1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 #include <linux/errno.h>
4 #include <linux/kernel.h>
7 #include <linux/prctl.h>
8 #include <linux/slab.h>
9 #include <linux/sched.h>
10 #include <linux/module.h>
12 #include <linux/tick.h>
13 #include <linux/random.h>
14 #include <linux/user-return-notifier.h>
15 #include <linux/dmi.h>
16 #include <linux/utsname.h>
17 #include <linux/stackprotector.h>
18 #include <linux/tick.h>
19 #include <linux/cpuidle.h>
20 #include <trace/events/power.h>
21 #include <linux/hw_breakpoint.h>
24 #include <asm/syscalls.h>
26 #include <asm/uaccess.h>
27 #include <asm/mwait.h>
28 #include <asm/fpu/internal.h>
29 #include <asm/debugreg.h>
31 #include <asm/tlbflush.h>
36 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
37 * no more per-task TSS's. The TSS size is kept cacheline-aligned
38 * so they are allowed to end up in the .data..cacheline_aligned
39 * section. Since TSS's are completely CPU-local, we want them
40 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
42 __visible
DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct
, cpu_tss
) = {
44 .sp0
= TOP_OF_INIT_STACK
,
48 .io_bitmap_base
= INVALID_IO_BITMAP_OFFSET
,
53 * Note that the .io_bitmap member must be extra-big. This is because
54 * the CPU will access an additional byte beyond the end of the IO
55 * permission bitmap. The extra byte must be all 1 bits, and must
56 * be within the limit.
58 .io_bitmap
= { [0 ... IO_BITMAP_LONGS
] = ~0 },
61 .SYSENTER_stack_canary
= STACK_END_MAGIC
,
64 EXPORT_PER_CPU_SYMBOL(cpu_tss
);
67 static DEFINE_PER_CPU(unsigned char, is_idle
);
68 static ATOMIC_NOTIFIER_HEAD(idle_notifier
);
70 void idle_notifier_register(struct notifier_block
*n
)
72 atomic_notifier_chain_register(&idle_notifier
, n
);
74 EXPORT_SYMBOL_GPL(idle_notifier_register
);
76 void idle_notifier_unregister(struct notifier_block
*n
)
78 atomic_notifier_chain_unregister(&idle_notifier
, n
);
80 EXPORT_SYMBOL_GPL(idle_notifier_unregister
);
84 * this gets called so that we can store lazy state into memory and copy the
85 * current task into the new thread.
87 int arch_dup_task_struct(struct task_struct
*dst
, struct task_struct
*src
)
89 memcpy(dst
, src
, arch_task_struct_size
);
91 dst
->thread
.vm86
= NULL
;
94 return fpu__copy(&dst
->thread
.fpu
, &src
->thread
.fpu
);
98 * Free current thread data structures etc..
100 void exit_thread(void)
102 struct task_struct
*me
= current
;
103 struct thread_struct
*t
= &me
->thread
;
104 unsigned long *bp
= t
->io_bitmap_ptr
;
105 struct fpu
*fpu
= &t
->fpu
;
108 struct tss_struct
*tss
= &per_cpu(cpu_tss
, get_cpu());
110 t
->io_bitmap_ptr
= NULL
;
111 clear_thread_flag(TIF_IO_BITMAP
);
113 * Careful, clear this in the TSS too:
115 memset(tss
->io_bitmap
, 0xff, t
->io_bitmap_max
);
116 t
->io_bitmap_max
= 0;
126 void flush_thread(void)
128 struct task_struct
*tsk
= current
;
130 flush_ptrace_hw_breakpoint(tsk
);
131 memset(tsk
->thread
.tls_array
, 0, sizeof(tsk
->thread
.tls_array
));
133 fpu__clear(&tsk
->thread
.fpu
);
136 static void hard_disable_TSC(void)
138 cr4_set_bits(X86_CR4_TSD
);
141 void disable_TSC(void)
144 if (!test_and_set_thread_flag(TIF_NOTSC
))
146 * Must flip the CPU state synchronously with
147 * TIF_NOTSC in the current running context.
153 static void hard_enable_TSC(void)
155 cr4_clear_bits(X86_CR4_TSD
);
158 static void enable_TSC(void)
161 if (test_and_clear_thread_flag(TIF_NOTSC
))
163 * Must flip the CPU state synchronously with
164 * TIF_NOTSC in the current running context.
170 int get_tsc_mode(unsigned long adr
)
174 if (test_thread_flag(TIF_NOTSC
))
175 val
= PR_TSC_SIGSEGV
;
179 return put_user(val
, (unsigned int __user
*)adr
);
182 int set_tsc_mode(unsigned int val
)
184 if (val
== PR_TSC_SIGSEGV
)
186 else if (val
== PR_TSC_ENABLE
)
194 void __switch_to_xtra(struct task_struct
*prev_p
, struct task_struct
*next_p
,
195 struct tss_struct
*tss
)
197 struct thread_struct
*prev
, *next
;
199 prev
= &prev_p
->thread
;
200 next
= &next_p
->thread
;
202 if (test_tsk_thread_flag(prev_p
, TIF_BLOCKSTEP
) ^
203 test_tsk_thread_flag(next_p
, TIF_BLOCKSTEP
)) {
204 unsigned long debugctl
= get_debugctlmsr();
206 debugctl
&= ~DEBUGCTLMSR_BTF
;
207 if (test_tsk_thread_flag(next_p
, TIF_BLOCKSTEP
))
208 debugctl
|= DEBUGCTLMSR_BTF
;
210 update_debugctlmsr(debugctl
);
213 if (test_tsk_thread_flag(prev_p
, TIF_NOTSC
) ^
214 test_tsk_thread_flag(next_p
, TIF_NOTSC
)) {
215 /* prev and next are different */
216 if (test_tsk_thread_flag(next_p
, TIF_NOTSC
))
222 if (test_tsk_thread_flag(next_p
, TIF_IO_BITMAP
)) {
224 * Copy the relevant range of the IO bitmap.
225 * Normally this is 128 bytes or less:
227 memcpy(tss
->io_bitmap
, next
->io_bitmap_ptr
,
228 max(prev
->io_bitmap_max
, next
->io_bitmap_max
));
229 } else if (test_tsk_thread_flag(prev_p
, TIF_IO_BITMAP
)) {
231 * Clear any possible leftover bits:
233 memset(tss
->io_bitmap
, 0xff, prev
->io_bitmap_max
);
235 propagate_user_return_notify(prev_p
, next_p
);
239 * Idle related variables and functions
241 unsigned long boot_option_idle_override
= IDLE_NO_OVERRIDE
;
242 EXPORT_SYMBOL(boot_option_idle_override
);
244 static void (*x86_idle
)(void);
247 static inline void play_dead(void)
254 void enter_idle(void)
256 this_cpu_write(is_idle
, 1);
257 atomic_notifier_call_chain(&idle_notifier
, IDLE_START
, NULL
);
260 static void __exit_idle(void)
262 if (x86_test_and_clear_bit_percpu(0, is_idle
) == 0)
264 atomic_notifier_call_chain(&idle_notifier
, IDLE_END
, NULL
);
267 /* Called from interrupts to signify idle end */
270 /* idle loop has pid 0 */
277 void arch_cpu_idle_enter(void)
283 void arch_cpu_idle_exit(void)
288 void arch_cpu_idle_dead(void)
294 * Called from the generic idle code.
296 void arch_cpu_idle(void)
302 * We use this if we don't have any better idle routine..
304 void default_idle(void)
306 trace_cpu_idle_rcuidle(1, smp_processor_id());
308 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT
, smp_processor_id());
310 #ifdef CONFIG_APM_MODULE
311 EXPORT_SYMBOL(default_idle
);
315 bool xen_set_default_idle(void)
317 bool ret
= !!x86_idle
;
319 x86_idle
= default_idle
;
324 void stop_this_cpu(void *dummy
)
330 set_cpu_online(smp_processor_id(), false);
331 disable_local_APIC();
332 mcheck_cpu_clear(this_cpu_ptr(&cpu_info
));
338 bool amd_e400_c1e_detected
;
339 EXPORT_SYMBOL(amd_e400_c1e_detected
);
341 static cpumask_var_t amd_e400_c1e_mask
;
343 void amd_e400_remove_cpu(int cpu
)
345 if (amd_e400_c1e_mask
!= NULL
)
346 cpumask_clear_cpu(cpu
, amd_e400_c1e_mask
);
350 * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt
351 * pending message MSR. If we detect C1E, then we handle it the same
352 * way as C3 power states (local apic timer and TSC stop)
354 static void amd_e400_idle(void)
356 if (!amd_e400_c1e_detected
) {
359 rdmsr(MSR_K8_INT_PENDING_MSG
, lo
, hi
);
361 if (lo
& K8_INTP_C1E_ACTIVE_MASK
) {
362 amd_e400_c1e_detected
= true;
363 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC
))
364 mark_tsc_unstable("TSC halt in AMD C1E");
365 pr_info("System has AMD C1E enabled\n");
369 if (amd_e400_c1e_detected
) {
370 int cpu
= smp_processor_id();
372 if (!cpumask_test_cpu(cpu
, amd_e400_c1e_mask
)) {
373 cpumask_set_cpu(cpu
, amd_e400_c1e_mask
);
374 /* Force broadcast so ACPI can not interfere. */
375 tick_broadcast_force();
376 pr_info("Switch to broadcast mode on CPU%d\n", cpu
);
378 tick_broadcast_enter();
383 * The switch back from broadcast mode needs to be
384 * called with interrupts disabled.
387 tick_broadcast_exit();
394 * Intel Core2 and older machines prefer MWAIT over HALT for C1.
395 * We can't rely on cpuidle installing MWAIT, because it will not load
396 * on systems that support only C1 -- so the boot default must be MWAIT.
398 * Some AMD machines are the opposite, they depend on using HALT.
400 * So for default C1, which is used during boot until cpuidle loads,
401 * use MWAIT-C1 on Intel HW that has it, else use HALT.
403 static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86
*c
)
405 if (c
->x86_vendor
!= X86_VENDOR_INTEL
)
408 if (!cpu_has(c
, X86_FEATURE_MWAIT
))
415 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
416 * with interrupts enabled and no flags, which is backwards compatible with the
417 * original MWAIT implementation.
419 static void mwait_idle(void)
421 if (!current_set_polling_and_test()) {
422 trace_cpu_idle_rcuidle(1, smp_processor_id());
423 if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR
)) {
425 clflush((void *)¤t_thread_info()->flags
);
429 __monitor((void *)¤t_thread_info()->flags
, 0, 0);
434 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT
, smp_processor_id());
438 __current_clr_polling();
441 void select_idle_routine(const struct cpuinfo_x86
*c
)
444 if (boot_option_idle_override
== IDLE_POLL
&& smp_num_siblings
> 1)
445 pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
447 if (x86_idle
|| boot_option_idle_override
== IDLE_POLL
)
450 if (cpu_has_bug(c
, X86_BUG_AMD_APIC_C1E
)) {
451 /* E400: APIC timer interrupt does not wake up CPU from C1e */
452 pr_info("using AMD E400 aware idle routine\n");
453 x86_idle
= amd_e400_idle
;
454 } else if (prefer_mwait_c1_over_halt(c
)) {
455 pr_info("using mwait in idle threads\n");
456 x86_idle
= mwait_idle
;
458 x86_idle
= default_idle
;
461 void __init
init_amd_e400_c1e_mask(void)
463 /* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */
464 if (x86_idle
== amd_e400_idle
)
465 zalloc_cpumask_var(&amd_e400_c1e_mask
, GFP_KERNEL
);
468 static int __init
idle_setup(char *str
)
473 if (!strcmp(str
, "poll")) {
474 pr_info("using polling idle threads\n");
475 boot_option_idle_override
= IDLE_POLL
;
476 cpu_idle_poll_ctrl(true);
477 } else if (!strcmp(str
, "halt")) {
479 * When the boot option of idle=halt is added, halt is
480 * forced to be used for CPU idle. In such case CPU C2/C3
481 * won't be used again.
482 * To continue to load the CPU idle driver, don't touch
483 * the boot_option_idle_override.
485 x86_idle
= default_idle
;
486 boot_option_idle_override
= IDLE_HALT
;
487 } else if (!strcmp(str
, "nomwait")) {
489 * If the boot option of "idle=nomwait" is added,
490 * it means that mwait will be disabled for CPU C2/C3
491 * states. In such case it won't touch the variable
492 * of boot_option_idle_override.
494 boot_option_idle_override
= IDLE_NOMWAIT
;
500 early_param("idle", idle_setup
);
502 unsigned long arch_align_stack(unsigned long sp
)
504 if (!(current
->personality
& ADDR_NO_RANDOMIZE
) && randomize_va_space
)
505 sp
-= get_random_int() % 8192;
509 unsigned long arch_randomize_brk(struct mm_struct
*mm
)
511 unsigned long range_end
= mm
->brk
+ 0x02000000;
512 return randomize_range(mm
->brk
, range_end
, 0) ? : mm
->brk
;
516 * Called from fs/proc with a reference on @p to find the function
517 * which called into schedule(). This needs to be done carefully
518 * because the task might wake up and we might look at a stack
521 unsigned long get_wchan(struct task_struct
*p
)
523 unsigned long start
, bottom
, top
, sp
, fp
, ip
;
526 if (!p
|| p
== current
|| p
->state
== TASK_RUNNING
)
529 start
= (unsigned long)task_stack_page(p
);
534 * Layout of the stack page:
536 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
538 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
540 * ----------- bottom = start + sizeof(thread_info)
544 * The tasks stack pointer points at the location where the
545 * framepointer is stored. The data on the stack is:
546 * ... IP FP ... IP FP
548 * We need to read FP and IP, so we need to adjust the upper
549 * bound by another unsigned long.
551 top
= start
+ THREAD_SIZE
- TOP_OF_KERNEL_STACK_PADDING
;
552 top
-= 2 * sizeof(unsigned long);
553 bottom
= start
+ sizeof(struct thread_info
);
555 sp
= READ_ONCE(p
->thread
.sp
);
556 if (sp
< bottom
|| sp
> top
)
559 fp
= READ_ONCE_NOCHECK(*(unsigned long *)sp
);
561 if (fp
< bottom
|| fp
> top
)
563 ip
= READ_ONCE_NOCHECK(*(unsigned long *)(fp
+ sizeof(unsigned long)));
564 if (!in_sched_functions(ip
))
566 fp
= READ_ONCE_NOCHECK(*(unsigned long *)fp
);
567 } while (count
++ < 16 && p
->state
!= TASK_RUNNING
);