pid 0 */
271 if (current->pid)
272 return;
273 __exit_idle();
275 #endif
277 void arch_cpu_idle_enter(void)
279 local_touch_nmi();
280 enter_idle();
283 void arch_cpu_idle_exit(void)
285 __exit_idle();
288 void arch_cpu_idle_dead(void)
290 play_dead();
294 * Called from the generic idle code.
296 void arch_cpu_idle(void)
298 x86_idle();
302 * We use this if we don't have any better idle routine..
304 void default_idle(void)
306 trace_cpu_idle_rcuidle(1, smp_processor_id());
307 safe_halt();
308 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
310 #ifdef CONFIG_APM_MODULE
311 EXPORT_SYMBOL(default_idle);
312 #endif
314 #ifdef CONFIG_XEN
315 bool xen_set_default_idle(void)
317 bool ret = !!x86_idle;
319 x86_idle = default_idle;
321 return ret;
323 #endif
324 void stop_this_cpu(void *dummy)
326 local_irq_disable();
328 * Remove this CPU:
330 set_cpu_online(smp_processor_id(), false);
331 disable_local_APIC();
332 mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
334 for (;;)
335 halt();
338 bool amd_e400_c1e_detected;
339 EXPORT_SYMBOL(amd_e400_c1e_detected);
341 static cpumask_var_t amd_e400_c1e_mask;
343 void amd_e400_remove_cpu(int cpu)
345 if (amd_e400_c1e_mask != NULL)
346 cpumask_clear_cpu(cpu, amd_e400_c1e_mask);
350 * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt
351 * pending message MSR. If we detect C1E, then we handle it the same
352 * way as C3 power states (local apic timer and TSC stop)
354 static void amd_e400_idle(void)
356 if (!amd_e400_c1e_detected) {
357 u32 lo, hi;
359 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
361 if (lo & K8_INTP_C1E_ACTIVE_MASK) {
362 amd_e400_c1e_detected = true;
363 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
364 mark_tsc_unstable("TSC halt in AMD C1E");
365 pr_info("System has AMD C1E enabled\n");
369 if (amd_e400_c1e_detected) {
370 int cpu = smp_processor_id();
372 if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) {
373 cpumask_set_cpu(cpu, amd_e400_c1e_mask);
374 /* Force broadcast so ACPI can not interfere. */
375 tick_broadcast_force();
376 pr_info("Switch to broadcast mode on CPU%d\n", cpu);
378 tick_broadcast_enter();
380 default_idle();
383 * The switch back from broadcast mode needs to be
384 * called with interrupts disabled.
386 local_irq_disable();
387 tick_broadcast_exit();
388 local_irq_enable();
389 } else
390 default_idle();
394 * Intel Core2 and older machines prefer MWAIT over HALT for C1.
395 * We can't rely on cpuidle installing MWAIT, because it will not load
396 * on systems that support only C1 -- so the boot default must be MWAIT.
398 * Some AMD machines are the opposite, they depend on using HALT.
400 * So for default C1, which is used during boot until cpuidle loads,
401 * use MWAIT-C1 on Intel HW that has it, else use HALT.
403 static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
405 if (c->x86_vendor != X86_VENDOR_INTEL)
406 return 0;
408 if (!cpu_has(c, X86_FEATURE_MWAIT))
409 return 0;
411 return 1;
415 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
416 * with interrupts enabled and no flags, which is backwards compatible with the
417 * original MWAIT implementation.
419 static void mwait_idle(void)
421 if (!current_set_polling_and_test()) {
422 trace_cpu_idle_rcuidle(1, smp_processor_id());
423 if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
424 mb(); /* quirk */
425 clflush((void *)&current_thread_info()->flags);
426 mb(); /* quirk */
429 __monitor((void *)&current_thread_info()->flags, 0, 0);
430 if (!need_resched())
431 __sti_mwait(0, 0);
432 else
433 local_irq_enable();
434 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
435 } else {
436 local_irq_enable();
438 __current_clr_polling();
441 void select_idle_routine(const struct cpuinfo_x86 *c)
443 #ifdef CONFIG_SMP
444 if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
445 pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
446 #endif
447 if (x86_idle || boot_option_idle_override == IDLE_POLL)
448 return;
450 if (cpu_has_bug(c, X86_BUG_AMD_APIC_C1E)) {
451 /* E400: APIC timer interrupt does not wake up CPU from C1e */
452 pr_info("using AMD E400 aware idle routine\n");
453 x86_idle = amd_e400_idle;
454 } else if (prefer_mwait_c1_over_halt(c)) {
455 pr_info("using mwait in idle threads\n");
456 x86_idle = mwait_idle;
457 } else
458 x86_idle = default_idle;
461 void __init init_amd_e400_c1e_mask(void)
463 /* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */
464 if (x86_idle == amd_e400_idle)
465 zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL);
468 static int __init idle_setup(char *str)
470 if (!str)
471 return -EINVAL;
473 if (!strcmp(str, "poll")) {
474 pr_info("using polling idle threads\n");
475 boot_option_idle_override = IDLE_POLL;
476 cpu_idle_poll_ctrl(true);
477 } else if (!strcmp(str, "halt")) {
479 * When the boot option of idle=halt is added, halt is
480 * forced to be used for CPU idle. In such case CPU C2/C3
481 * won't be used again.
482 * To continue to load the CPU idle driver, don't touch
483 * the boot_option_idle_override.
485 x86_idle = default_idle;
486 boot_option_idle_override = IDLE_HALT;
487 } else if (!strcmp(str, "nomwait")) {
489 * If the boot option of "idle=nomwait" is added,
490 * it means that mwait will be disabled for CPU C2/C3
491 * states. In such case it won't touch the variable
492 * of boot_option_idle_override.
494 boot_option_idle_override = IDLE_NOMWAIT;
495 } else
496 return -1;
498 return 0;
500 early_param("idle", idle_setup);
502 unsigned long arch_align_stack(unsigned long sp)
504 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
505 sp -= get_random_int() % 8192;
506 return sp & ~0xf;
509 unsigned long arch_randomize_brk(struct mm_struct *mm)
511 unsigned long range_end = mm->brk + 0x02000000;
512 return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
516 * Called from fs/proc with a reference on @p to find the function
517 * which called into schedule(). This needs to be done carefully
518 * because the task might wake up and we might look at a stack
519 * changing under us.
521 unsigned long get_wchan(struct task_struct *p)
523 unsigned long start, bottom, top, sp, fp, ip;
524 int count = 0;
526 if (!p || p == current || p->state == TASK_RUNNING)
527 return 0;
529 start = (unsigned long)task_stack_page(p);
530 if (!start)
531 return 0;
534 * Layout of the stack page:
536 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
537 * PADDING
538 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
539 * stack
540 * ----------- bottom = start + sizeof(thread_info)
541 * thread_info
542 * ----------- start
544 * The tasks stack pointer points at the location where the
545 * framepointer is stored. The data on the stack is:
546 * ... IP FP ... IP FP
548 * We need to read FP and IP, so we need to adjust the upper
549 * bound by another unsigned long.
551 top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
552 top -= 2 * sizeof(unsigned long);
553 bottom = start + sizeof(struct thread_info);
555 sp = READ_ONCE(p->thread.sp);
556 if (sp < bottom || sp > top)
557 return 0;
559 fp = READ_ONCE_NOCHECK(*(unsigned long *)sp);
560 do {
561 if (fp < bottom || fp > top)
562 return 0;
563 ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
564 if (!in_sched_functions(ip))
565 return ip;
566 fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
567 } while (count++ < 16 && p->state != TASK_RUNNING);
568 return 0;