2 * Copyright 2002 Andi Kleen, SuSE Labs.
3 * Thanks to Ben LaHaise for precious feedback.
5 #include <linux/highmem.h>
6 #include <linux/bootmem.h>
7 #include <linux/sched.h>
9 #include <linux/interrupt.h>
10 #include <linux/seq_file.h>
11 #include <linux/debugfs.h>
12 #include <linux/pfn.h>
13 #include <linux/percpu.h>
14 #include <linux/gfp.h>
15 #include <linux/pci.h>
16 #include <linux/vmalloc.h>
19 #include <asm/processor.h>
20 #include <asm/tlbflush.h>
21 #include <asm/sections.h>
22 #include <asm/setup.h>
23 #include <asm/uaccess.h>
24 #include <asm/pgalloc.h>
25 #include <asm/proto.h>
29 * The current flushing context - we pass it instead of 5 arguments:
36 unsigned long numpages
;
39 unsigned force_split
: 1;
45 * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
46 * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
47 * entries change the page attribute in parallel to some other cpu
48 * splitting a large page entry along with changing the attribute.
50 static DEFINE_SPINLOCK(cpa_lock
);
52 #define CPA_FLUSHTLB 1
54 #define CPA_PAGES_ARRAY 4
57 static unsigned long direct_pages_count
[PG_LEVEL_NUM
];
59 void update_page_count(int level
, unsigned long pages
)
61 /* Protect against CPA */
63 direct_pages_count
[level
] += pages
;
64 spin_unlock(&pgd_lock
);
67 static void split_page_count(int level
)
69 if (direct_pages_count
[level
] == 0)
72 direct_pages_count
[level
]--;
73 direct_pages_count
[level
- 1] += PTRS_PER_PTE
;
76 void arch_report_meminfo(struct seq_file
*m
)
78 seq_printf(m
, "DirectMap4k: %8lu kB\n",
79 direct_pages_count
[PG_LEVEL_4K
] << 2);
80 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
81 seq_printf(m
, "DirectMap2M: %8lu kB\n",
82 direct_pages_count
[PG_LEVEL_2M
] << 11);
84 seq_printf(m
, "DirectMap4M: %8lu kB\n",
85 direct_pages_count
[PG_LEVEL_2M
] << 12);
88 seq_printf(m
, "DirectMap1G: %8lu kB\n",
89 direct_pages_count
[PG_LEVEL_1G
] << 20);
92 static inline void split_page_count(int level
) { }
97 static inline unsigned long highmap_start_pfn(void)
99 return __pa_symbol(_text
) >> PAGE_SHIFT
;
102 static inline unsigned long highmap_end_pfn(void)
104 return __pa_symbol(roundup(_brk_end
, PMD_SIZE
)) >> PAGE_SHIFT
;
110 within(unsigned long addr
, unsigned long start
, unsigned long end
)
112 return addr
>= start
&& addr
< end
;
120 * clflush_cache_range - flush a cache range with clflush
121 * @vaddr: virtual start address
122 * @size: number of bytes to flush
124 * clflushopt is an unordered instruction which needs fencing with mfence or
125 * sfence to avoid ordering issues.
127 void clflush_cache_range(void *vaddr
, unsigned int size
)
129 const unsigned long clflush_size
= boot_cpu_data
.x86_clflush_size
;
130 void *p
= (void *)((unsigned long)vaddr
& ~(clflush_size
- 1));
131 void *vend
= vaddr
+ size
;
138 for (; p
< vend
; p
+= clflush_size
)
143 EXPORT_SYMBOL_GPL(clflush_cache_range
);
145 static void __cpa_flush_all(void *arg
)
147 unsigned long cache
= (unsigned long)arg
;
150 * Flush all to work around Errata in early athlons regarding
151 * large page flushing.
155 if (cache
&& boot_cpu_data
.x86
>= 4)
159 static void cpa_flush_all(unsigned long cache
)
161 BUG_ON(irqs_disabled());
163 on_each_cpu(__cpa_flush_all
, (void *) cache
, 1);
166 static void __cpa_flush_range(void *arg
)
169 * We could optimize that further and do individual per page
170 * tlb invalidates for a low number of pages. Caveat: we must
171 * flush the high aliases on 64bit as well.
176 static void cpa_flush_range(unsigned long start
, int numpages
, int cache
)
178 unsigned int i
, level
;
181 BUG_ON(irqs_disabled());
182 WARN_ON(PAGE_ALIGN(start
) != start
);
184 on_each_cpu(__cpa_flush_range
, NULL
, 1);
190 * We only need to flush on one CPU,
191 * clflush is a MESI-coherent instruction that
192 * will cause all other CPUs to flush the same
195 for (i
= 0, addr
= start
; i
< numpages
; i
++, addr
+= PAGE_SIZE
) {
196 pte_t
*pte
= lookup_address(addr
, &level
);
199 * Only flush present addresses:
201 if (pte
&& (pte_val(*pte
) & _PAGE_PRESENT
))
202 clflush_cache_range((void *) addr
, PAGE_SIZE
);
206 static void cpa_flush_array(unsigned long *start
, int numpages
, int cache
,
207 int in_flags
, struct page
**pages
)
209 unsigned int i
, level
;
210 unsigned long do_wbinvd
= cache
&& numpages
>= 1024; /* 4M threshold */
212 BUG_ON(irqs_disabled());
214 on_each_cpu(__cpa_flush_all
, (void *) do_wbinvd
, 1);
216 if (!cache
|| do_wbinvd
)
220 * We only need to flush on one CPU,
221 * clflush is a MESI-coherent instruction that
222 * will cause all other CPUs to flush the same
225 for (i
= 0; i
< numpages
; i
++) {
229 if (in_flags
& CPA_PAGES_ARRAY
)
230 addr
= (unsigned long)page_address(pages
[i
]);
234 pte
= lookup_address(addr
, &level
);
237 * Only flush present addresses:
239 if (pte
&& (pte_val(*pte
) & _PAGE_PRESENT
))
240 clflush_cache_range((void *)addr
, PAGE_SIZE
);
245 * Certain areas of memory on x86 require very specific protection flags,
246 * for example the BIOS area or kernel text. Callers don't always get this
247 * right (again, ioremap() on BIOS memory is not uncommon) so this function
248 * checks and fixes these known static required protection bits.
250 static inline pgprot_t
static_protections(pgprot_t prot
, unsigned long address
,
253 pgprot_t forbidden
= __pgprot(0);
256 * The BIOS area between 640k and 1Mb needs to be executable for
257 * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
259 #ifdef CONFIG_PCI_BIOS
260 if (pcibios_enabled
&& within(pfn
, BIOS_BEGIN
>> PAGE_SHIFT
, BIOS_END
>> PAGE_SHIFT
))
261 pgprot_val(forbidden
) |= _PAGE_NX
;
265 * The kernel text needs to be executable for obvious reasons
266 * Does not cover __inittext since that is gone later on. On
267 * 64bit we do not enforce !NX on the low mapping
269 if (within(address
, (unsigned long)_text
, (unsigned long)_etext
))
270 pgprot_val(forbidden
) |= _PAGE_NX
;
273 * The .rodata section needs to be read-only. Using the pfn
274 * catches all aliases.
276 if (within(pfn
, __pa_symbol(__start_rodata
) >> PAGE_SHIFT
,
277 __pa_symbol(__end_rodata
) >> PAGE_SHIFT
))
278 pgprot_val(forbidden
) |= _PAGE_RW
;
280 #if defined(CONFIG_X86_64)
282 * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
283 * kernel text mappings for the large page aligned text, rodata sections
284 * will be always read-only. For the kernel identity mappings covering
285 * the holes caused by this alignment can be anything that user asks.
287 * This will preserve the large page mappings for kernel text/data
290 if (kernel_set_to_readonly
&&
291 within(address
, (unsigned long)_text
,
292 (unsigned long)__end_rodata_hpage_align
)) {
296 * Don't enforce the !RW mapping for the kernel text mapping,
297 * if the current mapping is already using small page mapping.
298 * No need to work hard to preserve large page mappings in this
301 * This also fixes the Linux Xen paravirt guest boot failure
302 * (because of unexpected read-only mappings for kernel identity
303 * mappings). In this paravirt guest case, the kernel text
304 * mapping and the kernel identity mapping share the same
305 * page-table pages. Thus we can't really use different
306 * protections for the kernel text and identity mappings. Also,
307 * these shared mappings are made of small page mappings.
308 * Thus this don't enforce !RW mapping for small page kernel
309 * text mapping logic will help Linux Xen parvirt guest boot
312 if (lookup_address(address
, &level
) && (level
!= PG_LEVEL_4K
))
313 pgprot_val(forbidden
) |= _PAGE_RW
;
317 prot
= __pgprot(pgprot_val(prot
) & ~pgprot_val(forbidden
));
323 * Lookup the page table entry for a virtual address in a specific pgd.
324 * Return a pointer to the entry and the level of the mapping.
326 pte_t
*lookup_address_in_pgd(pgd_t
*pgd
, unsigned long address
,
332 *level
= PG_LEVEL_NONE
;
337 pud
= pud_offset(pgd
, address
);
341 *level
= PG_LEVEL_1G
;
342 if (pud_large(*pud
) || !pud_present(*pud
))
345 pmd
= pmd_offset(pud
, address
);
349 *level
= PG_LEVEL_2M
;
350 if (pmd_large(*pmd
) || !pmd_present(*pmd
))
353 *level
= PG_LEVEL_4K
;
355 return pte_offset_kernel(pmd
, address
);
359 * Lookup the page table entry for a virtual address. Return a pointer
360 * to the entry and the level of the mapping.
362 * Note: We return pud and pmd either when the entry is marked large
363 * or when the present bit is not set. Otherwise we would return a
364 * pointer to a nonexisting mapping.
366 pte_t
*lookup_address(unsigned long address
, unsigned int *level
)
368 return lookup_address_in_pgd(pgd_offset_k(address
), address
, level
);
370 EXPORT_SYMBOL_GPL(lookup_address
);
372 static pte_t
*_lookup_address_cpa(struct cpa_data
*cpa
, unsigned long address
,
376 return lookup_address_in_pgd(cpa
->pgd
+ pgd_index(address
),
379 return lookup_address(address
, level
);
383 * Lookup the PMD entry for a virtual address. Return a pointer to the entry
384 * or NULL if not present.
386 pmd_t
*lookup_pmd_address(unsigned long address
)
391 pgd
= pgd_offset_k(address
);
395 pud
= pud_offset(pgd
, address
);
396 if (pud_none(*pud
) || pud_large(*pud
) || !pud_present(*pud
))
399 return pmd_offset(pud
, address
);
403 * This is necessary because __pa() does not work on some
404 * kinds of memory, like vmalloc() or the alloc_remap()
405 * areas on 32-bit NUMA systems. The percpu areas can
406 * end up in this kind of memory, for instance.
408 * This could be optimized, but it is only intended to be
409 * used at inititalization time, and keeping it
410 * unoptimized should increase the testing coverage for
411 * the more obscure platforms.
413 phys_addr_t
slow_virt_to_phys(void *__virt_addr
)
415 unsigned long virt_addr
= (unsigned long)__virt_addr
;
416 phys_addr_t phys_addr
;
417 unsigned long offset
;
421 pte
= lookup_address(virt_addr
, &level
);
425 * pXX_pfn() returns unsigned long, which must be cast to phys_addr_t
426 * before being left-shifted PAGE_SHIFT bits -- this trick is to
427 * make 32-PAE kernel work correctly.
431 phys_addr
= (phys_addr_t
)pud_pfn(*(pud_t
*)pte
) << PAGE_SHIFT
;
432 offset
= virt_addr
& ~PUD_PAGE_MASK
;
435 phys_addr
= (phys_addr_t
)pmd_pfn(*(pmd_t
*)pte
) << PAGE_SHIFT
;
436 offset
= virt_addr
& ~PMD_PAGE_MASK
;
439 phys_addr
= (phys_addr_t
)pte_pfn(*pte
) << PAGE_SHIFT
;
440 offset
= virt_addr
& ~PAGE_MASK
;
443 return (phys_addr_t
)(phys_addr
| offset
);
445 EXPORT_SYMBOL_GPL(slow_virt_to_phys
);
448 * Set the new pmd in all the pgds we know about:
450 static void __set_pmd_pte(pte_t
*kpte
, unsigned long address
, pte_t pte
)
453 set_pte_atomic(kpte
, pte
);
455 if (!SHARED_KERNEL_PMD
) {
458 list_for_each_entry(page
, &pgd_list
, lru
) {
463 pgd
= (pgd_t
*)page_address(page
) + pgd_index(address
);
464 pud
= pud_offset(pgd
, address
);
465 pmd
= pmd_offset(pud
, address
);
466 set_pte_atomic((pte_t
*)pmd
, pte
);
473 try_preserve_large_page(pte_t
*kpte
, unsigned long address
,
474 struct cpa_data
*cpa
)
476 unsigned long nextpage_addr
, numpages
, pmask
, psize
, addr
, pfn
, old_pfn
;
477 pte_t new_pte
, old_pte
, *tmp
;
478 pgprot_t old_prot
, new_prot
, req_prot
;
482 if (cpa
->force_split
)
485 spin_lock(&pgd_lock
);
487 * Check for races, another CPU might have split this page
490 tmp
= _lookup_address_cpa(cpa
, address
, &level
);
496 old_prot
= pmd_pgprot(*(pmd_t
*)kpte
);
497 old_pfn
= pmd_pfn(*(pmd_t
*)kpte
);
500 old_prot
= pud_pgprot(*(pud_t
*)kpte
);
501 old_pfn
= pud_pfn(*(pud_t
*)kpte
);
508 psize
= page_level_size(level
);
509 pmask
= page_level_mask(level
);
512 * Calculate the number of pages, which fit into this large
513 * page starting at address:
515 nextpage_addr
= (address
+ psize
) & pmask
;
516 numpages
= (nextpage_addr
- address
) >> PAGE_SHIFT
;
517 if (numpages
< cpa
->numpages
)
518 cpa
->numpages
= numpages
;
521 * We are safe now. Check whether the new pgprot is the same:
522 * Convert protection attributes to 4k-format, as cpa->mask* are set
526 req_prot
= pgprot_large_2_4k(old_prot
);
528 pgprot_val(req_prot
) &= ~pgprot_val(cpa
->mask_clr
);
529 pgprot_val(req_prot
) |= pgprot_val(cpa
->mask_set
);
532 * req_prot is in format of 4k pages. It must be converted to large
533 * page format: the caching mode includes the PAT bit located at
534 * different bit positions in the two formats.
536 req_prot
= pgprot_4k_2_large(req_prot
);
539 * Set the PSE and GLOBAL flags only if the PRESENT flag is
540 * set otherwise pmd_present/pmd_huge will return true even on
541 * a non present pmd. The canon_pgprot will clear _PAGE_GLOBAL
542 * for the ancient hardware that doesn't support it.
544 if (pgprot_val(req_prot
) & _PAGE_PRESENT
)
545 pgprot_val(req_prot
) |= _PAGE_PSE
| _PAGE_GLOBAL
;
547 pgprot_val(req_prot
) &= ~(_PAGE_PSE
| _PAGE_GLOBAL
);
549 req_prot
= canon_pgprot(req_prot
);
552 * old_pfn points to the large page base pfn. So we need
553 * to add the offset of the virtual address:
555 pfn
= old_pfn
+ ((address
& (psize
- 1)) >> PAGE_SHIFT
);
558 new_prot
= static_protections(req_prot
, address
, pfn
);
561 * We need to check the full range, whether
562 * static_protection() requires a different pgprot for one of
563 * the pages in the range we try to preserve:
565 addr
= address
& pmask
;
567 for (i
= 0; i
< (psize
>> PAGE_SHIFT
); i
++, addr
+= PAGE_SIZE
, pfn
++) {
568 pgprot_t chk_prot
= static_protections(req_prot
, addr
, pfn
);
570 if (pgprot_val(chk_prot
) != pgprot_val(new_prot
))
575 * If there are no changes, return. maxpages has been updated
578 if (pgprot_val(new_prot
) == pgprot_val(old_prot
)) {
584 * We need to change the attributes. Check, whether we can
585 * change the large page in one go. We request a split, when
586 * the address is not aligned and the number of pages is
587 * smaller than the number of pages in the large page. Note
588 * that we limited the number of possible pages already to
589 * the number of pages in the large page.
591 if (address
== (address
& pmask
) && cpa
->numpages
== (psize
>> PAGE_SHIFT
)) {
593 * The address is aligned and the number of pages
594 * covers the full page.
596 new_pte
= pfn_pte(old_pfn
, new_prot
);
597 __set_pmd_pte(kpte
, address
, new_pte
);
598 cpa
->flags
|= CPA_FLUSHTLB
;
603 spin_unlock(&pgd_lock
);
609 __split_large_page(struct cpa_data
*cpa
, pte_t
*kpte
, unsigned long address
,
612 pte_t
*pbase
= (pte_t
*)page_address(base
);
613 unsigned long ref_pfn
, pfn
, pfninc
= 1;
614 unsigned int i
, level
;
618 spin_lock(&pgd_lock
);
620 * Check for races, another CPU might have split this page
623 tmp
= _lookup_address_cpa(cpa
, address
, &level
);
625 spin_unlock(&pgd_lock
);
629 paravirt_alloc_pte(&init_mm
, page_to_pfn(base
));
633 ref_prot
= pmd_pgprot(*(pmd_t
*)kpte
);
634 /* clear PSE and promote PAT bit to correct position */
635 ref_prot
= pgprot_large_2_4k(ref_prot
);
636 ref_pfn
= pmd_pfn(*(pmd_t
*)kpte
);
640 ref_prot
= pud_pgprot(*(pud_t
*)kpte
);
641 ref_pfn
= pud_pfn(*(pud_t
*)kpte
);
642 pfninc
= PMD_PAGE_SIZE
>> PAGE_SHIFT
;
645 * Clear the PSE flags if the PRESENT flag is not set
646 * otherwise pmd_present/pmd_huge will return true
647 * even on a non present pmd.
649 if (!(pgprot_val(ref_prot
) & _PAGE_PRESENT
))
650 pgprot_val(ref_prot
) &= ~_PAGE_PSE
;
654 spin_unlock(&pgd_lock
);
659 * Set the GLOBAL flags only if the PRESENT flag is set
660 * otherwise pmd/pte_present will return true even on a non
661 * present pmd/pte. The canon_pgprot will clear _PAGE_GLOBAL
662 * for the ancient hardware that doesn't support it.
664 if (pgprot_val(ref_prot
) & _PAGE_PRESENT
)
665 pgprot_val(ref_prot
) |= _PAGE_GLOBAL
;
667 pgprot_val(ref_prot
) &= ~_PAGE_GLOBAL
;
670 * Get the target pfn from the original entry:
673 for (i
= 0; i
< PTRS_PER_PTE
; i
++, pfn
+= pfninc
)
674 set_pte(&pbase
[i
], pfn_pte(pfn
, canon_pgprot(ref_prot
)));
676 if (virt_addr_valid(address
)) {
677 unsigned long pfn
= PFN_DOWN(__pa(address
));
679 if (pfn_range_is_mapped(pfn
, pfn
+ 1))
680 split_page_count(level
);
684 * Install the new, split up pagetable.
686 * We use the standard kernel pagetable protections for the new
687 * pagetable protections, the actual ptes set above control the
688 * primary protection behavior:
690 __set_pmd_pte(kpte
, address
, mk_pte(base
, __pgprot(_KERNPG_TABLE
)));
693 * Intel Atom errata AAH41 workaround.
695 * The real fix should be in hw or in a microcode update, but
696 * we also probabilistically try to reduce the window of having
697 * a large TLB mixed with 4K TLBs while instruction fetches are
701 spin_unlock(&pgd_lock
);
706 static int split_large_page(struct cpa_data
*cpa
, pte_t
*kpte
,
707 unsigned long address
)
711 if (!debug_pagealloc_enabled())
712 spin_unlock(&cpa_lock
);
713 base
= alloc_pages(GFP_KERNEL
| __GFP_NOTRACK
, 0);
714 if (!debug_pagealloc_enabled())
715 spin_lock(&cpa_lock
);
719 if (__split_large_page(cpa
, kpte
, address
, base
))
725 static bool try_to_free_pte_page(pte_t
*pte
)
729 for (i
= 0; i
< PTRS_PER_PTE
; i
++)
730 if (!pte_none(pte
[i
]))
733 free_page((unsigned long)pte
);
737 static bool try_to_free_pmd_page(pmd_t
*pmd
)
741 for (i
= 0; i
< PTRS_PER_PMD
; i
++)
742 if (!pmd_none(pmd
[i
]))
745 free_page((unsigned long)pmd
);
749 static bool try_to_free_pud_page(pud_t
*pud
)
753 for (i
= 0; i
< PTRS_PER_PUD
; i
++)
754 if (!pud_none(pud
[i
]))
757 free_page((unsigned long)pud
);
761 static bool unmap_pte_range(pmd_t
*pmd
, unsigned long start
, unsigned long end
)
763 pte_t
*pte
= pte_offset_kernel(pmd
, start
);
765 while (start
< end
) {
766 set_pte(pte
, __pte(0));
772 if (try_to_free_pte_page((pte_t
*)pmd_page_vaddr(*pmd
))) {
779 static void __unmap_pmd_range(pud_t
*pud
, pmd_t
*pmd
,
780 unsigned long start
, unsigned long end
)
782 if (unmap_pte_range(pmd
, start
, end
))
783 if (try_to_free_pmd_page((pmd_t
*)pud_page_vaddr(*pud
)))
787 static void unmap_pmd_range(pud_t
*pud
, unsigned long start
, unsigned long end
)
789 pmd_t
*pmd
= pmd_offset(pud
, start
);
792 * Not on a 2MB page boundary?
794 if (start
& (PMD_SIZE
- 1)) {
795 unsigned long next_page
= (start
+ PMD_SIZE
) & PMD_MASK
;
796 unsigned long pre_end
= min_t(unsigned long, end
, next_page
);
798 __unmap_pmd_range(pud
, pmd
, start
, pre_end
);
805 * Try to unmap in 2M chunks.
807 while (end
- start
>= PMD_SIZE
) {
811 __unmap_pmd_range(pud
, pmd
, start
, start
+ PMD_SIZE
);
821 return __unmap_pmd_range(pud
, pmd
, start
, end
);
824 * Try again to free the PMD page if haven't succeeded above.
827 if (try_to_free_pmd_page((pmd_t
*)pud_page_vaddr(*pud
)))
831 static void unmap_pud_range(pgd_t
*pgd
, unsigned long start
, unsigned long end
)
833 pud_t
*pud
= pud_offset(pgd
, start
);
836 * Not on a GB page boundary?
838 if (start
& (PUD_SIZE
- 1)) {
839 unsigned long next_page
= (start
+ PUD_SIZE
) & PUD_MASK
;
840 unsigned long pre_end
= min_t(unsigned long, end
, next_page
);
842 unmap_pmd_range(pud
, start
, pre_end
);
849 * Try to unmap in 1G chunks?
851 while (end
- start
>= PUD_SIZE
) {
856 unmap_pmd_range(pud
, start
, start
+ PUD_SIZE
);
866 unmap_pmd_range(pud
, start
, end
);
869 * No need to try to free the PUD page because we'll free it in
870 * populate_pgd's error path
874 static void unmap_pgd_range(pgd_t
*root
, unsigned long addr
, unsigned long end
)
876 pgd_t
*pgd_entry
= root
+ pgd_index(addr
);
878 unmap_pud_range(pgd_entry
, addr
, end
);
880 if (try_to_free_pud_page((pud_t
*)pgd_page_vaddr(*pgd_entry
)))
881 pgd_clear(pgd_entry
);
884 static int alloc_pte_page(pmd_t
*pmd
)
886 pte_t
*pte
= (pte_t
*)get_zeroed_page(GFP_KERNEL
| __GFP_NOTRACK
);
890 set_pmd(pmd
, __pmd(__pa(pte
) | _KERNPG_TABLE
));
894 static int alloc_pmd_page(pud_t
*pud
)
896 pmd_t
*pmd
= (pmd_t
*)get_zeroed_page(GFP_KERNEL
| __GFP_NOTRACK
);
900 set_pud(pud
, __pud(__pa(pmd
) | _KERNPG_TABLE
));
904 static void populate_pte(struct cpa_data
*cpa
,
905 unsigned long start
, unsigned long end
,
906 unsigned num_pages
, pmd_t
*pmd
, pgprot_t pgprot
)
910 pte
= pte_offset_kernel(pmd
, start
);
913 * Set the GLOBAL flags only if the PRESENT flag is
914 * set otherwise pte_present will return true even on
915 * a non present pte. The canon_pgprot will clear
916 * _PAGE_GLOBAL for the ancient hardware that doesn't
919 if (pgprot_val(pgprot
) & _PAGE_PRESENT
)
920 pgprot_val(pgprot
) |= _PAGE_GLOBAL
;
922 pgprot_val(pgprot
) &= ~_PAGE_GLOBAL
;
924 pgprot
= canon_pgprot(pgprot
);
926 while (num_pages
-- && start
< end
) {
927 set_pte(pte
, pfn_pte(cpa
->pfn
, pgprot
));
935 static int populate_pmd(struct cpa_data
*cpa
,
936 unsigned long start
, unsigned long end
,
937 unsigned num_pages
, pud_t
*pud
, pgprot_t pgprot
)
939 unsigned int cur_pages
= 0;
944 * Not on a 2M boundary?
946 if (start
& (PMD_SIZE
- 1)) {
947 unsigned long pre_end
= start
+ (num_pages
<< PAGE_SHIFT
);
948 unsigned long next_page
= (start
+ PMD_SIZE
) & PMD_MASK
;
950 pre_end
= min_t(unsigned long, pre_end
, next_page
);
951 cur_pages
= (pre_end
- start
) >> PAGE_SHIFT
;
952 cur_pages
= min_t(unsigned int, num_pages
, cur_pages
);
957 pmd
= pmd_offset(pud
, start
);
959 if (alloc_pte_page(pmd
))
962 populate_pte(cpa
, start
, pre_end
, cur_pages
, pmd
, pgprot
);
968 * We mapped them all?
970 if (num_pages
== cur_pages
)
973 pmd_pgprot
= pgprot_4k_2_large(pgprot
);
975 while (end
- start
>= PMD_SIZE
) {
978 * We cannot use a 1G page so allocate a PMD page if needed.
981 if (alloc_pmd_page(pud
))
984 pmd
= pmd_offset(pud
, start
);
986 set_pmd(pmd
, __pmd(cpa
->pfn
<< PAGE_SHIFT
| _PAGE_PSE
|
987 massage_pgprot(pmd_pgprot
)));
990 cpa
->pfn
+= PMD_SIZE
>> PAGE_SHIFT
;
991 cur_pages
+= PMD_SIZE
>> PAGE_SHIFT
;
995 * Map trailing 4K pages.
998 pmd
= pmd_offset(pud
, start
);
1000 if (alloc_pte_page(pmd
))
1003 populate_pte(cpa
, start
, end
, num_pages
- cur_pages
,
1009 static int populate_pud(struct cpa_data
*cpa
, unsigned long start
, pgd_t
*pgd
,
1015 pgprot_t pud_pgprot
;
1017 end
= start
+ (cpa
->numpages
<< PAGE_SHIFT
);
1020 * Not on a Gb page boundary? => map everything up to it with
1023 if (start
& (PUD_SIZE
- 1)) {
1024 unsigned long pre_end
;
1025 unsigned long next_page
= (start
+ PUD_SIZE
) & PUD_MASK
;
1027 pre_end
= min_t(unsigned long, end
, next_page
);
1028 cur_pages
= (pre_end
- start
) >> PAGE_SHIFT
;
1029 cur_pages
= min_t(int, (int)cpa
->numpages
, cur_pages
);
1031 pud
= pud_offset(pgd
, start
);
1037 if (alloc_pmd_page(pud
))
1040 cur_pages
= populate_pmd(cpa
, start
, pre_end
, cur_pages
,
1048 /* We mapped them all? */
1049 if (cpa
->numpages
== cur_pages
)
1052 pud
= pud_offset(pgd
, start
);
1053 pud_pgprot
= pgprot_4k_2_large(pgprot
);
1056 * Map everything starting from the Gb boundary, possibly with 1G pages
1058 while (cpu_has_gbpages
&& end
- start
>= PUD_SIZE
) {
1059 set_pud(pud
, __pud(cpa
->pfn
<< PAGE_SHIFT
| _PAGE_PSE
|
1060 massage_pgprot(pud_pgprot
)));
1063 cpa
->pfn
+= PUD_SIZE
>> PAGE_SHIFT
;
1064 cur_pages
+= PUD_SIZE
>> PAGE_SHIFT
;
1068 /* Map trailing leftover */
1072 pud
= pud_offset(pgd
, start
);
1074 if (alloc_pmd_page(pud
))
1077 tmp
= populate_pmd(cpa
, start
, end
, cpa
->numpages
- cur_pages
,
1088 * Restrictions for kernel page table do not necessarily apply when mapping in
1091 static int populate_pgd(struct cpa_data
*cpa
, unsigned long addr
)
1093 pgprot_t pgprot
= __pgprot(_KERNPG_TABLE
);
1094 pud_t
*pud
= NULL
; /* shut up gcc */
1098 pgd_entry
= cpa
->pgd
+ pgd_index(addr
);
1101 * Allocate a PUD page and hand it down for mapping.
1103 if (pgd_none(*pgd_entry
)) {
1104 pud
= (pud_t
*)get_zeroed_page(GFP_KERNEL
| __GFP_NOTRACK
);
1108 set_pgd(pgd_entry
, __pgd(__pa(pud
) | _KERNPG_TABLE
));
1111 pgprot_val(pgprot
) &= ~pgprot_val(cpa
->mask_clr
);
1112 pgprot_val(pgprot
) |= pgprot_val(cpa
->mask_set
);
1114 ret
= populate_pud(cpa
, addr
, pgd_entry
, pgprot
);
1116 unmap_pgd_range(cpa
->pgd
, addr
,
1117 addr
+ (cpa
->numpages
<< PAGE_SHIFT
));
1121 cpa
->numpages
= ret
;
1125 static int __cpa_process_fault(struct cpa_data
*cpa
, unsigned long vaddr
,
1129 return populate_pgd(cpa
, vaddr
);
1132 * Ignore all non primary paths.
1140 * Ignore the NULL PTE for kernel identity mapping, as it is expected
1142 * Also set numpages to '1' indicating that we processed cpa req for
1143 * one virtual address page and its pfn. TBD: numpages can be set based
1144 * on the initial value and the level returned by lookup_address().
1146 if (within(vaddr
, PAGE_OFFSET
,
1147 PAGE_OFFSET
+ (max_pfn_mapped
<< PAGE_SHIFT
))) {
1149 cpa
->pfn
= __pa(vaddr
) >> PAGE_SHIFT
;
1152 WARN(1, KERN_WARNING
"CPA: called for zero pte. "
1153 "vaddr = %lx cpa->vaddr = %lx\n", vaddr
,
1160 static int __change_page_attr(struct cpa_data
*cpa
, int primary
)
1162 unsigned long address
;
1165 pte_t
*kpte
, old_pte
;
1167 if (cpa
->flags
& CPA_PAGES_ARRAY
) {
1168 struct page
*page
= cpa
->pages
[cpa
->curpage
];
1169 if (unlikely(PageHighMem(page
)))
1171 address
= (unsigned long)page_address(page
);
1172 } else if (cpa
->flags
& CPA_ARRAY
)
1173 address
= cpa
->vaddr
[cpa
->curpage
];
1175 address
= *cpa
->vaddr
;
1177 kpte
= _lookup_address_cpa(cpa
, address
, &level
);
1179 return __cpa_process_fault(cpa
, address
, primary
);
1182 if (!pte_val(old_pte
))
1183 return __cpa_process_fault(cpa
, address
, primary
);
1185 if (level
== PG_LEVEL_4K
) {
1187 pgprot_t new_prot
= pte_pgprot(old_pte
);
1188 unsigned long pfn
= pte_pfn(old_pte
);
1190 pgprot_val(new_prot
) &= ~pgprot_val(cpa
->mask_clr
);
1191 pgprot_val(new_prot
) |= pgprot_val(cpa
->mask_set
);
1193 new_prot
= static_protections(new_prot
, address
, pfn
);
1196 * Set the GLOBAL flags only if the PRESENT flag is
1197 * set otherwise pte_present will return true even on
1198 * a non present pte. The canon_pgprot will clear
1199 * _PAGE_GLOBAL for the ancient hardware that doesn't
1202 if (pgprot_val(new_prot
) & _PAGE_PRESENT
)
1203 pgprot_val(new_prot
) |= _PAGE_GLOBAL
;
1205 pgprot_val(new_prot
) &= ~_PAGE_GLOBAL
;
1208 * We need to keep the pfn from the existing PTE,
1209 * after all we're only going to change it's attributes
1210 * not the memory it points to
1212 new_pte
= pfn_pte(pfn
, canon_pgprot(new_prot
));
1215 * Do we really change anything ?
1217 if (pte_val(old_pte
) != pte_val(new_pte
)) {
1218 set_pte_atomic(kpte
, new_pte
);
1219 cpa
->flags
|= CPA_FLUSHTLB
;
1226 * Check, whether we can keep the large page intact
1227 * and just change the pte:
1229 do_split
= try_preserve_large_page(kpte
, address
, cpa
);
1231 * When the range fits into the existing large page,
1232 * return. cp->numpages and cpa->tlbflush have been updated in
1239 * We have to split the large page:
1241 err
= split_large_page(cpa
, kpte
, address
);
1244 * Do a global flush tlb after splitting the large page
1245 * and before we do the actual change page attribute in the PTE.
1247 * With out this, we violate the TLB application note, that says
1248 * "The TLBs may contain both ordinary and large-page
1249 * translations for a 4-KByte range of linear addresses. This
1250 * may occur if software modifies the paging structures so that
1251 * the page size used for the address range changes. If the two
1252 * translations differ with respect to page frame or attributes
1253 * (e.g., permissions), processor behavior is undefined and may
1254 * be implementation-specific."
1256 * We do this global tlb flush inside the cpa_lock, so that we
1257 * don't allow any other cpu, with stale tlb entries change the
1258 * page attribute in parallel, that also falls into the
1259 * just split large page entry.
1268 static int __change_page_attr_set_clr(struct cpa_data
*cpa
, int checkalias
);
1270 static int cpa_process_alias(struct cpa_data
*cpa
)
1272 struct cpa_data alias_cpa
;
1273 unsigned long laddr
= (unsigned long)__va(cpa
->pfn
<< PAGE_SHIFT
);
1274 unsigned long vaddr
;
1277 if (!pfn_range_is_mapped(cpa
->pfn
, cpa
->pfn
+ 1))
1281 * No need to redo, when the primary call touched the direct
1284 if (cpa
->flags
& CPA_PAGES_ARRAY
) {
1285 struct page
*page
= cpa
->pages
[cpa
->curpage
];
1286 if (unlikely(PageHighMem(page
)))
1288 vaddr
= (unsigned long)page_address(page
);
1289 } else if (cpa
->flags
& CPA_ARRAY
)
1290 vaddr
= cpa
->vaddr
[cpa
->curpage
];
1292 vaddr
= *cpa
->vaddr
;
1294 if (!(within(vaddr
, PAGE_OFFSET
,
1295 PAGE_OFFSET
+ (max_pfn_mapped
<< PAGE_SHIFT
)))) {
1298 alias_cpa
.vaddr
= &laddr
;
1299 alias_cpa
.flags
&= ~(CPA_PAGES_ARRAY
| CPA_ARRAY
);
1301 ret
= __change_page_attr_set_clr(&alias_cpa
, 0);
1306 #ifdef CONFIG_X86_64
1308 * If the primary call didn't touch the high mapping already
1309 * and the physical address is inside the kernel map, we need
1310 * to touch the high mapped kernel as well:
1312 if (!within(vaddr
, (unsigned long)_text
, _brk_end
) &&
1313 within(cpa
->pfn
, highmap_start_pfn(), highmap_end_pfn())) {
1314 unsigned long temp_cpa_vaddr
= (cpa
->pfn
<< PAGE_SHIFT
) +
1315 __START_KERNEL_map
- phys_base
;
1317 alias_cpa
.vaddr
= &temp_cpa_vaddr
;
1318 alias_cpa
.flags
&= ~(CPA_PAGES_ARRAY
| CPA_ARRAY
);
1321 * The high mapping range is imprecise, so ignore the
1324 __change_page_attr_set_clr(&alias_cpa
, 0);
1331 static int __change_page_attr_set_clr(struct cpa_data
*cpa
, int checkalias
)
1333 int ret
, numpages
= cpa
->numpages
;
1337 * Store the remaining nr of pages for the large page
1338 * preservation check.
1340 cpa
->numpages
= numpages
;
1341 /* for array changes, we can't use large page */
1342 if (cpa
->flags
& (CPA_ARRAY
| CPA_PAGES_ARRAY
))
1345 if (!debug_pagealloc_enabled())
1346 spin_lock(&cpa_lock
);
1347 ret
= __change_page_attr(cpa
, checkalias
);
1348 if (!debug_pagealloc_enabled())
1349 spin_unlock(&cpa_lock
);
1354 ret
= cpa_process_alias(cpa
);
1360 * Adjust the number of pages with the result of the
1361 * CPA operation. Either a large page has been
1362 * preserved or a single page update happened.
1364 BUG_ON(cpa
->numpages
> numpages
|| !cpa
->numpages
);
1365 numpages
-= cpa
->numpages
;
1366 if (cpa
->flags
& (CPA_PAGES_ARRAY
| CPA_ARRAY
))
1369 *cpa
->vaddr
+= cpa
->numpages
* PAGE_SIZE
;
1375 static int change_page_attr_set_clr(unsigned long *addr
, int numpages
,
1376 pgprot_t mask_set
, pgprot_t mask_clr
,
1377 int force_split
, int in_flag
,
1378 struct page
**pages
)
1380 struct cpa_data cpa
;
1381 int ret
, cache
, checkalias
;
1382 unsigned long baddr
= 0;
1384 memset(&cpa
, 0, sizeof(cpa
));
1387 * Check, if we are requested to change a not supported
1390 mask_set
= canon_pgprot(mask_set
);
1391 mask_clr
= canon_pgprot(mask_clr
);
1392 if (!pgprot_val(mask_set
) && !pgprot_val(mask_clr
) && !force_split
)
1395 /* Ensure we are PAGE_SIZE aligned */
1396 if (in_flag
& CPA_ARRAY
) {
1398 for (i
= 0; i
< numpages
; i
++) {
1399 if (addr
[i
] & ~PAGE_MASK
) {
1400 addr
[i
] &= PAGE_MASK
;
1404 } else if (!(in_flag
& CPA_PAGES_ARRAY
)) {
1406 * in_flag of CPA_PAGES_ARRAY implies it is aligned.
1407 * No need to cehck in that case
1409 if (*addr
& ~PAGE_MASK
) {
1412 * People should not be passing in unaligned addresses:
1417 * Save address for cache flush. *addr is modified in the call
1418 * to __change_page_attr_set_clr() below.
1423 /* Must avoid aliasing mappings in the highmem code */
1424 kmap_flush_unused();
1430 cpa
.numpages
= numpages
;
1431 cpa
.mask_set
= mask_set
;
1432 cpa
.mask_clr
= mask_clr
;
1435 cpa
.force_split
= force_split
;
1437 if (in_flag
& (CPA_ARRAY
| CPA_PAGES_ARRAY
))
1438 cpa
.flags
|= in_flag
;
1440 /* No alias checking for _NX bit modifications */
1441 checkalias
= (pgprot_val(mask_set
) | pgprot_val(mask_clr
)) != _PAGE_NX
;
1443 ret
= __change_page_attr_set_clr(&cpa
, checkalias
);
1446 * Check whether we really changed something:
1448 if (!(cpa
.flags
& CPA_FLUSHTLB
))
1452 * No need to flush, when we did not set any of the caching
1455 cache
= !!pgprot2cachemode(mask_set
);
1458 * On success we use CLFLUSH, when the CPU supports it to
1459 * avoid the WBINVD. If the CPU does not support it and in the
1460 * error case we fall back to cpa_flush_all (which uses
1463 if (!ret
&& cpu_has_clflush
) {
1464 if (cpa
.flags
& (CPA_PAGES_ARRAY
| CPA_ARRAY
)) {
1465 cpa_flush_array(addr
, numpages
, cache
,
1468 cpa_flush_range(baddr
, numpages
, cache
);
1470 cpa_flush_all(cache
);
1476 static inline int change_page_attr_set(unsigned long *addr
, int numpages
,
1477 pgprot_t mask
, int array
)
1479 return change_page_attr_set_clr(addr
, numpages
, mask
, __pgprot(0), 0,
1480 (array
? CPA_ARRAY
: 0), NULL
);
1483 static inline int change_page_attr_clear(unsigned long *addr
, int numpages
,
1484 pgprot_t mask
, int array
)
1486 return change_page_attr_set_clr(addr
, numpages
, __pgprot(0), mask
, 0,
1487 (array
? CPA_ARRAY
: 0), NULL
);
1490 static inline int cpa_set_pages_array(struct page
**pages
, int numpages
,
1493 return change_page_attr_set_clr(NULL
, numpages
, mask
, __pgprot(0), 0,
1494 CPA_PAGES_ARRAY
, pages
);
1497 static inline int cpa_clear_pages_array(struct page
**pages
, int numpages
,
1500 return change_page_attr_set_clr(NULL
, numpages
, __pgprot(0), mask
, 0,
1501 CPA_PAGES_ARRAY
, pages
);
1504 int _set_memory_uc(unsigned long addr
, int numpages
)
1507 * for now UC MINUS. see comments in ioremap_nocache()
1508 * If you really need strong UC use ioremap_uc(), but note
1509 * that you cannot override IO areas with set_memory_*() as
1510 * these helpers cannot work with IO memory.
1512 return change_page_attr_set(&addr
, numpages
,
1513 cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS
),
1517 int set_memory_uc(unsigned long addr
, int numpages
)
1522 * for now UC MINUS. see comments in ioremap_nocache()
1524 ret
= reserve_memtype(__pa(addr
), __pa(addr
) + numpages
* PAGE_SIZE
,
1525 _PAGE_CACHE_MODE_UC_MINUS
, NULL
);
1529 ret
= _set_memory_uc(addr
, numpages
);
1536 free_memtype(__pa(addr
), __pa(addr
) + numpages
* PAGE_SIZE
);
1540 EXPORT_SYMBOL(set_memory_uc
);
1542 static int _set_memory_array(unsigned long *addr
, int addrinarray
,
1543 enum page_cache_mode new_type
)
1545 enum page_cache_mode set_type
;
1549 for (i
= 0; i
< addrinarray
; i
++) {
1550 ret
= reserve_memtype(__pa(addr
[i
]), __pa(addr
[i
]) + PAGE_SIZE
,
1556 /* If WC, set to UC- first and then WC */
1557 set_type
= (new_type
== _PAGE_CACHE_MODE_WC
) ?
1558 _PAGE_CACHE_MODE_UC_MINUS
: new_type
;
1560 ret
= change_page_attr_set(addr
, addrinarray
,
1561 cachemode2pgprot(set_type
), 1);
1563 if (!ret
&& new_type
== _PAGE_CACHE_MODE_WC
)
1564 ret
= change_page_attr_set_clr(addr
, addrinarray
,
1566 _PAGE_CACHE_MODE_WC
),
1567 __pgprot(_PAGE_CACHE_MASK
),
1568 0, CPA_ARRAY
, NULL
);
1575 for (j
= 0; j
< i
; j
++)
1576 free_memtype(__pa(addr
[j
]), __pa(addr
[j
]) + PAGE_SIZE
);
1581 int set_memory_array_uc(unsigned long *addr
, int addrinarray
)
1583 return _set_memory_array(addr
, addrinarray
, _PAGE_CACHE_MODE_UC_MINUS
);
1585 EXPORT_SYMBOL(set_memory_array_uc
);
1587 int set_memory_array_wc(unsigned long *addr
, int addrinarray
)
1589 return _set_memory_array(addr
, addrinarray
, _PAGE_CACHE_MODE_WC
);
1591 EXPORT_SYMBOL(set_memory_array_wc
);
1593 int set_memory_array_wt(unsigned long *addr
, int addrinarray
)
1595 return _set_memory_array(addr
, addrinarray
, _PAGE_CACHE_MODE_WT
);
1597 EXPORT_SYMBOL_GPL(set_memory_array_wt
);
1599 int _set_memory_wc(unsigned long addr
, int numpages
)
1602 unsigned long addr_copy
= addr
;
1604 ret
= change_page_attr_set(&addr
, numpages
,
1605 cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS
),
1608 ret
= change_page_attr_set_clr(&addr_copy
, numpages
,
1610 _PAGE_CACHE_MODE_WC
),
1611 __pgprot(_PAGE_CACHE_MASK
),
1617 int set_memory_wc(unsigned long addr
, int numpages
)
1621 ret
= reserve_memtype(__pa(addr
), __pa(addr
) + numpages
* PAGE_SIZE
,
1622 _PAGE_CACHE_MODE_WC
, NULL
);
1626 ret
= _set_memory_wc(addr
, numpages
);
1628 free_memtype(__pa(addr
), __pa(addr
) + numpages
* PAGE_SIZE
);
1632 EXPORT_SYMBOL(set_memory_wc
);
1634 int _set_memory_wt(unsigned long addr
, int numpages
)
1636 return change_page_attr_set(&addr
, numpages
,
1637 cachemode2pgprot(_PAGE_CACHE_MODE_WT
), 0);
1640 int set_memory_wt(unsigned long addr
, int numpages
)
1644 ret
= reserve_memtype(__pa(addr
), __pa(addr
) + numpages
* PAGE_SIZE
,
1645 _PAGE_CACHE_MODE_WT
, NULL
);
1649 ret
= _set_memory_wt(addr
, numpages
);
1651 free_memtype(__pa(addr
), __pa(addr
) + numpages
* PAGE_SIZE
);
1655 EXPORT_SYMBOL_GPL(set_memory_wt
);
1657 int _set_memory_wb(unsigned long addr
, int numpages
)
1659 /* WB cache mode is hard wired to all cache attribute bits being 0 */
1660 return change_page_attr_clear(&addr
, numpages
,
1661 __pgprot(_PAGE_CACHE_MASK
), 0);
1664 int set_memory_wb(unsigned long addr
, int numpages
)
1668 ret
= _set_memory_wb(addr
, numpages
);
1672 free_memtype(__pa(addr
), __pa(addr
) + numpages
* PAGE_SIZE
);
1675 EXPORT_SYMBOL(set_memory_wb
);
1677 int set_memory_array_wb(unsigned long *addr
, int addrinarray
)
1682 /* WB cache mode is hard wired to all cache attribute bits being 0 */
1683 ret
= change_page_attr_clear(addr
, addrinarray
,
1684 __pgprot(_PAGE_CACHE_MASK
), 1);
1688 for (i
= 0; i
< addrinarray
; i
++)
1689 free_memtype(__pa(addr
[i
]), __pa(addr
[i
]) + PAGE_SIZE
);
1693 EXPORT_SYMBOL(set_memory_array_wb
);
1695 int set_memory_x(unsigned long addr
, int numpages
)
1697 if (!(__supported_pte_mask
& _PAGE_NX
))
1700 return change_page_attr_clear(&addr
, numpages
, __pgprot(_PAGE_NX
), 0);
1702 EXPORT_SYMBOL(set_memory_x
);
1704 int set_memory_nx(unsigned long addr
, int numpages
)
1706 if (!(__supported_pte_mask
& _PAGE_NX
))
1709 return change_page_attr_set(&addr
, numpages
, __pgprot(_PAGE_NX
), 0);
1711 EXPORT_SYMBOL(set_memory_nx
);
1713 int set_memory_ro(unsigned long addr
, int numpages
)
1715 return change_page_attr_clear(&addr
, numpages
, __pgprot(_PAGE_RW
), 0);
1718 int set_memory_rw(unsigned long addr
, int numpages
)
1720 return change_page_attr_set(&addr
, numpages
, __pgprot(_PAGE_RW
), 0);
1723 int set_memory_np(unsigned long addr
, int numpages
)
1725 return change_page_attr_clear(&addr
, numpages
, __pgprot(_PAGE_PRESENT
), 0);
1728 int set_memory_4k(unsigned long addr
, int numpages
)
1730 return change_page_attr_set_clr(&addr
, numpages
, __pgprot(0),
1731 __pgprot(0), 1, 0, NULL
);
1734 int set_pages_uc(struct page
*page
, int numpages
)
1736 unsigned long addr
= (unsigned long)page_address(page
);
1738 return set_memory_uc(addr
, numpages
);
1740 EXPORT_SYMBOL(set_pages_uc
);
1742 static int _set_pages_array(struct page
**pages
, int addrinarray
,
1743 enum page_cache_mode new_type
)
1745 unsigned long start
;
1747 enum page_cache_mode set_type
;
1752 for (i
= 0; i
< addrinarray
; i
++) {
1753 if (PageHighMem(pages
[i
]))
1755 start
= page_to_pfn(pages
[i
]) << PAGE_SHIFT
;
1756 end
= start
+ PAGE_SIZE
;
1757 if (reserve_memtype(start
, end
, new_type
, NULL
))
1761 /* If WC, set to UC- first and then WC */
1762 set_type
= (new_type
== _PAGE_CACHE_MODE_WC
) ?
1763 _PAGE_CACHE_MODE_UC_MINUS
: new_type
;
1765 ret
= cpa_set_pages_array(pages
, addrinarray
,
1766 cachemode2pgprot(set_type
));
1767 if (!ret
&& new_type
== _PAGE_CACHE_MODE_WC
)
1768 ret
= change_page_attr_set_clr(NULL
, addrinarray
,
1770 _PAGE_CACHE_MODE_WC
),
1771 __pgprot(_PAGE_CACHE_MASK
),
1772 0, CPA_PAGES_ARRAY
, pages
);
1775 return 0; /* Success */
1778 for (i
= 0; i
< free_idx
; i
++) {
1779 if (PageHighMem(pages
[i
]))
1781 start
= page_to_pfn(pages
[i
]) << PAGE_SHIFT
;
1782 end
= start
+ PAGE_SIZE
;
1783 free_memtype(start
, end
);
1788 int set_pages_array_uc(struct page
**pages
, int addrinarray
)
1790 return _set_pages_array(pages
, addrinarray
, _PAGE_CACHE_MODE_UC_MINUS
);
1792 EXPORT_SYMBOL(set_pages_array_uc
);
1794 int set_pages_array_wc(struct page
**pages
, int addrinarray
)
1796 return _set_pages_array(pages
, addrinarray
, _PAGE_CACHE_MODE_WC
);
1798 EXPORT_SYMBOL(set_pages_array_wc
);
1800 int set_pages_array_wt(struct page
**pages
, int addrinarray
)
1802 return _set_pages_array(pages
, addrinarray
, _PAGE_CACHE_MODE_WT
);
1804 EXPORT_SYMBOL_GPL(set_pages_array_wt
);
1806 int set_pages_wb(struct page
*page
, int numpages
)
1808 unsigned long addr
= (unsigned long)page_address(page
);
1810 return set_memory_wb(addr
, numpages
);
1812 EXPORT_SYMBOL(set_pages_wb
);
1814 int set_pages_array_wb(struct page
**pages
, int addrinarray
)
1817 unsigned long start
;
1821 /* WB cache mode is hard wired to all cache attribute bits being 0 */
1822 retval
= cpa_clear_pages_array(pages
, addrinarray
,
1823 __pgprot(_PAGE_CACHE_MASK
));
1827 for (i
= 0; i
< addrinarray
; i
++) {
1828 if (PageHighMem(pages
[i
]))
1830 start
= page_to_pfn(pages
[i
]) << PAGE_SHIFT
;
1831 end
= start
+ PAGE_SIZE
;
1832 free_memtype(start
, end
);
1837 EXPORT_SYMBOL(set_pages_array_wb
);
1839 int set_pages_x(struct page
*page
, int numpages
)
1841 unsigned long addr
= (unsigned long)page_address(page
);
1843 return set_memory_x(addr
, numpages
);
1845 EXPORT_SYMBOL(set_pages_x
);
1847 int set_pages_nx(struct page
*page
, int numpages
)
1849 unsigned long addr
= (unsigned long)page_address(page
);
1851 return set_memory_nx(addr
, numpages
);
1853 EXPORT_SYMBOL(set_pages_nx
);
1855 int set_pages_ro(struct page
*page
, int numpages
)
1857 unsigned long addr
= (unsigned long)page_address(page
);
1859 return set_memory_ro(addr
, numpages
);
1862 int set_pages_rw(struct page
*page
, int numpages
)
1864 unsigned long addr
= (unsigned long)page_address(page
);
1866 return set_memory_rw(addr
, numpages
);
1869 #ifdef CONFIG_DEBUG_PAGEALLOC
1871 static int __set_pages_p(struct page
*page
, int numpages
)
1873 unsigned long tempaddr
= (unsigned long) page_address(page
);
1874 struct cpa_data cpa
= { .vaddr
= &tempaddr
,
1876 .numpages
= numpages
,
1877 .mask_set
= __pgprot(_PAGE_PRESENT
| _PAGE_RW
),
1878 .mask_clr
= __pgprot(0),
1882 * No alias checking needed for setting present flag. otherwise,
1883 * we may need to break large pages for 64-bit kernel text
1884 * mappings (this adds to complexity if we want to do this from
1885 * atomic context especially). Let's keep it simple!
1887 return __change_page_attr_set_clr(&cpa
, 0);
1890 static int __set_pages_np(struct page
*page
, int numpages
)
1892 unsigned long tempaddr
= (unsigned long) page_address(page
);
1893 struct cpa_data cpa
= { .vaddr
= &tempaddr
,
1895 .numpages
= numpages
,
1896 .mask_set
= __pgprot(0),
1897 .mask_clr
= __pgprot(_PAGE_PRESENT
| _PAGE_RW
),
1901 * No alias checking needed for setting not present flag. otherwise,
1902 * we may need to break large pages for 64-bit kernel text
1903 * mappings (this adds to complexity if we want to do this from
1904 * atomic context especially). Let's keep it simple!
1906 return __change_page_attr_set_clr(&cpa
, 0);
1909 void __kernel_map_pages(struct page
*page
, int numpages
, int enable
)
1911 if (PageHighMem(page
))
1914 debug_check_no_locks_freed(page_address(page
),
1915 numpages
* PAGE_SIZE
);
1919 * The return value is ignored as the calls cannot fail.
1920 * Large pages for identity mappings are not used at boot time
1921 * and hence no memory allocations during large page split.
1924 __set_pages_p(page
, numpages
);
1926 __set_pages_np(page
, numpages
);
1929 * We should perform an IPI and flush all tlbs,
1930 * but that can deadlock->flush only current cpu:
1934 arch_flush_lazy_mmu_mode();
1937 #ifdef CONFIG_HIBERNATION
1939 bool kernel_page_present(struct page
*page
)
1944 if (PageHighMem(page
))
1947 pte
= lookup_address((unsigned long)page_address(page
), &level
);
1948 return (pte_val(*pte
) & _PAGE_PRESENT
);
1951 #endif /* CONFIG_HIBERNATION */
1953 #endif /* CONFIG_DEBUG_PAGEALLOC */
1955 int kernel_map_pages_in_pgd(pgd_t
*pgd
, u64 pfn
, unsigned long address
,
1956 unsigned numpages
, unsigned long page_flags
)
1958 int retval
= -EINVAL
;
1960 struct cpa_data cpa
= {
1964 .numpages
= numpages
,
1965 .mask_set
= __pgprot(0),
1966 .mask_clr
= __pgprot(0),
1970 if (!(__supported_pte_mask
& _PAGE_NX
))
1973 if (!(page_flags
& _PAGE_NX
))
1974 cpa
.mask_clr
= __pgprot(_PAGE_NX
);
1976 if (!(page_flags
& _PAGE_RW
))
1977 cpa
.mask_clr
= __pgprot(_PAGE_RW
);
1979 cpa
.mask_set
= __pgprot(_PAGE_PRESENT
| page_flags
);
1981 retval
= __change_page_attr_set_clr(&cpa
, 0);
1988 void kernel_unmap_pages_in_pgd(pgd_t
*root
, unsigned long address
,
1991 unmap_pgd_range(root
, address
, address
+ (numpages
<< PAGE_SHIFT
));
1995 * The testcases use internal knowledge of the implementation that shouldn't
1996 * be exposed to the rest of the kernel. Include these directly here.
1998 #ifdef CONFIG_CPA_DEBUG
1999 #include "pageattr-test.c"