thermal: fix Mediatek thermal controller build
[linux/fpc-iii.git] / mm / percpu.c
blob0c59684f1ff2ef5cdf3cd7ab688442e5afaf014a
1 /*
2 * mm/percpu.c - percpu memory allocator
4 * Copyright (C) 2009 SUSE Linux Products GmbH
5 * Copyright (C) 2009 Tejun Heo <tj@kernel.org>
7 * This file is released under the GPLv2.
9 * This is percpu allocator which can handle both static and dynamic
10 * areas. Percpu areas are allocated in chunks. Each chunk is
11 * consisted of boot-time determined number of units and the first
12 * chunk is used for static percpu variables in the kernel image
13 * (special boot time alloc/init handling necessary as these areas
14 * need to be brought up before allocation services are running).
15 * Unit grows as necessary and all units grow or shrink in unison.
16 * When a chunk is filled up, another chunk is allocated.
18 * c0 c1 c2
19 * ------------------- ------------------- ------------
20 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
21 * ------------------- ...... ------------------- .... ------------
23 * Allocation is done in offset-size areas of single unit space. Ie,
24 * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
25 * c1:u1, c1:u2 and c1:u3. On UMA, units corresponds directly to
26 * cpus. On NUMA, the mapping can be non-linear and even sparse.
27 * Percpu access can be done by configuring percpu base registers
28 * according to cpu to unit mapping and pcpu_unit_size.
30 * There are usually many small percpu allocations many of them being
31 * as small as 4 bytes. The allocator organizes chunks into lists
32 * according to free size and tries to allocate from the fullest one.
33 * Each chunk keeps the maximum contiguous area size hint which is
34 * guaranteed to be equal to or larger than the maximum contiguous
35 * area in the chunk. This helps the allocator not to iterate the
36 * chunk maps unnecessarily.
38 * Allocation state in each chunk is kept using an array of integers
39 * on chunk->map. A positive value in the map represents a free
40 * region and negative allocated. Allocation inside a chunk is done
41 * by scanning this map sequentially and serving the first matching
42 * entry. This is mostly copied from the percpu_modalloc() allocator.
43 * Chunks can be determined from the address using the index field
44 * in the page struct. The index field contains a pointer to the chunk.
46 * To use this allocator, arch code should do the followings.
48 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
49 * regular address to percpu pointer and back if they need to be
50 * different from the default
52 * - use pcpu_setup_first_chunk() during percpu area initialization to
53 * setup the first chunk containing the kernel static percpu area
56 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
58 #include <linux/bitmap.h>
59 #include <linux/bootmem.h>
60 #include <linux/err.h>
61 #include <linux/list.h>
62 #include <linux/log2.h>
63 #include <linux/mm.h>
64 #include <linux/module.h>
65 #include <linux/mutex.h>
66 #include <linux/percpu.h>
67 #include <linux/pfn.h>
68 #include <linux/slab.h>
69 #include <linux/spinlock.h>
70 #include <linux/vmalloc.h>
71 #include <linux/workqueue.h>
72 #include <linux/kmemleak.h>
74 #include <asm/cacheflush.h>
75 #include <asm/sections.h>
76 #include <asm/tlbflush.h>
77 #include <asm/io.h>
79 #define PCPU_SLOT_BASE_SHIFT 5 /* 1-31 shares the same slot */
80 #define PCPU_DFL_MAP_ALLOC 16 /* start a map with 16 ents */
81 #define PCPU_ATOMIC_MAP_MARGIN_LOW 32
82 #define PCPU_ATOMIC_MAP_MARGIN_HIGH 64
83 #define PCPU_EMPTY_POP_PAGES_LOW 2
84 #define PCPU_EMPTY_POP_PAGES_HIGH 4
86 #ifdef CONFIG_SMP
87 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
88 #ifndef __addr_to_pcpu_ptr
89 #define __addr_to_pcpu_ptr(addr) \
90 (void __percpu *)((unsigned long)(addr) - \
91 (unsigned long)pcpu_base_addr + \
92 (unsigned long)__per_cpu_start)
93 #endif
94 #ifndef __pcpu_ptr_to_addr
95 #define __pcpu_ptr_to_addr(ptr) \
96 (void __force *)((unsigned long)(ptr) + \
97 (unsigned long)pcpu_base_addr - \
98 (unsigned long)__per_cpu_start)
99 #endif
100 #else /* CONFIG_SMP */
101 /* on UP, it's always identity mapped */
102 #define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr)
103 #define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr)
104 #endif /* CONFIG_SMP */
106 struct pcpu_chunk {
107 struct list_head list; /* linked to pcpu_slot lists */
108 int free_size; /* free bytes in the chunk */
109 int contig_hint; /* max contiguous size hint */
110 void *base_addr; /* base address of this chunk */
112 int map_used; /* # of map entries used before the sentry */
113 int map_alloc; /* # of map entries allocated */
114 int *map; /* allocation map */
115 struct work_struct map_extend_work;/* async ->map[] extension */
117 void *data; /* chunk data */
118 int first_free; /* no free below this */
119 bool immutable; /* no [de]population allowed */
120 int nr_populated; /* # of populated pages */
121 unsigned long populated[]; /* populated bitmap */
124 static int pcpu_unit_pages __read_mostly;
125 static int pcpu_unit_size __read_mostly;
126 static int pcpu_nr_units __read_mostly;
127 static int pcpu_atom_size __read_mostly;
128 static int pcpu_nr_slots __read_mostly;
129 static size_t pcpu_chunk_struct_size __read_mostly;
131 /* cpus with the lowest and highest unit addresses */
132 static unsigned int pcpu_low_unit_cpu __read_mostly;
133 static unsigned int pcpu_high_unit_cpu __read_mostly;
135 /* the address of the first chunk which starts with the kernel static area */
136 void *pcpu_base_addr __read_mostly;
137 EXPORT_SYMBOL_GPL(pcpu_base_addr);
139 static const int *pcpu_unit_map __read_mostly; /* cpu -> unit */
140 const unsigned long *pcpu_unit_offsets __read_mostly; /* cpu -> unit offset */
142 /* group information, used for vm allocation */
143 static int pcpu_nr_groups __read_mostly;
144 static const unsigned long *pcpu_group_offsets __read_mostly;
145 static const size_t *pcpu_group_sizes __read_mostly;
148 * The first chunk which always exists. Note that unlike other
149 * chunks, this one can be allocated and mapped in several different
150 * ways and thus often doesn't live in the vmalloc area.
152 static struct pcpu_chunk *pcpu_first_chunk;
155 * Optional reserved chunk. This chunk reserves part of the first
156 * chunk and serves it for reserved allocations. The amount of
157 * reserved offset is in pcpu_reserved_chunk_limit. When reserved
158 * area doesn't exist, the following variables contain NULL and 0
159 * respectively.
161 static struct pcpu_chunk *pcpu_reserved_chunk;
162 static int pcpu_reserved_chunk_limit;
164 static DEFINE_SPINLOCK(pcpu_lock); /* all internal data structures */
165 static DEFINE_MUTEX(pcpu_alloc_mutex); /* chunk create/destroy, [de]pop */
167 static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
170 * The number of empty populated pages, protected by pcpu_lock. The
171 * reserved chunk doesn't contribute to the count.
173 static int pcpu_nr_empty_pop_pages;
176 * Balance work is used to populate or destroy chunks asynchronously. We
177 * try to keep the number of populated free pages between
178 * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one
179 * empty chunk.
181 static void pcpu_balance_workfn(struct work_struct *work);
182 static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn);
183 static bool pcpu_async_enabled __read_mostly;
184 static bool pcpu_atomic_alloc_failed;
186 static void pcpu_schedule_balance_work(void)
188 if (pcpu_async_enabled)
189 schedule_work(&pcpu_balance_work);
192 static bool pcpu_addr_in_first_chunk(void *addr)
194 void *first_start = pcpu_first_chunk->base_addr;
196 return addr >= first_start && addr < first_start + pcpu_unit_size;
199 static bool pcpu_addr_in_reserved_chunk(void *addr)
201 void *first_start = pcpu_first_chunk->base_addr;
203 return addr >= first_start &&
204 addr < first_start + pcpu_reserved_chunk_limit;
207 static int __pcpu_size_to_slot(int size)
209 int highbit = fls(size); /* size is in bytes */
210 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
213 static int pcpu_size_to_slot(int size)
215 if (size == pcpu_unit_size)
216 return pcpu_nr_slots - 1;
217 return __pcpu_size_to_slot(size);
220 static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
222 if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
223 return 0;
225 return pcpu_size_to_slot(chunk->free_size);
228 /* set the pointer to a chunk in a page struct */
229 static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
231 page->index = (unsigned long)pcpu;
234 /* obtain pointer to a chunk from a page struct */
235 static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
237 return (struct pcpu_chunk *)page->index;
240 static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
242 return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
245 static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
246 unsigned int cpu, int page_idx)
248 return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] +
249 (page_idx << PAGE_SHIFT);
252 static void __maybe_unused pcpu_next_unpop(struct pcpu_chunk *chunk,
253 int *rs, int *re, int end)
255 *rs = find_next_zero_bit(chunk->populated, end, *rs);
256 *re = find_next_bit(chunk->populated, end, *rs + 1);
259 static void __maybe_unused pcpu_next_pop(struct pcpu_chunk *chunk,
260 int *rs, int *re, int end)
262 *rs = find_next_bit(chunk->populated, end, *rs);
263 *re = find_next_zero_bit(chunk->populated, end, *rs + 1);
267 * (Un)populated page region iterators. Iterate over (un)populated
268 * page regions between @start and @end in @chunk. @rs and @re should
269 * be integer variables and will be set to start and end page index of
270 * the current region.
272 #define pcpu_for_each_unpop_region(chunk, rs, re, start, end) \
273 for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \
274 (rs) < (re); \
275 (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end)))
277 #define pcpu_for_each_pop_region(chunk, rs, re, start, end) \
278 for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end)); \
279 (rs) < (re); \
280 (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end)))
283 * pcpu_mem_zalloc - allocate memory
284 * @size: bytes to allocate
286 * Allocate @size bytes. If @size is smaller than PAGE_SIZE,
287 * kzalloc() is used; otherwise, vzalloc() is used. The returned
288 * memory is always zeroed.
290 * CONTEXT:
291 * Does GFP_KERNEL allocation.
293 * RETURNS:
294 * Pointer to the allocated area on success, NULL on failure.
296 static void *pcpu_mem_zalloc(size_t size)
298 if (WARN_ON_ONCE(!slab_is_available()))
299 return NULL;
301 if (size <= PAGE_SIZE)
302 return kzalloc(size, GFP_KERNEL);
303 else
304 return vzalloc(size);
308 * pcpu_mem_free - free memory
309 * @ptr: memory to free
311 * Free @ptr. @ptr should have been allocated using pcpu_mem_zalloc().
313 static void pcpu_mem_free(void *ptr)
315 kvfree(ptr);
319 * pcpu_count_occupied_pages - count the number of pages an area occupies
320 * @chunk: chunk of interest
321 * @i: index of the area in question
323 * Count the number of pages chunk's @i'th area occupies. When the area's
324 * start and/or end address isn't aligned to page boundary, the straddled
325 * page is included in the count iff the rest of the page is free.
327 static int pcpu_count_occupied_pages(struct pcpu_chunk *chunk, int i)
329 int off = chunk->map[i] & ~1;
330 int end = chunk->map[i + 1] & ~1;
332 if (!PAGE_ALIGNED(off) && i > 0) {
333 int prev = chunk->map[i - 1];
335 if (!(prev & 1) && prev <= round_down(off, PAGE_SIZE))
336 off = round_down(off, PAGE_SIZE);
339 if (!PAGE_ALIGNED(end) && i + 1 < chunk->map_used) {
340 int next = chunk->map[i + 1];
341 int nend = chunk->map[i + 2] & ~1;
343 if (!(next & 1) && nend >= round_up(end, PAGE_SIZE))
344 end = round_up(end, PAGE_SIZE);
347 return max_t(int, PFN_DOWN(end) - PFN_UP(off), 0);
351 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
352 * @chunk: chunk of interest
353 * @oslot: the previous slot it was on
355 * This function is called after an allocation or free changed @chunk.
356 * New slot according to the changed state is determined and @chunk is
357 * moved to the slot. Note that the reserved chunk is never put on
358 * chunk slots.
360 * CONTEXT:
361 * pcpu_lock.
363 static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
365 int nslot = pcpu_chunk_slot(chunk);
367 if (chunk != pcpu_reserved_chunk && oslot != nslot) {
368 if (oslot < nslot)
369 list_move(&chunk->list, &pcpu_slot[nslot]);
370 else
371 list_move_tail(&chunk->list, &pcpu_slot[nslot]);
376 * pcpu_need_to_extend - determine whether chunk area map needs to be extended
377 * @chunk: chunk of interest
378 * @is_atomic: the allocation context
380 * Determine whether area map of @chunk needs to be extended. If
381 * @is_atomic, only the amount necessary for a new allocation is
382 * considered; however, async extension is scheduled if the left amount is
383 * low. If !@is_atomic, it aims for more empty space. Combined, this
384 * ensures that the map is likely to have enough available space to
385 * accomodate atomic allocations which can't extend maps directly.
387 * CONTEXT:
388 * pcpu_lock.
390 * RETURNS:
391 * New target map allocation length if extension is necessary, 0
392 * otherwise.
394 static int pcpu_need_to_extend(struct pcpu_chunk *chunk, bool is_atomic)
396 int margin, new_alloc;
398 if (is_atomic) {
399 margin = 3;
401 if (chunk->map_alloc <
402 chunk->map_used + PCPU_ATOMIC_MAP_MARGIN_LOW &&
403 pcpu_async_enabled)
404 schedule_work(&chunk->map_extend_work);
405 } else {
406 margin = PCPU_ATOMIC_MAP_MARGIN_HIGH;
409 if (chunk->map_alloc >= chunk->map_used + margin)
410 return 0;
412 new_alloc = PCPU_DFL_MAP_ALLOC;
413 while (new_alloc < chunk->map_used + margin)
414 new_alloc *= 2;
416 return new_alloc;
420 * pcpu_extend_area_map - extend area map of a chunk
421 * @chunk: chunk of interest
422 * @new_alloc: new target allocation length of the area map
424 * Extend area map of @chunk to have @new_alloc entries.
426 * CONTEXT:
427 * Does GFP_KERNEL allocation. Grabs and releases pcpu_lock.
429 * RETURNS:
430 * 0 on success, -errno on failure.
432 static int pcpu_extend_area_map(struct pcpu_chunk *chunk, int new_alloc)
434 int *old = NULL, *new = NULL;
435 size_t old_size = 0, new_size = new_alloc * sizeof(new[0]);
436 unsigned long flags;
438 new = pcpu_mem_zalloc(new_size);
439 if (!new)
440 return -ENOMEM;
442 /* acquire pcpu_lock and switch to new area map */
443 spin_lock_irqsave(&pcpu_lock, flags);
445 if (new_alloc <= chunk->map_alloc)
446 goto out_unlock;
448 old_size = chunk->map_alloc * sizeof(chunk->map[0]);
449 old = chunk->map;
451 memcpy(new, old, old_size);
453 chunk->map_alloc = new_alloc;
454 chunk->map = new;
455 new = NULL;
457 out_unlock:
458 spin_unlock_irqrestore(&pcpu_lock, flags);
461 * pcpu_mem_free() might end up calling vfree() which uses
462 * IRQ-unsafe lock and thus can't be called under pcpu_lock.
464 pcpu_mem_free(old);
465 pcpu_mem_free(new);
467 return 0;
470 static void pcpu_map_extend_workfn(struct work_struct *work)
472 struct pcpu_chunk *chunk = container_of(work, struct pcpu_chunk,
473 map_extend_work);
474 int new_alloc;
476 spin_lock_irq(&pcpu_lock);
477 new_alloc = pcpu_need_to_extend(chunk, false);
478 spin_unlock_irq(&pcpu_lock);
480 if (new_alloc)
481 pcpu_extend_area_map(chunk, new_alloc);
485 * pcpu_fit_in_area - try to fit the requested allocation in a candidate area
486 * @chunk: chunk the candidate area belongs to
487 * @off: the offset to the start of the candidate area
488 * @this_size: the size of the candidate area
489 * @size: the size of the target allocation
490 * @align: the alignment of the target allocation
491 * @pop_only: only allocate from already populated region
493 * We're trying to allocate @size bytes aligned at @align. @chunk's area
494 * at @off sized @this_size is a candidate. This function determines
495 * whether the target allocation fits in the candidate area and returns the
496 * number of bytes to pad after @off. If the target area doesn't fit, -1
497 * is returned.
499 * If @pop_only is %true, this function only considers the already
500 * populated part of the candidate area.
502 static int pcpu_fit_in_area(struct pcpu_chunk *chunk, int off, int this_size,
503 int size, int align, bool pop_only)
505 int cand_off = off;
507 while (true) {
508 int head = ALIGN(cand_off, align) - off;
509 int page_start, page_end, rs, re;
511 if (this_size < head + size)
512 return -1;
514 if (!pop_only)
515 return head;
518 * If the first unpopulated page is beyond the end of the
519 * allocation, the whole allocation is populated;
520 * otherwise, retry from the end of the unpopulated area.
522 page_start = PFN_DOWN(head + off);
523 page_end = PFN_UP(head + off + size);
525 rs = page_start;
526 pcpu_next_unpop(chunk, &rs, &re, PFN_UP(off + this_size));
527 if (rs >= page_end)
528 return head;
529 cand_off = re * PAGE_SIZE;
534 * pcpu_alloc_area - allocate area from a pcpu_chunk
535 * @chunk: chunk of interest
536 * @size: wanted size in bytes
537 * @align: wanted align
538 * @pop_only: allocate only from the populated area
539 * @occ_pages_p: out param for the number of pages the area occupies
541 * Try to allocate @size bytes area aligned at @align from @chunk.
542 * Note that this function only allocates the offset. It doesn't
543 * populate or map the area.
545 * @chunk->map must have at least two free slots.
547 * CONTEXT:
548 * pcpu_lock.
550 * RETURNS:
551 * Allocated offset in @chunk on success, -1 if no matching area is
552 * found.
554 static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align,
555 bool pop_only, int *occ_pages_p)
557 int oslot = pcpu_chunk_slot(chunk);
558 int max_contig = 0;
559 int i, off;
560 bool seen_free = false;
561 int *p;
563 for (i = chunk->first_free, p = chunk->map + i; i < chunk->map_used; i++, p++) {
564 int head, tail;
565 int this_size;
567 off = *p;
568 if (off & 1)
569 continue;
571 this_size = (p[1] & ~1) - off;
573 head = pcpu_fit_in_area(chunk, off, this_size, size, align,
574 pop_only);
575 if (head < 0) {
576 if (!seen_free) {
577 chunk->first_free = i;
578 seen_free = true;
580 max_contig = max(this_size, max_contig);
581 continue;
585 * If head is small or the previous block is free,
586 * merge'em. Note that 'small' is defined as smaller
587 * than sizeof(int), which is very small but isn't too
588 * uncommon for percpu allocations.
590 if (head && (head < sizeof(int) || !(p[-1] & 1))) {
591 *p = off += head;
592 if (p[-1] & 1)
593 chunk->free_size -= head;
594 else
595 max_contig = max(*p - p[-1], max_contig);
596 this_size -= head;
597 head = 0;
600 /* if tail is small, just keep it around */
601 tail = this_size - head - size;
602 if (tail < sizeof(int)) {
603 tail = 0;
604 size = this_size - head;
607 /* split if warranted */
608 if (head || tail) {
609 int nr_extra = !!head + !!tail;
611 /* insert new subblocks */
612 memmove(p + nr_extra + 1, p + 1,
613 sizeof(chunk->map[0]) * (chunk->map_used - i));
614 chunk->map_used += nr_extra;
616 if (head) {
617 if (!seen_free) {
618 chunk->first_free = i;
619 seen_free = true;
621 *++p = off += head;
622 ++i;
623 max_contig = max(head, max_contig);
625 if (tail) {
626 p[1] = off + size;
627 max_contig = max(tail, max_contig);
631 if (!seen_free)
632 chunk->first_free = i + 1;
634 /* update hint and mark allocated */
635 if (i + 1 == chunk->map_used)
636 chunk->contig_hint = max_contig; /* fully scanned */
637 else
638 chunk->contig_hint = max(chunk->contig_hint,
639 max_contig);
641 chunk->free_size -= size;
642 *p |= 1;
644 *occ_pages_p = pcpu_count_occupied_pages(chunk, i);
645 pcpu_chunk_relocate(chunk, oslot);
646 return off;
649 chunk->contig_hint = max_contig; /* fully scanned */
650 pcpu_chunk_relocate(chunk, oslot);
652 /* tell the upper layer that this chunk has no matching area */
653 return -1;
657 * pcpu_free_area - free area to a pcpu_chunk
658 * @chunk: chunk of interest
659 * @freeme: offset of area to free
660 * @occ_pages_p: out param for the number of pages the area occupies
662 * Free area starting from @freeme to @chunk. Note that this function
663 * only modifies the allocation map. It doesn't depopulate or unmap
664 * the area.
666 * CONTEXT:
667 * pcpu_lock.
669 static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme,
670 int *occ_pages_p)
672 int oslot = pcpu_chunk_slot(chunk);
673 int off = 0;
674 unsigned i, j;
675 int to_free = 0;
676 int *p;
678 freeme |= 1; /* we are searching for <given offset, in use> pair */
680 i = 0;
681 j = chunk->map_used;
682 while (i != j) {
683 unsigned k = (i + j) / 2;
684 off = chunk->map[k];
685 if (off < freeme)
686 i = k + 1;
687 else if (off > freeme)
688 j = k;
689 else
690 i = j = k;
692 BUG_ON(off != freeme);
694 if (i < chunk->first_free)
695 chunk->first_free = i;
697 p = chunk->map + i;
698 *p = off &= ~1;
699 chunk->free_size += (p[1] & ~1) - off;
701 *occ_pages_p = pcpu_count_occupied_pages(chunk, i);
703 /* merge with next? */
704 if (!(p[1] & 1))
705 to_free++;
706 /* merge with previous? */
707 if (i > 0 && !(p[-1] & 1)) {
708 to_free++;
709 i--;
710 p--;
712 if (to_free) {
713 chunk->map_used -= to_free;
714 memmove(p + 1, p + 1 + to_free,
715 (chunk->map_used - i) * sizeof(chunk->map[0]));
718 chunk->contig_hint = max(chunk->map[i + 1] - chunk->map[i] - 1, chunk->contig_hint);
719 pcpu_chunk_relocate(chunk, oslot);
722 static struct pcpu_chunk *pcpu_alloc_chunk(void)
724 struct pcpu_chunk *chunk;
726 chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size);
727 if (!chunk)
728 return NULL;
730 chunk->map = pcpu_mem_zalloc(PCPU_DFL_MAP_ALLOC *
731 sizeof(chunk->map[0]));
732 if (!chunk->map) {
733 pcpu_mem_free(chunk);
734 return NULL;
737 chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
738 chunk->map[0] = 0;
739 chunk->map[1] = pcpu_unit_size | 1;
740 chunk->map_used = 1;
742 INIT_LIST_HEAD(&chunk->list);
743 INIT_WORK(&chunk->map_extend_work, pcpu_map_extend_workfn);
744 chunk->free_size = pcpu_unit_size;
745 chunk->contig_hint = pcpu_unit_size;
747 return chunk;
750 static void pcpu_free_chunk(struct pcpu_chunk *chunk)
752 if (!chunk)
753 return;
754 pcpu_mem_free(chunk->map);
755 pcpu_mem_free(chunk);
759 * pcpu_chunk_populated - post-population bookkeeping
760 * @chunk: pcpu_chunk which got populated
761 * @page_start: the start page
762 * @page_end: the end page
764 * Pages in [@page_start,@page_end) have been populated to @chunk. Update
765 * the bookkeeping information accordingly. Must be called after each
766 * successful population.
768 static void pcpu_chunk_populated(struct pcpu_chunk *chunk,
769 int page_start, int page_end)
771 int nr = page_end - page_start;
773 lockdep_assert_held(&pcpu_lock);
775 bitmap_set(chunk->populated, page_start, nr);
776 chunk->nr_populated += nr;
777 pcpu_nr_empty_pop_pages += nr;
781 * pcpu_chunk_depopulated - post-depopulation bookkeeping
782 * @chunk: pcpu_chunk which got depopulated
783 * @page_start: the start page
784 * @page_end: the end page
786 * Pages in [@page_start,@page_end) have been depopulated from @chunk.
787 * Update the bookkeeping information accordingly. Must be called after
788 * each successful depopulation.
790 static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk,
791 int page_start, int page_end)
793 int nr = page_end - page_start;
795 lockdep_assert_held(&pcpu_lock);
797 bitmap_clear(chunk->populated, page_start, nr);
798 chunk->nr_populated -= nr;
799 pcpu_nr_empty_pop_pages -= nr;
803 * Chunk management implementation.
805 * To allow different implementations, chunk alloc/free and
806 * [de]population are implemented in a separate file which is pulled
807 * into this file and compiled together. The following functions
808 * should be implemented.
810 * pcpu_populate_chunk - populate the specified range of a chunk
811 * pcpu_depopulate_chunk - depopulate the specified range of a chunk
812 * pcpu_create_chunk - create a new chunk
813 * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop
814 * pcpu_addr_to_page - translate address to physical address
815 * pcpu_verify_alloc_info - check alloc_info is acceptable during init
817 static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size);
818 static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size);
819 static struct pcpu_chunk *pcpu_create_chunk(void);
820 static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
821 static struct page *pcpu_addr_to_page(void *addr);
822 static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
824 #ifdef CONFIG_NEED_PER_CPU_KM
825 #include "percpu-km.c"
826 #else
827 #include "percpu-vm.c"
828 #endif
831 * pcpu_chunk_addr_search - determine chunk containing specified address
832 * @addr: address for which the chunk needs to be determined.
834 * RETURNS:
835 * The address of the found chunk.
837 static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
839 /* is it in the first chunk? */
840 if (pcpu_addr_in_first_chunk(addr)) {
841 /* is it in the reserved area? */
842 if (pcpu_addr_in_reserved_chunk(addr))
843 return pcpu_reserved_chunk;
844 return pcpu_first_chunk;
848 * The address is relative to unit0 which might be unused and
849 * thus unmapped. Offset the address to the unit space of the
850 * current processor before looking it up in the vmalloc
851 * space. Note that any possible cpu id can be used here, so
852 * there's no need to worry about preemption or cpu hotplug.
854 addr += pcpu_unit_offsets[raw_smp_processor_id()];
855 return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
859 * pcpu_alloc - the percpu allocator
860 * @size: size of area to allocate in bytes
861 * @align: alignment of area (max PAGE_SIZE)
862 * @reserved: allocate from the reserved chunk if available
863 * @gfp: allocation flags
865 * Allocate percpu area of @size bytes aligned at @align. If @gfp doesn't
866 * contain %GFP_KERNEL, the allocation is atomic.
868 * RETURNS:
869 * Percpu pointer to the allocated area on success, NULL on failure.
871 static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved,
872 gfp_t gfp)
874 static int warn_limit = 10;
875 struct pcpu_chunk *chunk;
876 const char *err;
877 bool is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL;
878 int occ_pages = 0;
879 int slot, off, new_alloc, cpu, ret;
880 unsigned long flags;
881 void __percpu *ptr;
884 * We want the lowest bit of offset available for in-use/free
885 * indicator, so force >= 16bit alignment and make size even.
887 if (unlikely(align < 2))
888 align = 2;
890 size = ALIGN(size, 2);
892 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) {
893 WARN(true, "illegal size (%zu) or align (%zu) for percpu allocation\n",
894 size, align);
895 return NULL;
898 spin_lock_irqsave(&pcpu_lock, flags);
900 /* serve reserved allocations from the reserved chunk if available */
901 if (reserved && pcpu_reserved_chunk) {
902 chunk = pcpu_reserved_chunk;
904 if (size > chunk->contig_hint) {
905 err = "alloc from reserved chunk failed";
906 goto fail_unlock;
909 while ((new_alloc = pcpu_need_to_extend(chunk, is_atomic))) {
910 spin_unlock_irqrestore(&pcpu_lock, flags);
911 if (is_atomic ||
912 pcpu_extend_area_map(chunk, new_alloc) < 0) {
913 err = "failed to extend area map of reserved chunk";
914 goto fail;
916 spin_lock_irqsave(&pcpu_lock, flags);
919 off = pcpu_alloc_area(chunk, size, align, is_atomic,
920 &occ_pages);
921 if (off >= 0)
922 goto area_found;
924 err = "alloc from reserved chunk failed";
925 goto fail_unlock;
928 restart:
929 /* search through normal chunks */
930 for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
931 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
932 if (size > chunk->contig_hint)
933 continue;
935 new_alloc = pcpu_need_to_extend(chunk, is_atomic);
936 if (new_alloc) {
937 if (is_atomic)
938 continue;
939 spin_unlock_irqrestore(&pcpu_lock, flags);
940 if (pcpu_extend_area_map(chunk,
941 new_alloc) < 0) {
942 err = "failed to extend area map";
943 goto fail;
945 spin_lock_irqsave(&pcpu_lock, flags);
947 * pcpu_lock has been dropped, need to
948 * restart cpu_slot list walking.
950 goto restart;
953 off = pcpu_alloc_area(chunk, size, align, is_atomic,
954 &occ_pages);
955 if (off >= 0)
956 goto area_found;
960 spin_unlock_irqrestore(&pcpu_lock, flags);
963 * No space left. Create a new chunk. We don't want multiple
964 * tasks to create chunks simultaneously. Serialize and create iff
965 * there's still no empty chunk after grabbing the mutex.
967 if (is_atomic)
968 goto fail;
970 mutex_lock(&pcpu_alloc_mutex);
972 if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) {
973 chunk = pcpu_create_chunk();
974 if (!chunk) {
975 mutex_unlock(&pcpu_alloc_mutex);
976 err = "failed to allocate new chunk";
977 goto fail;
980 spin_lock_irqsave(&pcpu_lock, flags);
981 pcpu_chunk_relocate(chunk, -1);
982 } else {
983 spin_lock_irqsave(&pcpu_lock, flags);
986 mutex_unlock(&pcpu_alloc_mutex);
987 goto restart;
989 area_found:
990 spin_unlock_irqrestore(&pcpu_lock, flags);
992 /* populate if not all pages are already there */
993 if (!is_atomic) {
994 int page_start, page_end, rs, re;
996 mutex_lock(&pcpu_alloc_mutex);
998 page_start = PFN_DOWN(off);
999 page_end = PFN_UP(off + size);
1001 pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
1002 WARN_ON(chunk->immutable);
1004 ret = pcpu_populate_chunk(chunk, rs, re);
1006 spin_lock_irqsave(&pcpu_lock, flags);
1007 if (ret) {
1008 mutex_unlock(&pcpu_alloc_mutex);
1009 pcpu_free_area(chunk, off, &occ_pages);
1010 err = "failed to populate";
1011 goto fail_unlock;
1013 pcpu_chunk_populated(chunk, rs, re);
1014 spin_unlock_irqrestore(&pcpu_lock, flags);
1017 mutex_unlock(&pcpu_alloc_mutex);
1020 if (chunk != pcpu_reserved_chunk)
1021 pcpu_nr_empty_pop_pages -= occ_pages;
1023 if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW)
1024 pcpu_schedule_balance_work();
1026 /* clear the areas and return address relative to base address */
1027 for_each_possible_cpu(cpu)
1028 memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
1030 ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
1031 kmemleak_alloc_percpu(ptr, size, gfp);
1032 return ptr;
1034 fail_unlock:
1035 spin_unlock_irqrestore(&pcpu_lock, flags);
1036 fail:
1037 if (!is_atomic && warn_limit) {
1038 pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n",
1039 size, align, is_atomic, err);
1040 dump_stack();
1041 if (!--warn_limit)
1042 pr_info("limit reached, disable warning\n");
1044 if (is_atomic) {
1045 /* see the flag handling in pcpu_blance_workfn() */
1046 pcpu_atomic_alloc_failed = true;
1047 pcpu_schedule_balance_work();
1049 return NULL;
1053 * __alloc_percpu_gfp - allocate dynamic percpu area
1054 * @size: size of area to allocate in bytes
1055 * @align: alignment of area (max PAGE_SIZE)
1056 * @gfp: allocation flags
1058 * Allocate zero-filled percpu area of @size bytes aligned at @align. If
1059 * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can
1060 * be called from any context but is a lot more likely to fail.
1062 * RETURNS:
1063 * Percpu pointer to the allocated area on success, NULL on failure.
1065 void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp)
1067 return pcpu_alloc(size, align, false, gfp);
1069 EXPORT_SYMBOL_GPL(__alloc_percpu_gfp);
1072 * __alloc_percpu - allocate dynamic percpu area
1073 * @size: size of area to allocate in bytes
1074 * @align: alignment of area (max PAGE_SIZE)
1076 * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL).
1078 void __percpu *__alloc_percpu(size_t size, size_t align)
1080 return pcpu_alloc(size, align, false, GFP_KERNEL);
1082 EXPORT_SYMBOL_GPL(__alloc_percpu);
1085 * __alloc_reserved_percpu - allocate reserved percpu area
1086 * @size: size of area to allocate in bytes
1087 * @align: alignment of area (max PAGE_SIZE)
1089 * Allocate zero-filled percpu area of @size bytes aligned at @align
1090 * from reserved percpu area if arch has set it up; otherwise,
1091 * allocation is served from the same dynamic area. Might sleep.
1092 * Might trigger writeouts.
1094 * CONTEXT:
1095 * Does GFP_KERNEL allocation.
1097 * RETURNS:
1098 * Percpu pointer to the allocated area on success, NULL on failure.
1100 void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
1102 return pcpu_alloc(size, align, true, GFP_KERNEL);
1106 * pcpu_balance_workfn - manage the amount of free chunks and populated pages
1107 * @work: unused
1109 * Reclaim all fully free chunks except for the first one.
1111 static void pcpu_balance_workfn(struct work_struct *work)
1113 LIST_HEAD(to_free);
1114 struct list_head *free_head = &pcpu_slot[pcpu_nr_slots - 1];
1115 struct pcpu_chunk *chunk, *next;
1116 int slot, nr_to_pop, ret;
1119 * There's no reason to keep around multiple unused chunks and VM
1120 * areas can be scarce. Destroy all free chunks except for one.
1122 mutex_lock(&pcpu_alloc_mutex);
1123 spin_lock_irq(&pcpu_lock);
1125 list_for_each_entry_safe(chunk, next, free_head, list) {
1126 WARN_ON(chunk->immutable);
1128 /* spare the first one */
1129 if (chunk == list_first_entry(free_head, struct pcpu_chunk, list))
1130 continue;
1132 list_move(&chunk->list, &to_free);
1135 spin_unlock_irq(&pcpu_lock);
1137 list_for_each_entry_safe(chunk, next, &to_free, list) {
1138 int rs, re;
1140 pcpu_for_each_pop_region(chunk, rs, re, 0, pcpu_unit_pages) {
1141 pcpu_depopulate_chunk(chunk, rs, re);
1142 spin_lock_irq(&pcpu_lock);
1143 pcpu_chunk_depopulated(chunk, rs, re);
1144 spin_unlock_irq(&pcpu_lock);
1146 pcpu_destroy_chunk(chunk);
1150 * Ensure there are certain number of free populated pages for
1151 * atomic allocs. Fill up from the most packed so that atomic
1152 * allocs don't increase fragmentation. If atomic allocation
1153 * failed previously, always populate the maximum amount. This
1154 * should prevent atomic allocs larger than PAGE_SIZE from keeping
1155 * failing indefinitely; however, large atomic allocs are not
1156 * something we support properly and can be highly unreliable and
1157 * inefficient.
1159 retry_pop:
1160 if (pcpu_atomic_alloc_failed) {
1161 nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH;
1162 /* best effort anyway, don't worry about synchronization */
1163 pcpu_atomic_alloc_failed = false;
1164 } else {
1165 nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH -
1166 pcpu_nr_empty_pop_pages,
1167 0, PCPU_EMPTY_POP_PAGES_HIGH);
1170 for (slot = pcpu_size_to_slot(PAGE_SIZE); slot < pcpu_nr_slots; slot++) {
1171 int nr_unpop = 0, rs, re;
1173 if (!nr_to_pop)
1174 break;
1176 spin_lock_irq(&pcpu_lock);
1177 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
1178 nr_unpop = pcpu_unit_pages - chunk->nr_populated;
1179 if (nr_unpop)
1180 break;
1182 spin_unlock_irq(&pcpu_lock);
1184 if (!nr_unpop)
1185 continue;
1187 /* @chunk can't go away while pcpu_alloc_mutex is held */
1188 pcpu_for_each_unpop_region(chunk, rs, re, 0, pcpu_unit_pages) {
1189 int nr = min(re - rs, nr_to_pop);
1191 ret = pcpu_populate_chunk(chunk, rs, rs + nr);
1192 if (!ret) {
1193 nr_to_pop -= nr;
1194 spin_lock_irq(&pcpu_lock);
1195 pcpu_chunk_populated(chunk, rs, rs + nr);
1196 spin_unlock_irq(&pcpu_lock);
1197 } else {
1198 nr_to_pop = 0;
1201 if (!nr_to_pop)
1202 break;
1206 if (nr_to_pop) {
1207 /* ran out of chunks to populate, create a new one and retry */
1208 chunk = pcpu_create_chunk();
1209 if (chunk) {
1210 spin_lock_irq(&pcpu_lock);
1211 pcpu_chunk_relocate(chunk, -1);
1212 spin_unlock_irq(&pcpu_lock);
1213 goto retry_pop;
1217 mutex_unlock(&pcpu_alloc_mutex);
1221 * free_percpu - free percpu area
1222 * @ptr: pointer to area to free
1224 * Free percpu area @ptr.
1226 * CONTEXT:
1227 * Can be called from atomic context.
1229 void free_percpu(void __percpu *ptr)
1231 void *addr;
1232 struct pcpu_chunk *chunk;
1233 unsigned long flags;
1234 int off, occ_pages;
1236 if (!ptr)
1237 return;
1239 kmemleak_free_percpu(ptr);
1241 addr = __pcpu_ptr_to_addr(ptr);
1243 spin_lock_irqsave(&pcpu_lock, flags);
1245 chunk = pcpu_chunk_addr_search(addr);
1246 off = addr - chunk->base_addr;
1248 pcpu_free_area(chunk, off, &occ_pages);
1250 if (chunk != pcpu_reserved_chunk)
1251 pcpu_nr_empty_pop_pages += occ_pages;
1253 /* if there are more than one fully free chunks, wake up grim reaper */
1254 if (chunk->free_size == pcpu_unit_size) {
1255 struct pcpu_chunk *pos;
1257 list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
1258 if (pos != chunk) {
1259 pcpu_schedule_balance_work();
1260 break;
1264 spin_unlock_irqrestore(&pcpu_lock, flags);
1266 EXPORT_SYMBOL_GPL(free_percpu);
1269 * is_kernel_percpu_address - test whether address is from static percpu area
1270 * @addr: address to test
1272 * Test whether @addr belongs to in-kernel static percpu area. Module
1273 * static percpu areas are not considered. For those, use
1274 * is_module_percpu_address().
1276 * RETURNS:
1277 * %true if @addr is from in-kernel static percpu area, %false otherwise.
1279 bool is_kernel_percpu_address(unsigned long addr)
1281 #ifdef CONFIG_SMP
1282 const size_t static_size = __per_cpu_end - __per_cpu_start;
1283 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1284 unsigned int cpu;
1286 for_each_possible_cpu(cpu) {
1287 void *start = per_cpu_ptr(base, cpu);
1289 if ((void *)addr >= start && (void *)addr < start + static_size)
1290 return true;
1292 #endif
1293 /* on UP, can't distinguish from other static vars, always false */
1294 return false;
1298 * per_cpu_ptr_to_phys - convert translated percpu address to physical address
1299 * @addr: the address to be converted to physical address
1301 * Given @addr which is dereferenceable address obtained via one of
1302 * percpu access macros, this function translates it into its physical
1303 * address. The caller is responsible for ensuring @addr stays valid
1304 * until this function finishes.
1306 * percpu allocator has special setup for the first chunk, which currently
1307 * supports either embedding in linear address space or vmalloc mapping,
1308 * and, from the second one, the backing allocator (currently either vm or
1309 * km) provides translation.
1311 * The addr can be translated simply without checking if it falls into the
1312 * first chunk. But the current code reflects better how percpu allocator
1313 * actually works, and the verification can discover both bugs in percpu
1314 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
1315 * code.
1317 * RETURNS:
1318 * The physical address for @addr.
1320 phys_addr_t per_cpu_ptr_to_phys(void *addr)
1322 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1323 bool in_first_chunk = false;
1324 unsigned long first_low, first_high;
1325 unsigned int cpu;
1328 * The following test on unit_low/high isn't strictly
1329 * necessary but will speed up lookups of addresses which
1330 * aren't in the first chunk.
1332 first_low = pcpu_chunk_addr(pcpu_first_chunk, pcpu_low_unit_cpu, 0);
1333 first_high = pcpu_chunk_addr(pcpu_first_chunk, pcpu_high_unit_cpu,
1334 pcpu_unit_pages);
1335 if ((unsigned long)addr >= first_low &&
1336 (unsigned long)addr < first_high) {
1337 for_each_possible_cpu(cpu) {
1338 void *start = per_cpu_ptr(base, cpu);
1340 if (addr >= start && addr < start + pcpu_unit_size) {
1341 in_first_chunk = true;
1342 break;
1347 if (in_first_chunk) {
1348 if (!is_vmalloc_addr(addr))
1349 return __pa(addr);
1350 else
1351 return page_to_phys(vmalloc_to_page(addr)) +
1352 offset_in_page(addr);
1353 } else
1354 return page_to_phys(pcpu_addr_to_page(addr)) +
1355 offset_in_page(addr);
1359 * pcpu_alloc_alloc_info - allocate percpu allocation info
1360 * @nr_groups: the number of groups
1361 * @nr_units: the number of units
1363 * Allocate ai which is large enough for @nr_groups groups containing
1364 * @nr_units units. The returned ai's groups[0].cpu_map points to the
1365 * cpu_map array which is long enough for @nr_units and filled with
1366 * NR_CPUS. It's the caller's responsibility to initialize cpu_map
1367 * pointer of other groups.
1369 * RETURNS:
1370 * Pointer to the allocated pcpu_alloc_info on success, NULL on
1371 * failure.
1373 struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
1374 int nr_units)
1376 struct pcpu_alloc_info *ai;
1377 size_t base_size, ai_size;
1378 void *ptr;
1379 int unit;
1381 base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
1382 __alignof__(ai->groups[0].cpu_map[0]));
1383 ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
1385 ptr = memblock_virt_alloc_nopanic(PFN_ALIGN(ai_size), 0);
1386 if (!ptr)
1387 return NULL;
1388 ai = ptr;
1389 ptr += base_size;
1391 ai->groups[0].cpu_map = ptr;
1393 for (unit = 0; unit < nr_units; unit++)
1394 ai->groups[0].cpu_map[unit] = NR_CPUS;
1396 ai->nr_groups = nr_groups;
1397 ai->__ai_size = PFN_ALIGN(ai_size);
1399 return ai;
1403 * pcpu_free_alloc_info - free percpu allocation info
1404 * @ai: pcpu_alloc_info to free
1406 * Free @ai which was allocated by pcpu_alloc_alloc_info().
1408 void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
1410 memblock_free_early(__pa(ai), ai->__ai_size);
1414 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
1415 * @lvl: loglevel
1416 * @ai: allocation info to dump
1418 * Print out information about @ai using loglevel @lvl.
1420 static void pcpu_dump_alloc_info(const char *lvl,
1421 const struct pcpu_alloc_info *ai)
1423 int group_width = 1, cpu_width = 1, width;
1424 char empty_str[] = "--------";
1425 int alloc = 0, alloc_end = 0;
1426 int group, v;
1427 int upa, apl; /* units per alloc, allocs per line */
1429 v = ai->nr_groups;
1430 while (v /= 10)
1431 group_width++;
1433 v = num_possible_cpus();
1434 while (v /= 10)
1435 cpu_width++;
1436 empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
1438 upa = ai->alloc_size / ai->unit_size;
1439 width = upa * (cpu_width + 1) + group_width + 3;
1440 apl = rounddown_pow_of_two(max(60 / width, 1));
1442 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
1443 lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
1444 ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
1446 for (group = 0; group < ai->nr_groups; group++) {
1447 const struct pcpu_group_info *gi = &ai->groups[group];
1448 int unit = 0, unit_end = 0;
1450 BUG_ON(gi->nr_units % upa);
1451 for (alloc_end += gi->nr_units / upa;
1452 alloc < alloc_end; alloc++) {
1453 if (!(alloc % apl)) {
1454 pr_cont("\n");
1455 printk("%spcpu-alloc: ", lvl);
1457 pr_cont("[%0*d] ", group_width, group);
1459 for (unit_end += upa; unit < unit_end; unit++)
1460 if (gi->cpu_map[unit] != NR_CPUS)
1461 pr_cont("%0*d ",
1462 cpu_width, gi->cpu_map[unit]);
1463 else
1464 pr_cont("%s ", empty_str);
1467 pr_cont("\n");
1471 * pcpu_setup_first_chunk - initialize the first percpu chunk
1472 * @ai: pcpu_alloc_info describing how to percpu area is shaped
1473 * @base_addr: mapped address
1475 * Initialize the first percpu chunk which contains the kernel static
1476 * perpcu area. This function is to be called from arch percpu area
1477 * setup path.
1479 * @ai contains all information necessary to initialize the first
1480 * chunk and prime the dynamic percpu allocator.
1482 * @ai->static_size is the size of static percpu area.
1484 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
1485 * reserve after the static area in the first chunk. This reserves
1486 * the first chunk such that it's available only through reserved
1487 * percpu allocation. This is primarily used to serve module percpu
1488 * static areas on architectures where the addressing model has
1489 * limited offset range for symbol relocations to guarantee module
1490 * percpu symbols fall inside the relocatable range.
1492 * @ai->dyn_size determines the number of bytes available for dynamic
1493 * allocation in the first chunk. The area between @ai->static_size +
1494 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
1496 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
1497 * and equal to or larger than @ai->static_size + @ai->reserved_size +
1498 * @ai->dyn_size.
1500 * @ai->atom_size is the allocation atom size and used as alignment
1501 * for vm areas.
1503 * @ai->alloc_size is the allocation size and always multiple of
1504 * @ai->atom_size. This is larger than @ai->atom_size if
1505 * @ai->unit_size is larger than @ai->atom_size.
1507 * @ai->nr_groups and @ai->groups describe virtual memory layout of
1508 * percpu areas. Units which should be colocated are put into the
1509 * same group. Dynamic VM areas will be allocated according to these
1510 * groupings. If @ai->nr_groups is zero, a single group containing
1511 * all units is assumed.
1513 * The caller should have mapped the first chunk at @base_addr and
1514 * copied static data to each unit.
1516 * If the first chunk ends up with both reserved and dynamic areas, it
1517 * is served by two chunks - one to serve the core static and reserved
1518 * areas and the other for the dynamic area. They share the same vm
1519 * and page map but uses different area allocation map to stay away
1520 * from each other. The latter chunk is circulated in the chunk slots
1521 * and available for dynamic allocation like any other chunks.
1523 * RETURNS:
1524 * 0 on success, -errno on failure.
1526 int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
1527 void *base_addr)
1529 static int smap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
1530 static int dmap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
1531 size_t dyn_size = ai->dyn_size;
1532 size_t size_sum = ai->static_size + ai->reserved_size + dyn_size;
1533 struct pcpu_chunk *schunk, *dchunk = NULL;
1534 unsigned long *group_offsets;
1535 size_t *group_sizes;
1536 unsigned long *unit_off;
1537 unsigned int cpu;
1538 int *unit_map;
1539 int group, unit, i;
1541 #define PCPU_SETUP_BUG_ON(cond) do { \
1542 if (unlikely(cond)) { \
1543 pr_emerg("failed to initialize, %s\n", #cond); \
1544 pr_emerg("cpu_possible_mask=%*pb\n", \
1545 cpumask_pr_args(cpu_possible_mask)); \
1546 pcpu_dump_alloc_info(KERN_EMERG, ai); \
1547 BUG(); \
1549 } while (0)
1551 /* sanity checks */
1552 PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
1553 #ifdef CONFIG_SMP
1554 PCPU_SETUP_BUG_ON(!ai->static_size);
1555 PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start));
1556 #endif
1557 PCPU_SETUP_BUG_ON(!base_addr);
1558 PCPU_SETUP_BUG_ON(offset_in_page(base_addr));
1559 PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
1560 PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size));
1561 PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
1562 PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
1563 PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
1565 /* process group information and build config tables accordingly */
1566 group_offsets = memblock_virt_alloc(ai->nr_groups *
1567 sizeof(group_offsets[0]), 0);
1568 group_sizes = memblock_virt_alloc(ai->nr_groups *
1569 sizeof(group_sizes[0]), 0);
1570 unit_map = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_map[0]), 0);
1571 unit_off = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_off[0]), 0);
1573 for (cpu = 0; cpu < nr_cpu_ids; cpu++)
1574 unit_map[cpu] = UINT_MAX;
1576 pcpu_low_unit_cpu = NR_CPUS;
1577 pcpu_high_unit_cpu = NR_CPUS;
1579 for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
1580 const struct pcpu_group_info *gi = &ai->groups[group];
1582 group_offsets[group] = gi->base_offset;
1583 group_sizes[group] = gi->nr_units * ai->unit_size;
1585 for (i = 0; i < gi->nr_units; i++) {
1586 cpu = gi->cpu_map[i];
1587 if (cpu == NR_CPUS)
1588 continue;
1590 PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids);
1591 PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
1592 PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
1594 unit_map[cpu] = unit + i;
1595 unit_off[cpu] = gi->base_offset + i * ai->unit_size;
1597 /* determine low/high unit_cpu */
1598 if (pcpu_low_unit_cpu == NR_CPUS ||
1599 unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
1600 pcpu_low_unit_cpu = cpu;
1601 if (pcpu_high_unit_cpu == NR_CPUS ||
1602 unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
1603 pcpu_high_unit_cpu = cpu;
1606 pcpu_nr_units = unit;
1608 for_each_possible_cpu(cpu)
1609 PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
1611 /* we're done parsing the input, undefine BUG macro and dump config */
1612 #undef PCPU_SETUP_BUG_ON
1613 pcpu_dump_alloc_info(KERN_DEBUG, ai);
1615 pcpu_nr_groups = ai->nr_groups;
1616 pcpu_group_offsets = group_offsets;
1617 pcpu_group_sizes = group_sizes;
1618 pcpu_unit_map = unit_map;
1619 pcpu_unit_offsets = unit_off;
1621 /* determine basic parameters */
1622 pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
1623 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
1624 pcpu_atom_size = ai->atom_size;
1625 pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
1626 BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
1629 * Allocate chunk slots. The additional last slot is for
1630 * empty chunks.
1632 pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
1633 pcpu_slot = memblock_virt_alloc(
1634 pcpu_nr_slots * sizeof(pcpu_slot[0]), 0);
1635 for (i = 0; i < pcpu_nr_slots; i++)
1636 INIT_LIST_HEAD(&pcpu_slot[i]);
1639 * Initialize static chunk. If reserved_size is zero, the
1640 * static chunk covers static area + dynamic allocation area
1641 * in the first chunk. If reserved_size is not zero, it
1642 * covers static area + reserved area (mostly used for module
1643 * static percpu allocation).
1645 schunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0);
1646 INIT_LIST_HEAD(&schunk->list);
1647 INIT_WORK(&schunk->map_extend_work, pcpu_map_extend_workfn);
1648 schunk->base_addr = base_addr;
1649 schunk->map = smap;
1650 schunk->map_alloc = ARRAY_SIZE(smap);
1651 schunk->immutable = true;
1652 bitmap_fill(schunk->populated, pcpu_unit_pages);
1653 schunk->nr_populated = pcpu_unit_pages;
1655 if (ai->reserved_size) {
1656 schunk->free_size = ai->reserved_size;
1657 pcpu_reserved_chunk = schunk;
1658 pcpu_reserved_chunk_limit = ai->static_size + ai->reserved_size;
1659 } else {
1660 schunk->free_size = dyn_size;
1661 dyn_size = 0; /* dynamic area covered */
1663 schunk->contig_hint = schunk->free_size;
1665 schunk->map[0] = 1;
1666 schunk->map[1] = ai->static_size;
1667 schunk->map_used = 1;
1668 if (schunk->free_size)
1669 schunk->map[++schunk->map_used] = ai->static_size + schunk->free_size;
1670 schunk->map[schunk->map_used] |= 1;
1672 /* init dynamic chunk if necessary */
1673 if (dyn_size) {
1674 dchunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0);
1675 INIT_LIST_HEAD(&dchunk->list);
1676 INIT_WORK(&dchunk->map_extend_work, pcpu_map_extend_workfn);
1677 dchunk->base_addr = base_addr;
1678 dchunk->map = dmap;
1679 dchunk->map_alloc = ARRAY_SIZE(dmap);
1680 dchunk->immutable = true;
1681 bitmap_fill(dchunk->populated, pcpu_unit_pages);
1682 dchunk->nr_populated = pcpu_unit_pages;
1684 dchunk->contig_hint = dchunk->free_size = dyn_size;
1685 dchunk->map[0] = 1;
1686 dchunk->map[1] = pcpu_reserved_chunk_limit;
1687 dchunk->map[2] = (pcpu_reserved_chunk_limit + dchunk->free_size) | 1;
1688 dchunk->map_used = 2;
1691 /* link the first chunk in */
1692 pcpu_first_chunk = dchunk ?: schunk;
1693 pcpu_nr_empty_pop_pages +=
1694 pcpu_count_occupied_pages(pcpu_first_chunk, 1);
1695 pcpu_chunk_relocate(pcpu_first_chunk, -1);
1697 /* we're done */
1698 pcpu_base_addr = base_addr;
1699 return 0;
1702 #ifdef CONFIG_SMP
1704 const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
1705 [PCPU_FC_AUTO] = "auto",
1706 [PCPU_FC_EMBED] = "embed",
1707 [PCPU_FC_PAGE] = "page",
1710 enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
1712 static int __init percpu_alloc_setup(char *str)
1714 if (!str)
1715 return -EINVAL;
1717 if (0)
1718 /* nada */;
1719 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
1720 else if (!strcmp(str, "embed"))
1721 pcpu_chosen_fc = PCPU_FC_EMBED;
1722 #endif
1723 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1724 else if (!strcmp(str, "page"))
1725 pcpu_chosen_fc = PCPU_FC_PAGE;
1726 #endif
1727 else
1728 pr_warn("unknown allocator %s specified\n", str);
1730 return 0;
1732 early_param("percpu_alloc", percpu_alloc_setup);
1735 * pcpu_embed_first_chunk() is used by the generic percpu setup.
1736 * Build it if needed by the arch config or the generic setup is going
1737 * to be used.
1739 #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
1740 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
1741 #define BUILD_EMBED_FIRST_CHUNK
1742 #endif
1744 /* build pcpu_page_first_chunk() iff needed by the arch config */
1745 #if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
1746 #define BUILD_PAGE_FIRST_CHUNK
1747 #endif
1749 /* pcpu_build_alloc_info() is used by both embed and page first chunk */
1750 #if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
1752 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
1753 * @reserved_size: the size of reserved percpu area in bytes
1754 * @dyn_size: minimum free size for dynamic allocation in bytes
1755 * @atom_size: allocation atom size
1756 * @cpu_distance_fn: callback to determine distance between cpus, optional
1758 * This function determines grouping of units, their mappings to cpus
1759 * and other parameters considering needed percpu size, allocation
1760 * atom size and distances between CPUs.
1762 * Groups are always multiples of atom size and CPUs which are of
1763 * LOCAL_DISTANCE both ways are grouped together and share space for
1764 * units in the same group. The returned configuration is guaranteed
1765 * to have CPUs on different nodes on different groups and >=75% usage
1766 * of allocated virtual address space.
1768 * RETURNS:
1769 * On success, pointer to the new allocation_info is returned. On
1770 * failure, ERR_PTR value is returned.
1772 static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
1773 size_t reserved_size, size_t dyn_size,
1774 size_t atom_size,
1775 pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
1777 static int group_map[NR_CPUS] __initdata;
1778 static int group_cnt[NR_CPUS] __initdata;
1779 const size_t static_size = __per_cpu_end - __per_cpu_start;
1780 int nr_groups = 1, nr_units = 0;
1781 size_t size_sum, min_unit_size, alloc_size;
1782 int upa, max_upa, uninitialized_var(best_upa); /* units_per_alloc */
1783 int last_allocs, group, unit;
1784 unsigned int cpu, tcpu;
1785 struct pcpu_alloc_info *ai;
1786 unsigned int *cpu_map;
1788 /* this function may be called multiple times */
1789 memset(group_map, 0, sizeof(group_map));
1790 memset(group_cnt, 0, sizeof(group_cnt));
1792 /* calculate size_sum and ensure dyn_size is enough for early alloc */
1793 size_sum = PFN_ALIGN(static_size + reserved_size +
1794 max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
1795 dyn_size = size_sum - static_size - reserved_size;
1798 * Determine min_unit_size, alloc_size and max_upa such that
1799 * alloc_size is multiple of atom_size and is the smallest
1800 * which can accommodate 4k aligned segments which are equal to
1801 * or larger than min_unit_size.
1803 min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
1805 alloc_size = roundup(min_unit_size, atom_size);
1806 upa = alloc_size / min_unit_size;
1807 while (alloc_size % upa || (offset_in_page(alloc_size / upa)))
1808 upa--;
1809 max_upa = upa;
1811 /* group cpus according to their proximity */
1812 for_each_possible_cpu(cpu) {
1813 group = 0;
1814 next_group:
1815 for_each_possible_cpu(tcpu) {
1816 if (cpu == tcpu)
1817 break;
1818 if (group_map[tcpu] == group && cpu_distance_fn &&
1819 (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
1820 cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
1821 group++;
1822 nr_groups = max(nr_groups, group + 1);
1823 goto next_group;
1826 group_map[cpu] = group;
1827 group_cnt[group]++;
1831 * Expand unit size until address space usage goes over 75%
1832 * and then as much as possible without using more address
1833 * space.
1835 last_allocs = INT_MAX;
1836 for (upa = max_upa; upa; upa--) {
1837 int allocs = 0, wasted = 0;
1839 if (alloc_size % upa || (offset_in_page(alloc_size / upa)))
1840 continue;
1842 for (group = 0; group < nr_groups; group++) {
1843 int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
1844 allocs += this_allocs;
1845 wasted += this_allocs * upa - group_cnt[group];
1849 * Don't accept if wastage is over 1/3. The
1850 * greater-than comparison ensures upa==1 always
1851 * passes the following check.
1853 if (wasted > num_possible_cpus() / 3)
1854 continue;
1856 /* and then don't consume more memory */
1857 if (allocs > last_allocs)
1858 break;
1859 last_allocs = allocs;
1860 best_upa = upa;
1862 upa = best_upa;
1864 /* allocate and fill alloc_info */
1865 for (group = 0; group < nr_groups; group++)
1866 nr_units += roundup(group_cnt[group], upa);
1868 ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
1869 if (!ai)
1870 return ERR_PTR(-ENOMEM);
1871 cpu_map = ai->groups[0].cpu_map;
1873 for (group = 0; group < nr_groups; group++) {
1874 ai->groups[group].cpu_map = cpu_map;
1875 cpu_map += roundup(group_cnt[group], upa);
1878 ai->static_size = static_size;
1879 ai->reserved_size = reserved_size;
1880 ai->dyn_size = dyn_size;
1881 ai->unit_size = alloc_size / upa;
1882 ai->atom_size = atom_size;
1883 ai->alloc_size = alloc_size;
1885 for (group = 0, unit = 0; group_cnt[group]; group++) {
1886 struct pcpu_group_info *gi = &ai->groups[group];
1889 * Initialize base_offset as if all groups are located
1890 * back-to-back. The caller should update this to
1891 * reflect actual allocation.
1893 gi->base_offset = unit * ai->unit_size;
1895 for_each_possible_cpu(cpu)
1896 if (group_map[cpu] == group)
1897 gi->cpu_map[gi->nr_units++] = cpu;
1898 gi->nr_units = roundup(gi->nr_units, upa);
1899 unit += gi->nr_units;
1901 BUG_ON(unit != nr_units);
1903 return ai;
1905 #endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
1907 #if defined(BUILD_EMBED_FIRST_CHUNK)
1909 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
1910 * @reserved_size: the size of reserved percpu area in bytes
1911 * @dyn_size: minimum free size for dynamic allocation in bytes
1912 * @atom_size: allocation atom size
1913 * @cpu_distance_fn: callback to determine distance between cpus, optional
1914 * @alloc_fn: function to allocate percpu page
1915 * @free_fn: function to free percpu page
1917 * This is a helper to ease setting up embedded first percpu chunk and
1918 * can be called where pcpu_setup_first_chunk() is expected.
1920 * If this function is used to setup the first chunk, it is allocated
1921 * by calling @alloc_fn and used as-is without being mapped into
1922 * vmalloc area. Allocations are always whole multiples of @atom_size
1923 * aligned to @atom_size.
1925 * This enables the first chunk to piggy back on the linear physical
1926 * mapping which often uses larger page size. Please note that this
1927 * can result in very sparse cpu->unit mapping on NUMA machines thus
1928 * requiring large vmalloc address space. Don't use this allocator if
1929 * vmalloc space is not orders of magnitude larger than distances
1930 * between node memory addresses (ie. 32bit NUMA machines).
1932 * @dyn_size specifies the minimum dynamic area size.
1934 * If the needed size is smaller than the minimum or specified unit
1935 * size, the leftover is returned using @free_fn.
1937 * RETURNS:
1938 * 0 on success, -errno on failure.
1940 int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
1941 size_t atom_size,
1942 pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
1943 pcpu_fc_alloc_fn_t alloc_fn,
1944 pcpu_fc_free_fn_t free_fn)
1946 void *base = (void *)ULONG_MAX;
1947 void **areas = NULL;
1948 struct pcpu_alloc_info *ai;
1949 size_t size_sum, areas_size, max_distance;
1950 int group, i, rc;
1952 ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
1953 cpu_distance_fn);
1954 if (IS_ERR(ai))
1955 return PTR_ERR(ai);
1957 size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
1958 areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
1960 areas = memblock_virt_alloc_nopanic(areas_size, 0);
1961 if (!areas) {
1962 rc = -ENOMEM;
1963 goto out_free;
1966 /* allocate, copy and determine base address */
1967 for (group = 0; group < ai->nr_groups; group++) {
1968 struct pcpu_group_info *gi = &ai->groups[group];
1969 unsigned int cpu = NR_CPUS;
1970 void *ptr;
1972 for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
1973 cpu = gi->cpu_map[i];
1974 BUG_ON(cpu == NR_CPUS);
1976 /* allocate space for the whole group */
1977 ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
1978 if (!ptr) {
1979 rc = -ENOMEM;
1980 goto out_free_areas;
1982 /* kmemleak tracks the percpu allocations separately */
1983 kmemleak_free(ptr);
1984 areas[group] = ptr;
1986 base = min(ptr, base);
1990 * Copy data and free unused parts. This should happen after all
1991 * allocations are complete; otherwise, we may end up with
1992 * overlapping groups.
1994 for (group = 0; group < ai->nr_groups; group++) {
1995 struct pcpu_group_info *gi = &ai->groups[group];
1996 void *ptr = areas[group];
1998 for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
1999 if (gi->cpu_map[i] == NR_CPUS) {
2000 /* unused unit, free whole */
2001 free_fn(ptr, ai->unit_size);
2002 continue;
2004 /* copy and return the unused part */
2005 memcpy(ptr, __per_cpu_load, ai->static_size);
2006 free_fn(ptr + size_sum, ai->unit_size - size_sum);
2010 /* base address is now known, determine group base offsets */
2011 max_distance = 0;
2012 for (group = 0; group < ai->nr_groups; group++) {
2013 ai->groups[group].base_offset = areas[group] - base;
2014 max_distance = max_t(size_t, max_distance,
2015 ai->groups[group].base_offset);
2017 max_distance += ai->unit_size;
2019 /* warn if maximum distance is further than 75% of vmalloc space */
2020 if (max_distance > VMALLOC_TOTAL * 3 / 4) {
2021 pr_warn("max_distance=0x%zx too large for vmalloc space 0x%lx\n",
2022 max_distance, VMALLOC_TOTAL);
2023 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2024 /* and fail if we have fallback */
2025 rc = -EINVAL;
2026 goto out_free;
2027 #endif
2030 pr_info("Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
2031 PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
2032 ai->dyn_size, ai->unit_size);
2034 rc = pcpu_setup_first_chunk(ai, base);
2035 goto out_free;
2037 out_free_areas:
2038 for (group = 0; group < ai->nr_groups; group++)
2039 if (areas[group])
2040 free_fn(areas[group],
2041 ai->groups[group].nr_units * ai->unit_size);
2042 out_free:
2043 pcpu_free_alloc_info(ai);
2044 if (areas)
2045 memblock_free_early(__pa(areas), areas_size);
2046 return rc;
2048 #endif /* BUILD_EMBED_FIRST_CHUNK */
2050 #ifdef BUILD_PAGE_FIRST_CHUNK
2052 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
2053 * @reserved_size: the size of reserved percpu area in bytes
2054 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
2055 * @free_fn: function to free percpu page, always called with PAGE_SIZE
2056 * @populate_pte_fn: function to populate pte
2058 * This is a helper to ease setting up page-remapped first percpu
2059 * chunk and can be called where pcpu_setup_first_chunk() is expected.
2061 * This is the basic allocator. Static percpu area is allocated
2062 * page-by-page into vmalloc area.
2064 * RETURNS:
2065 * 0 on success, -errno on failure.
2067 int __init pcpu_page_first_chunk(size_t reserved_size,
2068 pcpu_fc_alloc_fn_t alloc_fn,
2069 pcpu_fc_free_fn_t free_fn,
2070 pcpu_fc_populate_pte_fn_t populate_pte_fn)
2072 static struct vm_struct vm;
2073 struct pcpu_alloc_info *ai;
2074 char psize_str[16];
2075 int unit_pages;
2076 size_t pages_size;
2077 struct page **pages;
2078 int unit, i, j, rc;
2080 snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
2082 ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
2083 if (IS_ERR(ai))
2084 return PTR_ERR(ai);
2085 BUG_ON(ai->nr_groups != 1);
2086 BUG_ON(ai->groups[0].nr_units != num_possible_cpus());
2088 unit_pages = ai->unit_size >> PAGE_SHIFT;
2090 /* unaligned allocations can't be freed, round up to page size */
2091 pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
2092 sizeof(pages[0]));
2093 pages = memblock_virt_alloc(pages_size, 0);
2095 /* allocate pages */
2096 j = 0;
2097 for (unit = 0; unit < num_possible_cpus(); unit++)
2098 for (i = 0; i < unit_pages; i++) {
2099 unsigned int cpu = ai->groups[0].cpu_map[unit];
2100 void *ptr;
2102 ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
2103 if (!ptr) {
2104 pr_warn("failed to allocate %s page for cpu%u\n",
2105 psize_str, cpu);
2106 goto enomem;
2108 /* kmemleak tracks the percpu allocations separately */
2109 kmemleak_free(ptr);
2110 pages[j++] = virt_to_page(ptr);
2113 /* allocate vm area, map the pages and copy static data */
2114 vm.flags = VM_ALLOC;
2115 vm.size = num_possible_cpus() * ai->unit_size;
2116 vm_area_register_early(&vm, PAGE_SIZE);
2118 for (unit = 0; unit < num_possible_cpus(); unit++) {
2119 unsigned long unit_addr =
2120 (unsigned long)vm.addr + unit * ai->unit_size;
2122 for (i = 0; i < unit_pages; i++)
2123 populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
2125 /* pte already populated, the following shouldn't fail */
2126 rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
2127 unit_pages);
2128 if (rc < 0)
2129 panic("failed to map percpu area, err=%d\n", rc);
2132 * FIXME: Archs with virtual cache should flush local
2133 * cache for the linear mapping here - something
2134 * equivalent to flush_cache_vmap() on the local cpu.
2135 * flush_cache_vmap() can't be used as most supporting
2136 * data structures are not set up yet.
2139 /* copy static data */
2140 memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
2143 /* we're ready, commit */
2144 pr_info("%d %s pages/cpu @%p s%zu r%zu d%zu\n",
2145 unit_pages, psize_str, vm.addr, ai->static_size,
2146 ai->reserved_size, ai->dyn_size);
2148 rc = pcpu_setup_first_chunk(ai, vm.addr);
2149 goto out_free_ar;
2151 enomem:
2152 while (--j >= 0)
2153 free_fn(page_address(pages[j]), PAGE_SIZE);
2154 rc = -ENOMEM;
2155 out_free_ar:
2156 memblock_free_early(__pa(pages), pages_size);
2157 pcpu_free_alloc_info(ai);
2158 return rc;
2160 #endif /* BUILD_PAGE_FIRST_CHUNK */
2162 #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
2164 * Generic SMP percpu area setup.
2166 * The embedding helper is used because its behavior closely resembles
2167 * the original non-dynamic generic percpu area setup. This is
2168 * important because many archs have addressing restrictions and might
2169 * fail if the percpu area is located far away from the previous
2170 * location. As an added bonus, in non-NUMA cases, embedding is
2171 * generally a good idea TLB-wise because percpu area can piggy back
2172 * on the physical linear memory mapping which uses large page
2173 * mappings on applicable archs.
2175 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
2176 EXPORT_SYMBOL(__per_cpu_offset);
2178 static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
2179 size_t align)
2181 return memblock_virt_alloc_from_nopanic(
2182 size, align, __pa(MAX_DMA_ADDRESS));
2185 static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
2187 memblock_free_early(__pa(ptr), size);
2190 void __init setup_per_cpu_areas(void)
2192 unsigned long delta;
2193 unsigned int cpu;
2194 int rc;
2197 * Always reserve area for module percpu variables. That's
2198 * what the legacy allocator did.
2200 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
2201 PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
2202 pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
2203 if (rc < 0)
2204 panic("Failed to initialize percpu areas.");
2206 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
2207 for_each_possible_cpu(cpu)
2208 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
2210 #endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */
2212 #else /* CONFIG_SMP */
2215 * UP percpu area setup.
2217 * UP always uses km-based percpu allocator with identity mapping.
2218 * Static percpu variables are indistinguishable from the usual static
2219 * variables and don't require any special preparation.
2221 void __init setup_per_cpu_areas(void)
2223 const size_t unit_size =
2224 roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
2225 PERCPU_DYNAMIC_RESERVE));
2226 struct pcpu_alloc_info *ai;
2227 void *fc;
2229 ai = pcpu_alloc_alloc_info(1, 1);
2230 fc = memblock_virt_alloc_from_nopanic(unit_size,
2231 PAGE_SIZE,
2232 __pa(MAX_DMA_ADDRESS));
2233 if (!ai || !fc)
2234 panic("Failed to allocate memory for percpu areas.");
2235 /* kmemleak tracks the percpu allocations separately */
2236 kmemleak_free(fc);
2238 ai->dyn_size = unit_size;
2239 ai->unit_size = unit_size;
2240 ai->atom_size = unit_size;
2241 ai->alloc_size = unit_size;
2242 ai->groups[0].nr_units = 1;
2243 ai->groups[0].cpu_map[0] = 0;
2245 if (pcpu_setup_first_chunk(ai, fc) < 0)
2246 panic("Failed to initialize percpu areas.");
2249 #endif /* CONFIG_SMP */
2252 * First and reserved chunks are initialized with temporary allocation
2253 * map in initdata so that they can be used before slab is online.
2254 * This function is called after slab is brought up and replaces those
2255 * with properly allocated maps.
2257 void __init percpu_init_late(void)
2259 struct pcpu_chunk *target_chunks[] =
2260 { pcpu_first_chunk, pcpu_reserved_chunk, NULL };
2261 struct pcpu_chunk *chunk;
2262 unsigned long flags;
2263 int i;
2265 for (i = 0; (chunk = target_chunks[i]); i++) {
2266 int *map;
2267 const size_t size = PERCPU_DYNAMIC_EARLY_SLOTS * sizeof(map[0]);
2269 BUILD_BUG_ON(size > PAGE_SIZE);
2271 map = pcpu_mem_zalloc(size);
2272 BUG_ON(!map);
2274 spin_lock_irqsave(&pcpu_lock, flags);
2275 memcpy(map, chunk->map, size);
2276 chunk->map = map;
2277 spin_unlock_irqrestore(&pcpu_lock, flags);
2282 * Percpu allocator is initialized early during boot when neither slab or
2283 * workqueue is available. Plug async management until everything is up
2284 * and running.
2286 static int __init percpu_enable_async(void)
2288 pcpu_async_enabled = true;
2289 return 0;
2291 subsys_initcall(percpu_enable_async);