thermal: fix Mediatek thermal controller build
[linux/fpc-iii.git] / mm / memblock.c
blobb570dddb4cb9930d6beda24473bc8a7ff6fc97d8
1 /*
2 * Procedures for maintaining information about logical memory blocks.
4 * Peter Bergner, IBM Corp. June 2001.
5 * Copyright (C) 2001 Peter Bergner.
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/bitops.h>
17 #include <linux/poison.h>
18 #include <linux/pfn.h>
19 #include <linux/debugfs.h>
20 #include <linux/seq_file.h>
21 #include <linux/memblock.h>
23 #include <asm-generic/sections.h>
24 #include <linux/io.h>
26 #include "internal.h"
28 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
29 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
30 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
31 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS] __initdata_memblock;
32 #endif
34 struct memblock memblock __initdata_memblock = {
35 .memory.regions = memblock_memory_init_regions,
36 .memory.cnt = 1, /* empty dummy entry */
37 .memory.max = INIT_MEMBLOCK_REGIONS,
39 .reserved.regions = memblock_reserved_init_regions,
40 .reserved.cnt = 1, /* empty dummy entry */
41 .reserved.max = INIT_MEMBLOCK_REGIONS,
43 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
44 .physmem.regions = memblock_physmem_init_regions,
45 .physmem.cnt = 1, /* empty dummy entry */
46 .physmem.max = INIT_PHYSMEM_REGIONS,
47 #endif
49 .bottom_up = false,
50 .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
53 int memblock_debug __initdata_memblock;
54 #ifdef CONFIG_MOVABLE_NODE
55 bool movable_node_enabled __initdata_memblock = false;
56 #endif
57 static bool system_has_some_mirror __initdata_memblock = false;
58 static int memblock_can_resize __initdata_memblock;
59 static int memblock_memory_in_slab __initdata_memblock = 0;
60 static int memblock_reserved_in_slab __initdata_memblock = 0;
62 ulong __init_memblock choose_memblock_flags(void)
64 return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
67 /* inline so we don't get a warning when pr_debug is compiled out */
68 static __init_memblock const char *
69 memblock_type_name(struct memblock_type *type)
71 if (type == &memblock.memory)
72 return "memory";
73 else if (type == &memblock.reserved)
74 return "reserved";
75 else
76 return "unknown";
79 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
80 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
82 return *size = min(*size, (phys_addr_t)ULLONG_MAX - base);
86 * Address comparison utilities
88 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
89 phys_addr_t base2, phys_addr_t size2)
91 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
94 bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
95 phys_addr_t base, phys_addr_t size)
97 unsigned long i;
99 for (i = 0; i < type->cnt; i++)
100 if (memblock_addrs_overlap(base, size, type->regions[i].base,
101 type->regions[i].size))
102 break;
103 return i < type->cnt;
107 * __memblock_find_range_bottom_up - find free area utility in bottom-up
108 * @start: start of candidate range
109 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
110 * @size: size of free area to find
111 * @align: alignment of free area to find
112 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
113 * @flags: pick from blocks based on memory attributes
115 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
117 * RETURNS:
118 * Found address on success, 0 on failure.
120 static phys_addr_t __init_memblock
121 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
122 phys_addr_t size, phys_addr_t align, int nid,
123 ulong flags)
125 phys_addr_t this_start, this_end, cand;
126 u64 i;
128 for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
129 this_start = clamp(this_start, start, end);
130 this_end = clamp(this_end, start, end);
132 cand = round_up(this_start, align);
133 if (cand < this_end && this_end - cand >= size)
134 return cand;
137 return 0;
141 * __memblock_find_range_top_down - find free area utility, in top-down
142 * @start: start of candidate range
143 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
144 * @size: size of free area to find
145 * @align: alignment of free area to find
146 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
147 * @flags: pick from blocks based on memory attributes
149 * Utility called from memblock_find_in_range_node(), find free area top-down.
151 * RETURNS:
152 * Found address on success, 0 on failure.
154 static phys_addr_t __init_memblock
155 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
156 phys_addr_t size, phys_addr_t align, int nid,
157 ulong flags)
159 phys_addr_t this_start, this_end, cand;
160 u64 i;
162 for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
163 NULL) {
164 this_start = clamp(this_start, start, end);
165 this_end = clamp(this_end, start, end);
167 if (this_end < size)
168 continue;
170 cand = round_down(this_end - size, align);
171 if (cand >= this_start)
172 return cand;
175 return 0;
179 * memblock_find_in_range_node - find free area in given range and node
180 * @size: size of free area to find
181 * @align: alignment of free area to find
182 * @start: start of candidate range
183 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
184 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
185 * @flags: pick from blocks based on memory attributes
187 * Find @size free area aligned to @align in the specified range and node.
189 * When allocation direction is bottom-up, the @start should be greater
190 * than the end of the kernel image. Otherwise, it will be trimmed. The
191 * reason is that we want the bottom-up allocation just near the kernel
192 * image so it is highly likely that the allocated memory and the kernel
193 * will reside in the same node.
195 * If bottom-up allocation failed, will try to allocate memory top-down.
197 * RETURNS:
198 * Found address on success, 0 on failure.
200 phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
201 phys_addr_t align, phys_addr_t start,
202 phys_addr_t end, int nid, ulong flags)
204 phys_addr_t kernel_end, ret;
206 /* pump up @end */
207 if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
208 end = memblock.current_limit;
210 /* avoid allocating the first page */
211 start = max_t(phys_addr_t, start, PAGE_SIZE);
212 end = max(start, end);
213 kernel_end = __pa_symbol(_end);
216 * try bottom-up allocation only when bottom-up mode
217 * is set and @end is above the kernel image.
219 if (memblock_bottom_up() && end > kernel_end) {
220 phys_addr_t bottom_up_start;
222 /* make sure we will allocate above the kernel */
223 bottom_up_start = max(start, kernel_end);
225 /* ok, try bottom-up allocation first */
226 ret = __memblock_find_range_bottom_up(bottom_up_start, end,
227 size, align, nid, flags);
228 if (ret)
229 return ret;
232 * we always limit bottom-up allocation above the kernel,
233 * but top-down allocation doesn't have the limit, so
234 * retrying top-down allocation may succeed when bottom-up
235 * allocation failed.
237 * bottom-up allocation is expected to be fail very rarely,
238 * so we use WARN_ONCE() here to see the stack trace if
239 * fail happens.
241 WARN_ONCE(1, "memblock: bottom-up allocation failed, memory hotunplug may be affected\n");
244 return __memblock_find_range_top_down(start, end, size, align, nid,
245 flags);
249 * memblock_find_in_range - find free area in given range
250 * @start: start of candidate range
251 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
252 * @size: size of free area to find
253 * @align: alignment of free area to find
255 * Find @size free area aligned to @align in the specified range.
257 * RETURNS:
258 * Found address on success, 0 on failure.
260 phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
261 phys_addr_t end, phys_addr_t size,
262 phys_addr_t align)
264 phys_addr_t ret;
265 ulong flags = choose_memblock_flags();
267 again:
268 ret = memblock_find_in_range_node(size, align, start, end,
269 NUMA_NO_NODE, flags);
271 if (!ret && (flags & MEMBLOCK_MIRROR)) {
272 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
273 &size);
274 flags &= ~MEMBLOCK_MIRROR;
275 goto again;
278 return ret;
281 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
283 type->total_size -= type->regions[r].size;
284 memmove(&type->regions[r], &type->regions[r + 1],
285 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
286 type->cnt--;
288 /* Special case for empty arrays */
289 if (type->cnt == 0) {
290 WARN_ON(type->total_size != 0);
291 type->cnt = 1;
292 type->regions[0].base = 0;
293 type->regions[0].size = 0;
294 type->regions[0].flags = 0;
295 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
299 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
301 phys_addr_t __init_memblock get_allocated_memblock_reserved_regions_info(
302 phys_addr_t *addr)
304 if (memblock.reserved.regions == memblock_reserved_init_regions)
305 return 0;
307 *addr = __pa(memblock.reserved.regions);
309 return PAGE_ALIGN(sizeof(struct memblock_region) *
310 memblock.reserved.max);
313 phys_addr_t __init_memblock get_allocated_memblock_memory_regions_info(
314 phys_addr_t *addr)
316 if (memblock.memory.regions == memblock_memory_init_regions)
317 return 0;
319 *addr = __pa(memblock.memory.regions);
321 return PAGE_ALIGN(sizeof(struct memblock_region) *
322 memblock.memory.max);
325 #endif
328 * memblock_double_array - double the size of the memblock regions array
329 * @type: memblock type of the regions array being doubled
330 * @new_area_start: starting address of memory range to avoid overlap with
331 * @new_area_size: size of memory range to avoid overlap with
333 * Double the size of the @type regions array. If memblock is being used to
334 * allocate memory for a new reserved regions array and there is a previously
335 * allocated memory range [@new_area_start,@new_area_start+@new_area_size]
336 * waiting to be reserved, ensure the memory used by the new array does
337 * not overlap.
339 * RETURNS:
340 * 0 on success, -1 on failure.
342 static int __init_memblock memblock_double_array(struct memblock_type *type,
343 phys_addr_t new_area_start,
344 phys_addr_t new_area_size)
346 struct memblock_region *new_array, *old_array;
347 phys_addr_t old_alloc_size, new_alloc_size;
348 phys_addr_t old_size, new_size, addr;
349 int use_slab = slab_is_available();
350 int *in_slab;
352 /* We don't allow resizing until we know about the reserved regions
353 * of memory that aren't suitable for allocation
355 if (!memblock_can_resize)
356 return -1;
358 /* Calculate new doubled size */
359 old_size = type->max * sizeof(struct memblock_region);
360 new_size = old_size << 1;
362 * We need to allocated new one align to PAGE_SIZE,
363 * so we can free them completely later.
365 old_alloc_size = PAGE_ALIGN(old_size);
366 new_alloc_size = PAGE_ALIGN(new_size);
368 /* Retrieve the slab flag */
369 if (type == &memblock.memory)
370 in_slab = &memblock_memory_in_slab;
371 else
372 in_slab = &memblock_reserved_in_slab;
374 /* Try to find some space for it.
376 * WARNING: We assume that either slab_is_available() and we use it or
377 * we use MEMBLOCK for allocations. That means that this is unsafe to
378 * use when bootmem is currently active (unless bootmem itself is
379 * implemented on top of MEMBLOCK which isn't the case yet)
381 * This should however not be an issue for now, as we currently only
382 * call into MEMBLOCK while it's still active, or much later when slab
383 * is active for memory hotplug operations
385 if (use_slab) {
386 new_array = kmalloc(new_size, GFP_KERNEL);
387 addr = new_array ? __pa(new_array) : 0;
388 } else {
389 /* only exclude range when trying to double reserved.regions */
390 if (type != &memblock.reserved)
391 new_area_start = new_area_size = 0;
393 addr = memblock_find_in_range(new_area_start + new_area_size,
394 memblock.current_limit,
395 new_alloc_size, PAGE_SIZE);
396 if (!addr && new_area_size)
397 addr = memblock_find_in_range(0,
398 min(new_area_start, memblock.current_limit),
399 new_alloc_size, PAGE_SIZE);
401 new_array = addr ? __va(addr) : NULL;
403 if (!addr) {
404 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
405 memblock_type_name(type), type->max, type->max * 2);
406 return -1;
409 memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]",
410 memblock_type_name(type), type->max * 2, (u64)addr,
411 (u64)addr + new_size - 1);
414 * Found space, we now need to move the array over before we add the
415 * reserved region since it may be our reserved array itself that is
416 * full.
418 memcpy(new_array, type->regions, old_size);
419 memset(new_array + type->max, 0, old_size);
420 old_array = type->regions;
421 type->regions = new_array;
422 type->max <<= 1;
424 /* Free old array. We needn't free it if the array is the static one */
425 if (*in_slab)
426 kfree(old_array);
427 else if (old_array != memblock_memory_init_regions &&
428 old_array != memblock_reserved_init_regions)
429 memblock_free(__pa(old_array), old_alloc_size);
432 * Reserve the new array if that comes from the memblock. Otherwise, we
433 * needn't do it
435 if (!use_slab)
436 BUG_ON(memblock_reserve(addr, new_alloc_size));
438 /* Update slab flag */
439 *in_slab = use_slab;
441 return 0;
445 * memblock_merge_regions - merge neighboring compatible regions
446 * @type: memblock type to scan
448 * Scan @type and merge neighboring compatible regions.
450 static void __init_memblock memblock_merge_regions(struct memblock_type *type)
452 int i = 0;
454 /* cnt never goes below 1 */
455 while (i < type->cnt - 1) {
456 struct memblock_region *this = &type->regions[i];
457 struct memblock_region *next = &type->regions[i + 1];
459 if (this->base + this->size != next->base ||
460 memblock_get_region_node(this) !=
461 memblock_get_region_node(next) ||
462 this->flags != next->flags) {
463 BUG_ON(this->base + this->size > next->base);
464 i++;
465 continue;
468 this->size += next->size;
469 /* move forward from next + 1, index of which is i + 2 */
470 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
471 type->cnt--;
476 * memblock_insert_region - insert new memblock region
477 * @type: memblock type to insert into
478 * @idx: index for the insertion point
479 * @base: base address of the new region
480 * @size: size of the new region
481 * @nid: node id of the new region
482 * @flags: flags of the new region
484 * Insert new memblock region [@base,@base+@size) into @type at @idx.
485 * @type must already have extra room to accomodate the new region.
487 static void __init_memblock memblock_insert_region(struct memblock_type *type,
488 int idx, phys_addr_t base,
489 phys_addr_t size,
490 int nid, unsigned long flags)
492 struct memblock_region *rgn = &type->regions[idx];
494 BUG_ON(type->cnt >= type->max);
495 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
496 rgn->base = base;
497 rgn->size = size;
498 rgn->flags = flags;
499 memblock_set_region_node(rgn, nid);
500 type->cnt++;
501 type->total_size += size;
505 * memblock_add_range - add new memblock region
506 * @type: memblock type to add new region into
507 * @base: base address of the new region
508 * @size: size of the new region
509 * @nid: nid of the new region
510 * @flags: flags of the new region
512 * Add new memblock region [@base,@base+@size) into @type. The new region
513 * is allowed to overlap with existing ones - overlaps don't affect already
514 * existing regions. @type is guaranteed to be minimal (all neighbouring
515 * compatible regions are merged) after the addition.
517 * RETURNS:
518 * 0 on success, -errno on failure.
520 int __init_memblock memblock_add_range(struct memblock_type *type,
521 phys_addr_t base, phys_addr_t size,
522 int nid, unsigned long flags)
524 bool insert = false;
525 phys_addr_t obase = base;
526 phys_addr_t end = base + memblock_cap_size(base, &size);
527 int idx, nr_new;
528 struct memblock_region *rgn;
530 if (!size)
531 return 0;
533 /* special case for empty array */
534 if (type->regions[0].size == 0) {
535 WARN_ON(type->cnt != 1 || type->total_size);
536 type->regions[0].base = base;
537 type->regions[0].size = size;
538 type->regions[0].flags = flags;
539 memblock_set_region_node(&type->regions[0], nid);
540 type->total_size = size;
541 return 0;
543 repeat:
545 * The following is executed twice. Once with %false @insert and
546 * then with %true. The first counts the number of regions needed
547 * to accomodate the new area. The second actually inserts them.
549 base = obase;
550 nr_new = 0;
552 for_each_memblock_type(type, rgn) {
553 phys_addr_t rbase = rgn->base;
554 phys_addr_t rend = rbase + rgn->size;
556 if (rbase >= end)
557 break;
558 if (rend <= base)
559 continue;
561 * @rgn overlaps. If it separates the lower part of new
562 * area, insert that portion.
564 if (rbase > base) {
565 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
566 WARN_ON(nid != memblock_get_region_node(rgn));
567 #endif
568 WARN_ON(flags != rgn->flags);
569 nr_new++;
570 if (insert)
571 memblock_insert_region(type, idx++, base,
572 rbase - base, nid,
573 flags);
575 /* area below @rend is dealt with, forget about it */
576 base = min(rend, end);
579 /* insert the remaining portion */
580 if (base < end) {
581 nr_new++;
582 if (insert)
583 memblock_insert_region(type, idx, base, end - base,
584 nid, flags);
588 * If this was the first round, resize array and repeat for actual
589 * insertions; otherwise, merge and return.
591 if (!insert) {
592 while (type->cnt + nr_new > type->max)
593 if (memblock_double_array(type, obase, size) < 0)
594 return -ENOMEM;
595 insert = true;
596 goto repeat;
597 } else {
598 memblock_merge_regions(type);
599 return 0;
603 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
604 int nid)
606 return memblock_add_range(&memblock.memory, base, size, nid, 0);
609 static int __init_memblock memblock_add_region(phys_addr_t base,
610 phys_addr_t size,
611 int nid,
612 unsigned long flags)
614 memblock_dbg("memblock_add: [%#016llx-%#016llx] flags %#02lx %pF\n",
615 (unsigned long long)base,
616 (unsigned long long)base + size - 1,
617 flags, (void *)_RET_IP_);
619 return memblock_add_range(&memblock.memory, base, size, nid, flags);
622 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
624 return memblock_add_region(base, size, MAX_NUMNODES, 0);
628 * memblock_isolate_range - isolate given range into disjoint memblocks
629 * @type: memblock type to isolate range for
630 * @base: base of range to isolate
631 * @size: size of range to isolate
632 * @start_rgn: out parameter for the start of isolated region
633 * @end_rgn: out parameter for the end of isolated region
635 * Walk @type and ensure that regions don't cross the boundaries defined by
636 * [@base,@base+@size). Crossing regions are split at the boundaries,
637 * which may create at most two more regions. The index of the first
638 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
640 * RETURNS:
641 * 0 on success, -errno on failure.
643 static int __init_memblock memblock_isolate_range(struct memblock_type *type,
644 phys_addr_t base, phys_addr_t size,
645 int *start_rgn, int *end_rgn)
647 phys_addr_t end = base + memblock_cap_size(base, &size);
648 int idx;
649 struct memblock_region *rgn;
651 *start_rgn = *end_rgn = 0;
653 if (!size)
654 return 0;
656 /* we'll create at most two more regions */
657 while (type->cnt + 2 > type->max)
658 if (memblock_double_array(type, base, size) < 0)
659 return -ENOMEM;
661 for_each_memblock_type(type, rgn) {
662 phys_addr_t rbase = rgn->base;
663 phys_addr_t rend = rbase + rgn->size;
665 if (rbase >= end)
666 break;
667 if (rend <= base)
668 continue;
670 if (rbase < base) {
672 * @rgn intersects from below. Split and continue
673 * to process the next region - the new top half.
675 rgn->base = base;
676 rgn->size -= base - rbase;
677 type->total_size -= base - rbase;
678 memblock_insert_region(type, idx, rbase, base - rbase,
679 memblock_get_region_node(rgn),
680 rgn->flags);
681 } else if (rend > end) {
683 * @rgn intersects from above. Split and redo the
684 * current region - the new bottom half.
686 rgn->base = end;
687 rgn->size -= end - rbase;
688 type->total_size -= end - rbase;
689 memblock_insert_region(type, idx--, rbase, end - rbase,
690 memblock_get_region_node(rgn),
691 rgn->flags);
692 } else {
693 /* @rgn is fully contained, record it */
694 if (!*end_rgn)
695 *start_rgn = idx;
696 *end_rgn = idx + 1;
700 return 0;
703 static int __init_memblock memblock_remove_range(struct memblock_type *type,
704 phys_addr_t base, phys_addr_t size)
706 int start_rgn, end_rgn;
707 int i, ret;
709 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
710 if (ret)
711 return ret;
713 for (i = end_rgn - 1; i >= start_rgn; i--)
714 memblock_remove_region(type, i);
715 return 0;
718 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
720 return memblock_remove_range(&memblock.memory, base, size);
724 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
726 memblock_dbg(" memblock_free: [%#016llx-%#016llx] %pF\n",
727 (unsigned long long)base,
728 (unsigned long long)base + size - 1,
729 (void *)_RET_IP_);
731 kmemleak_free_part(__va(base), size);
732 return memblock_remove_range(&memblock.reserved, base, size);
735 static int __init_memblock memblock_reserve_region(phys_addr_t base,
736 phys_addr_t size,
737 int nid,
738 unsigned long flags)
740 memblock_dbg("memblock_reserve: [%#016llx-%#016llx] flags %#02lx %pF\n",
741 (unsigned long long)base,
742 (unsigned long long)base + size - 1,
743 flags, (void *)_RET_IP_);
745 return memblock_add_range(&memblock.reserved, base, size, nid, flags);
748 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
750 return memblock_reserve_region(base, size, MAX_NUMNODES, 0);
755 * This function isolates region [@base, @base + @size), and sets/clears flag
757 * Return 0 on success, -errno on failure.
759 static int __init_memblock memblock_setclr_flag(phys_addr_t base,
760 phys_addr_t size, int set, int flag)
762 struct memblock_type *type = &memblock.memory;
763 int i, ret, start_rgn, end_rgn;
765 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
766 if (ret)
767 return ret;
769 for (i = start_rgn; i < end_rgn; i++)
770 if (set)
771 memblock_set_region_flags(&type->regions[i], flag);
772 else
773 memblock_clear_region_flags(&type->regions[i], flag);
775 memblock_merge_regions(type);
776 return 0;
780 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
781 * @base: the base phys addr of the region
782 * @size: the size of the region
784 * Return 0 on success, -errno on failure.
786 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
788 return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
792 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
793 * @base: the base phys addr of the region
794 * @size: the size of the region
796 * Return 0 on success, -errno on failure.
798 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
800 return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
804 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
805 * @base: the base phys addr of the region
806 * @size: the size of the region
808 * Return 0 on success, -errno on failure.
810 int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
812 system_has_some_mirror = true;
814 return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
818 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
819 * @base: the base phys addr of the region
820 * @size: the size of the region
822 * Return 0 on success, -errno on failure.
824 int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
826 return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
830 * __next_reserved_mem_region - next function for for_each_reserved_region()
831 * @idx: pointer to u64 loop variable
832 * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL
833 * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL
835 * Iterate over all reserved memory regions.
837 void __init_memblock __next_reserved_mem_region(u64 *idx,
838 phys_addr_t *out_start,
839 phys_addr_t *out_end)
841 struct memblock_type *type = &memblock.reserved;
843 if (*idx >= 0 && *idx < type->cnt) {
844 struct memblock_region *r = &type->regions[*idx];
845 phys_addr_t base = r->base;
846 phys_addr_t size = r->size;
848 if (out_start)
849 *out_start = base;
850 if (out_end)
851 *out_end = base + size - 1;
853 *idx += 1;
854 return;
857 /* signal end of iteration */
858 *idx = ULLONG_MAX;
862 * __next__mem_range - next function for for_each_free_mem_range() etc.
863 * @idx: pointer to u64 loop variable
864 * @nid: node selector, %NUMA_NO_NODE for all nodes
865 * @flags: pick from blocks based on memory attributes
866 * @type_a: pointer to memblock_type from where the range is taken
867 * @type_b: pointer to memblock_type which excludes memory from being taken
868 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
869 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
870 * @out_nid: ptr to int for nid of the range, can be %NULL
872 * Find the first area from *@idx which matches @nid, fill the out
873 * parameters, and update *@idx for the next iteration. The lower 32bit of
874 * *@idx contains index into type_a and the upper 32bit indexes the
875 * areas before each region in type_b. For example, if type_b regions
876 * look like the following,
878 * 0:[0-16), 1:[32-48), 2:[128-130)
880 * The upper 32bit indexes the following regions.
882 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
884 * As both region arrays are sorted, the function advances the two indices
885 * in lockstep and returns each intersection.
887 void __init_memblock __next_mem_range(u64 *idx, int nid, ulong flags,
888 struct memblock_type *type_a,
889 struct memblock_type *type_b,
890 phys_addr_t *out_start,
891 phys_addr_t *out_end, int *out_nid)
893 int idx_a = *idx & 0xffffffff;
894 int idx_b = *idx >> 32;
896 if (WARN_ONCE(nid == MAX_NUMNODES,
897 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
898 nid = NUMA_NO_NODE;
900 for (; idx_a < type_a->cnt; idx_a++) {
901 struct memblock_region *m = &type_a->regions[idx_a];
903 phys_addr_t m_start = m->base;
904 phys_addr_t m_end = m->base + m->size;
905 int m_nid = memblock_get_region_node(m);
907 /* only memory regions are associated with nodes, check it */
908 if (nid != NUMA_NO_NODE && nid != m_nid)
909 continue;
911 /* skip hotpluggable memory regions if needed */
912 if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
913 continue;
915 /* if we want mirror memory skip non-mirror memory regions */
916 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
917 continue;
919 /* skip nomap memory unless we were asked for it explicitly */
920 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
921 continue;
923 if (!type_b) {
924 if (out_start)
925 *out_start = m_start;
926 if (out_end)
927 *out_end = m_end;
928 if (out_nid)
929 *out_nid = m_nid;
930 idx_a++;
931 *idx = (u32)idx_a | (u64)idx_b << 32;
932 return;
935 /* scan areas before each reservation */
936 for (; idx_b < type_b->cnt + 1; idx_b++) {
937 struct memblock_region *r;
938 phys_addr_t r_start;
939 phys_addr_t r_end;
941 r = &type_b->regions[idx_b];
942 r_start = idx_b ? r[-1].base + r[-1].size : 0;
943 r_end = idx_b < type_b->cnt ?
944 r->base : ULLONG_MAX;
947 * if idx_b advanced past idx_a,
948 * break out to advance idx_a
950 if (r_start >= m_end)
951 break;
952 /* if the two regions intersect, we're done */
953 if (m_start < r_end) {
954 if (out_start)
955 *out_start =
956 max(m_start, r_start);
957 if (out_end)
958 *out_end = min(m_end, r_end);
959 if (out_nid)
960 *out_nid = m_nid;
962 * The region which ends first is
963 * advanced for the next iteration.
965 if (m_end <= r_end)
966 idx_a++;
967 else
968 idx_b++;
969 *idx = (u32)idx_a | (u64)idx_b << 32;
970 return;
975 /* signal end of iteration */
976 *idx = ULLONG_MAX;
980 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
982 * Finds the next range from type_a which is not marked as unsuitable
983 * in type_b.
985 * @idx: pointer to u64 loop variable
986 * @nid: node selector, %NUMA_NO_NODE for all nodes
987 * @flags: pick from blocks based on memory attributes
988 * @type_a: pointer to memblock_type from where the range is taken
989 * @type_b: pointer to memblock_type which excludes memory from being taken
990 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
991 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
992 * @out_nid: ptr to int for nid of the range, can be %NULL
994 * Reverse of __next_mem_range().
996 void __init_memblock __next_mem_range_rev(u64 *idx, int nid, ulong flags,
997 struct memblock_type *type_a,
998 struct memblock_type *type_b,
999 phys_addr_t *out_start,
1000 phys_addr_t *out_end, int *out_nid)
1002 int idx_a = *idx & 0xffffffff;
1003 int idx_b = *idx >> 32;
1005 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1006 nid = NUMA_NO_NODE;
1008 if (*idx == (u64)ULLONG_MAX) {
1009 idx_a = type_a->cnt - 1;
1010 idx_b = type_b->cnt;
1013 for (; idx_a >= 0; idx_a--) {
1014 struct memblock_region *m = &type_a->regions[idx_a];
1016 phys_addr_t m_start = m->base;
1017 phys_addr_t m_end = m->base + m->size;
1018 int m_nid = memblock_get_region_node(m);
1020 /* only memory regions are associated with nodes, check it */
1021 if (nid != NUMA_NO_NODE && nid != m_nid)
1022 continue;
1024 /* skip hotpluggable memory regions if needed */
1025 if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
1026 continue;
1028 /* if we want mirror memory skip non-mirror memory regions */
1029 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1030 continue;
1032 /* skip nomap memory unless we were asked for it explicitly */
1033 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
1034 continue;
1036 if (!type_b) {
1037 if (out_start)
1038 *out_start = m_start;
1039 if (out_end)
1040 *out_end = m_end;
1041 if (out_nid)
1042 *out_nid = m_nid;
1043 idx_a++;
1044 *idx = (u32)idx_a | (u64)idx_b << 32;
1045 return;
1048 /* scan areas before each reservation */
1049 for (; idx_b >= 0; idx_b--) {
1050 struct memblock_region *r;
1051 phys_addr_t r_start;
1052 phys_addr_t r_end;
1054 r = &type_b->regions[idx_b];
1055 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1056 r_end = idx_b < type_b->cnt ?
1057 r->base : ULLONG_MAX;
1059 * if idx_b advanced past idx_a,
1060 * break out to advance idx_a
1063 if (r_end <= m_start)
1064 break;
1065 /* if the two regions intersect, we're done */
1066 if (m_end > r_start) {
1067 if (out_start)
1068 *out_start = max(m_start, r_start);
1069 if (out_end)
1070 *out_end = min(m_end, r_end);
1071 if (out_nid)
1072 *out_nid = m_nid;
1073 if (m_start >= r_start)
1074 idx_a--;
1075 else
1076 idx_b--;
1077 *idx = (u32)idx_a | (u64)idx_b << 32;
1078 return;
1082 /* signal end of iteration */
1083 *idx = ULLONG_MAX;
1086 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1088 * Common iterator interface used to define for_each_mem_range().
1090 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1091 unsigned long *out_start_pfn,
1092 unsigned long *out_end_pfn, int *out_nid)
1094 struct memblock_type *type = &memblock.memory;
1095 struct memblock_region *r;
1097 while (++*idx < type->cnt) {
1098 r = &type->regions[*idx];
1100 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1101 continue;
1102 if (nid == MAX_NUMNODES || nid == r->nid)
1103 break;
1105 if (*idx >= type->cnt) {
1106 *idx = -1;
1107 return;
1110 if (out_start_pfn)
1111 *out_start_pfn = PFN_UP(r->base);
1112 if (out_end_pfn)
1113 *out_end_pfn = PFN_DOWN(r->base + r->size);
1114 if (out_nid)
1115 *out_nid = r->nid;
1119 * memblock_set_node - set node ID on memblock regions
1120 * @base: base of area to set node ID for
1121 * @size: size of area to set node ID for
1122 * @type: memblock type to set node ID for
1123 * @nid: node ID to set
1125 * Set the nid of memblock @type regions in [@base,@base+@size) to @nid.
1126 * Regions which cross the area boundaries are split as necessary.
1128 * RETURNS:
1129 * 0 on success, -errno on failure.
1131 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1132 struct memblock_type *type, int nid)
1134 int start_rgn, end_rgn;
1135 int i, ret;
1137 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1138 if (ret)
1139 return ret;
1141 for (i = start_rgn; i < end_rgn; i++)
1142 memblock_set_region_node(&type->regions[i], nid);
1144 memblock_merge_regions(type);
1145 return 0;
1147 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1149 static phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1150 phys_addr_t align, phys_addr_t start,
1151 phys_addr_t end, int nid, ulong flags)
1153 phys_addr_t found;
1155 if (!align)
1156 align = SMP_CACHE_BYTES;
1158 found = memblock_find_in_range_node(size, align, start, end, nid,
1159 flags);
1160 if (found && !memblock_reserve(found, size)) {
1162 * The min_count is set to 0 so that memblock allocations are
1163 * never reported as leaks.
1165 kmemleak_alloc(__va(found), size, 0, 0);
1166 return found;
1168 return 0;
1171 phys_addr_t __init memblock_alloc_range(phys_addr_t size, phys_addr_t align,
1172 phys_addr_t start, phys_addr_t end,
1173 ulong flags)
1175 return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1176 flags);
1179 static phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
1180 phys_addr_t align, phys_addr_t max_addr,
1181 int nid, ulong flags)
1183 return memblock_alloc_range_nid(size, align, 0, max_addr, nid, flags);
1186 phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
1188 ulong flags = choose_memblock_flags();
1189 phys_addr_t ret;
1191 again:
1192 ret = memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE,
1193 nid, flags);
1195 if (!ret && (flags & MEMBLOCK_MIRROR)) {
1196 flags &= ~MEMBLOCK_MIRROR;
1197 goto again;
1199 return ret;
1202 phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1204 return memblock_alloc_base_nid(size, align, max_addr, NUMA_NO_NODE,
1205 MEMBLOCK_NONE);
1208 phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1210 phys_addr_t alloc;
1212 alloc = __memblock_alloc_base(size, align, max_addr);
1214 if (alloc == 0)
1215 panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
1216 (unsigned long long) size, (unsigned long long) max_addr);
1218 return alloc;
1221 phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
1223 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1226 phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1228 phys_addr_t res = memblock_alloc_nid(size, align, nid);
1230 if (res)
1231 return res;
1232 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1236 * memblock_virt_alloc_internal - allocate boot memory block
1237 * @size: size of memory block to be allocated in bytes
1238 * @align: alignment of the region and block's size
1239 * @min_addr: the lower bound of the memory region to allocate (phys address)
1240 * @max_addr: the upper bound of the memory region to allocate (phys address)
1241 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1243 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1244 * will fall back to memory below @min_addr. Also, allocation may fall back
1245 * to any node in the system if the specified node can not
1246 * hold the requested memory.
1248 * The allocation is performed from memory region limited by
1249 * memblock.current_limit if @max_addr == %BOOTMEM_ALLOC_ACCESSIBLE.
1251 * The memory block is aligned on SMP_CACHE_BYTES if @align == 0.
1253 * The phys address of allocated boot memory block is converted to virtual and
1254 * allocated memory is reset to 0.
1256 * In addition, function sets the min_count to 0 using kmemleak_alloc for
1257 * allocated boot memory block, so that it is never reported as leaks.
1259 * RETURNS:
1260 * Virtual address of allocated memory block on success, NULL on failure.
1262 static void * __init memblock_virt_alloc_internal(
1263 phys_addr_t size, phys_addr_t align,
1264 phys_addr_t min_addr, phys_addr_t max_addr,
1265 int nid)
1267 phys_addr_t alloc;
1268 void *ptr;
1269 ulong flags = choose_memblock_flags();
1271 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1272 nid = NUMA_NO_NODE;
1275 * Detect any accidental use of these APIs after slab is ready, as at
1276 * this moment memblock may be deinitialized already and its
1277 * internal data may be destroyed (after execution of free_all_bootmem)
1279 if (WARN_ON_ONCE(slab_is_available()))
1280 return kzalloc_node(size, GFP_NOWAIT, nid);
1282 if (!align)
1283 align = SMP_CACHE_BYTES;
1285 if (max_addr > memblock.current_limit)
1286 max_addr = memblock.current_limit;
1288 again:
1289 alloc = memblock_find_in_range_node(size, align, min_addr, max_addr,
1290 nid, flags);
1291 if (alloc)
1292 goto done;
1294 if (nid != NUMA_NO_NODE) {
1295 alloc = memblock_find_in_range_node(size, align, min_addr,
1296 max_addr, NUMA_NO_NODE,
1297 flags);
1298 if (alloc)
1299 goto done;
1302 if (min_addr) {
1303 min_addr = 0;
1304 goto again;
1307 if (flags & MEMBLOCK_MIRROR) {
1308 flags &= ~MEMBLOCK_MIRROR;
1309 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1310 &size);
1311 goto again;
1314 return NULL;
1315 done:
1316 memblock_reserve(alloc, size);
1317 ptr = phys_to_virt(alloc);
1318 memset(ptr, 0, size);
1321 * The min_count is set to 0 so that bootmem allocated blocks
1322 * are never reported as leaks. This is because many of these blocks
1323 * are only referred via the physical address which is not
1324 * looked up by kmemleak.
1326 kmemleak_alloc(ptr, size, 0, 0);
1328 return ptr;
1332 * memblock_virt_alloc_try_nid_nopanic - allocate boot memory block
1333 * @size: size of memory block to be allocated in bytes
1334 * @align: alignment of the region and block's size
1335 * @min_addr: the lower bound of the memory region from where the allocation
1336 * is preferred (phys address)
1337 * @max_addr: the upper bound of the memory region from where the allocation
1338 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1339 * allocate only from memory limited by memblock.current_limit value
1340 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1342 * Public version of _memblock_virt_alloc_try_nid_nopanic() which provides
1343 * additional debug information (including caller info), if enabled.
1345 * RETURNS:
1346 * Virtual address of allocated memory block on success, NULL on failure.
1348 void * __init memblock_virt_alloc_try_nid_nopanic(
1349 phys_addr_t size, phys_addr_t align,
1350 phys_addr_t min_addr, phys_addr_t max_addr,
1351 int nid)
1353 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1354 __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1355 (u64)max_addr, (void *)_RET_IP_);
1356 return memblock_virt_alloc_internal(size, align, min_addr,
1357 max_addr, nid);
1361 * memblock_virt_alloc_try_nid - allocate boot memory block with panicking
1362 * @size: size of memory block to be allocated in bytes
1363 * @align: alignment of the region and block's size
1364 * @min_addr: the lower bound of the memory region from where the allocation
1365 * is preferred (phys address)
1366 * @max_addr: the upper bound of the memory region from where the allocation
1367 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1368 * allocate only from memory limited by memblock.current_limit value
1369 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1371 * Public panicking version of _memblock_virt_alloc_try_nid_nopanic()
1372 * which provides debug information (including caller info), if enabled,
1373 * and panics if the request can not be satisfied.
1375 * RETURNS:
1376 * Virtual address of allocated memory block on success, NULL on failure.
1378 void * __init memblock_virt_alloc_try_nid(
1379 phys_addr_t size, phys_addr_t align,
1380 phys_addr_t min_addr, phys_addr_t max_addr,
1381 int nid)
1383 void *ptr;
1385 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1386 __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1387 (u64)max_addr, (void *)_RET_IP_);
1388 ptr = memblock_virt_alloc_internal(size, align,
1389 min_addr, max_addr, nid);
1390 if (ptr)
1391 return ptr;
1393 panic("%s: Failed to allocate %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx\n",
1394 __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1395 (u64)max_addr);
1396 return NULL;
1400 * __memblock_free_early - free boot memory block
1401 * @base: phys starting address of the boot memory block
1402 * @size: size of the boot memory block in bytes
1404 * Free boot memory block previously allocated by memblock_virt_alloc_xx() API.
1405 * The freeing memory will not be released to the buddy allocator.
1407 void __init __memblock_free_early(phys_addr_t base, phys_addr_t size)
1409 memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1410 __func__, (u64)base, (u64)base + size - 1,
1411 (void *)_RET_IP_);
1412 kmemleak_free_part(__va(base), size);
1413 memblock_remove_range(&memblock.reserved, base, size);
1417 * __memblock_free_late - free bootmem block pages directly to buddy allocator
1418 * @addr: phys starting address of the boot memory block
1419 * @size: size of the boot memory block in bytes
1421 * This is only useful when the bootmem allocator has already been torn
1422 * down, but we are still initializing the system. Pages are released directly
1423 * to the buddy allocator, no bootmem metadata is updated because it is gone.
1425 void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1427 u64 cursor, end;
1429 memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1430 __func__, (u64)base, (u64)base + size - 1,
1431 (void *)_RET_IP_);
1432 kmemleak_free_part(__va(base), size);
1433 cursor = PFN_UP(base);
1434 end = PFN_DOWN(base + size);
1436 for (; cursor < end; cursor++) {
1437 __free_pages_bootmem(pfn_to_page(cursor), cursor, 0);
1438 totalram_pages++;
1443 * Remaining API functions
1446 phys_addr_t __init_memblock memblock_phys_mem_size(void)
1448 return memblock.memory.total_size;
1451 phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
1453 unsigned long pages = 0;
1454 struct memblock_region *r;
1455 unsigned long start_pfn, end_pfn;
1457 for_each_memblock(memory, r) {
1458 start_pfn = memblock_region_memory_base_pfn(r);
1459 end_pfn = memblock_region_memory_end_pfn(r);
1460 start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
1461 end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
1462 pages += end_pfn - start_pfn;
1465 return PFN_PHYS(pages);
1468 /* lowest address */
1469 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1471 return memblock.memory.regions[0].base;
1474 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1476 int idx = memblock.memory.cnt - 1;
1478 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1481 void __init memblock_enforce_memory_limit(phys_addr_t limit)
1483 phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
1484 struct memblock_region *r;
1486 if (!limit)
1487 return;
1489 /* find out max address */
1490 for_each_memblock(memory, r) {
1491 if (limit <= r->size) {
1492 max_addr = r->base + limit;
1493 break;
1495 limit -= r->size;
1498 /* truncate both memory and reserved regions */
1499 memblock_remove_range(&memblock.memory, max_addr,
1500 (phys_addr_t)ULLONG_MAX);
1501 memblock_remove_range(&memblock.reserved, max_addr,
1502 (phys_addr_t)ULLONG_MAX);
1505 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1507 unsigned int left = 0, right = type->cnt;
1509 do {
1510 unsigned int mid = (right + left) / 2;
1512 if (addr < type->regions[mid].base)
1513 right = mid;
1514 else if (addr >= (type->regions[mid].base +
1515 type->regions[mid].size))
1516 left = mid + 1;
1517 else
1518 return mid;
1519 } while (left < right);
1520 return -1;
1523 bool __init memblock_is_reserved(phys_addr_t addr)
1525 return memblock_search(&memblock.reserved, addr) != -1;
1528 bool __init_memblock memblock_is_memory(phys_addr_t addr)
1530 return memblock_search(&memblock.memory, addr) != -1;
1533 int __init_memblock memblock_is_map_memory(phys_addr_t addr)
1535 int i = memblock_search(&memblock.memory, addr);
1537 if (i == -1)
1538 return false;
1539 return !memblock_is_nomap(&memblock.memory.regions[i]);
1542 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1543 int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1544 unsigned long *start_pfn, unsigned long *end_pfn)
1546 struct memblock_type *type = &memblock.memory;
1547 int mid = memblock_search(type, PFN_PHYS(pfn));
1549 if (mid == -1)
1550 return -1;
1552 *start_pfn = PFN_DOWN(type->regions[mid].base);
1553 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1555 return type->regions[mid].nid;
1557 #endif
1560 * memblock_is_region_memory - check if a region is a subset of memory
1561 * @base: base of region to check
1562 * @size: size of region to check
1564 * Check if the region [@base, @base+@size) is a subset of a memory block.
1566 * RETURNS:
1567 * 0 if false, non-zero if true
1569 int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1571 int idx = memblock_search(&memblock.memory, base);
1572 phys_addr_t end = base + memblock_cap_size(base, &size);
1574 if (idx == -1)
1575 return 0;
1576 return memblock.memory.regions[idx].base <= base &&
1577 (memblock.memory.regions[idx].base +
1578 memblock.memory.regions[idx].size) >= end;
1582 * memblock_is_region_reserved - check if a region intersects reserved memory
1583 * @base: base of region to check
1584 * @size: size of region to check
1586 * Check if the region [@base, @base+@size) intersects a reserved memory block.
1588 * RETURNS:
1589 * True if they intersect, false if not.
1591 bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1593 memblock_cap_size(base, &size);
1594 return memblock_overlaps_region(&memblock.reserved, base, size);
1597 void __init_memblock memblock_trim_memory(phys_addr_t align)
1599 phys_addr_t start, end, orig_start, orig_end;
1600 struct memblock_region *r;
1602 for_each_memblock(memory, r) {
1603 orig_start = r->base;
1604 orig_end = r->base + r->size;
1605 start = round_up(orig_start, align);
1606 end = round_down(orig_end, align);
1608 if (start == orig_start && end == orig_end)
1609 continue;
1611 if (start < end) {
1612 r->base = start;
1613 r->size = end - start;
1614 } else {
1615 memblock_remove_region(&memblock.memory,
1616 r - memblock.memory.regions);
1617 r--;
1622 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1624 memblock.current_limit = limit;
1627 phys_addr_t __init_memblock memblock_get_current_limit(void)
1629 return memblock.current_limit;
1632 static void __init_memblock memblock_dump(struct memblock_type *type, char *name)
1634 unsigned long long base, size;
1635 unsigned long flags;
1636 int idx;
1637 struct memblock_region *rgn;
1639 pr_info(" %s.cnt = 0x%lx\n", name, type->cnt);
1641 for_each_memblock_type(type, rgn) {
1642 char nid_buf[32] = "";
1644 base = rgn->base;
1645 size = rgn->size;
1646 flags = rgn->flags;
1647 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1648 if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1649 snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1650 memblock_get_region_node(rgn));
1651 #endif
1652 pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s flags: %#lx\n",
1653 name, idx, base, base + size - 1, size, nid_buf, flags);
1657 void __init_memblock __memblock_dump_all(void)
1659 pr_info("MEMBLOCK configuration:\n");
1660 pr_info(" memory size = %#llx reserved size = %#llx\n",
1661 (unsigned long long)memblock.memory.total_size,
1662 (unsigned long long)memblock.reserved.total_size);
1664 memblock_dump(&memblock.memory, "memory");
1665 memblock_dump(&memblock.reserved, "reserved");
1668 void __init memblock_allow_resize(void)
1670 memblock_can_resize = 1;
1673 static int __init early_memblock(char *p)
1675 if (p && strstr(p, "debug"))
1676 memblock_debug = 1;
1677 return 0;
1679 early_param("memblock", early_memblock);
1681 #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
1683 static int memblock_debug_show(struct seq_file *m, void *private)
1685 struct memblock_type *type = m->private;
1686 struct memblock_region *reg;
1687 int i;
1689 for (i = 0; i < type->cnt; i++) {
1690 reg = &type->regions[i];
1691 seq_printf(m, "%4d: ", i);
1692 if (sizeof(phys_addr_t) == 4)
1693 seq_printf(m, "0x%08lx..0x%08lx\n",
1694 (unsigned long)reg->base,
1695 (unsigned long)(reg->base + reg->size - 1));
1696 else
1697 seq_printf(m, "0x%016llx..0x%016llx\n",
1698 (unsigned long long)reg->base,
1699 (unsigned long long)(reg->base + reg->size - 1));
1702 return 0;
1705 static int memblock_debug_open(struct inode *inode, struct file *file)
1707 return single_open(file, memblock_debug_show, inode->i_private);
1710 static const struct file_operations memblock_debug_fops = {
1711 .open = memblock_debug_open,
1712 .read = seq_read,
1713 .llseek = seq_lseek,
1714 .release = single_release,
1717 static int __init memblock_init_debugfs(void)
1719 struct dentry *root = debugfs_create_dir("memblock", NULL);
1720 if (!root)
1721 return -ENXIO;
1722 debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
1723 debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
1724 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1725 debugfs_create_file("physmem", S_IRUGO, root, &memblock.physmem, &memblock_debug_fops);
1726 #endif
1728 return 0;
1730 __initcall(memblock_init_debugfs);
1732 #endif /* CONFIG_DEBUG_FS */