thermal: fix Mediatek thermal controller build
[linux/fpc-iii.git] / arch / x86 / kvm / mtrr.c
blob3f8c732117eccf73140fded817e1b155dfa76073
1 /*
2 * vMTRR implementation
4 * Copyright (C) 2006 Qumranet, Inc.
5 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6 * Copyright(C) 2015 Intel Corporation.
8 * Authors:
9 * Yaniv Kamay <yaniv@qumranet.com>
10 * Avi Kivity <avi@qumranet.com>
11 * Marcelo Tosatti <mtosatti@redhat.com>
12 * Paolo Bonzini <pbonzini@redhat.com>
13 * Xiao Guangrong <guangrong.xiao@linux.intel.com>
15 * This work is licensed under the terms of the GNU GPL, version 2. See
16 * the COPYING file in the top-level directory.
19 #include <linux/kvm_host.h>
20 #include <asm/mtrr.h>
22 #include "cpuid.h"
23 #include "mmu.h"
25 #define IA32_MTRR_DEF_TYPE_E (1ULL << 11)
26 #define IA32_MTRR_DEF_TYPE_FE (1ULL << 10)
27 #define IA32_MTRR_DEF_TYPE_TYPE_MASK (0xff)
29 static bool msr_mtrr_valid(unsigned msr)
31 switch (msr) {
32 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
33 case MSR_MTRRfix64K_00000:
34 case MSR_MTRRfix16K_80000:
35 case MSR_MTRRfix16K_A0000:
36 case MSR_MTRRfix4K_C0000:
37 case MSR_MTRRfix4K_C8000:
38 case MSR_MTRRfix4K_D0000:
39 case MSR_MTRRfix4K_D8000:
40 case MSR_MTRRfix4K_E0000:
41 case MSR_MTRRfix4K_E8000:
42 case MSR_MTRRfix4K_F0000:
43 case MSR_MTRRfix4K_F8000:
44 case MSR_MTRRdefType:
45 case MSR_IA32_CR_PAT:
46 return true;
47 case 0x2f8:
48 return true;
50 return false;
53 static bool valid_pat_type(unsigned t)
55 return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
58 static bool valid_mtrr_type(unsigned t)
60 return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
63 bool kvm_mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
65 int i;
66 u64 mask;
68 if (!msr_mtrr_valid(msr))
69 return false;
71 if (msr == MSR_IA32_CR_PAT) {
72 for (i = 0; i < 8; i++)
73 if (!valid_pat_type((data >> (i * 8)) & 0xff))
74 return false;
75 return true;
76 } else if (msr == MSR_MTRRdefType) {
77 if (data & ~0xcff)
78 return false;
79 return valid_mtrr_type(data & 0xff);
80 } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
81 for (i = 0; i < 8 ; i++)
82 if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
83 return false;
84 return true;
87 /* variable MTRRs */
88 WARN_ON(!(msr >= 0x200 && msr < 0x200 + 2 * KVM_NR_VAR_MTRR));
90 mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
91 if ((msr & 1) == 0) {
92 /* MTRR base */
93 if (!valid_mtrr_type(data & 0xff))
94 return false;
95 mask |= 0xf00;
96 } else
97 /* MTRR mask */
98 mask |= 0x7ff;
99 if (data & mask) {
100 kvm_inject_gp(vcpu, 0);
101 return false;
104 return true;
106 EXPORT_SYMBOL_GPL(kvm_mtrr_valid);
108 static bool mtrr_is_enabled(struct kvm_mtrr *mtrr_state)
110 return !!(mtrr_state->deftype & IA32_MTRR_DEF_TYPE_E);
113 static bool fixed_mtrr_is_enabled(struct kvm_mtrr *mtrr_state)
115 return !!(mtrr_state->deftype & IA32_MTRR_DEF_TYPE_FE);
118 static u8 mtrr_default_type(struct kvm_mtrr *mtrr_state)
120 return mtrr_state->deftype & IA32_MTRR_DEF_TYPE_TYPE_MASK;
123 static u8 mtrr_disabled_type(struct kvm_vcpu *vcpu)
126 * Intel SDM 11.11.2.2: all MTRRs are disabled when
127 * IA32_MTRR_DEF_TYPE.E bit is cleared, and the UC
128 * memory type is applied to all of physical memory.
130 * However, virtual machines can be run with CPUID such that
131 * there are no MTRRs. In that case, the firmware will never
132 * enable MTRRs and it is obviously undesirable to run the
133 * guest entirely with UC memory and we use WB.
135 if (guest_cpuid_has_mtrr(vcpu))
136 return MTRR_TYPE_UNCACHABLE;
137 else
138 return MTRR_TYPE_WRBACK;
142 * Three terms are used in the following code:
143 * - segment, it indicates the address segments covered by fixed MTRRs.
144 * - unit, it corresponds to the MSR entry in the segment.
145 * - range, a range is covered in one memory cache type.
147 struct fixed_mtrr_segment {
148 u64 start;
149 u64 end;
151 int range_shift;
153 /* the start position in kvm_mtrr.fixed_ranges[]. */
154 int range_start;
157 static struct fixed_mtrr_segment fixed_seg_table[] = {
158 /* MSR_MTRRfix64K_00000, 1 unit. 64K fixed mtrr. */
160 .start = 0x0,
161 .end = 0x80000,
162 .range_shift = 16, /* 64K */
163 .range_start = 0,
167 * MSR_MTRRfix16K_80000 ... MSR_MTRRfix16K_A0000, 2 units,
168 * 16K fixed mtrr.
171 .start = 0x80000,
172 .end = 0xc0000,
173 .range_shift = 14, /* 16K */
174 .range_start = 8,
178 * MSR_MTRRfix4K_C0000 ... MSR_MTRRfix4K_F8000, 8 units,
179 * 4K fixed mtrr.
182 .start = 0xc0000,
183 .end = 0x100000,
184 .range_shift = 12, /* 12K */
185 .range_start = 24,
190 * The size of unit is covered in one MSR, one MSR entry contains
191 * 8 ranges so that unit size is always 8 * 2^range_shift.
193 static u64 fixed_mtrr_seg_unit_size(int seg)
195 return 8 << fixed_seg_table[seg].range_shift;
198 static bool fixed_msr_to_seg_unit(u32 msr, int *seg, int *unit)
200 switch (msr) {
201 case MSR_MTRRfix64K_00000:
202 *seg = 0;
203 *unit = 0;
204 break;
205 case MSR_MTRRfix16K_80000 ... MSR_MTRRfix16K_A0000:
206 *seg = 1;
207 *unit = msr - MSR_MTRRfix16K_80000;
208 break;
209 case MSR_MTRRfix4K_C0000 ... MSR_MTRRfix4K_F8000:
210 *seg = 2;
211 *unit = msr - MSR_MTRRfix4K_C0000;
212 break;
213 default:
214 return false;
217 return true;
220 static void fixed_mtrr_seg_unit_range(int seg, int unit, u64 *start, u64 *end)
222 struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
223 u64 unit_size = fixed_mtrr_seg_unit_size(seg);
225 *start = mtrr_seg->start + unit * unit_size;
226 *end = *start + unit_size;
227 WARN_ON(*end > mtrr_seg->end);
230 static int fixed_mtrr_seg_unit_range_index(int seg, int unit)
232 struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
234 WARN_ON(mtrr_seg->start + unit * fixed_mtrr_seg_unit_size(seg)
235 > mtrr_seg->end);
237 /* each unit has 8 ranges. */
238 return mtrr_seg->range_start + 8 * unit;
241 static int fixed_mtrr_seg_end_range_index(int seg)
243 struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
244 int n;
246 n = (mtrr_seg->end - mtrr_seg->start) >> mtrr_seg->range_shift;
247 return mtrr_seg->range_start + n - 1;
250 static bool fixed_msr_to_range(u32 msr, u64 *start, u64 *end)
252 int seg, unit;
254 if (!fixed_msr_to_seg_unit(msr, &seg, &unit))
255 return false;
257 fixed_mtrr_seg_unit_range(seg, unit, start, end);
258 return true;
261 static int fixed_msr_to_range_index(u32 msr)
263 int seg, unit;
265 if (!fixed_msr_to_seg_unit(msr, &seg, &unit))
266 return -1;
268 return fixed_mtrr_seg_unit_range_index(seg, unit);
271 static int fixed_mtrr_addr_to_seg(u64 addr)
273 struct fixed_mtrr_segment *mtrr_seg;
274 int seg, seg_num = ARRAY_SIZE(fixed_seg_table);
276 for (seg = 0; seg < seg_num; seg++) {
277 mtrr_seg = &fixed_seg_table[seg];
278 if (mtrr_seg->start <= addr && addr < mtrr_seg->end)
279 return seg;
282 return -1;
285 static int fixed_mtrr_addr_seg_to_range_index(u64 addr, int seg)
287 struct fixed_mtrr_segment *mtrr_seg;
288 int index;
290 mtrr_seg = &fixed_seg_table[seg];
291 index = mtrr_seg->range_start;
292 index += (addr - mtrr_seg->start) >> mtrr_seg->range_shift;
293 return index;
296 static u64 fixed_mtrr_range_end_addr(int seg, int index)
298 struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
299 int pos = index - mtrr_seg->range_start;
301 return mtrr_seg->start + ((pos + 1) << mtrr_seg->range_shift);
304 static void var_mtrr_range(struct kvm_mtrr_range *range, u64 *start, u64 *end)
306 u64 mask;
308 *start = range->base & PAGE_MASK;
310 mask = range->mask & PAGE_MASK;
312 /* This cannot overflow because writing to the reserved bits of
313 * variable MTRRs causes a #GP.
315 *end = (*start | ~mask) + 1;
318 static void update_mtrr(struct kvm_vcpu *vcpu, u32 msr)
320 struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
321 gfn_t start, end;
322 int index;
324 if (msr == MSR_IA32_CR_PAT || !tdp_enabled ||
325 !kvm_arch_has_noncoherent_dma(vcpu->kvm))
326 return;
328 if (!mtrr_is_enabled(mtrr_state) && msr != MSR_MTRRdefType)
329 return;
331 /* fixed MTRRs. */
332 if (fixed_msr_to_range(msr, &start, &end)) {
333 if (!fixed_mtrr_is_enabled(mtrr_state))
334 return;
335 } else if (msr == MSR_MTRRdefType) {
336 start = 0x0;
337 end = ~0ULL;
338 } else {
339 /* variable range MTRRs. */
340 index = (msr - 0x200) / 2;
341 var_mtrr_range(&mtrr_state->var_ranges[index], &start, &end);
344 kvm_zap_gfn_range(vcpu->kvm, gpa_to_gfn(start), gpa_to_gfn(end));
347 static bool var_mtrr_range_is_valid(struct kvm_mtrr_range *range)
349 return (range->mask & (1 << 11)) != 0;
352 static void set_var_mtrr_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
354 struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
355 struct kvm_mtrr_range *tmp, *cur;
356 int index, is_mtrr_mask;
358 index = (msr - 0x200) / 2;
359 is_mtrr_mask = msr - 0x200 - 2 * index;
360 cur = &mtrr_state->var_ranges[index];
362 /* remove the entry if it's in the list. */
363 if (var_mtrr_range_is_valid(cur))
364 list_del(&mtrr_state->var_ranges[index].node);
366 /* Extend the mask with all 1 bits to the left, since those
367 * bits must implicitly be 0. The bits are then cleared
368 * when reading them.
370 if (!is_mtrr_mask)
371 cur->base = data;
372 else
373 cur->mask = data | (-1LL << cpuid_maxphyaddr(vcpu));
375 /* add it to the list if it's enabled. */
376 if (var_mtrr_range_is_valid(cur)) {
377 list_for_each_entry(tmp, &mtrr_state->head, node)
378 if (cur->base >= tmp->base)
379 break;
380 list_add_tail(&cur->node, &tmp->node);
384 int kvm_mtrr_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
386 int index;
388 if (!kvm_mtrr_valid(vcpu, msr, data))
389 return 1;
391 index = fixed_msr_to_range_index(msr);
392 if (index >= 0)
393 *(u64 *)&vcpu->arch.mtrr_state.fixed_ranges[index] = data;
394 else if (msr == MSR_MTRRdefType)
395 vcpu->arch.mtrr_state.deftype = data;
396 else if (msr == MSR_IA32_CR_PAT)
397 vcpu->arch.pat = data;
398 else
399 set_var_mtrr_msr(vcpu, msr, data);
401 update_mtrr(vcpu, msr);
402 return 0;
405 int kvm_mtrr_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
407 int index;
409 /* MSR_MTRRcap is a readonly MSR. */
410 if (msr == MSR_MTRRcap) {
412 * SMRR = 0
413 * WC = 1
414 * FIX = 1
415 * VCNT = KVM_NR_VAR_MTRR
417 *pdata = 0x500 | KVM_NR_VAR_MTRR;
418 return 0;
421 if (!msr_mtrr_valid(msr))
422 return 1;
424 index = fixed_msr_to_range_index(msr);
425 if (index >= 0)
426 *pdata = *(u64 *)&vcpu->arch.mtrr_state.fixed_ranges[index];
427 else if (msr == MSR_MTRRdefType)
428 *pdata = vcpu->arch.mtrr_state.deftype;
429 else if (msr == MSR_IA32_CR_PAT)
430 *pdata = vcpu->arch.pat;
431 else { /* Variable MTRRs */
432 int is_mtrr_mask;
434 index = (msr - 0x200) / 2;
435 is_mtrr_mask = msr - 0x200 - 2 * index;
436 if (!is_mtrr_mask)
437 *pdata = vcpu->arch.mtrr_state.var_ranges[index].base;
438 else
439 *pdata = vcpu->arch.mtrr_state.var_ranges[index].mask;
441 *pdata &= (1ULL << cpuid_maxphyaddr(vcpu)) - 1;
444 return 0;
447 void kvm_vcpu_mtrr_init(struct kvm_vcpu *vcpu)
449 INIT_LIST_HEAD(&vcpu->arch.mtrr_state.head);
452 struct mtrr_iter {
453 /* input fields. */
454 struct kvm_mtrr *mtrr_state;
455 u64 start;
456 u64 end;
458 /* output fields. */
459 int mem_type;
460 /* mtrr is completely disabled? */
461 bool mtrr_disabled;
462 /* [start, end) is not fully covered in MTRRs? */
463 bool partial_map;
465 /* private fields. */
466 union {
467 /* used for fixed MTRRs. */
468 struct {
469 int index;
470 int seg;
473 /* used for var MTRRs. */
474 struct {
475 struct kvm_mtrr_range *range;
476 /* max address has been covered in var MTRRs. */
477 u64 start_max;
481 bool fixed;
484 static bool mtrr_lookup_fixed_start(struct mtrr_iter *iter)
486 int seg, index;
488 if (!fixed_mtrr_is_enabled(iter->mtrr_state))
489 return false;
491 seg = fixed_mtrr_addr_to_seg(iter->start);
492 if (seg < 0)
493 return false;
495 iter->fixed = true;
496 index = fixed_mtrr_addr_seg_to_range_index(iter->start, seg);
497 iter->index = index;
498 iter->seg = seg;
499 return true;
502 static bool match_var_range(struct mtrr_iter *iter,
503 struct kvm_mtrr_range *range)
505 u64 start, end;
507 var_mtrr_range(range, &start, &end);
508 if (!(start >= iter->end || end <= iter->start)) {
509 iter->range = range;
512 * the function is called when we do kvm_mtrr.head walking.
513 * Range has the minimum base address which interleaves
514 * [looker->start_max, looker->end).
516 iter->partial_map |= iter->start_max < start;
518 /* update the max address has been covered. */
519 iter->start_max = max(iter->start_max, end);
520 return true;
523 return false;
526 static void __mtrr_lookup_var_next(struct mtrr_iter *iter)
528 struct kvm_mtrr *mtrr_state = iter->mtrr_state;
530 list_for_each_entry_continue(iter->range, &mtrr_state->head, node)
531 if (match_var_range(iter, iter->range))
532 return;
534 iter->range = NULL;
535 iter->partial_map |= iter->start_max < iter->end;
538 static void mtrr_lookup_var_start(struct mtrr_iter *iter)
540 struct kvm_mtrr *mtrr_state = iter->mtrr_state;
542 iter->fixed = false;
543 iter->start_max = iter->start;
544 iter->range = list_prepare_entry(iter->range, &mtrr_state->head, node);
546 __mtrr_lookup_var_next(iter);
549 static void mtrr_lookup_fixed_next(struct mtrr_iter *iter)
551 /* terminate the lookup. */
552 if (fixed_mtrr_range_end_addr(iter->seg, iter->index) >= iter->end) {
553 iter->fixed = false;
554 iter->range = NULL;
555 return;
558 iter->index++;
560 /* have looked up for all fixed MTRRs. */
561 if (iter->index >= ARRAY_SIZE(iter->mtrr_state->fixed_ranges))
562 return mtrr_lookup_var_start(iter);
564 /* switch to next segment. */
565 if (iter->index > fixed_mtrr_seg_end_range_index(iter->seg))
566 iter->seg++;
569 static void mtrr_lookup_var_next(struct mtrr_iter *iter)
571 __mtrr_lookup_var_next(iter);
574 static void mtrr_lookup_start(struct mtrr_iter *iter)
576 if (!mtrr_is_enabled(iter->mtrr_state)) {
577 iter->mtrr_disabled = true;
578 return;
581 if (!mtrr_lookup_fixed_start(iter))
582 mtrr_lookup_var_start(iter);
585 static void mtrr_lookup_init(struct mtrr_iter *iter,
586 struct kvm_mtrr *mtrr_state, u64 start, u64 end)
588 iter->mtrr_state = mtrr_state;
589 iter->start = start;
590 iter->end = end;
591 iter->mtrr_disabled = false;
592 iter->partial_map = false;
593 iter->fixed = false;
594 iter->range = NULL;
596 mtrr_lookup_start(iter);
599 static bool mtrr_lookup_okay(struct mtrr_iter *iter)
601 if (iter->fixed) {
602 iter->mem_type = iter->mtrr_state->fixed_ranges[iter->index];
603 return true;
606 if (iter->range) {
607 iter->mem_type = iter->range->base & 0xff;
608 return true;
611 return false;
614 static void mtrr_lookup_next(struct mtrr_iter *iter)
616 if (iter->fixed)
617 mtrr_lookup_fixed_next(iter);
618 else
619 mtrr_lookup_var_next(iter);
622 #define mtrr_for_each_mem_type(_iter_, _mtrr_, _gpa_start_, _gpa_end_) \
623 for (mtrr_lookup_init(_iter_, _mtrr_, _gpa_start_, _gpa_end_); \
624 mtrr_lookup_okay(_iter_); mtrr_lookup_next(_iter_))
626 u8 kvm_mtrr_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
628 struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
629 struct mtrr_iter iter;
630 u64 start, end;
631 int type = -1;
632 const int wt_wb_mask = (1 << MTRR_TYPE_WRBACK)
633 | (1 << MTRR_TYPE_WRTHROUGH);
635 start = gfn_to_gpa(gfn);
636 end = start + PAGE_SIZE;
638 mtrr_for_each_mem_type(&iter, mtrr_state, start, end) {
639 int curr_type = iter.mem_type;
642 * Please refer to Intel SDM Volume 3: 11.11.4.1 MTRR
643 * Precedences.
646 if (type == -1) {
647 type = curr_type;
648 continue;
652 * If two or more variable memory ranges match and the
653 * memory types are identical, then that memory type is
654 * used.
656 if (type == curr_type)
657 continue;
660 * If two or more variable memory ranges match and one of
661 * the memory types is UC, the UC memory type used.
663 if (curr_type == MTRR_TYPE_UNCACHABLE)
664 return MTRR_TYPE_UNCACHABLE;
667 * If two or more variable memory ranges match and the
668 * memory types are WT and WB, the WT memory type is used.
670 if (((1 << type) & wt_wb_mask) &&
671 ((1 << curr_type) & wt_wb_mask)) {
672 type = MTRR_TYPE_WRTHROUGH;
673 continue;
677 * For overlaps not defined by the above rules, processor
678 * behavior is undefined.
681 /* We use WB for this undefined behavior. :( */
682 return MTRR_TYPE_WRBACK;
685 if (iter.mtrr_disabled)
686 return mtrr_disabled_type(vcpu);
688 /* not contained in any MTRRs. */
689 if (type == -1)
690 return mtrr_default_type(mtrr_state);
693 * We just check one page, partially covered by MTRRs is
694 * impossible.
696 WARN_ON(iter.partial_map);
698 return type;
700 EXPORT_SYMBOL_GPL(kvm_mtrr_get_guest_memory_type);
702 bool kvm_mtrr_check_gfn_range_consistency(struct kvm_vcpu *vcpu, gfn_t gfn,
703 int page_num)
705 struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
706 struct mtrr_iter iter;
707 u64 start, end;
708 int type = -1;
710 start = gfn_to_gpa(gfn);
711 end = gfn_to_gpa(gfn + page_num);
712 mtrr_for_each_mem_type(&iter, mtrr_state, start, end) {
713 if (type == -1) {
714 type = iter.mem_type;
715 continue;
718 if (type != iter.mem_type)
719 return false;
722 if (iter.mtrr_disabled)
723 return true;
725 if (!iter.partial_map)
726 return true;
728 if (type == -1)
729 return true;
731 return type == mtrr_default_type(mtrr_state);