thermal: fix Mediatek thermal controller build
[linux/fpc-iii.git] / mm / shmem.c
blob719bd6b88d98eaf0958ec57ddb152f22de0f74d0
1 /*
2 * Resizable virtual memory filesystem for Linux.
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
21 * This file is released under the GPL.
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/uio.h>
36 static struct vfsmount *shm_mnt;
38 #ifdef CONFIG_SHMEM
40 * This virtual memory filesystem is heavily based on the ramfs. It
41 * extends ramfs by the ability to use swap and honor resource limits
42 * which makes it a completely usable filesystem.
45 #include <linux/xattr.h>
46 #include <linux/exportfs.h>
47 #include <linux/posix_acl.h>
48 #include <linux/posix_acl_xattr.h>
49 #include <linux/mman.h>
50 #include <linux/string.h>
51 #include <linux/slab.h>
52 #include <linux/backing-dev.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/writeback.h>
55 #include <linux/blkdev.h>
56 #include <linux/pagevec.h>
57 #include <linux/percpu_counter.h>
58 #include <linux/falloc.h>
59 #include <linux/splice.h>
60 #include <linux/security.h>
61 #include <linux/swapops.h>
62 #include <linux/mempolicy.h>
63 #include <linux/namei.h>
64 #include <linux/ctype.h>
65 #include <linux/migrate.h>
66 #include <linux/highmem.h>
67 #include <linux/seq_file.h>
68 #include <linux/magic.h>
69 #include <linux/syscalls.h>
70 #include <linux/fcntl.h>
71 #include <uapi/linux/memfd.h>
73 #include <asm/uaccess.h>
74 #include <asm/pgtable.h>
76 #include "internal.h"
78 #define BLOCKS_PER_PAGE (PAGE_SIZE/512)
79 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
81 /* Pretend that each entry is of this size in directory's i_size */
82 #define BOGO_DIRENT_SIZE 20
84 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
85 #define SHORT_SYMLINK_LEN 128
88 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
89 * inode->i_private (with i_mutex making sure that it has only one user at
90 * a time): we would prefer not to enlarge the shmem inode just for that.
92 struct shmem_falloc {
93 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
94 pgoff_t start; /* start of range currently being fallocated */
95 pgoff_t next; /* the next page offset to be fallocated */
96 pgoff_t nr_falloced; /* how many new pages have been fallocated */
97 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
100 /* Flag allocation requirements to shmem_getpage */
101 enum sgp_type {
102 SGP_READ, /* don't exceed i_size, don't allocate page */
103 SGP_CACHE, /* don't exceed i_size, may allocate page */
104 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */
105 SGP_WRITE, /* may exceed i_size, may allocate !Uptodate page */
106 SGP_FALLOC, /* like SGP_WRITE, but make existing page Uptodate */
109 #ifdef CONFIG_TMPFS
110 static unsigned long shmem_default_max_blocks(void)
112 return totalram_pages / 2;
115 static unsigned long shmem_default_max_inodes(void)
117 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
119 #endif
121 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
122 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
123 struct shmem_inode_info *info, pgoff_t index);
124 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
125 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
127 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
128 struct page **pagep, enum sgp_type sgp, int *fault_type)
130 return shmem_getpage_gfp(inode, index, pagep, sgp,
131 mapping_gfp_mask(inode->i_mapping), fault_type);
134 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
136 return sb->s_fs_info;
140 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
141 * for shared memory and for shared anonymous (/dev/zero) mappings
142 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
143 * consistent with the pre-accounting of private mappings ...
145 static inline int shmem_acct_size(unsigned long flags, loff_t size)
147 return (flags & VM_NORESERVE) ?
148 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
151 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
153 if (!(flags & VM_NORESERVE))
154 vm_unacct_memory(VM_ACCT(size));
157 static inline int shmem_reacct_size(unsigned long flags,
158 loff_t oldsize, loff_t newsize)
160 if (!(flags & VM_NORESERVE)) {
161 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
162 return security_vm_enough_memory_mm(current->mm,
163 VM_ACCT(newsize) - VM_ACCT(oldsize));
164 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
165 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
167 return 0;
171 * ... whereas tmpfs objects are accounted incrementally as
172 * pages are allocated, in order to allow huge sparse files.
173 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
174 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
176 static inline int shmem_acct_block(unsigned long flags)
178 return (flags & VM_NORESERVE) ?
179 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_SIZE)) : 0;
182 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
184 if (flags & VM_NORESERVE)
185 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
188 static const struct super_operations shmem_ops;
189 static const struct address_space_operations shmem_aops;
190 static const struct file_operations shmem_file_operations;
191 static const struct inode_operations shmem_inode_operations;
192 static const struct inode_operations shmem_dir_inode_operations;
193 static const struct inode_operations shmem_special_inode_operations;
194 static const struct vm_operations_struct shmem_vm_ops;
196 static LIST_HEAD(shmem_swaplist);
197 static DEFINE_MUTEX(shmem_swaplist_mutex);
199 static int shmem_reserve_inode(struct super_block *sb)
201 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
202 if (sbinfo->max_inodes) {
203 spin_lock(&sbinfo->stat_lock);
204 if (!sbinfo->free_inodes) {
205 spin_unlock(&sbinfo->stat_lock);
206 return -ENOSPC;
208 sbinfo->free_inodes--;
209 spin_unlock(&sbinfo->stat_lock);
211 return 0;
214 static void shmem_free_inode(struct super_block *sb)
216 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
217 if (sbinfo->max_inodes) {
218 spin_lock(&sbinfo->stat_lock);
219 sbinfo->free_inodes++;
220 spin_unlock(&sbinfo->stat_lock);
225 * shmem_recalc_inode - recalculate the block usage of an inode
226 * @inode: inode to recalc
228 * We have to calculate the free blocks since the mm can drop
229 * undirtied hole pages behind our back.
231 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
232 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
234 * It has to be called with the spinlock held.
236 static void shmem_recalc_inode(struct inode *inode)
238 struct shmem_inode_info *info = SHMEM_I(inode);
239 long freed;
241 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
242 if (freed > 0) {
243 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
244 if (sbinfo->max_blocks)
245 percpu_counter_add(&sbinfo->used_blocks, -freed);
246 info->alloced -= freed;
247 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
248 shmem_unacct_blocks(info->flags, freed);
253 * Replace item expected in radix tree by a new item, while holding tree lock.
255 static int shmem_radix_tree_replace(struct address_space *mapping,
256 pgoff_t index, void *expected, void *replacement)
258 void **pslot;
259 void *item;
261 VM_BUG_ON(!expected);
262 VM_BUG_ON(!replacement);
263 pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
264 if (!pslot)
265 return -ENOENT;
266 item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
267 if (item != expected)
268 return -ENOENT;
269 radix_tree_replace_slot(pslot, replacement);
270 return 0;
274 * Sometimes, before we decide whether to proceed or to fail, we must check
275 * that an entry was not already brought back from swap by a racing thread.
277 * Checking page is not enough: by the time a SwapCache page is locked, it
278 * might be reused, and again be SwapCache, using the same swap as before.
280 static bool shmem_confirm_swap(struct address_space *mapping,
281 pgoff_t index, swp_entry_t swap)
283 void *item;
285 rcu_read_lock();
286 item = radix_tree_lookup(&mapping->page_tree, index);
287 rcu_read_unlock();
288 return item == swp_to_radix_entry(swap);
292 * Like add_to_page_cache_locked, but error if expected item has gone.
294 static int shmem_add_to_page_cache(struct page *page,
295 struct address_space *mapping,
296 pgoff_t index, void *expected)
298 int error;
300 VM_BUG_ON_PAGE(!PageLocked(page), page);
301 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
303 get_page(page);
304 page->mapping = mapping;
305 page->index = index;
307 spin_lock_irq(&mapping->tree_lock);
308 if (!expected)
309 error = radix_tree_insert(&mapping->page_tree, index, page);
310 else
311 error = shmem_radix_tree_replace(mapping, index, expected,
312 page);
313 if (!error) {
314 mapping->nrpages++;
315 __inc_zone_page_state(page, NR_FILE_PAGES);
316 __inc_zone_page_state(page, NR_SHMEM);
317 spin_unlock_irq(&mapping->tree_lock);
318 } else {
319 page->mapping = NULL;
320 spin_unlock_irq(&mapping->tree_lock);
321 put_page(page);
323 return error;
327 * Like delete_from_page_cache, but substitutes swap for page.
329 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
331 struct address_space *mapping = page->mapping;
332 int error;
334 spin_lock_irq(&mapping->tree_lock);
335 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
336 page->mapping = NULL;
337 mapping->nrpages--;
338 __dec_zone_page_state(page, NR_FILE_PAGES);
339 __dec_zone_page_state(page, NR_SHMEM);
340 spin_unlock_irq(&mapping->tree_lock);
341 put_page(page);
342 BUG_ON(error);
346 * Remove swap entry from radix tree, free the swap and its page cache.
348 static int shmem_free_swap(struct address_space *mapping,
349 pgoff_t index, void *radswap)
351 void *old;
353 spin_lock_irq(&mapping->tree_lock);
354 old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
355 spin_unlock_irq(&mapping->tree_lock);
356 if (old != radswap)
357 return -ENOENT;
358 free_swap_and_cache(radix_to_swp_entry(radswap));
359 return 0;
363 * Determine (in bytes) how many of the shmem object's pages mapped by the
364 * given offsets are swapped out.
366 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
367 * as long as the inode doesn't go away and racy results are not a problem.
369 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
370 pgoff_t start, pgoff_t end)
372 struct radix_tree_iter iter;
373 void **slot;
374 struct page *page;
375 unsigned long swapped = 0;
377 rcu_read_lock();
379 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
380 if (iter.index >= end)
381 break;
383 page = radix_tree_deref_slot(slot);
385 if (radix_tree_deref_retry(page)) {
386 slot = radix_tree_iter_retry(&iter);
387 continue;
390 if (radix_tree_exceptional_entry(page))
391 swapped++;
393 if (need_resched()) {
394 cond_resched_rcu();
395 slot = radix_tree_iter_next(&iter);
399 rcu_read_unlock();
401 return swapped << PAGE_SHIFT;
405 * Determine (in bytes) how many of the shmem object's pages mapped by the
406 * given vma is swapped out.
408 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
409 * as long as the inode doesn't go away and racy results are not a problem.
411 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
413 struct inode *inode = file_inode(vma->vm_file);
414 struct shmem_inode_info *info = SHMEM_I(inode);
415 struct address_space *mapping = inode->i_mapping;
416 unsigned long swapped;
418 /* Be careful as we don't hold info->lock */
419 swapped = READ_ONCE(info->swapped);
422 * The easier cases are when the shmem object has nothing in swap, or
423 * the vma maps it whole. Then we can simply use the stats that we
424 * already track.
426 if (!swapped)
427 return 0;
429 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
430 return swapped << PAGE_SHIFT;
432 /* Here comes the more involved part */
433 return shmem_partial_swap_usage(mapping,
434 linear_page_index(vma, vma->vm_start),
435 linear_page_index(vma, vma->vm_end));
439 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
441 void shmem_unlock_mapping(struct address_space *mapping)
443 struct pagevec pvec;
444 pgoff_t indices[PAGEVEC_SIZE];
445 pgoff_t index = 0;
447 pagevec_init(&pvec, 0);
449 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
451 while (!mapping_unevictable(mapping)) {
453 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
454 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
456 pvec.nr = find_get_entries(mapping, index,
457 PAGEVEC_SIZE, pvec.pages, indices);
458 if (!pvec.nr)
459 break;
460 index = indices[pvec.nr - 1] + 1;
461 pagevec_remove_exceptionals(&pvec);
462 check_move_unevictable_pages(pvec.pages, pvec.nr);
463 pagevec_release(&pvec);
464 cond_resched();
469 * Remove range of pages and swap entries from radix tree, and free them.
470 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
472 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
473 bool unfalloc)
475 struct address_space *mapping = inode->i_mapping;
476 struct shmem_inode_info *info = SHMEM_I(inode);
477 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
478 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
479 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
480 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
481 struct pagevec pvec;
482 pgoff_t indices[PAGEVEC_SIZE];
483 long nr_swaps_freed = 0;
484 pgoff_t index;
485 int i;
487 if (lend == -1)
488 end = -1; /* unsigned, so actually very big */
490 pagevec_init(&pvec, 0);
491 index = start;
492 while (index < end) {
493 pvec.nr = find_get_entries(mapping, index,
494 min(end - index, (pgoff_t)PAGEVEC_SIZE),
495 pvec.pages, indices);
496 if (!pvec.nr)
497 break;
498 for (i = 0; i < pagevec_count(&pvec); i++) {
499 struct page *page = pvec.pages[i];
501 index = indices[i];
502 if (index >= end)
503 break;
505 if (radix_tree_exceptional_entry(page)) {
506 if (unfalloc)
507 continue;
508 nr_swaps_freed += !shmem_free_swap(mapping,
509 index, page);
510 continue;
513 if (!trylock_page(page))
514 continue;
515 if (!unfalloc || !PageUptodate(page)) {
516 if (page->mapping == mapping) {
517 VM_BUG_ON_PAGE(PageWriteback(page), page);
518 truncate_inode_page(mapping, page);
521 unlock_page(page);
523 pagevec_remove_exceptionals(&pvec);
524 pagevec_release(&pvec);
525 cond_resched();
526 index++;
529 if (partial_start) {
530 struct page *page = NULL;
531 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
532 if (page) {
533 unsigned int top = PAGE_SIZE;
534 if (start > end) {
535 top = partial_end;
536 partial_end = 0;
538 zero_user_segment(page, partial_start, top);
539 set_page_dirty(page);
540 unlock_page(page);
541 put_page(page);
544 if (partial_end) {
545 struct page *page = NULL;
546 shmem_getpage(inode, end, &page, SGP_READ, NULL);
547 if (page) {
548 zero_user_segment(page, 0, partial_end);
549 set_page_dirty(page);
550 unlock_page(page);
551 put_page(page);
554 if (start >= end)
555 return;
557 index = start;
558 while (index < end) {
559 cond_resched();
561 pvec.nr = find_get_entries(mapping, index,
562 min(end - index, (pgoff_t)PAGEVEC_SIZE),
563 pvec.pages, indices);
564 if (!pvec.nr) {
565 /* If all gone or hole-punch or unfalloc, we're done */
566 if (index == start || end != -1)
567 break;
568 /* But if truncating, restart to make sure all gone */
569 index = start;
570 continue;
572 for (i = 0; i < pagevec_count(&pvec); i++) {
573 struct page *page = pvec.pages[i];
575 index = indices[i];
576 if (index >= end)
577 break;
579 if (radix_tree_exceptional_entry(page)) {
580 if (unfalloc)
581 continue;
582 if (shmem_free_swap(mapping, index, page)) {
583 /* Swap was replaced by page: retry */
584 index--;
585 break;
587 nr_swaps_freed++;
588 continue;
591 lock_page(page);
592 if (!unfalloc || !PageUptodate(page)) {
593 if (page->mapping == mapping) {
594 VM_BUG_ON_PAGE(PageWriteback(page), page);
595 truncate_inode_page(mapping, page);
596 } else {
597 /* Page was replaced by swap: retry */
598 unlock_page(page);
599 index--;
600 break;
603 unlock_page(page);
605 pagevec_remove_exceptionals(&pvec);
606 pagevec_release(&pvec);
607 index++;
610 spin_lock(&info->lock);
611 info->swapped -= nr_swaps_freed;
612 shmem_recalc_inode(inode);
613 spin_unlock(&info->lock);
616 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
618 shmem_undo_range(inode, lstart, lend, false);
619 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
621 EXPORT_SYMBOL_GPL(shmem_truncate_range);
623 static int shmem_getattr(struct vfsmount *mnt, struct dentry *dentry,
624 struct kstat *stat)
626 struct inode *inode = dentry->d_inode;
627 struct shmem_inode_info *info = SHMEM_I(inode);
629 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
630 spin_lock(&info->lock);
631 shmem_recalc_inode(inode);
632 spin_unlock(&info->lock);
634 generic_fillattr(inode, stat);
635 return 0;
638 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
640 struct inode *inode = d_inode(dentry);
641 struct shmem_inode_info *info = SHMEM_I(inode);
642 int error;
644 error = inode_change_ok(inode, attr);
645 if (error)
646 return error;
648 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
649 loff_t oldsize = inode->i_size;
650 loff_t newsize = attr->ia_size;
652 /* protected by i_mutex */
653 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
654 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
655 return -EPERM;
657 if (newsize != oldsize) {
658 error = shmem_reacct_size(SHMEM_I(inode)->flags,
659 oldsize, newsize);
660 if (error)
661 return error;
662 i_size_write(inode, newsize);
663 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
665 if (newsize <= oldsize) {
666 loff_t holebegin = round_up(newsize, PAGE_SIZE);
667 if (oldsize > holebegin)
668 unmap_mapping_range(inode->i_mapping,
669 holebegin, 0, 1);
670 if (info->alloced)
671 shmem_truncate_range(inode,
672 newsize, (loff_t)-1);
673 /* unmap again to remove racily COWed private pages */
674 if (oldsize > holebegin)
675 unmap_mapping_range(inode->i_mapping,
676 holebegin, 0, 1);
680 setattr_copy(inode, attr);
681 if (attr->ia_valid & ATTR_MODE)
682 error = posix_acl_chmod(inode, inode->i_mode);
683 return error;
686 static void shmem_evict_inode(struct inode *inode)
688 struct shmem_inode_info *info = SHMEM_I(inode);
690 if (inode->i_mapping->a_ops == &shmem_aops) {
691 shmem_unacct_size(info->flags, inode->i_size);
692 inode->i_size = 0;
693 shmem_truncate_range(inode, 0, (loff_t)-1);
694 if (!list_empty(&info->swaplist)) {
695 mutex_lock(&shmem_swaplist_mutex);
696 list_del_init(&info->swaplist);
697 mutex_unlock(&shmem_swaplist_mutex);
701 simple_xattrs_free(&info->xattrs);
702 WARN_ON(inode->i_blocks);
703 shmem_free_inode(inode->i_sb);
704 clear_inode(inode);
708 * If swap found in inode, free it and move page from swapcache to filecache.
710 static int shmem_unuse_inode(struct shmem_inode_info *info,
711 swp_entry_t swap, struct page **pagep)
713 struct address_space *mapping = info->vfs_inode.i_mapping;
714 void *radswap;
715 pgoff_t index;
716 gfp_t gfp;
717 int error = 0;
719 radswap = swp_to_radix_entry(swap);
720 index = radix_tree_locate_item(&mapping->page_tree, radswap);
721 if (index == -1)
722 return -EAGAIN; /* tell shmem_unuse we found nothing */
725 * Move _head_ to start search for next from here.
726 * But be careful: shmem_evict_inode checks list_empty without taking
727 * mutex, and there's an instant in list_move_tail when info->swaplist
728 * would appear empty, if it were the only one on shmem_swaplist.
730 if (shmem_swaplist.next != &info->swaplist)
731 list_move_tail(&shmem_swaplist, &info->swaplist);
733 gfp = mapping_gfp_mask(mapping);
734 if (shmem_should_replace_page(*pagep, gfp)) {
735 mutex_unlock(&shmem_swaplist_mutex);
736 error = shmem_replace_page(pagep, gfp, info, index);
737 mutex_lock(&shmem_swaplist_mutex);
739 * We needed to drop mutex to make that restrictive page
740 * allocation, but the inode might have been freed while we
741 * dropped it: although a racing shmem_evict_inode() cannot
742 * complete without emptying the radix_tree, our page lock
743 * on this swapcache page is not enough to prevent that -
744 * free_swap_and_cache() of our swap entry will only
745 * trylock_page(), removing swap from radix_tree whatever.
747 * We must not proceed to shmem_add_to_page_cache() if the
748 * inode has been freed, but of course we cannot rely on
749 * inode or mapping or info to check that. However, we can
750 * safely check if our swap entry is still in use (and here
751 * it can't have got reused for another page): if it's still
752 * in use, then the inode cannot have been freed yet, and we
753 * can safely proceed (if it's no longer in use, that tells
754 * nothing about the inode, but we don't need to unuse swap).
756 if (!page_swapcount(*pagep))
757 error = -ENOENT;
761 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
762 * but also to hold up shmem_evict_inode(): so inode cannot be freed
763 * beneath us (pagelock doesn't help until the page is in pagecache).
765 if (!error)
766 error = shmem_add_to_page_cache(*pagep, mapping, index,
767 radswap);
768 if (error != -ENOMEM) {
770 * Truncation and eviction use free_swap_and_cache(), which
771 * only does trylock page: if we raced, best clean up here.
773 delete_from_swap_cache(*pagep);
774 set_page_dirty(*pagep);
775 if (!error) {
776 spin_lock(&info->lock);
777 info->swapped--;
778 spin_unlock(&info->lock);
779 swap_free(swap);
782 return error;
786 * Search through swapped inodes to find and replace swap by page.
788 int shmem_unuse(swp_entry_t swap, struct page *page)
790 struct list_head *this, *next;
791 struct shmem_inode_info *info;
792 struct mem_cgroup *memcg;
793 int error = 0;
796 * There's a faint possibility that swap page was replaced before
797 * caller locked it: caller will come back later with the right page.
799 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
800 goto out;
803 * Charge page using GFP_KERNEL while we can wait, before taking
804 * the shmem_swaplist_mutex which might hold up shmem_writepage().
805 * Charged back to the user (not to caller) when swap account is used.
807 error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg,
808 false);
809 if (error)
810 goto out;
811 /* No radix_tree_preload: swap entry keeps a place for page in tree */
812 error = -EAGAIN;
814 mutex_lock(&shmem_swaplist_mutex);
815 list_for_each_safe(this, next, &shmem_swaplist) {
816 info = list_entry(this, struct shmem_inode_info, swaplist);
817 if (info->swapped)
818 error = shmem_unuse_inode(info, swap, &page);
819 else
820 list_del_init(&info->swaplist);
821 cond_resched();
822 if (error != -EAGAIN)
823 break;
824 /* found nothing in this: move on to search the next */
826 mutex_unlock(&shmem_swaplist_mutex);
828 if (error) {
829 if (error != -ENOMEM)
830 error = 0;
831 mem_cgroup_cancel_charge(page, memcg, false);
832 } else
833 mem_cgroup_commit_charge(page, memcg, true, false);
834 out:
835 unlock_page(page);
836 put_page(page);
837 return error;
841 * Move the page from the page cache to the swap cache.
843 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
845 struct shmem_inode_info *info;
846 struct address_space *mapping;
847 struct inode *inode;
848 swp_entry_t swap;
849 pgoff_t index;
851 BUG_ON(!PageLocked(page));
852 mapping = page->mapping;
853 index = page->index;
854 inode = mapping->host;
855 info = SHMEM_I(inode);
856 if (info->flags & VM_LOCKED)
857 goto redirty;
858 if (!total_swap_pages)
859 goto redirty;
862 * Our capabilities prevent regular writeback or sync from ever calling
863 * shmem_writepage; but a stacking filesystem might use ->writepage of
864 * its underlying filesystem, in which case tmpfs should write out to
865 * swap only in response to memory pressure, and not for the writeback
866 * threads or sync.
868 if (!wbc->for_reclaim) {
869 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
870 goto redirty;
874 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
875 * value into swapfile.c, the only way we can correctly account for a
876 * fallocated page arriving here is now to initialize it and write it.
878 * That's okay for a page already fallocated earlier, but if we have
879 * not yet completed the fallocation, then (a) we want to keep track
880 * of this page in case we have to undo it, and (b) it may not be a
881 * good idea to continue anyway, once we're pushing into swap. So
882 * reactivate the page, and let shmem_fallocate() quit when too many.
884 if (!PageUptodate(page)) {
885 if (inode->i_private) {
886 struct shmem_falloc *shmem_falloc;
887 spin_lock(&inode->i_lock);
888 shmem_falloc = inode->i_private;
889 if (shmem_falloc &&
890 !shmem_falloc->waitq &&
891 index >= shmem_falloc->start &&
892 index < shmem_falloc->next)
893 shmem_falloc->nr_unswapped++;
894 else
895 shmem_falloc = NULL;
896 spin_unlock(&inode->i_lock);
897 if (shmem_falloc)
898 goto redirty;
900 clear_highpage(page);
901 flush_dcache_page(page);
902 SetPageUptodate(page);
905 swap = get_swap_page();
906 if (!swap.val)
907 goto redirty;
909 if (mem_cgroup_try_charge_swap(page, swap))
910 goto free_swap;
913 * Add inode to shmem_unuse()'s list of swapped-out inodes,
914 * if it's not already there. Do it now before the page is
915 * moved to swap cache, when its pagelock no longer protects
916 * the inode from eviction. But don't unlock the mutex until
917 * we've incremented swapped, because shmem_unuse_inode() will
918 * prune a !swapped inode from the swaplist under this mutex.
920 mutex_lock(&shmem_swaplist_mutex);
921 if (list_empty(&info->swaplist))
922 list_add_tail(&info->swaplist, &shmem_swaplist);
924 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
925 spin_lock(&info->lock);
926 shmem_recalc_inode(inode);
927 info->swapped++;
928 spin_unlock(&info->lock);
930 swap_shmem_alloc(swap);
931 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
933 mutex_unlock(&shmem_swaplist_mutex);
934 BUG_ON(page_mapped(page));
935 swap_writepage(page, wbc);
936 return 0;
939 mutex_unlock(&shmem_swaplist_mutex);
940 free_swap:
941 swapcache_free(swap);
942 redirty:
943 set_page_dirty(page);
944 if (wbc->for_reclaim)
945 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
946 unlock_page(page);
947 return 0;
950 #ifdef CONFIG_NUMA
951 #ifdef CONFIG_TMPFS
952 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
954 char buffer[64];
956 if (!mpol || mpol->mode == MPOL_DEFAULT)
957 return; /* show nothing */
959 mpol_to_str(buffer, sizeof(buffer), mpol);
961 seq_printf(seq, ",mpol=%s", buffer);
964 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
966 struct mempolicy *mpol = NULL;
967 if (sbinfo->mpol) {
968 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
969 mpol = sbinfo->mpol;
970 mpol_get(mpol);
971 spin_unlock(&sbinfo->stat_lock);
973 return mpol;
975 #endif /* CONFIG_TMPFS */
977 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
978 struct shmem_inode_info *info, pgoff_t index)
980 struct vm_area_struct pvma;
981 struct page *page;
983 /* Create a pseudo vma that just contains the policy */
984 pvma.vm_start = 0;
985 /* Bias interleave by inode number to distribute better across nodes */
986 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
987 pvma.vm_ops = NULL;
988 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
990 page = swapin_readahead(swap, gfp, &pvma, 0);
992 /* Drop reference taken by mpol_shared_policy_lookup() */
993 mpol_cond_put(pvma.vm_policy);
995 return page;
998 static struct page *shmem_alloc_page(gfp_t gfp,
999 struct shmem_inode_info *info, pgoff_t index)
1001 struct vm_area_struct pvma;
1002 struct page *page;
1004 /* Create a pseudo vma that just contains the policy */
1005 pvma.vm_start = 0;
1006 /* Bias interleave by inode number to distribute better across nodes */
1007 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
1008 pvma.vm_ops = NULL;
1009 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1011 page = alloc_page_vma(gfp, &pvma, 0);
1013 /* Drop reference taken by mpol_shared_policy_lookup() */
1014 mpol_cond_put(pvma.vm_policy);
1016 return page;
1018 #else /* !CONFIG_NUMA */
1019 #ifdef CONFIG_TMPFS
1020 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1023 #endif /* CONFIG_TMPFS */
1025 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1026 struct shmem_inode_info *info, pgoff_t index)
1028 return swapin_readahead(swap, gfp, NULL, 0);
1031 static inline struct page *shmem_alloc_page(gfp_t gfp,
1032 struct shmem_inode_info *info, pgoff_t index)
1034 return alloc_page(gfp);
1036 #endif /* CONFIG_NUMA */
1038 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
1039 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1041 return NULL;
1043 #endif
1046 * When a page is moved from swapcache to shmem filecache (either by the
1047 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1048 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1049 * ignorance of the mapping it belongs to. If that mapping has special
1050 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1051 * we may need to copy to a suitable page before moving to filecache.
1053 * In a future release, this may well be extended to respect cpuset and
1054 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1055 * but for now it is a simple matter of zone.
1057 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1059 return page_zonenum(page) > gfp_zone(gfp);
1062 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1063 struct shmem_inode_info *info, pgoff_t index)
1065 struct page *oldpage, *newpage;
1066 struct address_space *swap_mapping;
1067 pgoff_t swap_index;
1068 int error;
1070 oldpage = *pagep;
1071 swap_index = page_private(oldpage);
1072 swap_mapping = page_mapping(oldpage);
1075 * We have arrived here because our zones are constrained, so don't
1076 * limit chance of success by further cpuset and node constraints.
1078 gfp &= ~GFP_CONSTRAINT_MASK;
1079 newpage = shmem_alloc_page(gfp, info, index);
1080 if (!newpage)
1081 return -ENOMEM;
1083 get_page(newpage);
1084 copy_highpage(newpage, oldpage);
1085 flush_dcache_page(newpage);
1087 __SetPageLocked(newpage);
1088 SetPageUptodate(newpage);
1089 SetPageSwapBacked(newpage);
1090 set_page_private(newpage, swap_index);
1091 SetPageSwapCache(newpage);
1094 * Our caller will very soon move newpage out of swapcache, but it's
1095 * a nice clean interface for us to replace oldpage by newpage there.
1097 spin_lock_irq(&swap_mapping->tree_lock);
1098 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1099 newpage);
1100 if (!error) {
1101 __inc_zone_page_state(newpage, NR_FILE_PAGES);
1102 __dec_zone_page_state(oldpage, NR_FILE_PAGES);
1104 spin_unlock_irq(&swap_mapping->tree_lock);
1106 if (unlikely(error)) {
1108 * Is this possible? I think not, now that our callers check
1109 * both PageSwapCache and page_private after getting page lock;
1110 * but be defensive. Reverse old to newpage for clear and free.
1112 oldpage = newpage;
1113 } else {
1114 mem_cgroup_migrate(oldpage, newpage);
1115 lru_cache_add_anon(newpage);
1116 *pagep = newpage;
1119 ClearPageSwapCache(oldpage);
1120 set_page_private(oldpage, 0);
1122 unlock_page(oldpage);
1123 put_page(oldpage);
1124 put_page(oldpage);
1125 return error;
1129 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1131 * If we allocate a new one we do not mark it dirty. That's up to the
1132 * vm. If we swap it in we mark it dirty since we also free the swap
1133 * entry since a page cannot live in both the swap and page cache
1135 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1136 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1138 struct address_space *mapping = inode->i_mapping;
1139 struct shmem_inode_info *info;
1140 struct shmem_sb_info *sbinfo;
1141 struct mem_cgroup *memcg;
1142 struct page *page;
1143 swp_entry_t swap;
1144 int error;
1145 int once = 0;
1146 int alloced = 0;
1148 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1149 return -EFBIG;
1150 repeat:
1151 swap.val = 0;
1152 page = find_lock_entry(mapping, index);
1153 if (radix_tree_exceptional_entry(page)) {
1154 swap = radix_to_swp_entry(page);
1155 page = NULL;
1158 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1159 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1160 error = -EINVAL;
1161 goto unlock;
1164 if (page && sgp == SGP_WRITE)
1165 mark_page_accessed(page);
1167 /* fallocated page? */
1168 if (page && !PageUptodate(page)) {
1169 if (sgp != SGP_READ)
1170 goto clear;
1171 unlock_page(page);
1172 put_page(page);
1173 page = NULL;
1175 if (page || (sgp == SGP_READ && !swap.val)) {
1176 *pagep = page;
1177 return 0;
1181 * Fast cache lookup did not find it:
1182 * bring it back from swap or allocate.
1184 info = SHMEM_I(inode);
1185 sbinfo = SHMEM_SB(inode->i_sb);
1187 if (swap.val) {
1188 /* Look it up and read it in.. */
1189 page = lookup_swap_cache(swap);
1190 if (!page) {
1191 /* here we actually do the io */
1192 if (fault_type)
1193 *fault_type |= VM_FAULT_MAJOR;
1194 page = shmem_swapin(swap, gfp, info, index);
1195 if (!page) {
1196 error = -ENOMEM;
1197 goto failed;
1201 /* We have to do this with page locked to prevent races */
1202 lock_page(page);
1203 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1204 !shmem_confirm_swap(mapping, index, swap)) {
1205 error = -EEXIST; /* try again */
1206 goto unlock;
1208 if (!PageUptodate(page)) {
1209 error = -EIO;
1210 goto failed;
1212 wait_on_page_writeback(page);
1214 if (shmem_should_replace_page(page, gfp)) {
1215 error = shmem_replace_page(&page, gfp, info, index);
1216 if (error)
1217 goto failed;
1220 error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg,
1221 false);
1222 if (!error) {
1223 error = shmem_add_to_page_cache(page, mapping, index,
1224 swp_to_radix_entry(swap));
1226 * We already confirmed swap under page lock, and make
1227 * no memory allocation here, so usually no possibility
1228 * of error; but free_swap_and_cache() only trylocks a
1229 * page, so it is just possible that the entry has been
1230 * truncated or holepunched since swap was confirmed.
1231 * shmem_undo_range() will have done some of the
1232 * unaccounting, now delete_from_swap_cache() will do
1233 * the rest.
1234 * Reset swap.val? No, leave it so "failed" goes back to
1235 * "repeat": reading a hole and writing should succeed.
1237 if (error) {
1238 mem_cgroup_cancel_charge(page, memcg, false);
1239 delete_from_swap_cache(page);
1242 if (error)
1243 goto failed;
1245 mem_cgroup_commit_charge(page, memcg, true, false);
1247 spin_lock(&info->lock);
1248 info->swapped--;
1249 shmem_recalc_inode(inode);
1250 spin_unlock(&info->lock);
1252 if (sgp == SGP_WRITE)
1253 mark_page_accessed(page);
1255 delete_from_swap_cache(page);
1256 set_page_dirty(page);
1257 swap_free(swap);
1259 } else {
1260 if (shmem_acct_block(info->flags)) {
1261 error = -ENOSPC;
1262 goto failed;
1264 if (sbinfo->max_blocks) {
1265 if (percpu_counter_compare(&sbinfo->used_blocks,
1266 sbinfo->max_blocks) >= 0) {
1267 error = -ENOSPC;
1268 goto unacct;
1270 percpu_counter_inc(&sbinfo->used_blocks);
1273 page = shmem_alloc_page(gfp, info, index);
1274 if (!page) {
1275 error = -ENOMEM;
1276 goto decused;
1279 __SetPageSwapBacked(page);
1280 __SetPageLocked(page);
1281 if (sgp == SGP_WRITE)
1282 __SetPageReferenced(page);
1284 error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg,
1285 false);
1286 if (error)
1287 goto decused;
1288 error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
1289 if (!error) {
1290 error = shmem_add_to_page_cache(page, mapping, index,
1291 NULL);
1292 radix_tree_preload_end();
1294 if (error) {
1295 mem_cgroup_cancel_charge(page, memcg, false);
1296 goto decused;
1298 mem_cgroup_commit_charge(page, memcg, false, false);
1299 lru_cache_add_anon(page);
1301 spin_lock(&info->lock);
1302 info->alloced++;
1303 inode->i_blocks += BLOCKS_PER_PAGE;
1304 shmem_recalc_inode(inode);
1305 spin_unlock(&info->lock);
1306 alloced = true;
1309 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1311 if (sgp == SGP_FALLOC)
1312 sgp = SGP_WRITE;
1313 clear:
1315 * Let SGP_WRITE caller clear ends if write does not fill page;
1316 * but SGP_FALLOC on a page fallocated earlier must initialize
1317 * it now, lest undo on failure cancel our earlier guarantee.
1319 if (sgp != SGP_WRITE) {
1320 clear_highpage(page);
1321 flush_dcache_page(page);
1322 SetPageUptodate(page);
1324 if (sgp == SGP_DIRTY)
1325 set_page_dirty(page);
1328 /* Perhaps the file has been truncated since we checked */
1329 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1330 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1331 if (alloced) {
1332 ClearPageDirty(page);
1333 delete_from_page_cache(page);
1334 spin_lock(&info->lock);
1335 shmem_recalc_inode(inode);
1336 spin_unlock(&info->lock);
1338 error = -EINVAL;
1339 goto unlock;
1341 *pagep = page;
1342 return 0;
1345 * Error recovery.
1347 decused:
1348 if (sbinfo->max_blocks)
1349 percpu_counter_add(&sbinfo->used_blocks, -1);
1350 unacct:
1351 shmem_unacct_blocks(info->flags, 1);
1352 failed:
1353 if (swap.val && !shmem_confirm_swap(mapping, index, swap))
1354 error = -EEXIST;
1355 unlock:
1356 if (page) {
1357 unlock_page(page);
1358 put_page(page);
1360 if (error == -ENOSPC && !once++) {
1361 info = SHMEM_I(inode);
1362 spin_lock(&info->lock);
1363 shmem_recalc_inode(inode);
1364 spin_unlock(&info->lock);
1365 goto repeat;
1367 if (error == -EEXIST) /* from above or from radix_tree_insert */
1368 goto repeat;
1369 return error;
1372 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1374 struct inode *inode = file_inode(vma->vm_file);
1375 int error;
1376 int ret = VM_FAULT_LOCKED;
1379 * Trinity finds that probing a hole which tmpfs is punching can
1380 * prevent the hole-punch from ever completing: which in turn
1381 * locks writers out with its hold on i_mutex. So refrain from
1382 * faulting pages into the hole while it's being punched. Although
1383 * shmem_undo_range() does remove the additions, it may be unable to
1384 * keep up, as each new page needs its own unmap_mapping_range() call,
1385 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1387 * It does not matter if we sometimes reach this check just before the
1388 * hole-punch begins, so that one fault then races with the punch:
1389 * we just need to make racing faults a rare case.
1391 * The implementation below would be much simpler if we just used a
1392 * standard mutex or completion: but we cannot take i_mutex in fault,
1393 * and bloating every shmem inode for this unlikely case would be sad.
1395 if (unlikely(inode->i_private)) {
1396 struct shmem_falloc *shmem_falloc;
1398 spin_lock(&inode->i_lock);
1399 shmem_falloc = inode->i_private;
1400 if (shmem_falloc &&
1401 shmem_falloc->waitq &&
1402 vmf->pgoff >= shmem_falloc->start &&
1403 vmf->pgoff < shmem_falloc->next) {
1404 wait_queue_head_t *shmem_falloc_waitq;
1405 DEFINE_WAIT(shmem_fault_wait);
1407 ret = VM_FAULT_NOPAGE;
1408 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1409 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1410 /* It's polite to up mmap_sem if we can */
1411 up_read(&vma->vm_mm->mmap_sem);
1412 ret = VM_FAULT_RETRY;
1415 shmem_falloc_waitq = shmem_falloc->waitq;
1416 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1417 TASK_UNINTERRUPTIBLE);
1418 spin_unlock(&inode->i_lock);
1419 schedule();
1422 * shmem_falloc_waitq points into the shmem_fallocate()
1423 * stack of the hole-punching task: shmem_falloc_waitq
1424 * is usually invalid by the time we reach here, but
1425 * finish_wait() does not dereference it in that case;
1426 * though i_lock needed lest racing with wake_up_all().
1428 spin_lock(&inode->i_lock);
1429 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1430 spin_unlock(&inode->i_lock);
1431 return ret;
1433 spin_unlock(&inode->i_lock);
1436 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1437 if (error)
1438 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1440 if (ret & VM_FAULT_MAJOR) {
1441 count_vm_event(PGMAJFAULT);
1442 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1444 return ret;
1447 #ifdef CONFIG_NUMA
1448 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1450 struct inode *inode = file_inode(vma->vm_file);
1451 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1454 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1455 unsigned long addr)
1457 struct inode *inode = file_inode(vma->vm_file);
1458 pgoff_t index;
1460 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1461 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1463 #endif
1465 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1467 struct inode *inode = file_inode(file);
1468 struct shmem_inode_info *info = SHMEM_I(inode);
1469 int retval = -ENOMEM;
1471 spin_lock(&info->lock);
1472 if (lock && !(info->flags & VM_LOCKED)) {
1473 if (!user_shm_lock(inode->i_size, user))
1474 goto out_nomem;
1475 info->flags |= VM_LOCKED;
1476 mapping_set_unevictable(file->f_mapping);
1478 if (!lock && (info->flags & VM_LOCKED) && user) {
1479 user_shm_unlock(inode->i_size, user);
1480 info->flags &= ~VM_LOCKED;
1481 mapping_clear_unevictable(file->f_mapping);
1483 retval = 0;
1485 out_nomem:
1486 spin_unlock(&info->lock);
1487 return retval;
1490 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1492 file_accessed(file);
1493 vma->vm_ops = &shmem_vm_ops;
1494 return 0;
1497 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1498 umode_t mode, dev_t dev, unsigned long flags)
1500 struct inode *inode;
1501 struct shmem_inode_info *info;
1502 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1504 if (shmem_reserve_inode(sb))
1505 return NULL;
1507 inode = new_inode(sb);
1508 if (inode) {
1509 inode->i_ino = get_next_ino();
1510 inode_init_owner(inode, dir, mode);
1511 inode->i_blocks = 0;
1512 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1513 inode->i_generation = get_seconds();
1514 info = SHMEM_I(inode);
1515 memset(info, 0, (char *)inode - (char *)info);
1516 spin_lock_init(&info->lock);
1517 info->seals = F_SEAL_SEAL;
1518 info->flags = flags & VM_NORESERVE;
1519 INIT_LIST_HEAD(&info->swaplist);
1520 simple_xattrs_init(&info->xattrs);
1521 cache_no_acl(inode);
1523 switch (mode & S_IFMT) {
1524 default:
1525 inode->i_op = &shmem_special_inode_operations;
1526 init_special_inode(inode, mode, dev);
1527 break;
1528 case S_IFREG:
1529 inode->i_mapping->a_ops = &shmem_aops;
1530 inode->i_op = &shmem_inode_operations;
1531 inode->i_fop = &shmem_file_operations;
1532 mpol_shared_policy_init(&info->policy,
1533 shmem_get_sbmpol(sbinfo));
1534 break;
1535 case S_IFDIR:
1536 inc_nlink(inode);
1537 /* Some things misbehave if size == 0 on a directory */
1538 inode->i_size = 2 * BOGO_DIRENT_SIZE;
1539 inode->i_op = &shmem_dir_inode_operations;
1540 inode->i_fop = &simple_dir_operations;
1541 break;
1542 case S_IFLNK:
1544 * Must not load anything in the rbtree,
1545 * mpol_free_shared_policy will not be called.
1547 mpol_shared_policy_init(&info->policy, NULL);
1548 break;
1550 } else
1551 shmem_free_inode(sb);
1552 return inode;
1555 bool shmem_mapping(struct address_space *mapping)
1557 if (!mapping->host)
1558 return false;
1560 return mapping->host->i_sb->s_op == &shmem_ops;
1563 #ifdef CONFIG_TMPFS
1564 static const struct inode_operations shmem_symlink_inode_operations;
1565 static const struct inode_operations shmem_short_symlink_operations;
1567 #ifdef CONFIG_TMPFS_XATTR
1568 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1569 #else
1570 #define shmem_initxattrs NULL
1571 #endif
1573 static int
1574 shmem_write_begin(struct file *file, struct address_space *mapping,
1575 loff_t pos, unsigned len, unsigned flags,
1576 struct page **pagep, void **fsdata)
1578 struct inode *inode = mapping->host;
1579 struct shmem_inode_info *info = SHMEM_I(inode);
1580 pgoff_t index = pos >> PAGE_SHIFT;
1582 /* i_mutex is held by caller */
1583 if (unlikely(info->seals)) {
1584 if (info->seals & F_SEAL_WRITE)
1585 return -EPERM;
1586 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
1587 return -EPERM;
1590 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1593 static int
1594 shmem_write_end(struct file *file, struct address_space *mapping,
1595 loff_t pos, unsigned len, unsigned copied,
1596 struct page *page, void *fsdata)
1598 struct inode *inode = mapping->host;
1600 if (pos + copied > inode->i_size)
1601 i_size_write(inode, pos + copied);
1603 if (!PageUptodate(page)) {
1604 if (copied < PAGE_SIZE) {
1605 unsigned from = pos & (PAGE_SIZE - 1);
1606 zero_user_segments(page, 0, from,
1607 from + copied, PAGE_SIZE);
1609 SetPageUptodate(page);
1611 set_page_dirty(page);
1612 unlock_page(page);
1613 put_page(page);
1615 return copied;
1618 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1620 struct file *file = iocb->ki_filp;
1621 struct inode *inode = file_inode(file);
1622 struct address_space *mapping = inode->i_mapping;
1623 pgoff_t index;
1624 unsigned long offset;
1625 enum sgp_type sgp = SGP_READ;
1626 int error = 0;
1627 ssize_t retval = 0;
1628 loff_t *ppos = &iocb->ki_pos;
1631 * Might this read be for a stacking filesystem? Then when reading
1632 * holes of a sparse file, we actually need to allocate those pages,
1633 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1635 if (!iter_is_iovec(to))
1636 sgp = SGP_DIRTY;
1638 index = *ppos >> PAGE_SHIFT;
1639 offset = *ppos & ~PAGE_MASK;
1641 for (;;) {
1642 struct page *page = NULL;
1643 pgoff_t end_index;
1644 unsigned long nr, ret;
1645 loff_t i_size = i_size_read(inode);
1647 end_index = i_size >> PAGE_SHIFT;
1648 if (index > end_index)
1649 break;
1650 if (index == end_index) {
1651 nr = i_size & ~PAGE_MASK;
1652 if (nr <= offset)
1653 break;
1656 error = shmem_getpage(inode, index, &page, sgp, NULL);
1657 if (error) {
1658 if (error == -EINVAL)
1659 error = 0;
1660 break;
1662 if (page)
1663 unlock_page(page);
1666 * We must evaluate after, since reads (unlike writes)
1667 * are called without i_mutex protection against truncate
1669 nr = PAGE_SIZE;
1670 i_size = i_size_read(inode);
1671 end_index = i_size >> PAGE_SHIFT;
1672 if (index == end_index) {
1673 nr = i_size & ~PAGE_MASK;
1674 if (nr <= offset) {
1675 if (page)
1676 put_page(page);
1677 break;
1680 nr -= offset;
1682 if (page) {
1684 * If users can be writing to this page using arbitrary
1685 * virtual addresses, take care about potential aliasing
1686 * before reading the page on the kernel side.
1688 if (mapping_writably_mapped(mapping))
1689 flush_dcache_page(page);
1691 * Mark the page accessed if we read the beginning.
1693 if (!offset)
1694 mark_page_accessed(page);
1695 } else {
1696 page = ZERO_PAGE(0);
1697 get_page(page);
1701 * Ok, we have the page, and it's up-to-date, so
1702 * now we can copy it to user space...
1704 ret = copy_page_to_iter(page, offset, nr, to);
1705 retval += ret;
1706 offset += ret;
1707 index += offset >> PAGE_SHIFT;
1708 offset &= ~PAGE_MASK;
1710 put_page(page);
1711 if (!iov_iter_count(to))
1712 break;
1713 if (ret < nr) {
1714 error = -EFAULT;
1715 break;
1717 cond_resched();
1720 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
1721 file_accessed(file);
1722 return retval ? retval : error;
1725 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1726 struct pipe_inode_info *pipe, size_t len,
1727 unsigned int flags)
1729 struct address_space *mapping = in->f_mapping;
1730 struct inode *inode = mapping->host;
1731 unsigned int loff, nr_pages, req_pages;
1732 struct page *pages[PIPE_DEF_BUFFERS];
1733 struct partial_page partial[PIPE_DEF_BUFFERS];
1734 struct page *page;
1735 pgoff_t index, end_index;
1736 loff_t isize, left;
1737 int error, page_nr;
1738 struct splice_pipe_desc spd = {
1739 .pages = pages,
1740 .partial = partial,
1741 .nr_pages_max = PIPE_DEF_BUFFERS,
1742 .flags = flags,
1743 .ops = &page_cache_pipe_buf_ops,
1744 .spd_release = spd_release_page,
1747 isize = i_size_read(inode);
1748 if (unlikely(*ppos >= isize))
1749 return 0;
1751 left = isize - *ppos;
1752 if (unlikely(left < len))
1753 len = left;
1755 if (splice_grow_spd(pipe, &spd))
1756 return -ENOMEM;
1758 index = *ppos >> PAGE_SHIFT;
1759 loff = *ppos & ~PAGE_MASK;
1760 req_pages = (len + loff + PAGE_SIZE - 1) >> PAGE_SHIFT;
1761 nr_pages = min(req_pages, spd.nr_pages_max);
1763 spd.nr_pages = find_get_pages_contig(mapping, index,
1764 nr_pages, spd.pages);
1765 index += spd.nr_pages;
1766 error = 0;
1768 while (spd.nr_pages < nr_pages) {
1769 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1770 if (error)
1771 break;
1772 unlock_page(page);
1773 spd.pages[spd.nr_pages++] = page;
1774 index++;
1777 index = *ppos >> PAGE_SHIFT;
1778 nr_pages = spd.nr_pages;
1779 spd.nr_pages = 0;
1781 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1782 unsigned int this_len;
1784 if (!len)
1785 break;
1787 this_len = min_t(unsigned long, len, PAGE_SIZE - loff);
1788 page = spd.pages[page_nr];
1790 if (!PageUptodate(page) || page->mapping != mapping) {
1791 error = shmem_getpage(inode, index, &page,
1792 SGP_CACHE, NULL);
1793 if (error)
1794 break;
1795 unlock_page(page);
1796 put_page(spd.pages[page_nr]);
1797 spd.pages[page_nr] = page;
1800 isize = i_size_read(inode);
1801 end_index = (isize - 1) >> PAGE_SHIFT;
1802 if (unlikely(!isize || index > end_index))
1803 break;
1805 if (end_index == index) {
1806 unsigned int plen;
1808 plen = ((isize - 1) & ~PAGE_MASK) + 1;
1809 if (plen <= loff)
1810 break;
1812 this_len = min(this_len, plen - loff);
1813 len = this_len;
1816 spd.partial[page_nr].offset = loff;
1817 spd.partial[page_nr].len = this_len;
1818 len -= this_len;
1819 loff = 0;
1820 spd.nr_pages++;
1821 index++;
1824 while (page_nr < nr_pages)
1825 put_page(spd.pages[page_nr++]);
1827 if (spd.nr_pages)
1828 error = splice_to_pipe(pipe, &spd);
1830 splice_shrink_spd(&spd);
1832 if (error > 0) {
1833 *ppos += error;
1834 file_accessed(in);
1836 return error;
1840 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1842 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
1843 pgoff_t index, pgoff_t end, int whence)
1845 struct page *page;
1846 struct pagevec pvec;
1847 pgoff_t indices[PAGEVEC_SIZE];
1848 bool done = false;
1849 int i;
1851 pagevec_init(&pvec, 0);
1852 pvec.nr = 1; /* start small: we may be there already */
1853 while (!done) {
1854 pvec.nr = find_get_entries(mapping, index,
1855 pvec.nr, pvec.pages, indices);
1856 if (!pvec.nr) {
1857 if (whence == SEEK_DATA)
1858 index = end;
1859 break;
1861 for (i = 0; i < pvec.nr; i++, index++) {
1862 if (index < indices[i]) {
1863 if (whence == SEEK_HOLE) {
1864 done = true;
1865 break;
1867 index = indices[i];
1869 page = pvec.pages[i];
1870 if (page && !radix_tree_exceptional_entry(page)) {
1871 if (!PageUptodate(page))
1872 page = NULL;
1874 if (index >= end ||
1875 (page && whence == SEEK_DATA) ||
1876 (!page && whence == SEEK_HOLE)) {
1877 done = true;
1878 break;
1881 pagevec_remove_exceptionals(&pvec);
1882 pagevec_release(&pvec);
1883 pvec.nr = PAGEVEC_SIZE;
1884 cond_resched();
1886 return index;
1889 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
1891 struct address_space *mapping = file->f_mapping;
1892 struct inode *inode = mapping->host;
1893 pgoff_t start, end;
1894 loff_t new_offset;
1896 if (whence != SEEK_DATA && whence != SEEK_HOLE)
1897 return generic_file_llseek_size(file, offset, whence,
1898 MAX_LFS_FILESIZE, i_size_read(inode));
1899 inode_lock(inode);
1900 /* We're holding i_mutex so we can access i_size directly */
1902 if (offset < 0)
1903 offset = -EINVAL;
1904 else if (offset >= inode->i_size)
1905 offset = -ENXIO;
1906 else {
1907 start = offset >> PAGE_SHIFT;
1908 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1909 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
1910 new_offset <<= PAGE_SHIFT;
1911 if (new_offset > offset) {
1912 if (new_offset < inode->i_size)
1913 offset = new_offset;
1914 else if (whence == SEEK_DATA)
1915 offset = -ENXIO;
1916 else
1917 offset = inode->i_size;
1921 if (offset >= 0)
1922 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
1923 inode_unlock(inode);
1924 return offset;
1928 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
1929 * so reuse a tag which we firmly believe is never set or cleared on shmem.
1931 #define SHMEM_TAG_PINNED PAGECACHE_TAG_TOWRITE
1932 #define LAST_SCAN 4 /* about 150ms max */
1934 static void shmem_tag_pins(struct address_space *mapping)
1936 struct radix_tree_iter iter;
1937 void **slot;
1938 pgoff_t start;
1939 struct page *page;
1941 lru_add_drain();
1942 start = 0;
1943 rcu_read_lock();
1945 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1946 page = radix_tree_deref_slot(slot);
1947 if (!page || radix_tree_exception(page)) {
1948 if (radix_tree_deref_retry(page)) {
1949 slot = radix_tree_iter_retry(&iter);
1950 continue;
1952 } else if (page_count(page) - page_mapcount(page) > 1) {
1953 spin_lock_irq(&mapping->tree_lock);
1954 radix_tree_tag_set(&mapping->page_tree, iter.index,
1955 SHMEM_TAG_PINNED);
1956 spin_unlock_irq(&mapping->tree_lock);
1959 if (need_resched()) {
1960 cond_resched_rcu();
1961 slot = radix_tree_iter_next(&iter);
1964 rcu_read_unlock();
1968 * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
1969 * via get_user_pages(), drivers might have some pending I/O without any active
1970 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
1971 * and see whether it has an elevated ref-count. If so, we tag them and wait for
1972 * them to be dropped.
1973 * The caller must guarantee that no new user will acquire writable references
1974 * to those pages to avoid races.
1976 static int shmem_wait_for_pins(struct address_space *mapping)
1978 struct radix_tree_iter iter;
1979 void **slot;
1980 pgoff_t start;
1981 struct page *page;
1982 int error, scan;
1984 shmem_tag_pins(mapping);
1986 error = 0;
1987 for (scan = 0; scan <= LAST_SCAN; scan++) {
1988 if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
1989 break;
1991 if (!scan)
1992 lru_add_drain_all();
1993 else if (schedule_timeout_killable((HZ << scan) / 200))
1994 scan = LAST_SCAN;
1996 start = 0;
1997 rcu_read_lock();
1998 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
1999 start, SHMEM_TAG_PINNED) {
2001 page = radix_tree_deref_slot(slot);
2002 if (radix_tree_exception(page)) {
2003 if (radix_tree_deref_retry(page)) {
2004 slot = radix_tree_iter_retry(&iter);
2005 continue;
2008 page = NULL;
2011 if (page &&
2012 page_count(page) - page_mapcount(page) != 1) {
2013 if (scan < LAST_SCAN)
2014 goto continue_resched;
2017 * On the last scan, we clean up all those tags
2018 * we inserted; but make a note that we still
2019 * found pages pinned.
2021 error = -EBUSY;
2024 spin_lock_irq(&mapping->tree_lock);
2025 radix_tree_tag_clear(&mapping->page_tree,
2026 iter.index, SHMEM_TAG_PINNED);
2027 spin_unlock_irq(&mapping->tree_lock);
2028 continue_resched:
2029 if (need_resched()) {
2030 cond_resched_rcu();
2031 slot = radix_tree_iter_next(&iter);
2034 rcu_read_unlock();
2037 return error;
2040 #define F_ALL_SEALS (F_SEAL_SEAL | \
2041 F_SEAL_SHRINK | \
2042 F_SEAL_GROW | \
2043 F_SEAL_WRITE)
2045 int shmem_add_seals(struct file *file, unsigned int seals)
2047 struct inode *inode = file_inode(file);
2048 struct shmem_inode_info *info = SHMEM_I(inode);
2049 int error;
2052 * SEALING
2053 * Sealing allows multiple parties to share a shmem-file but restrict
2054 * access to a specific subset of file operations. Seals can only be
2055 * added, but never removed. This way, mutually untrusted parties can
2056 * share common memory regions with a well-defined policy. A malicious
2057 * peer can thus never perform unwanted operations on a shared object.
2059 * Seals are only supported on special shmem-files and always affect
2060 * the whole underlying inode. Once a seal is set, it may prevent some
2061 * kinds of access to the file. Currently, the following seals are
2062 * defined:
2063 * SEAL_SEAL: Prevent further seals from being set on this file
2064 * SEAL_SHRINK: Prevent the file from shrinking
2065 * SEAL_GROW: Prevent the file from growing
2066 * SEAL_WRITE: Prevent write access to the file
2068 * As we don't require any trust relationship between two parties, we
2069 * must prevent seals from being removed. Therefore, sealing a file
2070 * only adds a given set of seals to the file, it never touches
2071 * existing seals. Furthermore, the "setting seals"-operation can be
2072 * sealed itself, which basically prevents any further seal from being
2073 * added.
2075 * Semantics of sealing are only defined on volatile files. Only
2076 * anonymous shmem files support sealing. More importantly, seals are
2077 * never written to disk. Therefore, there's no plan to support it on
2078 * other file types.
2081 if (file->f_op != &shmem_file_operations)
2082 return -EINVAL;
2083 if (!(file->f_mode & FMODE_WRITE))
2084 return -EPERM;
2085 if (seals & ~(unsigned int)F_ALL_SEALS)
2086 return -EINVAL;
2088 inode_lock(inode);
2090 if (info->seals & F_SEAL_SEAL) {
2091 error = -EPERM;
2092 goto unlock;
2095 if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2096 error = mapping_deny_writable(file->f_mapping);
2097 if (error)
2098 goto unlock;
2100 error = shmem_wait_for_pins(file->f_mapping);
2101 if (error) {
2102 mapping_allow_writable(file->f_mapping);
2103 goto unlock;
2107 info->seals |= seals;
2108 error = 0;
2110 unlock:
2111 inode_unlock(inode);
2112 return error;
2114 EXPORT_SYMBOL_GPL(shmem_add_seals);
2116 int shmem_get_seals(struct file *file)
2118 if (file->f_op != &shmem_file_operations)
2119 return -EINVAL;
2121 return SHMEM_I(file_inode(file))->seals;
2123 EXPORT_SYMBOL_GPL(shmem_get_seals);
2125 long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2127 long error;
2129 switch (cmd) {
2130 case F_ADD_SEALS:
2131 /* disallow upper 32bit */
2132 if (arg > UINT_MAX)
2133 return -EINVAL;
2135 error = shmem_add_seals(file, arg);
2136 break;
2137 case F_GET_SEALS:
2138 error = shmem_get_seals(file);
2139 break;
2140 default:
2141 error = -EINVAL;
2142 break;
2145 return error;
2148 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2149 loff_t len)
2151 struct inode *inode = file_inode(file);
2152 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2153 struct shmem_inode_info *info = SHMEM_I(inode);
2154 struct shmem_falloc shmem_falloc;
2155 pgoff_t start, index, end;
2156 int error;
2158 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2159 return -EOPNOTSUPP;
2161 inode_lock(inode);
2163 if (mode & FALLOC_FL_PUNCH_HOLE) {
2164 struct address_space *mapping = file->f_mapping;
2165 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2166 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2167 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2169 /* protected by i_mutex */
2170 if (info->seals & F_SEAL_WRITE) {
2171 error = -EPERM;
2172 goto out;
2175 shmem_falloc.waitq = &shmem_falloc_waitq;
2176 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2177 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2178 spin_lock(&inode->i_lock);
2179 inode->i_private = &shmem_falloc;
2180 spin_unlock(&inode->i_lock);
2182 if ((u64)unmap_end > (u64)unmap_start)
2183 unmap_mapping_range(mapping, unmap_start,
2184 1 + unmap_end - unmap_start, 0);
2185 shmem_truncate_range(inode, offset, offset + len - 1);
2186 /* No need to unmap again: hole-punching leaves COWed pages */
2188 spin_lock(&inode->i_lock);
2189 inode->i_private = NULL;
2190 wake_up_all(&shmem_falloc_waitq);
2191 spin_unlock(&inode->i_lock);
2192 error = 0;
2193 goto out;
2196 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2197 error = inode_newsize_ok(inode, offset + len);
2198 if (error)
2199 goto out;
2201 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2202 error = -EPERM;
2203 goto out;
2206 start = offset >> PAGE_SHIFT;
2207 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2208 /* Try to avoid a swapstorm if len is impossible to satisfy */
2209 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2210 error = -ENOSPC;
2211 goto out;
2214 shmem_falloc.waitq = NULL;
2215 shmem_falloc.start = start;
2216 shmem_falloc.next = start;
2217 shmem_falloc.nr_falloced = 0;
2218 shmem_falloc.nr_unswapped = 0;
2219 spin_lock(&inode->i_lock);
2220 inode->i_private = &shmem_falloc;
2221 spin_unlock(&inode->i_lock);
2223 for (index = start; index < end; index++) {
2224 struct page *page;
2227 * Good, the fallocate(2) manpage permits EINTR: we may have
2228 * been interrupted because we are using up too much memory.
2230 if (signal_pending(current))
2231 error = -EINTR;
2232 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2233 error = -ENOMEM;
2234 else
2235 error = shmem_getpage(inode, index, &page, SGP_FALLOC,
2236 NULL);
2237 if (error) {
2238 /* Remove the !PageUptodate pages we added */
2239 shmem_undo_range(inode,
2240 (loff_t)start << PAGE_SHIFT,
2241 (loff_t)index << PAGE_SHIFT, true);
2242 goto undone;
2246 * Inform shmem_writepage() how far we have reached.
2247 * No need for lock or barrier: we have the page lock.
2249 shmem_falloc.next++;
2250 if (!PageUptodate(page))
2251 shmem_falloc.nr_falloced++;
2254 * If !PageUptodate, leave it that way so that freeable pages
2255 * can be recognized if we need to rollback on error later.
2256 * But set_page_dirty so that memory pressure will swap rather
2257 * than free the pages we are allocating (and SGP_CACHE pages
2258 * might still be clean: we now need to mark those dirty too).
2260 set_page_dirty(page);
2261 unlock_page(page);
2262 put_page(page);
2263 cond_resched();
2266 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2267 i_size_write(inode, offset + len);
2268 inode->i_ctime = CURRENT_TIME;
2269 undone:
2270 spin_lock(&inode->i_lock);
2271 inode->i_private = NULL;
2272 spin_unlock(&inode->i_lock);
2273 out:
2274 inode_unlock(inode);
2275 return error;
2278 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2280 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2282 buf->f_type = TMPFS_MAGIC;
2283 buf->f_bsize = PAGE_SIZE;
2284 buf->f_namelen = NAME_MAX;
2285 if (sbinfo->max_blocks) {
2286 buf->f_blocks = sbinfo->max_blocks;
2287 buf->f_bavail =
2288 buf->f_bfree = sbinfo->max_blocks -
2289 percpu_counter_sum(&sbinfo->used_blocks);
2291 if (sbinfo->max_inodes) {
2292 buf->f_files = sbinfo->max_inodes;
2293 buf->f_ffree = sbinfo->free_inodes;
2295 /* else leave those fields 0 like simple_statfs */
2296 return 0;
2300 * File creation. Allocate an inode, and we're done..
2302 static int
2303 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2305 struct inode *inode;
2306 int error = -ENOSPC;
2308 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2309 if (inode) {
2310 error = simple_acl_create(dir, inode);
2311 if (error)
2312 goto out_iput;
2313 error = security_inode_init_security(inode, dir,
2314 &dentry->d_name,
2315 shmem_initxattrs, NULL);
2316 if (error && error != -EOPNOTSUPP)
2317 goto out_iput;
2319 error = 0;
2320 dir->i_size += BOGO_DIRENT_SIZE;
2321 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2322 d_instantiate(dentry, inode);
2323 dget(dentry); /* Extra count - pin the dentry in core */
2325 return error;
2326 out_iput:
2327 iput(inode);
2328 return error;
2331 static int
2332 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2334 struct inode *inode;
2335 int error = -ENOSPC;
2337 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2338 if (inode) {
2339 error = security_inode_init_security(inode, dir,
2340 NULL,
2341 shmem_initxattrs, NULL);
2342 if (error && error != -EOPNOTSUPP)
2343 goto out_iput;
2344 error = simple_acl_create(dir, inode);
2345 if (error)
2346 goto out_iput;
2347 d_tmpfile(dentry, inode);
2349 return error;
2350 out_iput:
2351 iput(inode);
2352 return error;
2355 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2357 int error;
2359 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2360 return error;
2361 inc_nlink(dir);
2362 return 0;
2365 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2366 bool excl)
2368 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2372 * Link a file..
2374 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2376 struct inode *inode = d_inode(old_dentry);
2377 int ret;
2380 * No ordinary (disk based) filesystem counts links as inodes;
2381 * but each new link needs a new dentry, pinning lowmem, and
2382 * tmpfs dentries cannot be pruned until they are unlinked.
2384 ret = shmem_reserve_inode(inode->i_sb);
2385 if (ret)
2386 goto out;
2388 dir->i_size += BOGO_DIRENT_SIZE;
2389 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2390 inc_nlink(inode);
2391 ihold(inode); /* New dentry reference */
2392 dget(dentry); /* Extra pinning count for the created dentry */
2393 d_instantiate(dentry, inode);
2394 out:
2395 return ret;
2398 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2400 struct inode *inode = d_inode(dentry);
2402 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2403 shmem_free_inode(inode->i_sb);
2405 dir->i_size -= BOGO_DIRENT_SIZE;
2406 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2407 drop_nlink(inode);
2408 dput(dentry); /* Undo the count from "create" - this does all the work */
2409 return 0;
2412 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2414 if (!simple_empty(dentry))
2415 return -ENOTEMPTY;
2417 drop_nlink(d_inode(dentry));
2418 drop_nlink(dir);
2419 return shmem_unlink(dir, dentry);
2422 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2424 bool old_is_dir = d_is_dir(old_dentry);
2425 bool new_is_dir = d_is_dir(new_dentry);
2427 if (old_dir != new_dir && old_is_dir != new_is_dir) {
2428 if (old_is_dir) {
2429 drop_nlink(old_dir);
2430 inc_nlink(new_dir);
2431 } else {
2432 drop_nlink(new_dir);
2433 inc_nlink(old_dir);
2436 old_dir->i_ctime = old_dir->i_mtime =
2437 new_dir->i_ctime = new_dir->i_mtime =
2438 d_inode(old_dentry)->i_ctime =
2439 d_inode(new_dentry)->i_ctime = CURRENT_TIME;
2441 return 0;
2444 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2446 struct dentry *whiteout;
2447 int error;
2449 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2450 if (!whiteout)
2451 return -ENOMEM;
2453 error = shmem_mknod(old_dir, whiteout,
2454 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2455 dput(whiteout);
2456 if (error)
2457 return error;
2460 * Cheat and hash the whiteout while the old dentry is still in
2461 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2463 * d_lookup() will consistently find one of them at this point,
2464 * not sure which one, but that isn't even important.
2466 d_rehash(whiteout);
2467 return 0;
2471 * The VFS layer already does all the dentry stuff for rename,
2472 * we just have to decrement the usage count for the target if
2473 * it exists so that the VFS layer correctly free's it when it
2474 * gets overwritten.
2476 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
2478 struct inode *inode = d_inode(old_dentry);
2479 int they_are_dirs = S_ISDIR(inode->i_mode);
2481 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
2482 return -EINVAL;
2484 if (flags & RENAME_EXCHANGE)
2485 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
2487 if (!simple_empty(new_dentry))
2488 return -ENOTEMPTY;
2490 if (flags & RENAME_WHITEOUT) {
2491 int error;
2493 error = shmem_whiteout(old_dir, old_dentry);
2494 if (error)
2495 return error;
2498 if (d_really_is_positive(new_dentry)) {
2499 (void) shmem_unlink(new_dir, new_dentry);
2500 if (they_are_dirs) {
2501 drop_nlink(d_inode(new_dentry));
2502 drop_nlink(old_dir);
2504 } else if (they_are_dirs) {
2505 drop_nlink(old_dir);
2506 inc_nlink(new_dir);
2509 old_dir->i_size -= BOGO_DIRENT_SIZE;
2510 new_dir->i_size += BOGO_DIRENT_SIZE;
2511 old_dir->i_ctime = old_dir->i_mtime =
2512 new_dir->i_ctime = new_dir->i_mtime =
2513 inode->i_ctime = CURRENT_TIME;
2514 return 0;
2517 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2519 int error;
2520 int len;
2521 struct inode *inode;
2522 struct page *page;
2523 struct shmem_inode_info *info;
2525 len = strlen(symname) + 1;
2526 if (len > PAGE_SIZE)
2527 return -ENAMETOOLONG;
2529 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2530 if (!inode)
2531 return -ENOSPC;
2533 error = security_inode_init_security(inode, dir, &dentry->d_name,
2534 shmem_initxattrs, NULL);
2535 if (error) {
2536 if (error != -EOPNOTSUPP) {
2537 iput(inode);
2538 return error;
2540 error = 0;
2543 info = SHMEM_I(inode);
2544 inode->i_size = len-1;
2545 if (len <= SHORT_SYMLINK_LEN) {
2546 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
2547 if (!inode->i_link) {
2548 iput(inode);
2549 return -ENOMEM;
2551 inode->i_op = &shmem_short_symlink_operations;
2552 } else {
2553 inode_nohighmem(inode);
2554 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2555 if (error) {
2556 iput(inode);
2557 return error;
2559 inode->i_mapping->a_ops = &shmem_aops;
2560 inode->i_op = &shmem_symlink_inode_operations;
2561 memcpy(page_address(page), symname, len);
2562 SetPageUptodate(page);
2563 set_page_dirty(page);
2564 unlock_page(page);
2565 put_page(page);
2567 dir->i_size += BOGO_DIRENT_SIZE;
2568 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2569 d_instantiate(dentry, inode);
2570 dget(dentry);
2571 return 0;
2574 static void shmem_put_link(void *arg)
2576 mark_page_accessed(arg);
2577 put_page(arg);
2580 static const char *shmem_get_link(struct dentry *dentry,
2581 struct inode *inode,
2582 struct delayed_call *done)
2584 struct page *page = NULL;
2585 int error;
2586 if (!dentry) {
2587 page = find_get_page(inode->i_mapping, 0);
2588 if (!page)
2589 return ERR_PTR(-ECHILD);
2590 if (!PageUptodate(page)) {
2591 put_page(page);
2592 return ERR_PTR(-ECHILD);
2594 } else {
2595 error = shmem_getpage(inode, 0, &page, SGP_READ, NULL);
2596 if (error)
2597 return ERR_PTR(error);
2598 unlock_page(page);
2600 set_delayed_call(done, shmem_put_link, page);
2601 return page_address(page);
2604 #ifdef CONFIG_TMPFS_XATTR
2606 * Superblocks without xattr inode operations may get some security.* xattr
2607 * support from the LSM "for free". As soon as we have any other xattrs
2608 * like ACLs, we also need to implement the security.* handlers at
2609 * filesystem level, though.
2613 * Callback for security_inode_init_security() for acquiring xattrs.
2615 static int shmem_initxattrs(struct inode *inode,
2616 const struct xattr *xattr_array,
2617 void *fs_info)
2619 struct shmem_inode_info *info = SHMEM_I(inode);
2620 const struct xattr *xattr;
2621 struct simple_xattr *new_xattr;
2622 size_t len;
2624 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2625 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
2626 if (!new_xattr)
2627 return -ENOMEM;
2629 len = strlen(xattr->name) + 1;
2630 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2631 GFP_KERNEL);
2632 if (!new_xattr->name) {
2633 kfree(new_xattr);
2634 return -ENOMEM;
2637 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2638 XATTR_SECURITY_PREFIX_LEN);
2639 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2640 xattr->name, len);
2642 simple_xattr_list_add(&info->xattrs, new_xattr);
2645 return 0;
2648 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
2649 struct dentry *dentry, const char *name,
2650 void *buffer, size_t size)
2652 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2654 name = xattr_full_name(handler, name);
2655 return simple_xattr_get(&info->xattrs, name, buffer, size);
2658 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
2659 struct dentry *dentry, const char *name,
2660 const void *value, size_t size, int flags)
2662 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2664 name = xattr_full_name(handler, name);
2665 return simple_xattr_set(&info->xattrs, name, value, size, flags);
2668 static const struct xattr_handler shmem_security_xattr_handler = {
2669 .prefix = XATTR_SECURITY_PREFIX,
2670 .get = shmem_xattr_handler_get,
2671 .set = shmem_xattr_handler_set,
2674 static const struct xattr_handler shmem_trusted_xattr_handler = {
2675 .prefix = XATTR_TRUSTED_PREFIX,
2676 .get = shmem_xattr_handler_get,
2677 .set = shmem_xattr_handler_set,
2680 static const struct xattr_handler *shmem_xattr_handlers[] = {
2681 #ifdef CONFIG_TMPFS_POSIX_ACL
2682 &posix_acl_access_xattr_handler,
2683 &posix_acl_default_xattr_handler,
2684 #endif
2685 &shmem_security_xattr_handler,
2686 &shmem_trusted_xattr_handler,
2687 NULL
2690 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2692 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2693 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
2695 #endif /* CONFIG_TMPFS_XATTR */
2697 static const struct inode_operations shmem_short_symlink_operations = {
2698 .readlink = generic_readlink,
2699 .get_link = simple_get_link,
2700 #ifdef CONFIG_TMPFS_XATTR
2701 .setxattr = generic_setxattr,
2702 .getxattr = generic_getxattr,
2703 .listxattr = shmem_listxattr,
2704 .removexattr = generic_removexattr,
2705 #endif
2708 static const struct inode_operations shmem_symlink_inode_operations = {
2709 .readlink = generic_readlink,
2710 .get_link = shmem_get_link,
2711 #ifdef CONFIG_TMPFS_XATTR
2712 .setxattr = generic_setxattr,
2713 .getxattr = generic_getxattr,
2714 .listxattr = shmem_listxattr,
2715 .removexattr = generic_removexattr,
2716 #endif
2719 static struct dentry *shmem_get_parent(struct dentry *child)
2721 return ERR_PTR(-ESTALE);
2724 static int shmem_match(struct inode *ino, void *vfh)
2726 __u32 *fh = vfh;
2727 __u64 inum = fh[2];
2728 inum = (inum << 32) | fh[1];
2729 return ino->i_ino == inum && fh[0] == ino->i_generation;
2732 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2733 struct fid *fid, int fh_len, int fh_type)
2735 struct inode *inode;
2736 struct dentry *dentry = NULL;
2737 u64 inum;
2739 if (fh_len < 3)
2740 return NULL;
2742 inum = fid->raw[2];
2743 inum = (inum << 32) | fid->raw[1];
2745 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2746 shmem_match, fid->raw);
2747 if (inode) {
2748 dentry = d_find_alias(inode);
2749 iput(inode);
2752 return dentry;
2755 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2756 struct inode *parent)
2758 if (*len < 3) {
2759 *len = 3;
2760 return FILEID_INVALID;
2763 if (inode_unhashed(inode)) {
2764 /* Unfortunately insert_inode_hash is not idempotent,
2765 * so as we hash inodes here rather than at creation
2766 * time, we need a lock to ensure we only try
2767 * to do it once
2769 static DEFINE_SPINLOCK(lock);
2770 spin_lock(&lock);
2771 if (inode_unhashed(inode))
2772 __insert_inode_hash(inode,
2773 inode->i_ino + inode->i_generation);
2774 spin_unlock(&lock);
2777 fh[0] = inode->i_generation;
2778 fh[1] = inode->i_ino;
2779 fh[2] = ((__u64)inode->i_ino) >> 32;
2781 *len = 3;
2782 return 1;
2785 static const struct export_operations shmem_export_ops = {
2786 .get_parent = shmem_get_parent,
2787 .encode_fh = shmem_encode_fh,
2788 .fh_to_dentry = shmem_fh_to_dentry,
2791 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2792 bool remount)
2794 char *this_char, *value, *rest;
2795 struct mempolicy *mpol = NULL;
2796 uid_t uid;
2797 gid_t gid;
2799 while (options != NULL) {
2800 this_char = options;
2801 for (;;) {
2803 * NUL-terminate this option: unfortunately,
2804 * mount options form a comma-separated list,
2805 * but mpol's nodelist may also contain commas.
2807 options = strchr(options, ',');
2808 if (options == NULL)
2809 break;
2810 options++;
2811 if (!isdigit(*options)) {
2812 options[-1] = '\0';
2813 break;
2816 if (!*this_char)
2817 continue;
2818 if ((value = strchr(this_char,'=')) != NULL) {
2819 *value++ = 0;
2820 } else {
2821 pr_err("tmpfs: No value for mount option '%s'\n",
2822 this_char);
2823 goto error;
2826 if (!strcmp(this_char,"size")) {
2827 unsigned long long size;
2828 size = memparse(value,&rest);
2829 if (*rest == '%') {
2830 size <<= PAGE_SHIFT;
2831 size *= totalram_pages;
2832 do_div(size, 100);
2833 rest++;
2835 if (*rest)
2836 goto bad_val;
2837 sbinfo->max_blocks =
2838 DIV_ROUND_UP(size, PAGE_SIZE);
2839 } else if (!strcmp(this_char,"nr_blocks")) {
2840 sbinfo->max_blocks = memparse(value, &rest);
2841 if (*rest)
2842 goto bad_val;
2843 } else if (!strcmp(this_char,"nr_inodes")) {
2844 sbinfo->max_inodes = memparse(value, &rest);
2845 if (*rest)
2846 goto bad_val;
2847 } else if (!strcmp(this_char,"mode")) {
2848 if (remount)
2849 continue;
2850 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2851 if (*rest)
2852 goto bad_val;
2853 } else if (!strcmp(this_char,"uid")) {
2854 if (remount)
2855 continue;
2856 uid = simple_strtoul(value, &rest, 0);
2857 if (*rest)
2858 goto bad_val;
2859 sbinfo->uid = make_kuid(current_user_ns(), uid);
2860 if (!uid_valid(sbinfo->uid))
2861 goto bad_val;
2862 } else if (!strcmp(this_char,"gid")) {
2863 if (remount)
2864 continue;
2865 gid = simple_strtoul(value, &rest, 0);
2866 if (*rest)
2867 goto bad_val;
2868 sbinfo->gid = make_kgid(current_user_ns(), gid);
2869 if (!gid_valid(sbinfo->gid))
2870 goto bad_val;
2871 } else if (!strcmp(this_char,"mpol")) {
2872 mpol_put(mpol);
2873 mpol = NULL;
2874 if (mpol_parse_str(value, &mpol))
2875 goto bad_val;
2876 } else {
2877 pr_err("tmpfs: Bad mount option %s\n", this_char);
2878 goto error;
2881 sbinfo->mpol = mpol;
2882 return 0;
2884 bad_val:
2885 pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
2886 value, this_char);
2887 error:
2888 mpol_put(mpol);
2889 return 1;
2893 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2895 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2896 struct shmem_sb_info config = *sbinfo;
2897 unsigned long inodes;
2898 int error = -EINVAL;
2900 config.mpol = NULL;
2901 if (shmem_parse_options(data, &config, true))
2902 return error;
2904 spin_lock(&sbinfo->stat_lock);
2905 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2906 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2907 goto out;
2908 if (config.max_inodes < inodes)
2909 goto out;
2911 * Those tests disallow limited->unlimited while any are in use;
2912 * but we must separately disallow unlimited->limited, because
2913 * in that case we have no record of how much is already in use.
2915 if (config.max_blocks && !sbinfo->max_blocks)
2916 goto out;
2917 if (config.max_inodes && !sbinfo->max_inodes)
2918 goto out;
2920 error = 0;
2921 sbinfo->max_blocks = config.max_blocks;
2922 sbinfo->max_inodes = config.max_inodes;
2923 sbinfo->free_inodes = config.max_inodes - inodes;
2926 * Preserve previous mempolicy unless mpol remount option was specified.
2928 if (config.mpol) {
2929 mpol_put(sbinfo->mpol);
2930 sbinfo->mpol = config.mpol; /* transfers initial ref */
2932 out:
2933 spin_unlock(&sbinfo->stat_lock);
2934 return error;
2937 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2939 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2941 if (sbinfo->max_blocks != shmem_default_max_blocks())
2942 seq_printf(seq, ",size=%luk",
2943 sbinfo->max_blocks << (PAGE_SHIFT - 10));
2944 if (sbinfo->max_inodes != shmem_default_max_inodes())
2945 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2946 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2947 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2948 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2949 seq_printf(seq, ",uid=%u",
2950 from_kuid_munged(&init_user_ns, sbinfo->uid));
2951 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2952 seq_printf(seq, ",gid=%u",
2953 from_kgid_munged(&init_user_ns, sbinfo->gid));
2954 shmem_show_mpol(seq, sbinfo->mpol);
2955 return 0;
2958 #define MFD_NAME_PREFIX "memfd:"
2959 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
2960 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
2962 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
2964 SYSCALL_DEFINE2(memfd_create,
2965 const char __user *, uname,
2966 unsigned int, flags)
2968 struct shmem_inode_info *info;
2969 struct file *file;
2970 int fd, error;
2971 char *name;
2972 long len;
2974 if (flags & ~(unsigned int)MFD_ALL_FLAGS)
2975 return -EINVAL;
2977 /* length includes terminating zero */
2978 len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
2979 if (len <= 0)
2980 return -EFAULT;
2981 if (len > MFD_NAME_MAX_LEN + 1)
2982 return -EINVAL;
2984 name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY);
2985 if (!name)
2986 return -ENOMEM;
2988 strcpy(name, MFD_NAME_PREFIX);
2989 if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
2990 error = -EFAULT;
2991 goto err_name;
2994 /* terminating-zero may have changed after strnlen_user() returned */
2995 if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
2996 error = -EFAULT;
2997 goto err_name;
3000 fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
3001 if (fd < 0) {
3002 error = fd;
3003 goto err_name;
3006 file = shmem_file_setup(name, 0, VM_NORESERVE);
3007 if (IS_ERR(file)) {
3008 error = PTR_ERR(file);
3009 goto err_fd;
3011 info = SHMEM_I(file_inode(file));
3012 file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
3013 file->f_flags |= O_RDWR | O_LARGEFILE;
3014 if (flags & MFD_ALLOW_SEALING)
3015 info->seals &= ~F_SEAL_SEAL;
3017 fd_install(fd, file);
3018 kfree(name);
3019 return fd;
3021 err_fd:
3022 put_unused_fd(fd);
3023 err_name:
3024 kfree(name);
3025 return error;
3028 #endif /* CONFIG_TMPFS */
3030 static void shmem_put_super(struct super_block *sb)
3032 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3034 percpu_counter_destroy(&sbinfo->used_blocks);
3035 mpol_put(sbinfo->mpol);
3036 kfree(sbinfo);
3037 sb->s_fs_info = NULL;
3040 int shmem_fill_super(struct super_block *sb, void *data, int silent)
3042 struct inode *inode;
3043 struct shmem_sb_info *sbinfo;
3044 int err = -ENOMEM;
3046 /* Round up to L1_CACHE_BYTES to resist false sharing */
3047 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3048 L1_CACHE_BYTES), GFP_KERNEL);
3049 if (!sbinfo)
3050 return -ENOMEM;
3052 sbinfo->mode = S_IRWXUGO | S_ISVTX;
3053 sbinfo->uid = current_fsuid();
3054 sbinfo->gid = current_fsgid();
3055 sb->s_fs_info = sbinfo;
3057 #ifdef CONFIG_TMPFS
3059 * Per default we only allow half of the physical ram per
3060 * tmpfs instance, limiting inodes to one per page of lowmem;
3061 * but the internal instance is left unlimited.
3063 if (!(sb->s_flags & MS_KERNMOUNT)) {
3064 sbinfo->max_blocks = shmem_default_max_blocks();
3065 sbinfo->max_inodes = shmem_default_max_inodes();
3066 if (shmem_parse_options(data, sbinfo, false)) {
3067 err = -EINVAL;
3068 goto failed;
3070 } else {
3071 sb->s_flags |= MS_NOUSER;
3073 sb->s_export_op = &shmem_export_ops;
3074 sb->s_flags |= MS_NOSEC;
3075 #else
3076 sb->s_flags |= MS_NOUSER;
3077 #endif
3079 spin_lock_init(&sbinfo->stat_lock);
3080 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3081 goto failed;
3082 sbinfo->free_inodes = sbinfo->max_inodes;
3084 sb->s_maxbytes = MAX_LFS_FILESIZE;
3085 sb->s_blocksize = PAGE_SIZE;
3086 sb->s_blocksize_bits = PAGE_SHIFT;
3087 sb->s_magic = TMPFS_MAGIC;
3088 sb->s_op = &shmem_ops;
3089 sb->s_time_gran = 1;
3090 #ifdef CONFIG_TMPFS_XATTR
3091 sb->s_xattr = shmem_xattr_handlers;
3092 #endif
3093 #ifdef CONFIG_TMPFS_POSIX_ACL
3094 sb->s_flags |= MS_POSIXACL;
3095 #endif
3097 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3098 if (!inode)
3099 goto failed;
3100 inode->i_uid = sbinfo->uid;
3101 inode->i_gid = sbinfo->gid;
3102 sb->s_root = d_make_root(inode);
3103 if (!sb->s_root)
3104 goto failed;
3105 return 0;
3107 failed:
3108 shmem_put_super(sb);
3109 return err;
3112 static struct kmem_cache *shmem_inode_cachep;
3114 static struct inode *shmem_alloc_inode(struct super_block *sb)
3116 struct shmem_inode_info *info;
3117 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3118 if (!info)
3119 return NULL;
3120 return &info->vfs_inode;
3123 static void shmem_destroy_callback(struct rcu_head *head)
3125 struct inode *inode = container_of(head, struct inode, i_rcu);
3126 kfree(inode->i_link);
3127 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3130 static void shmem_destroy_inode(struct inode *inode)
3132 if (S_ISREG(inode->i_mode))
3133 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3134 call_rcu(&inode->i_rcu, shmem_destroy_callback);
3137 static void shmem_init_inode(void *foo)
3139 struct shmem_inode_info *info = foo;
3140 inode_init_once(&info->vfs_inode);
3143 static int shmem_init_inodecache(void)
3145 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3146 sizeof(struct shmem_inode_info),
3147 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3148 return 0;
3151 static void shmem_destroy_inodecache(void)
3153 kmem_cache_destroy(shmem_inode_cachep);
3156 static const struct address_space_operations shmem_aops = {
3157 .writepage = shmem_writepage,
3158 .set_page_dirty = __set_page_dirty_no_writeback,
3159 #ifdef CONFIG_TMPFS
3160 .write_begin = shmem_write_begin,
3161 .write_end = shmem_write_end,
3162 #endif
3163 #ifdef CONFIG_MIGRATION
3164 .migratepage = migrate_page,
3165 #endif
3166 .error_remove_page = generic_error_remove_page,
3169 static const struct file_operations shmem_file_operations = {
3170 .mmap = shmem_mmap,
3171 #ifdef CONFIG_TMPFS
3172 .llseek = shmem_file_llseek,
3173 .read_iter = shmem_file_read_iter,
3174 .write_iter = generic_file_write_iter,
3175 .fsync = noop_fsync,
3176 .splice_read = shmem_file_splice_read,
3177 .splice_write = iter_file_splice_write,
3178 .fallocate = shmem_fallocate,
3179 #endif
3182 static const struct inode_operations shmem_inode_operations = {
3183 .getattr = shmem_getattr,
3184 .setattr = shmem_setattr,
3185 #ifdef CONFIG_TMPFS_XATTR
3186 .setxattr = generic_setxattr,
3187 .getxattr = generic_getxattr,
3188 .listxattr = shmem_listxattr,
3189 .removexattr = generic_removexattr,
3190 .set_acl = simple_set_acl,
3191 #endif
3194 static const struct inode_operations shmem_dir_inode_operations = {
3195 #ifdef CONFIG_TMPFS
3196 .create = shmem_create,
3197 .lookup = simple_lookup,
3198 .link = shmem_link,
3199 .unlink = shmem_unlink,
3200 .symlink = shmem_symlink,
3201 .mkdir = shmem_mkdir,
3202 .rmdir = shmem_rmdir,
3203 .mknod = shmem_mknod,
3204 .rename2 = shmem_rename2,
3205 .tmpfile = shmem_tmpfile,
3206 #endif
3207 #ifdef CONFIG_TMPFS_XATTR
3208 .setxattr = generic_setxattr,
3209 .getxattr = generic_getxattr,
3210 .listxattr = shmem_listxattr,
3211 .removexattr = generic_removexattr,
3212 #endif
3213 #ifdef CONFIG_TMPFS_POSIX_ACL
3214 .setattr = shmem_setattr,
3215 .set_acl = simple_set_acl,
3216 #endif
3219 static const struct inode_operations shmem_special_inode_operations = {
3220 #ifdef CONFIG_TMPFS_XATTR
3221 .setxattr = generic_setxattr,
3222 .getxattr = generic_getxattr,
3223 .listxattr = shmem_listxattr,
3224 .removexattr = generic_removexattr,
3225 #endif
3226 #ifdef CONFIG_TMPFS_POSIX_ACL
3227 .setattr = shmem_setattr,
3228 .set_acl = simple_set_acl,
3229 #endif
3232 static const struct super_operations shmem_ops = {
3233 .alloc_inode = shmem_alloc_inode,
3234 .destroy_inode = shmem_destroy_inode,
3235 #ifdef CONFIG_TMPFS
3236 .statfs = shmem_statfs,
3237 .remount_fs = shmem_remount_fs,
3238 .show_options = shmem_show_options,
3239 #endif
3240 .evict_inode = shmem_evict_inode,
3241 .drop_inode = generic_delete_inode,
3242 .put_super = shmem_put_super,
3245 static const struct vm_operations_struct shmem_vm_ops = {
3246 .fault = shmem_fault,
3247 .map_pages = filemap_map_pages,
3248 #ifdef CONFIG_NUMA
3249 .set_policy = shmem_set_policy,
3250 .get_policy = shmem_get_policy,
3251 #endif
3254 static struct dentry *shmem_mount(struct file_system_type *fs_type,
3255 int flags, const char *dev_name, void *data)
3257 return mount_nodev(fs_type, flags, data, shmem_fill_super);
3260 static struct file_system_type shmem_fs_type = {
3261 .owner = THIS_MODULE,
3262 .name = "tmpfs",
3263 .mount = shmem_mount,
3264 .kill_sb = kill_litter_super,
3265 .fs_flags = FS_USERNS_MOUNT,
3268 int __init shmem_init(void)
3270 int error;
3272 /* If rootfs called this, don't re-init */
3273 if (shmem_inode_cachep)
3274 return 0;
3276 error = shmem_init_inodecache();
3277 if (error)
3278 goto out3;
3280 error = register_filesystem(&shmem_fs_type);
3281 if (error) {
3282 pr_err("Could not register tmpfs\n");
3283 goto out2;
3286 shm_mnt = kern_mount(&shmem_fs_type);
3287 if (IS_ERR(shm_mnt)) {
3288 error = PTR_ERR(shm_mnt);
3289 pr_err("Could not kern_mount tmpfs\n");
3290 goto out1;
3292 return 0;
3294 out1:
3295 unregister_filesystem(&shmem_fs_type);
3296 out2:
3297 shmem_destroy_inodecache();
3298 out3:
3299 shm_mnt = ERR_PTR(error);
3300 return error;
3303 #else /* !CONFIG_SHMEM */
3306 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3308 * This is intended for small system where the benefits of the full
3309 * shmem code (swap-backed and resource-limited) are outweighed by
3310 * their complexity. On systems without swap this code should be
3311 * effectively equivalent, but much lighter weight.
3314 static struct file_system_type shmem_fs_type = {
3315 .name = "tmpfs",
3316 .mount = ramfs_mount,
3317 .kill_sb = kill_litter_super,
3318 .fs_flags = FS_USERNS_MOUNT,
3321 int __init shmem_init(void)
3323 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
3325 shm_mnt = kern_mount(&shmem_fs_type);
3326 BUG_ON(IS_ERR(shm_mnt));
3328 return 0;
3331 int shmem_unuse(swp_entry_t swap, struct page *page)
3333 return 0;
3336 int shmem_lock(struct file *file, int lock, struct user_struct *user)
3338 return 0;
3341 void shmem_unlock_mapping(struct address_space *mapping)
3345 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
3347 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
3349 EXPORT_SYMBOL_GPL(shmem_truncate_range);
3351 #define shmem_vm_ops generic_file_vm_ops
3352 #define shmem_file_operations ramfs_file_operations
3353 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
3354 #define shmem_acct_size(flags, size) 0
3355 #define shmem_unacct_size(flags, size) do {} while (0)
3357 #endif /* CONFIG_SHMEM */
3359 /* common code */
3361 static struct dentry_operations anon_ops = {
3362 .d_dname = simple_dname
3365 static struct file *__shmem_file_setup(const char *name, loff_t size,
3366 unsigned long flags, unsigned int i_flags)
3368 struct file *res;
3369 struct inode *inode;
3370 struct path path;
3371 struct super_block *sb;
3372 struct qstr this;
3374 if (IS_ERR(shm_mnt))
3375 return ERR_CAST(shm_mnt);
3377 if (size < 0 || size > MAX_LFS_FILESIZE)
3378 return ERR_PTR(-EINVAL);
3380 if (shmem_acct_size(flags, size))
3381 return ERR_PTR(-ENOMEM);
3383 res = ERR_PTR(-ENOMEM);
3384 this.name = name;
3385 this.len = strlen(name);
3386 this.hash = 0; /* will go */
3387 sb = shm_mnt->mnt_sb;
3388 path.mnt = mntget(shm_mnt);
3389 path.dentry = d_alloc_pseudo(sb, &this);
3390 if (!path.dentry)
3391 goto put_memory;
3392 d_set_d_op(path.dentry, &anon_ops);
3394 res = ERR_PTR(-ENOSPC);
3395 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
3396 if (!inode)
3397 goto put_memory;
3399 inode->i_flags |= i_flags;
3400 d_instantiate(path.dentry, inode);
3401 inode->i_size = size;
3402 clear_nlink(inode); /* It is unlinked */
3403 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
3404 if (IS_ERR(res))
3405 goto put_path;
3407 res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
3408 &shmem_file_operations);
3409 if (IS_ERR(res))
3410 goto put_path;
3412 return res;
3414 put_memory:
3415 shmem_unacct_size(flags, size);
3416 put_path:
3417 path_put(&path);
3418 return res;
3422 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
3423 * kernel internal. There will be NO LSM permission checks against the
3424 * underlying inode. So users of this interface must do LSM checks at a
3425 * higher layer. The users are the big_key and shm implementations. LSM
3426 * checks are provided at the key or shm level rather than the inode.
3427 * @name: name for dentry (to be seen in /proc/<pid>/maps
3428 * @size: size to be set for the file
3429 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3431 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
3433 return __shmem_file_setup(name, size, flags, S_PRIVATE);
3437 * shmem_file_setup - get an unlinked file living in tmpfs
3438 * @name: name for dentry (to be seen in /proc/<pid>/maps
3439 * @size: size to be set for the file
3440 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3442 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
3444 return __shmem_file_setup(name, size, flags, 0);
3446 EXPORT_SYMBOL_GPL(shmem_file_setup);
3449 * shmem_zero_setup - setup a shared anonymous mapping
3450 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3452 int shmem_zero_setup(struct vm_area_struct *vma)
3454 struct file *file;
3455 loff_t size = vma->vm_end - vma->vm_start;
3458 * Cloning a new file under mmap_sem leads to a lock ordering conflict
3459 * between XFS directory reading and selinux: since this file is only
3460 * accessible to the user through its mapping, use S_PRIVATE flag to
3461 * bypass file security, in the same way as shmem_kernel_file_setup().
3463 file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE);
3464 if (IS_ERR(file))
3465 return PTR_ERR(file);
3467 if (vma->vm_file)
3468 fput(vma->vm_file);
3469 vma->vm_file = file;
3470 vma->vm_ops = &shmem_vm_ops;
3471 return 0;
3475 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3476 * @mapping: the page's address_space
3477 * @index: the page index
3478 * @gfp: the page allocator flags to use if allocating
3480 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3481 * with any new page allocations done using the specified allocation flags.
3482 * But read_cache_page_gfp() uses the ->readpage() method: which does not
3483 * suit tmpfs, since it may have pages in swapcache, and needs to find those
3484 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3486 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3487 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3489 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3490 pgoff_t index, gfp_t gfp)
3492 #ifdef CONFIG_SHMEM
3493 struct inode *inode = mapping->host;
3494 struct page *page;
3495 int error;
3497 BUG_ON(mapping->a_ops != &shmem_aops);
3498 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3499 if (error)
3500 page = ERR_PTR(error);
3501 else
3502 unlock_page(page);
3503 return page;
3504 #else
3506 * The tiny !SHMEM case uses ramfs without swap
3508 return read_cache_page_gfp(mapping, index, gfp);
3509 #endif
3511 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);