thermal: fix Mediatek thermal controller build
[linux/fpc-iii.git] / arch / x86 / mm / pageattr.c
blob01be9ec3bf792f65ac91cc57fe7d64e8e644998f
1 /*
2 * Copyright 2002 Andi Kleen, SuSE Labs.
3 * Thanks to Ben LaHaise for precious feedback.
4 */
5 #include <linux/highmem.h>
6 #include <linux/bootmem.h>
7 #include <linux/sched.h>
8 #include <linux/mm.h>
9 #include <linux/interrupt.h>
10 #include <linux/seq_file.h>
11 #include <linux/debugfs.h>
12 #include <linux/pfn.h>
13 #include <linux/percpu.h>
14 #include <linux/gfp.h>
15 #include <linux/pci.h>
16 #include <linux/vmalloc.h>
18 #include <asm/e820.h>
19 #include <asm/processor.h>
20 #include <asm/tlbflush.h>
21 #include <asm/sections.h>
22 #include <asm/setup.h>
23 #include <asm/uaccess.h>
24 #include <asm/pgalloc.h>
25 #include <asm/proto.h>
26 #include <asm/pat.h>
29 * The current flushing context - we pass it instead of 5 arguments:
31 struct cpa_data {
32 unsigned long *vaddr;
33 pgd_t *pgd;
34 pgprot_t mask_set;
35 pgprot_t mask_clr;
36 unsigned long numpages;
37 int flags;
38 unsigned long pfn;
39 unsigned force_split : 1;
40 int curpage;
41 struct page **pages;
45 * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
46 * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
47 * entries change the page attribute in parallel to some other cpu
48 * splitting a large page entry along with changing the attribute.
50 static DEFINE_SPINLOCK(cpa_lock);
52 #define CPA_FLUSHTLB 1
53 #define CPA_ARRAY 2
54 #define CPA_PAGES_ARRAY 4
56 #ifdef CONFIG_PROC_FS
57 static unsigned long direct_pages_count[PG_LEVEL_NUM];
59 void update_page_count(int level, unsigned long pages)
61 /* Protect against CPA */
62 spin_lock(&pgd_lock);
63 direct_pages_count[level] += pages;
64 spin_unlock(&pgd_lock);
67 static void split_page_count(int level)
69 if (direct_pages_count[level] == 0)
70 return;
72 direct_pages_count[level]--;
73 direct_pages_count[level - 1] += PTRS_PER_PTE;
76 void arch_report_meminfo(struct seq_file *m)
78 seq_printf(m, "DirectMap4k: %8lu kB\n",
79 direct_pages_count[PG_LEVEL_4K] << 2);
80 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
81 seq_printf(m, "DirectMap2M: %8lu kB\n",
82 direct_pages_count[PG_LEVEL_2M] << 11);
83 #else
84 seq_printf(m, "DirectMap4M: %8lu kB\n",
85 direct_pages_count[PG_LEVEL_2M] << 12);
86 #endif
87 if (direct_gbpages)
88 seq_printf(m, "DirectMap1G: %8lu kB\n",
89 direct_pages_count[PG_LEVEL_1G] << 20);
91 #else
92 static inline void split_page_count(int level) { }
93 #endif
95 #ifdef CONFIG_X86_64
97 static inline unsigned long highmap_start_pfn(void)
99 return __pa_symbol(_text) >> PAGE_SHIFT;
102 static inline unsigned long highmap_end_pfn(void)
104 return __pa_symbol(roundup(_brk_end, PMD_SIZE)) >> PAGE_SHIFT;
107 #endif
109 static inline int
110 within(unsigned long addr, unsigned long start, unsigned long end)
112 return addr >= start && addr < end;
116 * Flushing functions
120 * clflush_cache_range - flush a cache range with clflush
121 * @vaddr: virtual start address
122 * @size: number of bytes to flush
124 * clflushopt is an unordered instruction which needs fencing with mfence or
125 * sfence to avoid ordering issues.
127 void clflush_cache_range(void *vaddr, unsigned int size)
129 const unsigned long clflush_size = boot_cpu_data.x86_clflush_size;
130 void *p = (void *)((unsigned long)vaddr & ~(clflush_size - 1));
131 void *vend = vaddr + size;
133 if (p >= vend)
134 return;
136 mb();
138 for (; p < vend; p += clflush_size)
139 clflushopt(p);
141 mb();
143 EXPORT_SYMBOL_GPL(clflush_cache_range);
145 static void __cpa_flush_all(void *arg)
147 unsigned long cache = (unsigned long)arg;
150 * Flush all to work around Errata in early athlons regarding
151 * large page flushing.
153 __flush_tlb_all();
155 if (cache && boot_cpu_data.x86 >= 4)
156 wbinvd();
159 static void cpa_flush_all(unsigned long cache)
161 BUG_ON(irqs_disabled());
163 on_each_cpu(__cpa_flush_all, (void *) cache, 1);
166 static void __cpa_flush_range(void *arg)
169 * We could optimize that further and do individual per page
170 * tlb invalidates for a low number of pages. Caveat: we must
171 * flush the high aliases on 64bit as well.
173 __flush_tlb_all();
176 static void cpa_flush_range(unsigned long start, int numpages, int cache)
178 unsigned int i, level;
179 unsigned long addr;
181 BUG_ON(irqs_disabled());
182 WARN_ON(PAGE_ALIGN(start) != start);
184 on_each_cpu(__cpa_flush_range, NULL, 1);
186 if (!cache)
187 return;
190 * We only need to flush on one CPU,
191 * clflush is a MESI-coherent instruction that
192 * will cause all other CPUs to flush the same
193 * cachelines:
195 for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) {
196 pte_t *pte = lookup_address(addr, &level);
199 * Only flush present addresses:
201 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
202 clflush_cache_range((void *) addr, PAGE_SIZE);
206 static void cpa_flush_array(unsigned long *start, int numpages, int cache,
207 int in_flags, struct page **pages)
209 unsigned int i, level;
210 unsigned long do_wbinvd = cache && numpages >= 1024; /* 4M threshold */
212 BUG_ON(irqs_disabled());
214 on_each_cpu(__cpa_flush_all, (void *) do_wbinvd, 1);
216 if (!cache || do_wbinvd)
217 return;
220 * We only need to flush on one CPU,
221 * clflush is a MESI-coherent instruction that
222 * will cause all other CPUs to flush the same
223 * cachelines:
225 for (i = 0; i < numpages; i++) {
226 unsigned long addr;
227 pte_t *pte;
229 if (in_flags & CPA_PAGES_ARRAY)
230 addr = (unsigned long)page_address(pages[i]);
231 else
232 addr = start[i];
234 pte = lookup_address(addr, &level);
237 * Only flush present addresses:
239 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
240 clflush_cache_range((void *)addr, PAGE_SIZE);
245 * Certain areas of memory on x86 require very specific protection flags,
246 * for example the BIOS area or kernel text. Callers don't always get this
247 * right (again, ioremap() on BIOS memory is not uncommon) so this function
248 * checks and fixes these known static required protection bits.
250 static inline pgprot_t static_protections(pgprot_t prot, unsigned long address,
251 unsigned long pfn)
253 pgprot_t forbidden = __pgprot(0);
256 * The BIOS area between 640k and 1Mb needs to be executable for
257 * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
259 #ifdef CONFIG_PCI_BIOS
260 if (pcibios_enabled && within(pfn, BIOS_BEGIN >> PAGE_SHIFT, BIOS_END >> PAGE_SHIFT))
261 pgprot_val(forbidden) |= _PAGE_NX;
262 #endif
265 * The kernel text needs to be executable for obvious reasons
266 * Does not cover __inittext since that is gone later on. On
267 * 64bit we do not enforce !NX on the low mapping
269 if (within(address, (unsigned long)_text, (unsigned long)_etext))
270 pgprot_val(forbidden) |= _PAGE_NX;
273 * The .rodata section needs to be read-only. Using the pfn
274 * catches all aliases.
276 if (within(pfn, __pa_symbol(__start_rodata) >> PAGE_SHIFT,
277 __pa_symbol(__end_rodata) >> PAGE_SHIFT))
278 pgprot_val(forbidden) |= _PAGE_RW;
280 #if defined(CONFIG_X86_64)
282 * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
283 * kernel text mappings for the large page aligned text, rodata sections
284 * will be always read-only. For the kernel identity mappings covering
285 * the holes caused by this alignment can be anything that user asks.
287 * This will preserve the large page mappings for kernel text/data
288 * at no extra cost.
290 if (kernel_set_to_readonly &&
291 within(address, (unsigned long)_text,
292 (unsigned long)__end_rodata_hpage_align)) {
293 unsigned int level;
296 * Don't enforce the !RW mapping for the kernel text mapping,
297 * if the current mapping is already using small page mapping.
298 * No need to work hard to preserve large page mappings in this
299 * case.
301 * This also fixes the Linux Xen paravirt guest boot failure
302 * (because of unexpected read-only mappings for kernel identity
303 * mappings). In this paravirt guest case, the kernel text
304 * mapping and the kernel identity mapping share the same
305 * page-table pages. Thus we can't really use different
306 * protections for the kernel text and identity mappings. Also,
307 * these shared mappings are made of small page mappings.
308 * Thus this don't enforce !RW mapping for small page kernel
309 * text mapping logic will help Linux Xen parvirt guest boot
310 * as well.
312 if (lookup_address(address, &level) && (level != PG_LEVEL_4K))
313 pgprot_val(forbidden) |= _PAGE_RW;
315 #endif
317 prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden));
319 return prot;
323 * Lookup the page table entry for a virtual address in a specific pgd.
324 * Return a pointer to the entry and the level of the mapping.
326 pte_t *lookup_address_in_pgd(pgd_t *pgd, unsigned long address,
327 unsigned int *level)
329 pud_t *pud;
330 pmd_t *pmd;
332 *level = PG_LEVEL_NONE;
334 if (pgd_none(*pgd))
335 return NULL;
337 pud = pud_offset(pgd, address);
338 if (pud_none(*pud))
339 return NULL;
341 *level = PG_LEVEL_1G;
342 if (pud_large(*pud) || !pud_present(*pud))
343 return (pte_t *)pud;
345 pmd = pmd_offset(pud, address);
346 if (pmd_none(*pmd))
347 return NULL;
349 *level = PG_LEVEL_2M;
350 if (pmd_large(*pmd) || !pmd_present(*pmd))
351 return (pte_t *)pmd;
353 *level = PG_LEVEL_4K;
355 return pte_offset_kernel(pmd, address);
359 * Lookup the page table entry for a virtual address. Return a pointer
360 * to the entry and the level of the mapping.
362 * Note: We return pud and pmd either when the entry is marked large
363 * or when the present bit is not set. Otherwise we would return a
364 * pointer to a nonexisting mapping.
366 pte_t *lookup_address(unsigned long address, unsigned int *level)
368 return lookup_address_in_pgd(pgd_offset_k(address), address, level);
370 EXPORT_SYMBOL_GPL(lookup_address);
372 static pte_t *_lookup_address_cpa(struct cpa_data *cpa, unsigned long address,
373 unsigned int *level)
375 if (cpa->pgd)
376 return lookup_address_in_pgd(cpa->pgd + pgd_index(address),
377 address, level);
379 return lookup_address(address, level);
383 * Lookup the PMD entry for a virtual address. Return a pointer to the entry
384 * or NULL if not present.
386 pmd_t *lookup_pmd_address(unsigned long address)
388 pgd_t *pgd;
389 pud_t *pud;
391 pgd = pgd_offset_k(address);
392 if (pgd_none(*pgd))
393 return NULL;
395 pud = pud_offset(pgd, address);
396 if (pud_none(*pud) || pud_large(*pud) || !pud_present(*pud))
397 return NULL;
399 return pmd_offset(pud, address);
403 * This is necessary because __pa() does not work on some
404 * kinds of memory, like vmalloc() or the alloc_remap()
405 * areas on 32-bit NUMA systems. The percpu areas can
406 * end up in this kind of memory, for instance.
408 * This could be optimized, but it is only intended to be
409 * used at inititalization time, and keeping it
410 * unoptimized should increase the testing coverage for
411 * the more obscure platforms.
413 phys_addr_t slow_virt_to_phys(void *__virt_addr)
415 unsigned long virt_addr = (unsigned long)__virt_addr;
416 phys_addr_t phys_addr;
417 unsigned long offset;
418 enum pg_level level;
419 pte_t *pte;
421 pte = lookup_address(virt_addr, &level);
422 BUG_ON(!pte);
425 * pXX_pfn() returns unsigned long, which must be cast to phys_addr_t
426 * before being left-shifted PAGE_SHIFT bits -- this trick is to
427 * make 32-PAE kernel work correctly.
429 switch (level) {
430 case PG_LEVEL_1G:
431 phys_addr = (phys_addr_t)pud_pfn(*(pud_t *)pte) << PAGE_SHIFT;
432 offset = virt_addr & ~PUD_PAGE_MASK;
433 break;
434 case PG_LEVEL_2M:
435 phys_addr = (phys_addr_t)pmd_pfn(*(pmd_t *)pte) << PAGE_SHIFT;
436 offset = virt_addr & ~PMD_PAGE_MASK;
437 break;
438 default:
439 phys_addr = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT;
440 offset = virt_addr & ~PAGE_MASK;
443 return (phys_addr_t)(phys_addr | offset);
445 EXPORT_SYMBOL_GPL(slow_virt_to_phys);
448 * Set the new pmd in all the pgds we know about:
450 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
452 /* change init_mm */
453 set_pte_atomic(kpte, pte);
454 #ifdef CONFIG_X86_32
455 if (!SHARED_KERNEL_PMD) {
456 struct page *page;
458 list_for_each_entry(page, &pgd_list, lru) {
459 pgd_t *pgd;
460 pud_t *pud;
461 pmd_t *pmd;
463 pgd = (pgd_t *)page_address(page) + pgd_index(address);
464 pud = pud_offset(pgd, address);
465 pmd = pmd_offset(pud, address);
466 set_pte_atomic((pte_t *)pmd, pte);
469 #endif
472 static int
473 try_preserve_large_page(pte_t *kpte, unsigned long address,
474 struct cpa_data *cpa)
476 unsigned long nextpage_addr, numpages, pmask, psize, addr, pfn, old_pfn;
477 pte_t new_pte, old_pte, *tmp;
478 pgprot_t old_prot, new_prot, req_prot;
479 int i, do_split = 1;
480 enum pg_level level;
482 if (cpa->force_split)
483 return 1;
485 spin_lock(&pgd_lock);
487 * Check for races, another CPU might have split this page
488 * up already:
490 tmp = _lookup_address_cpa(cpa, address, &level);
491 if (tmp != kpte)
492 goto out_unlock;
494 switch (level) {
495 case PG_LEVEL_2M:
496 old_prot = pmd_pgprot(*(pmd_t *)kpte);
497 old_pfn = pmd_pfn(*(pmd_t *)kpte);
498 break;
499 case PG_LEVEL_1G:
500 old_prot = pud_pgprot(*(pud_t *)kpte);
501 old_pfn = pud_pfn(*(pud_t *)kpte);
502 break;
503 default:
504 do_split = -EINVAL;
505 goto out_unlock;
508 psize = page_level_size(level);
509 pmask = page_level_mask(level);
512 * Calculate the number of pages, which fit into this large
513 * page starting at address:
515 nextpage_addr = (address + psize) & pmask;
516 numpages = (nextpage_addr - address) >> PAGE_SHIFT;
517 if (numpages < cpa->numpages)
518 cpa->numpages = numpages;
521 * We are safe now. Check whether the new pgprot is the same:
522 * Convert protection attributes to 4k-format, as cpa->mask* are set
523 * up accordingly.
525 old_pte = *kpte;
526 req_prot = pgprot_large_2_4k(old_prot);
528 pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr);
529 pgprot_val(req_prot) |= pgprot_val(cpa->mask_set);
532 * req_prot is in format of 4k pages. It must be converted to large
533 * page format: the caching mode includes the PAT bit located at
534 * different bit positions in the two formats.
536 req_prot = pgprot_4k_2_large(req_prot);
539 * Set the PSE and GLOBAL flags only if the PRESENT flag is
540 * set otherwise pmd_present/pmd_huge will return true even on
541 * a non present pmd. The canon_pgprot will clear _PAGE_GLOBAL
542 * for the ancient hardware that doesn't support it.
544 if (pgprot_val(req_prot) & _PAGE_PRESENT)
545 pgprot_val(req_prot) |= _PAGE_PSE | _PAGE_GLOBAL;
546 else
547 pgprot_val(req_prot) &= ~(_PAGE_PSE | _PAGE_GLOBAL);
549 req_prot = canon_pgprot(req_prot);
552 * old_pfn points to the large page base pfn. So we need
553 * to add the offset of the virtual address:
555 pfn = old_pfn + ((address & (psize - 1)) >> PAGE_SHIFT);
556 cpa->pfn = pfn;
558 new_prot = static_protections(req_prot, address, pfn);
561 * We need to check the full range, whether
562 * static_protection() requires a different pgprot for one of
563 * the pages in the range we try to preserve:
565 addr = address & pmask;
566 pfn = old_pfn;
567 for (i = 0; i < (psize >> PAGE_SHIFT); i++, addr += PAGE_SIZE, pfn++) {
568 pgprot_t chk_prot = static_protections(req_prot, addr, pfn);
570 if (pgprot_val(chk_prot) != pgprot_val(new_prot))
571 goto out_unlock;
575 * If there are no changes, return. maxpages has been updated
576 * above:
578 if (pgprot_val(new_prot) == pgprot_val(old_prot)) {
579 do_split = 0;
580 goto out_unlock;
584 * We need to change the attributes. Check, whether we can
585 * change the large page in one go. We request a split, when
586 * the address is not aligned and the number of pages is
587 * smaller than the number of pages in the large page. Note
588 * that we limited the number of possible pages already to
589 * the number of pages in the large page.
591 if (address == (address & pmask) && cpa->numpages == (psize >> PAGE_SHIFT)) {
593 * The address is aligned and the number of pages
594 * covers the full page.
596 new_pte = pfn_pte(old_pfn, new_prot);
597 __set_pmd_pte(kpte, address, new_pte);
598 cpa->flags |= CPA_FLUSHTLB;
599 do_split = 0;
602 out_unlock:
603 spin_unlock(&pgd_lock);
605 return do_split;
608 static int
609 __split_large_page(struct cpa_data *cpa, pte_t *kpte, unsigned long address,
610 struct page *base)
612 pte_t *pbase = (pte_t *)page_address(base);
613 unsigned long ref_pfn, pfn, pfninc = 1;
614 unsigned int i, level;
615 pte_t *tmp;
616 pgprot_t ref_prot;
618 spin_lock(&pgd_lock);
620 * Check for races, another CPU might have split this page
621 * up for us already:
623 tmp = _lookup_address_cpa(cpa, address, &level);
624 if (tmp != kpte) {
625 spin_unlock(&pgd_lock);
626 return 1;
629 paravirt_alloc_pte(&init_mm, page_to_pfn(base));
631 switch (level) {
632 case PG_LEVEL_2M:
633 ref_prot = pmd_pgprot(*(pmd_t *)kpte);
634 /* clear PSE and promote PAT bit to correct position */
635 ref_prot = pgprot_large_2_4k(ref_prot);
636 ref_pfn = pmd_pfn(*(pmd_t *)kpte);
637 break;
639 case PG_LEVEL_1G:
640 ref_prot = pud_pgprot(*(pud_t *)kpte);
641 ref_pfn = pud_pfn(*(pud_t *)kpte);
642 pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
645 * Clear the PSE flags if the PRESENT flag is not set
646 * otherwise pmd_present/pmd_huge will return true
647 * even on a non present pmd.
649 if (!(pgprot_val(ref_prot) & _PAGE_PRESENT))
650 pgprot_val(ref_prot) &= ~_PAGE_PSE;
651 break;
653 default:
654 spin_unlock(&pgd_lock);
655 return 1;
659 * Set the GLOBAL flags only if the PRESENT flag is set
660 * otherwise pmd/pte_present will return true even on a non
661 * present pmd/pte. The canon_pgprot will clear _PAGE_GLOBAL
662 * for the ancient hardware that doesn't support it.
664 if (pgprot_val(ref_prot) & _PAGE_PRESENT)
665 pgprot_val(ref_prot) |= _PAGE_GLOBAL;
666 else
667 pgprot_val(ref_prot) &= ~_PAGE_GLOBAL;
670 * Get the target pfn from the original entry:
672 pfn = ref_pfn;
673 for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc)
674 set_pte(&pbase[i], pfn_pte(pfn, canon_pgprot(ref_prot)));
676 if (virt_addr_valid(address)) {
677 unsigned long pfn = PFN_DOWN(__pa(address));
679 if (pfn_range_is_mapped(pfn, pfn + 1))
680 split_page_count(level);
684 * Install the new, split up pagetable.
686 * We use the standard kernel pagetable protections for the new
687 * pagetable protections, the actual ptes set above control the
688 * primary protection behavior:
690 __set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
693 * Intel Atom errata AAH41 workaround.
695 * The real fix should be in hw or in a microcode update, but
696 * we also probabilistically try to reduce the window of having
697 * a large TLB mixed with 4K TLBs while instruction fetches are
698 * going on.
700 __flush_tlb_all();
701 spin_unlock(&pgd_lock);
703 return 0;
706 static int split_large_page(struct cpa_data *cpa, pte_t *kpte,
707 unsigned long address)
709 struct page *base;
711 if (!debug_pagealloc_enabled())
712 spin_unlock(&cpa_lock);
713 base = alloc_pages(GFP_KERNEL | __GFP_NOTRACK, 0);
714 if (!debug_pagealloc_enabled())
715 spin_lock(&cpa_lock);
716 if (!base)
717 return -ENOMEM;
719 if (__split_large_page(cpa, kpte, address, base))
720 __free_page(base);
722 return 0;
725 static bool try_to_free_pte_page(pte_t *pte)
727 int i;
729 for (i = 0; i < PTRS_PER_PTE; i++)
730 if (!pte_none(pte[i]))
731 return false;
733 free_page((unsigned long)pte);
734 return true;
737 static bool try_to_free_pmd_page(pmd_t *pmd)
739 int i;
741 for (i = 0; i < PTRS_PER_PMD; i++)
742 if (!pmd_none(pmd[i]))
743 return false;
745 free_page((unsigned long)pmd);
746 return true;
749 static bool try_to_free_pud_page(pud_t *pud)
751 int i;
753 for (i = 0; i < PTRS_PER_PUD; i++)
754 if (!pud_none(pud[i]))
755 return false;
757 free_page((unsigned long)pud);
758 return true;
761 static bool unmap_pte_range(pmd_t *pmd, unsigned long start, unsigned long end)
763 pte_t *pte = pte_offset_kernel(pmd, start);
765 while (start < end) {
766 set_pte(pte, __pte(0));
768 start += PAGE_SIZE;
769 pte++;
772 if (try_to_free_pte_page((pte_t *)pmd_page_vaddr(*pmd))) {
773 pmd_clear(pmd);
774 return true;
776 return false;
779 static void __unmap_pmd_range(pud_t *pud, pmd_t *pmd,
780 unsigned long start, unsigned long end)
782 if (unmap_pte_range(pmd, start, end))
783 if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud)))
784 pud_clear(pud);
787 static void unmap_pmd_range(pud_t *pud, unsigned long start, unsigned long end)
789 pmd_t *pmd = pmd_offset(pud, start);
792 * Not on a 2MB page boundary?
794 if (start & (PMD_SIZE - 1)) {
795 unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
796 unsigned long pre_end = min_t(unsigned long, end, next_page);
798 __unmap_pmd_range(pud, pmd, start, pre_end);
800 start = pre_end;
801 pmd++;
805 * Try to unmap in 2M chunks.
807 while (end - start >= PMD_SIZE) {
808 if (pmd_large(*pmd))
809 pmd_clear(pmd);
810 else
811 __unmap_pmd_range(pud, pmd, start, start + PMD_SIZE);
813 start += PMD_SIZE;
814 pmd++;
818 * 4K leftovers?
820 if (start < end)
821 return __unmap_pmd_range(pud, pmd, start, end);
824 * Try again to free the PMD page if haven't succeeded above.
826 if (!pud_none(*pud))
827 if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud)))
828 pud_clear(pud);
831 static void unmap_pud_range(pgd_t *pgd, unsigned long start, unsigned long end)
833 pud_t *pud = pud_offset(pgd, start);
836 * Not on a GB page boundary?
838 if (start & (PUD_SIZE - 1)) {
839 unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
840 unsigned long pre_end = min_t(unsigned long, end, next_page);
842 unmap_pmd_range(pud, start, pre_end);
844 start = pre_end;
845 pud++;
849 * Try to unmap in 1G chunks?
851 while (end - start >= PUD_SIZE) {
853 if (pud_large(*pud))
854 pud_clear(pud);
855 else
856 unmap_pmd_range(pud, start, start + PUD_SIZE);
858 start += PUD_SIZE;
859 pud++;
863 * 2M leftovers?
865 if (start < end)
866 unmap_pmd_range(pud, start, end);
869 * No need to try to free the PUD page because we'll free it in
870 * populate_pgd's error path
874 static void unmap_pgd_range(pgd_t *root, unsigned long addr, unsigned long end)
876 pgd_t *pgd_entry = root + pgd_index(addr);
878 unmap_pud_range(pgd_entry, addr, end);
880 if (try_to_free_pud_page((pud_t *)pgd_page_vaddr(*pgd_entry)))
881 pgd_clear(pgd_entry);
884 static int alloc_pte_page(pmd_t *pmd)
886 pte_t *pte = (pte_t *)get_zeroed_page(GFP_KERNEL | __GFP_NOTRACK);
887 if (!pte)
888 return -1;
890 set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
891 return 0;
894 static int alloc_pmd_page(pud_t *pud)
896 pmd_t *pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL | __GFP_NOTRACK);
897 if (!pmd)
898 return -1;
900 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
901 return 0;
904 static void populate_pte(struct cpa_data *cpa,
905 unsigned long start, unsigned long end,
906 unsigned num_pages, pmd_t *pmd, pgprot_t pgprot)
908 pte_t *pte;
910 pte = pte_offset_kernel(pmd, start);
913 * Set the GLOBAL flags only if the PRESENT flag is
914 * set otherwise pte_present will return true even on
915 * a non present pte. The canon_pgprot will clear
916 * _PAGE_GLOBAL for the ancient hardware that doesn't
917 * support it.
919 if (pgprot_val(pgprot) & _PAGE_PRESENT)
920 pgprot_val(pgprot) |= _PAGE_GLOBAL;
921 else
922 pgprot_val(pgprot) &= ~_PAGE_GLOBAL;
924 pgprot = canon_pgprot(pgprot);
926 while (num_pages-- && start < end) {
927 set_pte(pte, pfn_pte(cpa->pfn, pgprot));
929 start += PAGE_SIZE;
930 cpa->pfn++;
931 pte++;
935 static int populate_pmd(struct cpa_data *cpa,
936 unsigned long start, unsigned long end,
937 unsigned num_pages, pud_t *pud, pgprot_t pgprot)
939 unsigned int cur_pages = 0;
940 pmd_t *pmd;
941 pgprot_t pmd_pgprot;
944 * Not on a 2M boundary?
946 if (start & (PMD_SIZE - 1)) {
947 unsigned long pre_end = start + (num_pages << PAGE_SHIFT);
948 unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
950 pre_end = min_t(unsigned long, pre_end, next_page);
951 cur_pages = (pre_end - start) >> PAGE_SHIFT;
952 cur_pages = min_t(unsigned int, num_pages, cur_pages);
955 * Need a PTE page?
957 pmd = pmd_offset(pud, start);
958 if (pmd_none(*pmd))
959 if (alloc_pte_page(pmd))
960 return -1;
962 populate_pte(cpa, start, pre_end, cur_pages, pmd, pgprot);
964 start = pre_end;
968 * We mapped them all?
970 if (num_pages == cur_pages)
971 return cur_pages;
973 pmd_pgprot = pgprot_4k_2_large(pgprot);
975 while (end - start >= PMD_SIZE) {
978 * We cannot use a 1G page so allocate a PMD page if needed.
980 if (pud_none(*pud))
981 if (alloc_pmd_page(pud))
982 return -1;
984 pmd = pmd_offset(pud, start);
986 set_pmd(pmd, __pmd(cpa->pfn << PAGE_SHIFT | _PAGE_PSE |
987 massage_pgprot(pmd_pgprot)));
989 start += PMD_SIZE;
990 cpa->pfn += PMD_SIZE >> PAGE_SHIFT;
991 cur_pages += PMD_SIZE >> PAGE_SHIFT;
995 * Map trailing 4K pages.
997 if (start < end) {
998 pmd = pmd_offset(pud, start);
999 if (pmd_none(*pmd))
1000 if (alloc_pte_page(pmd))
1001 return -1;
1003 populate_pte(cpa, start, end, num_pages - cur_pages,
1004 pmd, pgprot);
1006 return num_pages;
1009 static int populate_pud(struct cpa_data *cpa, unsigned long start, pgd_t *pgd,
1010 pgprot_t pgprot)
1012 pud_t *pud;
1013 unsigned long end;
1014 int cur_pages = 0;
1015 pgprot_t pud_pgprot;
1017 end = start + (cpa->numpages << PAGE_SHIFT);
1020 * Not on a Gb page boundary? => map everything up to it with
1021 * smaller pages.
1023 if (start & (PUD_SIZE - 1)) {
1024 unsigned long pre_end;
1025 unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
1027 pre_end = min_t(unsigned long, end, next_page);
1028 cur_pages = (pre_end - start) >> PAGE_SHIFT;
1029 cur_pages = min_t(int, (int)cpa->numpages, cur_pages);
1031 pud = pud_offset(pgd, start);
1034 * Need a PMD page?
1036 if (pud_none(*pud))
1037 if (alloc_pmd_page(pud))
1038 return -1;
1040 cur_pages = populate_pmd(cpa, start, pre_end, cur_pages,
1041 pud, pgprot);
1042 if (cur_pages < 0)
1043 return cur_pages;
1045 start = pre_end;
1048 /* We mapped them all? */
1049 if (cpa->numpages == cur_pages)
1050 return cur_pages;
1052 pud = pud_offset(pgd, start);
1053 pud_pgprot = pgprot_4k_2_large(pgprot);
1056 * Map everything starting from the Gb boundary, possibly with 1G pages
1058 while (cpu_has_gbpages && end - start >= PUD_SIZE) {
1059 set_pud(pud, __pud(cpa->pfn << PAGE_SHIFT | _PAGE_PSE |
1060 massage_pgprot(pud_pgprot)));
1062 start += PUD_SIZE;
1063 cpa->pfn += PUD_SIZE >> PAGE_SHIFT;
1064 cur_pages += PUD_SIZE >> PAGE_SHIFT;
1065 pud++;
1068 /* Map trailing leftover */
1069 if (start < end) {
1070 int tmp;
1072 pud = pud_offset(pgd, start);
1073 if (pud_none(*pud))
1074 if (alloc_pmd_page(pud))
1075 return -1;
1077 tmp = populate_pmd(cpa, start, end, cpa->numpages - cur_pages,
1078 pud, pgprot);
1079 if (tmp < 0)
1080 return cur_pages;
1082 cur_pages += tmp;
1084 return cur_pages;
1088 * Restrictions for kernel page table do not necessarily apply when mapping in
1089 * an alternate PGD.
1091 static int populate_pgd(struct cpa_data *cpa, unsigned long addr)
1093 pgprot_t pgprot = __pgprot(_KERNPG_TABLE);
1094 pud_t *pud = NULL; /* shut up gcc */
1095 pgd_t *pgd_entry;
1096 int ret;
1098 pgd_entry = cpa->pgd + pgd_index(addr);
1101 * Allocate a PUD page and hand it down for mapping.
1103 if (pgd_none(*pgd_entry)) {
1104 pud = (pud_t *)get_zeroed_page(GFP_KERNEL | __GFP_NOTRACK);
1105 if (!pud)
1106 return -1;
1108 set_pgd(pgd_entry, __pgd(__pa(pud) | _KERNPG_TABLE));
1111 pgprot_val(pgprot) &= ~pgprot_val(cpa->mask_clr);
1112 pgprot_val(pgprot) |= pgprot_val(cpa->mask_set);
1114 ret = populate_pud(cpa, addr, pgd_entry, pgprot);
1115 if (ret < 0) {
1116 unmap_pgd_range(cpa->pgd, addr,
1117 addr + (cpa->numpages << PAGE_SHIFT));
1118 return ret;
1121 cpa->numpages = ret;
1122 return 0;
1125 static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
1126 int primary)
1128 if (cpa->pgd)
1129 return populate_pgd(cpa, vaddr);
1132 * Ignore all non primary paths.
1134 if (!primary) {
1135 cpa->numpages = 1;
1136 return 0;
1140 * Ignore the NULL PTE for kernel identity mapping, as it is expected
1141 * to have holes.
1142 * Also set numpages to '1' indicating that we processed cpa req for
1143 * one virtual address page and its pfn. TBD: numpages can be set based
1144 * on the initial value and the level returned by lookup_address().
1146 if (within(vaddr, PAGE_OFFSET,
1147 PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
1148 cpa->numpages = 1;
1149 cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
1150 return 0;
1151 } else {
1152 WARN(1, KERN_WARNING "CPA: called for zero pte. "
1153 "vaddr = %lx cpa->vaddr = %lx\n", vaddr,
1154 *cpa->vaddr);
1156 return -EFAULT;
1160 static int __change_page_attr(struct cpa_data *cpa, int primary)
1162 unsigned long address;
1163 int do_split, err;
1164 unsigned int level;
1165 pte_t *kpte, old_pte;
1167 if (cpa->flags & CPA_PAGES_ARRAY) {
1168 struct page *page = cpa->pages[cpa->curpage];
1169 if (unlikely(PageHighMem(page)))
1170 return 0;
1171 address = (unsigned long)page_address(page);
1172 } else if (cpa->flags & CPA_ARRAY)
1173 address = cpa->vaddr[cpa->curpage];
1174 else
1175 address = *cpa->vaddr;
1176 repeat:
1177 kpte = _lookup_address_cpa(cpa, address, &level);
1178 if (!kpte)
1179 return __cpa_process_fault(cpa, address, primary);
1181 old_pte = *kpte;
1182 if (!pte_val(old_pte))
1183 return __cpa_process_fault(cpa, address, primary);
1185 if (level == PG_LEVEL_4K) {
1186 pte_t new_pte;
1187 pgprot_t new_prot = pte_pgprot(old_pte);
1188 unsigned long pfn = pte_pfn(old_pte);
1190 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
1191 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
1193 new_prot = static_protections(new_prot, address, pfn);
1196 * Set the GLOBAL flags only if the PRESENT flag is
1197 * set otherwise pte_present will return true even on
1198 * a non present pte. The canon_pgprot will clear
1199 * _PAGE_GLOBAL for the ancient hardware that doesn't
1200 * support it.
1202 if (pgprot_val(new_prot) & _PAGE_PRESENT)
1203 pgprot_val(new_prot) |= _PAGE_GLOBAL;
1204 else
1205 pgprot_val(new_prot) &= ~_PAGE_GLOBAL;
1208 * We need to keep the pfn from the existing PTE,
1209 * after all we're only going to change it's attributes
1210 * not the memory it points to
1212 new_pte = pfn_pte(pfn, canon_pgprot(new_prot));
1213 cpa->pfn = pfn;
1215 * Do we really change anything ?
1217 if (pte_val(old_pte) != pte_val(new_pte)) {
1218 set_pte_atomic(kpte, new_pte);
1219 cpa->flags |= CPA_FLUSHTLB;
1221 cpa->numpages = 1;
1222 return 0;
1226 * Check, whether we can keep the large page intact
1227 * and just change the pte:
1229 do_split = try_preserve_large_page(kpte, address, cpa);
1231 * When the range fits into the existing large page,
1232 * return. cp->numpages and cpa->tlbflush have been updated in
1233 * try_large_page:
1235 if (do_split <= 0)
1236 return do_split;
1239 * We have to split the large page:
1241 err = split_large_page(cpa, kpte, address);
1242 if (!err) {
1244 * Do a global flush tlb after splitting the large page
1245 * and before we do the actual change page attribute in the PTE.
1247 * With out this, we violate the TLB application note, that says
1248 * "The TLBs may contain both ordinary and large-page
1249 * translations for a 4-KByte range of linear addresses. This
1250 * may occur if software modifies the paging structures so that
1251 * the page size used for the address range changes. If the two
1252 * translations differ with respect to page frame or attributes
1253 * (e.g., permissions), processor behavior is undefined and may
1254 * be implementation-specific."
1256 * We do this global tlb flush inside the cpa_lock, so that we
1257 * don't allow any other cpu, with stale tlb entries change the
1258 * page attribute in parallel, that also falls into the
1259 * just split large page entry.
1261 flush_tlb_all();
1262 goto repeat;
1265 return err;
1268 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
1270 static int cpa_process_alias(struct cpa_data *cpa)
1272 struct cpa_data alias_cpa;
1273 unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
1274 unsigned long vaddr;
1275 int ret;
1277 if (!pfn_range_is_mapped(cpa->pfn, cpa->pfn + 1))
1278 return 0;
1281 * No need to redo, when the primary call touched the direct
1282 * mapping already:
1284 if (cpa->flags & CPA_PAGES_ARRAY) {
1285 struct page *page = cpa->pages[cpa->curpage];
1286 if (unlikely(PageHighMem(page)))
1287 return 0;
1288 vaddr = (unsigned long)page_address(page);
1289 } else if (cpa->flags & CPA_ARRAY)
1290 vaddr = cpa->vaddr[cpa->curpage];
1291 else
1292 vaddr = *cpa->vaddr;
1294 if (!(within(vaddr, PAGE_OFFSET,
1295 PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
1297 alias_cpa = *cpa;
1298 alias_cpa.vaddr = &laddr;
1299 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1301 ret = __change_page_attr_set_clr(&alias_cpa, 0);
1302 if (ret)
1303 return ret;
1306 #ifdef CONFIG_X86_64
1308 * If the primary call didn't touch the high mapping already
1309 * and the physical address is inside the kernel map, we need
1310 * to touch the high mapped kernel as well:
1312 if (!within(vaddr, (unsigned long)_text, _brk_end) &&
1313 within(cpa->pfn, highmap_start_pfn(), highmap_end_pfn())) {
1314 unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
1315 __START_KERNEL_map - phys_base;
1316 alias_cpa = *cpa;
1317 alias_cpa.vaddr = &temp_cpa_vaddr;
1318 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1321 * The high mapping range is imprecise, so ignore the
1322 * return value.
1324 __change_page_attr_set_clr(&alias_cpa, 0);
1326 #endif
1328 return 0;
1331 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
1333 int ret, numpages = cpa->numpages;
1335 while (numpages) {
1337 * Store the remaining nr of pages for the large page
1338 * preservation check.
1340 cpa->numpages = numpages;
1341 /* for array changes, we can't use large page */
1342 if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
1343 cpa->numpages = 1;
1345 if (!debug_pagealloc_enabled())
1346 spin_lock(&cpa_lock);
1347 ret = __change_page_attr(cpa, checkalias);
1348 if (!debug_pagealloc_enabled())
1349 spin_unlock(&cpa_lock);
1350 if (ret)
1351 return ret;
1353 if (checkalias) {
1354 ret = cpa_process_alias(cpa);
1355 if (ret)
1356 return ret;
1360 * Adjust the number of pages with the result of the
1361 * CPA operation. Either a large page has been
1362 * preserved or a single page update happened.
1364 BUG_ON(cpa->numpages > numpages || !cpa->numpages);
1365 numpages -= cpa->numpages;
1366 if (cpa->flags & (CPA_PAGES_ARRAY | CPA_ARRAY))
1367 cpa->curpage++;
1368 else
1369 *cpa->vaddr += cpa->numpages * PAGE_SIZE;
1372 return 0;
1375 static int change_page_attr_set_clr(unsigned long *addr, int numpages,
1376 pgprot_t mask_set, pgprot_t mask_clr,
1377 int force_split, int in_flag,
1378 struct page **pages)
1380 struct cpa_data cpa;
1381 int ret, cache, checkalias;
1382 unsigned long baddr = 0;
1384 memset(&cpa, 0, sizeof(cpa));
1387 * Check, if we are requested to change a not supported
1388 * feature:
1390 mask_set = canon_pgprot(mask_set);
1391 mask_clr = canon_pgprot(mask_clr);
1392 if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
1393 return 0;
1395 /* Ensure we are PAGE_SIZE aligned */
1396 if (in_flag & CPA_ARRAY) {
1397 int i;
1398 for (i = 0; i < numpages; i++) {
1399 if (addr[i] & ~PAGE_MASK) {
1400 addr[i] &= PAGE_MASK;
1401 WARN_ON_ONCE(1);
1404 } else if (!(in_flag & CPA_PAGES_ARRAY)) {
1406 * in_flag of CPA_PAGES_ARRAY implies it is aligned.
1407 * No need to cehck in that case
1409 if (*addr & ~PAGE_MASK) {
1410 *addr &= PAGE_MASK;
1412 * People should not be passing in unaligned addresses:
1414 WARN_ON_ONCE(1);
1417 * Save address for cache flush. *addr is modified in the call
1418 * to __change_page_attr_set_clr() below.
1420 baddr = *addr;
1423 /* Must avoid aliasing mappings in the highmem code */
1424 kmap_flush_unused();
1426 vm_unmap_aliases();
1428 cpa.vaddr = addr;
1429 cpa.pages = pages;
1430 cpa.numpages = numpages;
1431 cpa.mask_set = mask_set;
1432 cpa.mask_clr = mask_clr;
1433 cpa.flags = 0;
1434 cpa.curpage = 0;
1435 cpa.force_split = force_split;
1437 if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY))
1438 cpa.flags |= in_flag;
1440 /* No alias checking for _NX bit modifications */
1441 checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
1443 ret = __change_page_attr_set_clr(&cpa, checkalias);
1446 * Check whether we really changed something:
1448 if (!(cpa.flags & CPA_FLUSHTLB))
1449 goto out;
1452 * No need to flush, when we did not set any of the caching
1453 * attributes:
1455 cache = !!pgprot2cachemode(mask_set);
1458 * On success we use CLFLUSH, when the CPU supports it to
1459 * avoid the WBINVD. If the CPU does not support it and in the
1460 * error case we fall back to cpa_flush_all (which uses
1461 * WBINVD):
1463 if (!ret && cpu_has_clflush) {
1464 if (cpa.flags & (CPA_PAGES_ARRAY | CPA_ARRAY)) {
1465 cpa_flush_array(addr, numpages, cache,
1466 cpa.flags, pages);
1467 } else
1468 cpa_flush_range(baddr, numpages, cache);
1469 } else
1470 cpa_flush_all(cache);
1472 out:
1473 return ret;
1476 static inline int change_page_attr_set(unsigned long *addr, int numpages,
1477 pgprot_t mask, int array)
1479 return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
1480 (array ? CPA_ARRAY : 0), NULL);
1483 static inline int change_page_attr_clear(unsigned long *addr, int numpages,
1484 pgprot_t mask, int array)
1486 return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
1487 (array ? CPA_ARRAY : 0), NULL);
1490 static inline int cpa_set_pages_array(struct page **pages, int numpages,
1491 pgprot_t mask)
1493 return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
1494 CPA_PAGES_ARRAY, pages);
1497 static inline int cpa_clear_pages_array(struct page **pages, int numpages,
1498 pgprot_t mask)
1500 return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
1501 CPA_PAGES_ARRAY, pages);
1504 int _set_memory_uc(unsigned long addr, int numpages)
1507 * for now UC MINUS. see comments in ioremap_nocache()
1508 * If you really need strong UC use ioremap_uc(), but note
1509 * that you cannot override IO areas with set_memory_*() as
1510 * these helpers cannot work with IO memory.
1512 return change_page_attr_set(&addr, numpages,
1513 cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1517 int set_memory_uc(unsigned long addr, int numpages)
1519 int ret;
1522 * for now UC MINUS. see comments in ioremap_nocache()
1524 ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1525 _PAGE_CACHE_MODE_UC_MINUS, NULL);
1526 if (ret)
1527 goto out_err;
1529 ret = _set_memory_uc(addr, numpages);
1530 if (ret)
1531 goto out_free;
1533 return 0;
1535 out_free:
1536 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1537 out_err:
1538 return ret;
1540 EXPORT_SYMBOL(set_memory_uc);
1542 static int _set_memory_array(unsigned long *addr, int addrinarray,
1543 enum page_cache_mode new_type)
1545 enum page_cache_mode set_type;
1546 int i, j;
1547 int ret;
1549 for (i = 0; i < addrinarray; i++) {
1550 ret = reserve_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE,
1551 new_type, NULL);
1552 if (ret)
1553 goto out_free;
1556 /* If WC, set to UC- first and then WC */
1557 set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
1558 _PAGE_CACHE_MODE_UC_MINUS : new_type;
1560 ret = change_page_attr_set(addr, addrinarray,
1561 cachemode2pgprot(set_type), 1);
1563 if (!ret && new_type == _PAGE_CACHE_MODE_WC)
1564 ret = change_page_attr_set_clr(addr, addrinarray,
1565 cachemode2pgprot(
1566 _PAGE_CACHE_MODE_WC),
1567 __pgprot(_PAGE_CACHE_MASK),
1568 0, CPA_ARRAY, NULL);
1569 if (ret)
1570 goto out_free;
1572 return 0;
1574 out_free:
1575 for (j = 0; j < i; j++)
1576 free_memtype(__pa(addr[j]), __pa(addr[j]) + PAGE_SIZE);
1578 return ret;
1581 int set_memory_array_uc(unsigned long *addr, int addrinarray)
1583 return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_UC_MINUS);
1585 EXPORT_SYMBOL(set_memory_array_uc);
1587 int set_memory_array_wc(unsigned long *addr, int addrinarray)
1589 return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_WC);
1591 EXPORT_SYMBOL(set_memory_array_wc);
1593 int set_memory_array_wt(unsigned long *addr, int addrinarray)
1595 return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_WT);
1597 EXPORT_SYMBOL_GPL(set_memory_array_wt);
1599 int _set_memory_wc(unsigned long addr, int numpages)
1601 int ret;
1602 unsigned long addr_copy = addr;
1604 ret = change_page_attr_set(&addr, numpages,
1605 cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1607 if (!ret) {
1608 ret = change_page_attr_set_clr(&addr_copy, numpages,
1609 cachemode2pgprot(
1610 _PAGE_CACHE_MODE_WC),
1611 __pgprot(_PAGE_CACHE_MASK),
1612 0, 0, NULL);
1614 return ret;
1617 int set_memory_wc(unsigned long addr, int numpages)
1619 int ret;
1621 ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1622 _PAGE_CACHE_MODE_WC, NULL);
1623 if (ret)
1624 return ret;
1626 ret = _set_memory_wc(addr, numpages);
1627 if (ret)
1628 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1630 return ret;
1632 EXPORT_SYMBOL(set_memory_wc);
1634 int _set_memory_wt(unsigned long addr, int numpages)
1636 return change_page_attr_set(&addr, numpages,
1637 cachemode2pgprot(_PAGE_CACHE_MODE_WT), 0);
1640 int set_memory_wt(unsigned long addr, int numpages)
1642 int ret;
1644 ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1645 _PAGE_CACHE_MODE_WT, NULL);
1646 if (ret)
1647 return ret;
1649 ret = _set_memory_wt(addr, numpages);
1650 if (ret)
1651 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1653 return ret;
1655 EXPORT_SYMBOL_GPL(set_memory_wt);
1657 int _set_memory_wb(unsigned long addr, int numpages)
1659 /* WB cache mode is hard wired to all cache attribute bits being 0 */
1660 return change_page_attr_clear(&addr, numpages,
1661 __pgprot(_PAGE_CACHE_MASK), 0);
1664 int set_memory_wb(unsigned long addr, int numpages)
1666 int ret;
1668 ret = _set_memory_wb(addr, numpages);
1669 if (ret)
1670 return ret;
1672 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1673 return 0;
1675 EXPORT_SYMBOL(set_memory_wb);
1677 int set_memory_array_wb(unsigned long *addr, int addrinarray)
1679 int i;
1680 int ret;
1682 /* WB cache mode is hard wired to all cache attribute bits being 0 */
1683 ret = change_page_attr_clear(addr, addrinarray,
1684 __pgprot(_PAGE_CACHE_MASK), 1);
1685 if (ret)
1686 return ret;
1688 for (i = 0; i < addrinarray; i++)
1689 free_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE);
1691 return 0;
1693 EXPORT_SYMBOL(set_memory_array_wb);
1695 int set_memory_x(unsigned long addr, int numpages)
1697 if (!(__supported_pte_mask & _PAGE_NX))
1698 return 0;
1700 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
1702 EXPORT_SYMBOL(set_memory_x);
1704 int set_memory_nx(unsigned long addr, int numpages)
1706 if (!(__supported_pte_mask & _PAGE_NX))
1707 return 0;
1709 return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
1711 EXPORT_SYMBOL(set_memory_nx);
1713 int set_memory_ro(unsigned long addr, int numpages)
1715 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
1718 int set_memory_rw(unsigned long addr, int numpages)
1720 return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
1723 int set_memory_np(unsigned long addr, int numpages)
1725 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
1728 int set_memory_4k(unsigned long addr, int numpages)
1730 return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
1731 __pgprot(0), 1, 0, NULL);
1734 int set_pages_uc(struct page *page, int numpages)
1736 unsigned long addr = (unsigned long)page_address(page);
1738 return set_memory_uc(addr, numpages);
1740 EXPORT_SYMBOL(set_pages_uc);
1742 static int _set_pages_array(struct page **pages, int addrinarray,
1743 enum page_cache_mode new_type)
1745 unsigned long start;
1746 unsigned long end;
1747 enum page_cache_mode set_type;
1748 int i;
1749 int free_idx;
1750 int ret;
1752 for (i = 0; i < addrinarray; i++) {
1753 if (PageHighMem(pages[i]))
1754 continue;
1755 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1756 end = start + PAGE_SIZE;
1757 if (reserve_memtype(start, end, new_type, NULL))
1758 goto err_out;
1761 /* If WC, set to UC- first and then WC */
1762 set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
1763 _PAGE_CACHE_MODE_UC_MINUS : new_type;
1765 ret = cpa_set_pages_array(pages, addrinarray,
1766 cachemode2pgprot(set_type));
1767 if (!ret && new_type == _PAGE_CACHE_MODE_WC)
1768 ret = change_page_attr_set_clr(NULL, addrinarray,
1769 cachemode2pgprot(
1770 _PAGE_CACHE_MODE_WC),
1771 __pgprot(_PAGE_CACHE_MASK),
1772 0, CPA_PAGES_ARRAY, pages);
1773 if (ret)
1774 goto err_out;
1775 return 0; /* Success */
1776 err_out:
1777 free_idx = i;
1778 for (i = 0; i < free_idx; i++) {
1779 if (PageHighMem(pages[i]))
1780 continue;
1781 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1782 end = start + PAGE_SIZE;
1783 free_memtype(start, end);
1785 return -EINVAL;
1788 int set_pages_array_uc(struct page **pages, int addrinarray)
1790 return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_UC_MINUS);
1792 EXPORT_SYMBOL(set_pages_array_uc);
1794 int set_pages_array_wc(struct page **pages, int addrinarray)
1796 return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_WC);
1798 EXPORT_SYMBOL(set_pages_array_wc);
1800 int set_pages_array_wt(struct page **pages, int addrinarray)
1802 return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_WT);
1804 EXPORT_SYMBOL_GPL(set_pages_array_wt);
1806 int set_pages_wb(struct page *page, int numpages)
1808 unsigned long addr = (unsigned long)page_address(page);
1810 return set_memory_wb(addr, numpages);
1812 EXPORT_SYMBOL(set_pages_wb);
1814 int set_pages_array_wb(struct page **pages, int addrinarray)
1816 int retval;
1817 unsigned long start;
1818 unsigned long end;
1819 int i;
1821 /* WB cache mode is hard wired to all cache attribute bits being 0 */
1822 retval = cpa_clear_pages_array(pages, addrinarray,
1823 __pgprot(_PAGE_CACHE_MASK));
1824 if (retval)
1825 return retval;
1827 for (i = 0; i < addrinarray; i++) {
1828 if (PageHighMem(pages[i]))
1829 continue;
1830 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1831 end = start + PAGE_SIZE;
1832 free_memtype(start, end);
1835 return 0;
1837 EXPORT_SYMBOL(set_pages_array_wb);
1839 int set_pages_x(struct page *page, int numpages)
1841 unsigned long addr = (unsigned long)page_address(page);
1843 return set_memory_x(addr, numpages);
1845 EXPORT_SYMBOL(set_pages_x);
1847 int set_pages_nx(struct page *page, int numpages)
1849 unsigned long addr = (unsigned long)page_address(page);
1851 return set_memory_nx(addr, numpages);
1853 EXPORT_SYMBOL(set_pages_nx);
1855 int set_pages_ro(struct page *page, int numpages)
1857 unsigned long addr = (unsigned long)page_address(page);
1859 return set_memory_ro(addr, numpages);
1862 int set_pages_rw(struct page *page, int numpages)
1864 unsigned long addr = (unsigned long)page_address(page);
1866 return set_memory_rw(addr, numpages);
1869 #ifdef CONFIG_DEBUG_PAGEALLOC
1871 static int __set_pages_p(struct page *page, int numpages)
1873 unsigned long tempaddr = (unsigned long) page_address(page);
1874 struct cpa_data cpa = { .vaddr = &tempaddr,
1875 .pgd = NULL,
1876 .numpages = numpages,
1877 .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1878 .mask_clr = __pgprot(0),
1879 .flags = 0};
1882 * No alias checking needed for setting present flag. otherwise,
1883 * we may need to break large pages for 64-bit kernel text
1884 * mappings (this adds to complexity if we want to do this from
1885 * atomic context especially). Let's keep it simple!
1887 return __change_page_attr_set_clr(&cpa, 0);
1890 static int __set_pages_np(struct page *page, int numpages)
1892 unsigned long tempaddr = (unsigned long) page_address(page);
1893 struct cpa_data cpa = { .vaddr = &tempaddr,
1894 .pgd = NULL,
1895 .numpages = numpages,
1896 .mask_set = __pgprot(0),
1897 .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1898 .flags = 0};
1901 * No alias checking needed for setting not present flag. otherwise,
1902 * we may need to break large pages for 64-bit kernel text
1903 * mappings (this adds to complexity if we want to do this from
1904 * atomic context especially). Let's keep it simple!
1906 return __change_page_attr_set_clr(&cpa, 0);
1909 void __kernel_map_pages(struct page *page, int numpages, int enable)
1911 if (PageHighMem(page))
1912 return;
1913 if (!enable) {
1914 debug_check_no_locks_freed(page_address(page),
1915 numpages * PAGE_SIZE);
1919 * The return value is ignored as the calls cannot fail.
1920 * Large pages for identity mappings are not used at boot time
1921 * and hence no memory allocations during large page split.
1923 if (enable)
1924 __set_pages_p(page, numpages);
1925 else
1926 __set_pages_np(page, numpages);
1929 * We should perform an IPI and flush all tlbs,
1930 * but that can deadlock->flush only current cpu:
1932 __flush_tlb_all();
1934 arch_flush_lazy_mmu_mode();
1937 #ifdef CONFIG_HIBERNATION
1939 bool kernel_page_present(struct page *page)
1941 unsigned int level;
1942 pte_t *pte;
1944 if (PageHighMem(page))
1945 return false;
1947 pte = lookup_address((unsigned long)page_address(page), &level);
1948 return (pte_val(*pte) & _PAGE_PRESENT);
1951 #endif /* CONFIG_HIBERNATION */
1953 #endif /* CONFIG_DEBUG_PAGEALLOC */
1955 int kernel_map_pages_in_pgd(pgd_t *pgd, u64 pfn, unsigned long address,
1956 unsigned numpages, unsigned long page_flags)
1958 int retval = -EINVAL;
1960 struct cpa_data cpa = {
1961 .vaddr = &address,
1962 .pfn = pfn,
1963 .pgd = pgd,
1964 .numpages = numpages,
1965 .mask_set = __pgprot(0),
1966 .mask_clr = __pgprot(0),
1967 .flags = 0,
1970 if (!(__supported_pte_mask & _PAGE_NX))
1971 goto out;
1973 if (!(page_flags & _PAGE_NX))
1974 cpa.mask_clr = __pgprot(_PAGE_NX);
1976 if (!(page_flags & _PAGE_RW))
1977 cpa.mask_clr = __pgprot(_PAGE_RW);
1979 cpa.mask_set = __pgprot(_PAGE_PRESENT | page_flags);
1981 retval = __change_page_attr_set_clr(&cpa, 0);
1982 __flush_tlb_all();
1984 out:
1985 return retval;
1988 void kernel_unmap_pages_in_pgd(pgd_t *root, unsigned long address,
1989 unsigned numpages)
1991 unmap_pgd_range(root, address, address + (numpages << PAGE_SHIFT));
1995 * The testcases use internal knowledge of the implementation that shouldn't
1996 * be exposed to the rest of the kernel. Include these directly here.
1998 #ifdef CONFIG_CPA_DEBUG
1999 #include "pageattr-test.c"
2000 #endif