thermal: fix Mediatek thermal controller build
[linux/fpc-iii.git] / net / core / dev.c
blob77a71cd68535fc02ae939168934fa4fb4f419644
1 /*
2 * NET3 Protocol independent device support routines.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dst.h>
103 #include <net/dst_metadata.h>
104 #include <net/pkt_sched.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/module.h>
110 #include <linux/netpoll.h>
111 #include <linux/rcupdate.h>
112 #include <linux/delay.h>
113 #include <net/iw_handler.h>
114 #include <asm/current.h>
115 #include <linux/audit.h>
116 #include <linux/dmaengine.h>
117 #include <linux/err.h>
118 #include <linux/ctype.h>
119 #include <linux/if_arp.h>
120 #include <linux/if_vlan.h>
121 #include <linux/ip.h>
122 #include <net/ip.h>
123 #include <net/mpls.h>
124 #include <linux/ipv6.h>
125 #include <linux/in.h>
126 #include <linux/jhash.h>
127 #include <linux/random.h>
128 #include <trace/events/napi.h>
129 #include <trace/events/net.h>
130 #include <trace/events/skb.h>
131 #include <linux/pci.h>
132 #include <linux/inetdevice.h>
133 #include <linux/cpu_rmap.h>
134 #include <linux/static_key.h>
135 #include <linux/hashtable.h>
136 #include <linux/vmalloc.h>
137 #include <linux/if_macvlan.h>
138 #include <linux/errqueue.h>
139 #include <linux/hrtimer.h>
140 #include <linux/netfilter_ingress.h>
141 #include <linux/sctp.h>
143 #include "net-sysfs.h"
145 /* Instead of increasing this, you should create a hash table. */
146 #define MAX_GRO_SKBS 8
148 /* This should be increased if a protocol with a bigger head is added. */
149 #define GRO_MAX_HEAD (MAX_HEADER + 128)
151 static DEFINE_SPINLOCK(ptype_lock);
152 static DEFINE_SPINLOCK(offload_lock);
153 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
154 struct list_head ptype_all __read_mostly; /* Taps */
155 static struct list_head offload_base __read_mostly;
157 static int netif_rx_internal(struct sk_buff *skb);
158 static int call_netdevice_notifiers_info(unsigned long val,
159 struct net_device *dev,
160 struct netdev_notifier_info *info);
163 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
164 * semaphore.
166 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
168 * Writers must hold the rtnl semaphore while they loop through the
169 * dev_base_head list, and hold dev_base_lock for writing when they do the
170 * actual updates. This allows pure readers to access the list even
171 * while a writer is preparing to update it.
173 * To put it another way, dev_base_lock is held for writing only to
174 * protect against pure readers; the rtnl semaphore provides the
175 * protection against other writers.
177 * See, for example usages, register_netdevice() and
178 * unregister_netdevice(), which must be called with the rtnl
179 * semaphore held.
181 DEFINE_RWLOCK(dev_base_lock);
182 EXPORT_SYMBOL(dev_base_lock);
184 /* protects napi_hash addition/deletion and napi_gen_id */
185 static DEFINE_SPINLOCK(napi_hash_lock);
187 static unsigned int napi_gen_id = NR_CPUS;
188 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
190 static seqcount_t devnet_rename_seq;
192 static inline void dev_base_seq_inc(struct net *net)
194 while (++net->dev_base_seq == 0);
197 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
199 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
201 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
204 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
206 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
209 static inline void rps_lock(struct softnet_data *sd)
211 #ifdef CONFIG_RPS
212 spin_lock(&sd->input_pkt_queue.lock);
213 #endif
216 static inline void rps_unlock(struct softnet_data *sd)
218 #ifdef CONFIG_RPS
219 spin_unlock(&sd->input_pkt_queue.lock);
220 #endif
223 /* Device list insertion */
224 static void list_netdevice(struct net_device *dev)
226 struct net *net = dev_net(dev);
228 ASSERT_RTNL();
230 write_lock_bh(&dev_base_lock);
231 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
232 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
233 hlist_add_head_rcu(&dev->index_hlist,
234 dev_index_hash(net, dev->ifindex));
235 write_unlock_bh(&dev_base_lock);
237 dev_base_seq_inc(net);
240 /* Device list removal
241 * caller must respect a RCU grace period before freeing/reusing dev
243 static void unlist_netdevice(struct net_device *dev)
245 ASSERT_RTNL();
247 /* Unlink dev from the device chain */
248 write_lock_bh(&dev_base_lock);
249 list_del_rcu(&dev->dev_list);
250 hlist_del_rcu(&dev->name_hlist);
251 hlist_del_rcu(&dev->index_hlist);
252 write_unlock_bh(&dev_base_lock);
254 dev_base_seq_inc(dev_net(dev));
258 * Our notifier list
261 static RAW_NOTIFIER_HEAD(netdev_chain);
264 * Device drivers call our routines to queue packets here. We empty the
265 * queue in the local softnet handler.
268 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
269 EXPORT_PER_CPU_SYMBOL(softnet_data);
271 #ifdef CONFIG_LOCKDEP
273 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
274 * according to dev->type
276 static const unsigned short netdev_lock_type[] =
277 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
278 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
279 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
280 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
281 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
282 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
283 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
284 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
285 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
286 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
287 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
288 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
289 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
290 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
291 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
293 static const char *const netdev_lock_name[] =
294 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
295 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
296 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
297 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
298 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
299 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
300 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
301 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
302 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
303 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
304 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
305 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
306 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
307 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
308 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
310 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
311 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
313 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
315 int i;
317 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
318 if (netdev_lock_type[i] == dev_type)
319 return i;
320 /* the last key is used by default */
321 return ARRAY_SIZE(netdev_lock_type) - 1;
324 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
325 unsigned short dev_type)
327 int i;
329 i = netdev_lock_pos(dev_type);
330 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
331 netdev_lock_name[i]);
334 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
336 int i;
338 i = netdev_lock_pos(dev->type);
339 lockdep_set_class_and_name(&dev->addr_list_lock,
340 &netdev_addr_lock_key[i],
341 netdev_lock_name[i]);
343 #else
344 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
345 unsigned short dev_type)
348 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
351 #endif
353 /*******************************************************************************
355 Protocol management and registration routines
357 *******************************************************************************/
360 * Add a protocol ID to the list. Now that the input handler is
361 * smarter we can dispense with all the messy stuff that used to be
362 * here.
364 * BEWARE!!! Protocol handlers, mangling input packets,
365 * MUST BE last in hash buckets and checking protocol handlers
366 * MUST start from promiscuous ptype_all chain in net_bh.
367 * It is true now, do not change it.
368 * Explanation follows: if protocol handler, mangling packet, will
369 * be the first on list, it is not able to sense, that packet
370 * is cloned and should be copied-on-write, so that it will
371 * change it and subsequent readers will get broken packet.
372 * --ANK (980803)
375 static inline struct list_head *ptype_head(const struct packet_type *pt)
377 if (pt->type == htons(ETH_P_ALL))
378 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
379 else
380 return pt->dev ? &pt->dev->ptype_specific :
381 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
385 * dev_add_pack - add packet handler
386 * @pt: packet type declaration
388 * Add a protocol handler to the networking stack. The passed &packet_type
389 * is linked into kernel lists and may not be freed until it has been
390 * removed from the kernel lists.
392 * This call does not sleep therefore it can not
393 * guarantee all CPU's that are in middle of receiving packets
394 * will see the new packet type (until the next received packet).
397 void dev_add_pack(struct packet_type *pt)
399 struct list_head *head = ptype_head(pt);
401 spin_lock(&ptype_lock);
402 list_add_rcu(&pt->list, head);
403 spin_unlock(&ptype_lock);
405 EXPORT_SYMBOL(dev_add_pack);
408 * __dev_remove_pack - remove packet handler
409 * @pt: packet type declaration
411 * Remove a protocol handler that was previously added to the kernel
412 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
413 * from the kernel lists and can be freed or reused once this function
414 * returns.
416 * The packet type might still be in use by receivers
417 * and must not be freed until after all the CPU's have gone
418 * through a quiescent state.
420 void __dev_remove_pack(struct packet_type *pt)
422 struct list_head *head = ptype_head(pt);
423 struct packet_type *pt1;
425 spin_lock(&ptype_lock);
427 list_for_each_entry(pt1, head, list) {
428 if (pt == pt1) {
429 list_del_rcu(&pt->list);
430 goto out;
434 pr_warn("dev_remove_pack: %p not found\n", pt);
435 out:
436 spin_unlock(&ptype_lock);
438 EXPORT_SYMBOL(__dev_remove_pack);
441 * dev_remove_pack - remove packet handler
442 * @pt: packet type declaration
444 * Remove a protocol handler that was previously added to the kernel
445 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
446 * from the kernel lists and can be freed or reused once this function
447 * returns.
449 * This call sleeps to guarantee that no CPU is looking at the packet
450 * type after return.
452 void dev_remove_pack(struct packet_type *pt)
454 __dev_remove_pack(pt);
456 synchronize_net();
458 EXPORT_SYMBOL(dev_remove_pack);
462 * dev_add_offload - register offload handlers
463 * @po: protocol offload declaration
465 * Add protocol offload handlers to the networking stack. The passed
466 * &proto_offload is linked into kernel lists and may not be freed until
467 * it has been removed from the kernel lists.
469 * This call does not sleep therefore it can not
470 * guarantee all CPU's that are in middle of receiving packets
471 * will see the new offload handlers (until the next received packet).
473 void dev_add_offload(struct packet_offload *po)
475 struct packet_offload *elem;
477 spin_lock(&offload_lock);
478 list_for_each_entry(elem, &offload_base, list) {
479 if (po->priority < elem->priority)
480 break;
482 list_add_rcu(&po->list, elem->list.prev);
483 spin_unlock(&offload_lock);
485 EXPORT_SYMBOL(dev_add_offload);
488 * __dev_remove_offload - remove offload handler
489 * @po: packet offload declaration
491 * Remove a protocol offload handler that was previously added to the
492 * kernel offload handlers by dev_add_offload(). The passed &offload_type
493 * is removed from the kernel lists and can be freed or reused once this
494 * function returns.
496 * The packet type might still be in use by receivers
497 * and must not be freed until after all the CPU's have gone
498 * through a quiescent state.
500 static void __dev_remove_offload(struct packet_offload *po)
502 struct list_head *head = &offload_base;
503 struct packet_offload *po1;
505 spin_lock(&offload_lock);
507 list_for_each_entry(po1, head, list) {
508 if (po == po1) {
509 list_del_rcu(&po->list);
510 goto out;
514 pr_warn("dev_remove_offload: %p not found\n", po);
515 out:
516 spin_unlock(&offload_lock);
520 * dev_remove_offload - remove packet offload handler
521 * @po: packet offload declaration
523 * Remove a packet offload handler that was previously added to the kernel
524 * offload handlers by dev_add_offload(). The passed &offload_type is
525 * removed from the kernel lists and can be freed or reused once this
526 * function returns.
528 * This call sleeps to guarantee that no CPU is looking at the packet
529 * type after return.
531 void dev_remove_offload(struct packet_offload *po)
533 __dev_remove_offload(po);
535 synchronize_net();
537 EXPORT_SYMBOL(dev_remove_offload);
539 /******************************************************************************
541 Device Boot-time Settings Routines
543 *******************************************************************************/
545 /* Boot time configuration table */
546 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
549 * netdev_boot_setup_add - add new setup entry
550 * @name: name of the device
551 * @map: configured settings for the device
553 * Adds new setup entry to the dev_boot_setup list. The function
554 * returns 0 on error and 1 on success. This is a generic routine to
555 * all netdevices.
557 static int netdev_boot_setup_add(char *name, struct ifmap *map)
559 struct netdev_boot_setup *s;
560 int i;
562 s = dev_boot_setup;
563 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
564 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
565 memset(s[i].name, 0, sizeof(s[i].name));
566 strlcpy(s[i].name, name, IFNAMSIZ);
567 memcpy(&s[i].map, map, sizeof(s[i].map));
568 break;
572 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
576 * netdev_boot_setup_check - check boot time settings
577 * @dev: the netdevice
579 * Check boot time settings for the device.
580 * The found settings are set for the device to be used
581 * later in the device probing.
582 * Returns 0 if no settings found, 1 if they are.
584 int netdev_boot_setup_check(struct net_device *dev)
586 struct netdev_boot_setup *s = dev_boot_setup;
587 int i;
589 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
590 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
591 !strcmp(dev->name, s[i].name)) {
592 dev->irq = s[i].map.irq;
593 dev->base_addr = s[i].map.base_addr;
594 dev->mem_start = s[i].map.mem_start;
595 dev->mem_end = s[i].map.mem_end;
596 return 1;
599 return 0;
601 EXPORT_SYMBOL(netdev_boot_setup_check);
605 * netdev_boot_base - get address from boot time settings
606 * @prefix: prefix for network device
607 * @unit: id for network device
609 * Check boot time settings for the base address of device.
610 * The found settings are set for the device to be used
611 * later in the device probing.
612 * Returns 0 if no settings found.
614 unsigned long netdev_boot_base(const char *prefix, int unit)
616 const struct netdev_boot_setup *s = dev_boot_setup;
617 char name[IFNAMSIZ];
618 int i;
620 sprintf(name, "%s%d", prefix, unit);
623 * If device already registered then return base of 1
624 * to indicate not to probe for this interface
626 if (__dev_get_by_name(&init_net, name))
627 return 1;
629 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
630 if (!strcmp(name, s[i].name))
631 return s[i].map.base_addr;
632 return 0;
636 * Saves at boot time configured settings for any netdevice.
638 int __init netdev_boot_setup(char *str)
640 int ints[5];
641 struct ifmap map;
643 str = get_options(str, ARRAY_SIZE(ints), ints);
644 if (!str || !*str)
645 return 0;
647 /* Save settings */
648 memset(&map, 0, sizeof(map));
649 if (ints[0] > 0)
650 map.irq = ints[1];
651 if (ints[0] > 1)
652 map.base_addr = ints[2];
653 if (ints[0] > 2)
654 map.mem_start = ints[3];
655 if (ints[0] > 3)
656 map.mem_end = ints[4];
658 /* Add new entry to the list */
659 return netdev_boot_setup_add(str, &map);
662 __setup("netdev=", netdev_boot_setup);
664 /*******************************************************************************
666 Device Interface Subroutines
668 *******************************************************************************/
671 * dev_get_iflink - get 'iflink' value of a interface
672 * @dev: targeted interface
674 * Indicates the ifindex the interface is linked to.
675 * Physical interfaces have the same 'ifindex' and 'iflink' values.
678 int dev_get_iflink(const struct net_device *dev)
680 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
681 return dev->netdev_ops->ndo_get_iflink(dev);
683 return dev->ifindex;
685 EXPORT_SYMBOL(dev_get_iflink);
688 * dev_fill_metadata_dst - Retrieve tunnel egress information.
689 * @dev: targeted interface
690 * @skb: The packet.
692 * For better visibility of tunnel traffic OVS needs to retrieve
693 * egress tunnel information for a packet. Following API allows
694 * user to get this info.
696 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
698 struct ip_tunnel_info *info;
700 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
701 return -EINVAL;
703 info = skb_tunnel_info_unclone(skb);
704 if (!info)
705 return -ENOMEM;
706 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
707 return -EINVAL;
709 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
711 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
714 * __dev_get_by_name - find a device by its name
715 * @net: the applicable net namespace
716 * @name: name to find
718 * Find an interface by name. Must be called under RTNL semaphore
719 * or @dev_base_lock. If the name is found a pointer to the device
720 * is returned. If the name is not found then %NULL is returned. The
721 * reference counters are not incremented so the caller must be
722 * careful with locks.
725 struct net_device *__dev_get_by_name(struct net *net, const char *name)
727 struct net_device *dev;
728 struct hlist_head *head = dev_name_hash(net, name);
730 hlist_for_each_entry(dev, head, name_hlist)
731 if (!strncmp(dev->name, name, IFNAMSIZ))
732 return dev;
734 return NULL;
736 EXPORT_SYMBOL(__dev_get_by_name);
739 * dev_get_by_name_rcu - find a device by its name
740 * @net: the applicable net namespace
741 * @name: name to find
743 * Find an interface by name.
744 * If the name is found a pointer to the device is returned.
745 * If the name is not found then %NULL is returned.
746 * The reference counters are not incremented so the caller must be
747 * careful with locks. The caller must hold RCU lock.
750 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
752 struct net_device *dev;
753 struct hlist_head *head = dev_name_hash(net, name);
755 hlist_for_each_entry_rcu(dev, head, name_hlist)
756 if (!strncmp(dev->name, name, IFNAMSIZ))
757 return dev;
759 return NULL;
761 EXPORT_SYMBOL(dev_get_by_name_rcu);
764 * dev_get_by_name - find a device by its name
765 * @net: the applicable net namespace
766 * @name: name to find
768 * Find an interface by name. This can be called from any
769 * context and does its own locking. The returned handle has
770 * the usage count incremented and the caller must use dev_put() to
771 * release it when it is no longer needed. %NULL is returned if no
772 * matching device is found.
775 struct net_device *dev_get_by_name(struct net *net, const char *name)
777 struct net_device *dev;
779 rcu_read_lock();
780 dev = dev_get_by_name_rcu(net, name);
781 if (dev)
782 dev_hold(dev);
783 rcu_read_unlock();
784 return dev;
786 EXPORT_SYMBOL(dev_get_by_name);
789 * __dev_get_by_index - find a device by its ifindex
790 * @net: the applicable net namespace
791 * @ifindex: index of device
793 * Search for an interface by index. Returns %NULL if the device
794 * is not found or a pointer to the device. The device has not
795 * had its reference counter increased so the caller must be careful
796 * about locking. The caller must hold either the RTNL semaphore
797 * or @dev_base_lock.
800 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
802 struct net_device *dev;
803 struct hlist_head *head = dev_index_hash(net, ifindex);
805 hlist_for_each_entry(dev, head, index_hlist)
806 if (dev->ifindex == ifindex)
807 return dev;
809 return NULL;
811 EXPORT_SYMBOL(__dev_get_by_index);
814 * dev_get_by_index_rcu - find a device by its ifindex
815 * @net: the applicable net namespace
816 * @ifindex: index of device
818 * Search for an interface by index. Returns %NULL if the device
819 * is not found or a pointer to the device. The device has not
820 * had its reference counter increased so the caller must be careful
821 * about locking. The caller must hold RCU lock.
824 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
826 struct net_device *dev;
827 struct hlist_head *head = dev_index_hash(net, ifindex);
829 hlist_for_each_entry_rcu(dev, head, index_hlist)
830 if (dev->ifindex == ifindex)
831 return dev;
833 return NULL;
835 EXPORT_SYMBOL(dev_get_by_index_rcu);
839 * dev_get_by_index - find a device by its ifindex
840 * @net: the applicable net namespace
841 * @ifindex: index of device
843 * Search for an interface by index. Returns NULL if the device
844 * is not found or a pointer to the device. The device returned has
845 * had a reference added and the pointer is safe until the user calls
846 * dev_put to indicate they have finished with it.
849 struct net_device *dev_get_by_index(struct net *net, int ifindex)
851 struct net_device *dev;
853 rcu_read_lock();
854 dev = dev_get_by_index_rcu(net, ifindex);
855 if (dev)
856 dev_hold(dev);
857 rcu_read_unlock();
858 return dev;
860 EXPORT_SYMBOL(dev_get_by_index);
863 * netdev_get_name - get a netdevice name, knowing its ifindex.
864 * @net: network namespace
865 * @name: a pointer to the buffer where the name will be stored.
866 * @ifindex: the ifindex of the interface to get the name from.
868 * The use of raw_seqcount_begin() and cond_resched() before
869 * retrying is required as we want to give the writers a chance
870 * to complete when CONFIG_PREEMPT is not set.
872 int netdev_get_name(struct net *net, char *name, int ifindex)
874 struct net_device *dev;
875 unsigned int seq;
877 retry:
878 seq = raw_seqcount_begin(&devnet_rename_seq);
879 rcu_read_lock();
880 dev = dev_get_by_index_rcu(net, ifindex);
881 if (!dev) {
882 rcu_read_unlock();
883 return -ENODEV;
886 strcpy(name, dev->name);
887 rcu_read_unlock();
888 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
889 cond_resched();
890 goto retry;
893 return 0;
897 * dev_getbyhwaddr_rcu - find a device by its hardware address
898 * @net: the applicable net namespace
899 * @type: media type of device
900 * @ha: hardware address
902 * Search for an interface by MAC address. Returns NULL if the device
903 * is not found or a pointer to the device.
904 * The caller must hold RCU or RTNL.
905 * The returned device has not had its ref count increased
906 * and the caller must therefore be careful about locking
910 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
911 const char *ha)
913 struct net_device *dev;
915 for_each_netdev_rcu(net, dev)
916 if (dev->type == type &&
917 !memcmp(dev->dev_addr, ha, dev->addr_len))
918 return dev;
920 return NULL;
922 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
924 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
926 struct net_device *dev;
928 ASSERT_RTNL();
929 for_each_netdev(net, dev)
930 if (dev->type == type)
931 return dev;
933 return NULL;
935 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
937 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
939 struct net_device *dev, *ret = NULL;
941 rcu_read_lock();
942 for_each_netdev_rcu(net, dev)
943 if (dev->type == type) {
944 dev_hold(dev);
945 ret = dev;
946 break;
948 rcu_read_unlock();
949 return ret;
951 EXPORT_SYMBOL(dev_getfirstbyhwtype);
954 * __dev_get_by_flags - find any device with given flags
955 * @net: the applicable net namespace
956 * @if_flags: IFF_* values
957 * @mask: bitmask of bits in if_flags to check
959 * Search for any interface with the given flags. Returns NULL if a device
960 * is not found or a pointer to the device. Must be called inside
961 * rtnl_lock(), and result refcount is unchanged.
964 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
965 unsigned short mask)
967 struct net_device *dev, *ret;
969 ASSERT_RTNL();
971 ret = NULL;
972 for_each_netdev(net, dev) {
973 if (((dev->flags ^ if_flags) & mask) == 0) {
974 ret = dev;
975 break;
978 return ret;
980 EXPORT_SYMBOL(__dev_get_by_flags);
983 * dev_valid_name - check if name is okay for network device
984 * @name: name string
986 * Network device names need to be valid file names to
987 * to allow sysfs to work. We also disallow any kind of
988 * whitespace.
990 bool dev_valid_name(const char *name)
992 if (*name == '\0')
993 return false;
994 if (strlen(name) >= IFNAMSIZ)
995 return false;
996 if (!strcmp(name, ".") || !strcmp(name, ".."))
997 return false;
999 while (*name) {
1000 if (*name == '/' || *name == ':' || isspace(*name))
1001 return false;
1002 name++;
1004 return true;
1006 EXPORT_SYMBOL(dev_valid_name);
1009 * __dev_alloc_name - allocate a name for a device
1010 * @net: network namespace to allocate the device name in
1011 * @name: name format string
1012 * @buf: scratch buffer and result name string
1014 * Passed a format string - eg "lt%d" it will try and find a suitable
1015 * id. It scans list of devices to build up a free map, then chooses
1016 * the first empty slot. The caller must hold the dev_base or rtnl lock
1017 * while allocating the name and adding the device in order to avoid
1018 * duplicates.
1019 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1020 * Returns the number of the unit assigned or a negative errno code.
1023 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1025 int i = 0;
1026 const char *p;
1027 const int max_netdevices = 8*PAGE_SIZE;
1028 unsigned long *inuse;
1029 struct net_device *d;
1031 p = strnchr(name, IFNAMSIZ-1, '%');
1032 if (p) {
1034 * Verify the string as this thing may have come from
1035 * the user. There must be either one "%d" and no other "%"
1036 * characters.
1038 if (p[1] != 'd' || strchr(p + 2, '%'))
1039 return -EINVAL;
1041 /* Use one page as a bit array of possible slots */
1042 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1043 if (!inuse)
1044 return -ENOMEM;
1046 for_each_netdev(net, d) {
1047 if (!sscanf(d->name, name, &i))
1048 continue;
1049 if (i < 0 || i >= max_netdevices)
1050 continue;
1052 /* avoid cases where sscanf is not exact inverse of printf */
1053 snprintf(buf, IFNAMSIZ, name, i);
1054 if (!strncmp(buf, d->name, IFNAMSIZ))
1055 set_bit(i, inuse);
1058 i = find_first_zero_bit(inuse, max_netdevices);
1059 free_page((unsigned long) inuse);
1062 if (buf != name)
1063 snprintf(buf, IFNAMSIZ, name, i);
1064 if (!__dev_get_by_name(net, buf))
1065 return i;
1067 /* It is possible to run out of possible slots
1068 * when the name is long and there isn't enough space left
1069 * for the digits, or if all bits are used.
1071 return -ENFILE;
1075 * dev_alloc_name - allocate a name for a device
1076 * @dev: device
1077 * @name: name format string
1079 * Passed a format string - eg "lt%d" it will try and find a suitable
1080 * id. It scans list of devices to build up a free map, then chooses
1081 * the first empty slot. The caller must hold the dev_base or rtnl lock
1082 * while allocating the name and adding the device in order to avoid
1083 * duplicates.
1084 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1085 * Returns the number of the unit assigned or a negative errno code.
1088 int dev_alloc_name(struct net_device *dev, const char *name)
1090 char buf[IFNAMSIZ];
1091 struct net *net;
1092 int ret;
1094 BUG_ON(!dev_net(dev));
1095 net = dev_net(dev);
1096 ret = __dev_alloc_name(net, name, buf);
1097 if (ret >= 0)
1098 strlcpy(dev->name, buf, IFNAMSIZ);
1099 return ret;
1101 EXPORT_SYMBOL(dev_alloc_name);
1103 static int dev_alloc_name_ns(struct net *net,
1104 struct net_device *dev,
1105 const char *name)
1107 char buf[IFNAMSIZ];
1108 int ret;
1110 ret = __dev_alloc_name(net, name, buf);
1111 if (ret >= 0)
1112 strlcpy(dev->name, buf, IFNAMSIZ);
1113 return ret;
1116 static int dev_get_valid_name(struct net *net,
1117 struct net_device *dev,
1118 const char *name)
1120 BUG_ON(!net);
1122 if (!dev_valid_name(name))
1123 return -EINVAL;
1125 if (strchr(name, '%'))
1126 return dev_alloc_name_ns(net, dev, name);
1127 else if (__dev_get_by_name(net, name))
1128 return -EEXIST;
1129 else if (dev->name != name)
1130 strlcpy(dev->name, name, IFNAMSIZ);
1132 return 0;
1136 * dev_change_name - change name of a device
1137 * @dev: device
1138 * @newname: name (or format string) must be at least IFNAMSIZ
1140 * Change name of a device, can pass format strings "eth%d".
1141 * for wildcarding.
1143 int dev_change_name(struct net_device *dev, const char *newname)
1145 unsigned char old_assign_type;
1146 char oldname[IFNAMSIZ];
1147 int err = 0;
1148 int ret;
1149 struct net *net;
1151 ASSERT_RTNL();
1152 BUG_ON(!dev_net(dev));
1154 net = dev_net(dev);
1155 if (dev->flags & IFF_UP)
1156 return -EBUSY;
1158 write_seqcount_begin(&devnet_rename_seq);
1160 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1161 write_seqcount_end(&devnet_rename_seq);
1162 return 0;
1165 memcpy(oldname, dev->name, IFNAMSIZ);
1167 err = dev_get_valid_name(net, dev, newname);
1168 if (err < 0) {
1169 write_seqcount_end(&devnet_rename_seq);
1170 return err;
1173 if (oldname[0] && !strchr(oldname, '%'))
1174 netdev_info(dev, "renamed from %s\n", oldname);
1176 old_assign_type = dev->name_assign_type;
1177 dev->name_assign_type = NET_NAME_RENAMED;
1179 rollback:
1180 ret = device_rename(&dev->dev, dev->name);
1181 if (ret) {
1182 memcpy(dev->name, oldname, IFNAMSIZ);
1183 dev->name_assign_type = old_assign_type;
1184 write_seqcount_end(&devnet_rename_seq);
1185 return ret;
1188 write_seqcount_end(&devnet_rename_seq);
1190 netdev_adjacent_rename_links(dev, oldname);
1192 write_lock_bh(&dev_base_lock);
1193 hlist_del_rcu(&dev->name_hlist);
1194 write_unlock_bh(&dev_base_lock);
1196 synchronize_rcu();
1198 write_lock_bh(&dev_base_lock);
1199 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1200 write_unlock_bh(&dev_base_lock);
1202 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1203 ret = notifier_to_errno(ret);
1205 if (ret) {
1206 /* err >= 0 after dev_alloc_name() or stores the first errno */
1207 if (err >= 0) {
1208 err = ret;
1209 write_seqcount_begin(&devnet_rename_seq);
1210 memcpy(dev->name, oldname, IFNAMSIZ);
1211 memcpy(oldname, newname, IFNAMSIZ);
1212 dev->name_assign_type = old_assign_type;
1213 old_assign_type = NET_NAME_RENAMED;
1214 goto rollback;
1215 } else {
1216 pr_err("%s: name change rollback failed: %d\n",
1217 dev->name, ret);
1221 return err;
1225 * dev_set_alias - change ifalias of a device
1226 * @dev: device
1227 * @alias: name up to IFALIASZ
1228 * @len: limit of bytes to copy from info
1230 * Set ifalias for a device,
1232 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1234 char *new_ifalias;
1236 ASSERT_RTNL();
1238 if (len >= IFALIASZ)
1239 return -EINVAL;
1241 if (!len) {
1242 kfree(dev->ifalias);
1243 dev->ifalias = NULL;
1244 return 0;
1247 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1248 if (!new_ifalias)
1249 return -ENOMEM;
1250 dev->ifalias = new_ifalias;
1252 strlcpy(dev->ifalias, alias, len+1);
1253 return len;
1258 * netdev_features_change - device changes features
1259 * @dev: device to cause notification
1261 * Called to indicate a device has changed features.
1263 void netdev_features_change(struct net_device *dev)
1265 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1267 EXPORT_SYMBOL(netdev_features_change);
1270 * netdev_state_change - device changes state
1271 * @dev: device to cause notification
1273 * Called to indicate a device has changed state. This function calls
1274 * the notifier chains for netdev_chain and sends a NEWLINK message
1275 * to the routing socket.
1277 void netdev_state_change(struct net_device *dev)
1279 if (dev->flags & IFF_UP) {
1280 struct netdev_notifier_change_info change_info;
1282 change_info.flags_changed = 0;
1283 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1284 &change_info.info);
1285 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1288 EXPORT_SYMBOL(netdev_state_change);
1291 * netdev_notify_peers - notify network peers about existence of @dev
1292 * @dev: network device
1294 * Generate traffic such that interested network peers are aware of
1295 * @dev, such as by generating a gratuitous ARP. This may be used when
1296 * a device wants to inform the rest of the network about some sort of
1297 * reconfiguration such as a failover event or virtual machine
1298 * migration.
1300 void netdev_notify_peers(struct net_device *dev)
1302 rtnl_lock();
1303 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1304 rtnl_unlock();
1306 EXPORT_SYMBOL(netdev_notify_peers);
1308 static int __dev_open(struct net_device *dev)
1310 const struct net_device_ops *ops = dev->netdev_ops;
1311 int ret;
1313 ASSERT_RTNL();
1315 if (!netif_device_present(dev))
1316 return -ENODEV;
1318 /* Block netpoll from trying to do any rx path servicing.
1319 * If we don't do this there is a chance ndo_poll_controller
1320 * or ndo_poll may be running while we open the device
1322 netpoll_poll_disable(dev);
1324 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1325 ret = notifier_to_errno(ret);
1326 if (ret)
1327 return ret;
1329 set_bit(__LINK_STATE_START, &dev->state);
1331 if (ops->ndo_validate_addr)
1332 ret = ops->ndo_validate_addr(dev);
1334 if (!ret && ops->ndo_open)
1335 ret = ops->ndo_open(dev);
1337 netpoll_poll_enable(dev);
1339 if (ret)
1340 clear_bit(__LINK_STATE_START, &dev->state);
1341 else {
1342 dev->flags |= IFF_UP;
1343 dev_set_rx_mode(dev);
1344 dev_activate(dev);
1345 add_device_randomness(dev->dev_addr, dev->addr_len);
1348 return ret;
1352 * dev_open - prepare an interface for use.
1353 * @dev: device to open
1355 * Takes a device from down to up state. The device's private open
1356 * function is invoked and then the multicast lists are loaded. Finally
1357 * the device is moved into the up state and a %NETDEV_UP message is
1358 * sent to the netdev notifier chain.
1360 * Calling this function on an active interface is a nop. On a failure
1361 * a negative errno code is returned.
1363 int dev_open(struct net_device *dev)
1365 int ret;
1367 if (dev->flags & IFF_UP)
1368 return 0;
1370 ret = __dev_open(dev);
1371 if (ret < 0)
1372 return ret;
1374 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1375 call_netdevice_notifiers(NETDEV_UP, dev);
1377 return ret;
1379 EXPORT_SYMBOL(dev_open);
1381 static int __dev_close_many(struct list_head *head)
1383 struct net_device *dev;
1385 ASSERT_RTNL();
1386 might_sleep();
1388 list_for_each_entry(dev, head, close_list) {
1389 /* Temporarily disable netpoll until the interface is down */
1390 netpoll_poll_disable(dev);
1392 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1394 clear_bit(__LINK_STATE_START, &dev->state);
1396 /* Synchronize to scheduled poll. We cannot touch poll list, it
1397 * can be even on different cpu. So just clear netif_running().
1399 * dev->stop() will invoke napi_disable() on all of it's
1400 * napi_struct instances on this device.
1402 smp_mb__after_atomic(); /* Commit netif_running(). */
1405 dev_deactivate_many(head);
1407 list_for_each_entry(dev, head, close_list) {
1408 const struct net_device_ops *ops = dev->netdev_ops;
1411 * Call the device specific close. This cannot fail.
1412 * Only if device is UP
1414 * We allow it to be called even after a DETACH hot-plug
1415 * event.
1417 if (ops->ndo_stop)
1418 ops->ndo_stop(dev);
1420 dev->flags &= ~IFF_UP;
1421 netpoll_poll_enable(dev);
1424 return 0;
1427 static int __dev_close(struct net_device *dev)
1429 int retval;
1430 LIST_HEAD(single);
1432 list_add(&dev->close_list, &single);
1433 retval = __dev_close_many(&single);
1434 list_del(&single);
1436 return retval;
1439 int dev_close_many(struct list_head *head, bool unlink)
1441 struct net_device *dev, *tmp;
1443 /* Remove the devices that don't need to be closed */
1444 list_for_each_entry_safe(dev, tmp, head, close_list)
1445 if (!(dev->flags & IFF_UP))
1446 list_del_init(&dev->close_list);
1448 __dev_close_many(head);
1450 list_for_each_entry_safe(dev, tmp, head, close_list) {
1451 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1452 call_netdevice_notifiers(NETDEV_DOWN, dev);
1453 if (unlink)
1454 list_del_init(&dev->close_list);
1457 return 0;
1459 EXPORT_SYMBOL(dev_close_many);
1462 * dev_close - shutdown an interface.
1463 * @dev: device to shutdown
1465 * This function moves an active device into down state. A
1466 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1467 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1468 * chain.
1470 int dev_close(struct net_device *dev)
1472 if (dev->flags & IFF_UP) {
1473 LIST_HEAD(single);
1475 list_add(&dev->close_list, &single);
1476 dev_close_many(&single, true);
1477 list_del(&single);
1479 return 0;
1481 EXPORT_SYMBOL(dev_close);
1485 * dev_disable_lro - disable Large Receive Offload on a device
1486 * @dev: device
1488 * Disable Large Receive Offload (LRO) on a net device. Must be
1489 * called under RTNL. This is needed if received packets may be
1490 * forwarded to another interface.
1492 void dev_disable_lro(struct net_device *dev)
1494 struct net_device *lower_dev;
1495 struct list_head *iter;
1497 dev->wanted_features &= ~NETIF_F_LRO;
1498 netdev_update_features(dev);
1500 if (unlikely(dev->features & NETIF_F_LRO))
1501 netdev_WARN(dev, "failed to disable LRO!\n");
1503 netdev_for_each_lower_dev(dev, lower_dev, iter)
1504 dev_disable_lro(lower_dev);
1506 EXPORT_SYMBOL(dev_disable_lro);
1508 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1509 struct net_device *dev)
1511 struct netdev_notifier_info info;
1513 netdev_notifier_info_init(&info, dev);
1514 return nb->notifier_call(nb, val, &info);
1517 static int dev_boot_phase = 1;
1520 * register_netdevice_notifier - register a network notifier block
1521 * @nb: notifier
1523 * Register a notifier to be called when network device events occur.
1524 * The notifier passed is linked into the kernel structures and must
1525 * not be reused until it has been unregistered. A negative errno code
1526 * is returned on a failure.
1528 * When registered all registration and up events are replayed
1529 * to the new notifier to allow device to have a race free
1530 * view of the network device list.
1533 int register_netdevice_notifier(struct notifier_block *nb)
1535 struct net_device *dev;
1536 struct net_device *last;
1537 struct net *net;
1538 int err;
1540 rtnl_lock();
1541 err = raw_notifier_chain_register(&netdev_chain, nb);
1542 if (err)
1543 goto unlock;
1544 if (dev_boot_phase)
1545 goto unlock;
1546 for_each_net(net) {
1547 for_each_netdev(net, dev) {
1548 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1549 err = notifier_to_errno(err);
1550 if (err)
1551 goto rollback;
1553 if (!(dev->flags & IFF_UP))
1554 continue;
1556 call_netdevice_notifier(nb, NETDEV_UP, dev);
1560 unlock:
1561 rtnl_unlock();
1562 return err;
1564 rollback:
1565 last = dev;
1566 for_each_net(net) {
1567 for_each_netdev(net, dev) {
1568 if (dev == last)
1569 goto outroll;
1571 if (dev->flags & IFF_UP) {
1572 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1573 dev);
1574 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1576 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1580 outroll:
1581 raw_notifier_chain_unregister(&netdev_chain, nb);
1582 goto unlock;
1584 EXPORT_SYMBOL(register_netdevice_notifier);
1587 * unregister_netdevice_notifier - unregister a network notifier block
1588 * @nb: notifier
1590 * Unregister a notifier previously registered by
1591 * register_netdevice_notifier(). The notifier is unlinked into the
1592 * kernel structures and may then be reused. A negative errno code
1593 * is returned on a failure.
1595 * After unregistering unregister and down device events are synthesized
1596 * for all devices on the device list to the removed notifier to remove
1597 * the need for special case cleanup code.
1600 int unregister_netdevice_notifier(struct notifier_block *nb)
1602 struct net_device *dev;
1603 struct net *net;
1604 int err;
1606 rtnl_lock();
1607 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1608 if (err)
1609 goto unlock;
1611 for_each_net(net) {
1612 for_each_netdev(net, dev) {
1613 if (dev->flags & IFF_UP) {
1614 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1615 dev);
1616 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1618 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1621 unlock:
1622 rtnl_unlock();
1623 return err;
1625 EXPORT_SYMBOL(unregister_netdevice_notifier);
1628 * call_netdevice_notifiers_info - call all network notifier blocks
1629 * @val: value passed unmodified to notifier function
1630 * @dev: net_device pointer passed unmodified to notifier function
1631 * @info: notifier information data
1633 * Call all network notifier blocks. Parameters and return value
1634 * are as for raw_notifier_call_chain().
1637 static int call_netdevice_notifiers_info(unsigned long val,
1638 struct net_device *dev,
1639 struct netdev_notifier_info *info)
1641 ASSERT_RTNL();
1642 netdev_notifier_info_init(info, dev);
1643 return raw_notifier_call_chain(&netdev_chain, val, info);
1647 * call_netdevice_notifiers - call all network notifier blocks
1648 * @val: value passed unmodified to notifier function
1649 * @dev: net_device pointer passed unmodified to notifier function
1651 * Call all network notifier blocks. Parameters and return value
1652 * are as for raw_notifier_call_chain().
1655 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1657 struct netdev_notifier_info info;
1659 return call_netdevice_notifiers_info(val, dev, &info);
1661 EXPORT_SYMBOL(call_netdevice_notifiers);
1663 #ifdef CONFIG_NET_INGRESS
1664 static struct static_key ingress_needed __read_mostly;
1666 void net_inc_ingress_queue(void)
1668 static_key_slow_inc(&ingress_needed);
1670 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1672 void net_dec_ingress_queue(void)
1674 static_key_slow_dec(&ingress_needed);
1676 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1677 #endif
1679 #ifdef CONFIG_NET_EGRESS
1680 static struct static_key egress_needed __read_mostly;
1682 void net_inc_egress_queue(void)
1684 static_key_slow_inc(&egress_needed);
1686 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1688 void net_dec_egress_queue(void)
1690 static_key_slow_dec(&egress_needed);
1692 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1693 #endif
1695 static struct static_key netstamp_needed __read_mostly;
1696 #ifdef HAVE_JUMP_LABEL
1697 /* We are not allowed to call static_key_slow_dec() from irq context
1698 * If net_disable_timestamp() is called from irq context, defer the
1699 * static_key_slow_dec() calls.
1701 static atomic_t netstamp_needed_deferred;
1702 #endif
1704 void net_enable_timestamp(void)
1706 #ifdef HAVE_JUMP_LABEL
1707 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1709 if (deferred) {
1710 while (--deferred)
1711 static_key_slow_dec(&netstamp_needed);
1712 return;
1714 #endif
1715 static_key_slow_inc(&netstamp_needed);
1717 EXPORT_SYMBOL(net_enable_timestamp);
1719 void net_disable_timestamp(void)
1721 #ifdef HAVE_JUMP_LABEL
1722 if (in_interrupt()) {
1723 atomic_inc(&netstamp_needed_deferred);
1724 return;
1726 #endif
1727 static_key_slow_dec(&netstamp_needed);
1729 EXPORT_SYMBOL(net_disable_timestamp);
1731 static inline void net_timestamp_set(struct sk_buff *skb)
1733 skb->tstamp.tv64 = 0;
1734 if (static_key_false(&netstamp_needed))
1735 __net_timestamp(skb);
1738 #define net_timestamp_check(COND, SKB) \
1739 if (static_key_false(&netstamp_needed)) { \
1740 if ((COND) && !(SKB)->tstamp.tv64) \
1741 __net_timestamp(SKB); \
1744 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1746 unsigned int len;
1748 if (!(dev->flags & IFF_UP))
1749 return false;
1751 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1752 if (skb->len <= len)
1753 return true;
1755 /* if TSO is enabled, we don't care about the length as the packet
1756 * could be forwarded without being segmented before
1758 if (skb_is_gso(skb))
1759 return true;
1761 return false;
1763 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1765 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1767 if (skb_orphan_frags(skb, GFP_ATOMIC) ||
1768 unlikely(!is_skb_forwardable(dev, skb))) {
1769 atomic_long_inc(&dev->rx_dropped);
1770 kfree_skb(skb);
1771 return NET_RX_DROP;
1774 skb_scrub_packet(skb, true);
1775 skb->priority = 0;
1776 skb->protocol = eth_type_trans(skb, dev);
1777 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1779 return 0;
1781 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1784 * dev_forward_skb - loopback an skb to another netif
1786 * @dev: destination network device
1787 * @skb: buffer to forward
1789 * return values:
1790 * NET_RX_SUCCESS (no congestion)
1791 * NET_RX_DROP (packet was dropped, but freed)
1793 * dev_forward_skb can be used for injecting an skb from the
1794 * start_xmit function of one device into the receive queue
1795 * of another device.
1797 * The receiving device may be in another namespace, so
1798 * we have to clear all information in the skb that could
1799 * impact namespace isolation.
1801 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1803 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1805 EXPORT_SYMBOL_GPL(dev_forward_skb);
1807 static inline int deliver_skb(struct sk_buff *skb,
1808 struct packet_type *pt_prev,
1809 struct net_device *orig_dev)
1811 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1812 return -ENOMEM;
1813 atomic_inc(&skb->users);
1814 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1817 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1818 struct packet_type **pt,
1819 struct net_device *orig_dev,
1820 __be16 type,
1821 struct list_head *ptype_list)
1823 struct packet_type *ptype, *pt_prev = *pt;
1825 list_for_each_entry_rcu(ptype, ptype_list, list) {
1826 if (ptype->type != type)
1827 continue;
1828 if (pt_prev)
1829 deliver_skb(skb, pt_prev, orig_dev);
1830 pt_prev = ptype;
1832 *pt = pt_prev;
1835 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1837 if (!ptype->af_packet_priv || !skb->sk)
1838 return false;
1840 if (ptype->id_match)
1841 return ptype->id_match(ptype, skb->sk);
1842 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1843 return true;
1845 return false;
1849 * Support routine. Sends outgoing frames to any network
1850 * taps currently in use.
1853 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1855 struct packet_type *ptype;
1856 struct sk_buff *skb2 = NULL;
1857 struct packet_type *pt_prev = NULL;
1858 struct list_head *ptype_list = &ptype_all;
1860 rcu_read_lock();
1861 again:
1862 list_for_each_entry_rcu(ptype, ptype_list, list) {
1863 /* Never send packets back to the socket
1864 * they originated from - MvS (miquels@drinkel.ow.org)
1866 if (skb_loop_sk(ptype, skb))
1867 continue;
1869 if (pt_prev) {
1870 deliver_skb(skb2, pt_prev, skb->dev);
1871 pt_prev = ptype;
1872 continue;
1875 /* need to clone skb, done only once */
1876 skb2 = skb_clone(skb, GFP_ATOMIC);
1877 if (!skb2)
1878 goto out_unlock;
1880 net_timestamp_set(skb2);
1882 /* skb->nh should be correctly
1883 * set by sender, so that the second statement is
1884 * just protection against buggy protocols.
1886 skb_reset_mac_header(skb2);
1888 if (skb_network_header(skb2) < skb2->data ||
1889 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1890 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1891 ntohs(skb2->protocol),
1892 dev->name);
1893 skb_reset_network_header(skb2);
1896 skb2->transport_header = skb2->network_header;
1897 skb2->pkt_type = PACKET_OUTGOING;
1898 pt_prev = ptype;
1901 if (ptype_list == &ptype_all) {
1902 ptype_list = &dev->ptype_all;
1903 goto again;
1905 out_unlock:
1906 if (pt_prev)
1907 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1908 rcu_read_unlock();
1912 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1913 * @dev: Network device
1914 * @txq: number of queues available
1916 * If real_num_tx_queues is changed the tc mappings may no longer be
1917 * valid. To resolve this verify the tc mapping remains valid and if
1918 * not NULL the mapping. With no priorities mapping to this
1919 * offset/count pair it will no longer be used. In the worst case TC0
1920 * is invalid nothing can be done so disable priority mappings. If is
1921 * expected that drivers will fix this mapping if they can before
1922 * calling netif_set_real_num_tx_queues.
1924 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1926 int i;
1927 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1929 /* If TC0 is invalidated disable TC mapping */
1930 if (tc->offset + tc->count > txq) {
1931 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1932 dev->num_tc = 0;
1933 return;
1936 /* Invalidated prio to tc mappings set to TC0 */
1937 for (i = 1; i < TC_BITMASK + 1; i++) {
1938 int q = netdev_get_prio_tc_map(dev, i);
1940 tc = &dev->tc_to_txq[q];
1941 if (tc->offset + tc->count > txq) {
1942 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1943 i, q);
1944 netdev_set_prio_tc_map(dev, i, 0);
1949 #ifdef CONFIG_XPS
1950 static DEFINE_MUTEX(xps_map_mutex);
1951 #define xmap_dereference(P) \
1952 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1954 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1955 int cpu, u16 index)
1957 struct xps_map *map = NULL;
1958 int pos;
1960 if (dev_maps)
1961 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1963 for (pos = 0; map && pos < map->len; pos++) {
1964 if (map->queues[pos] == index) {
1965 if (map->len > 1) {
1966 map->queues[pos] = map->queues[--map->len];
1967 } else {
1968 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1969 kfree_rcu(map, rcu);
1970 map = NULL;
1972 break;
1976 return map;
1979 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1981 struct xps_dev_maps *dev_maps;
1982 int cpu, i;
1983 bool active = false;
1985 mutex_lock(&xps_map_mutex);
1986 dev_maps = xmap_dereference(dev->xps_maps);
1988 if (!dev_maps)
1989 goto out_no_maps;
1991 for_each_possible_cpu(cpu) {
1992 for (i = index; i < dev->num_tx_queues; i++) {
1993 if (!remove_xps_queue(dev_maps, cpu, i))
1994 break;
1996 if (i == dev->num_tx_queues)
1997 active = true;
2000 if (!active) {
2001 RCU_INIT_POINTER(dev->xps_maps, NULL);
2002 kfree_rcu(dev_maps, rcu);
2005 for (i = index; i < dev->num_tx_queues; i++)
2006 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2007 NUMA_NO_NODE);
2009 out_no_maps:
2010 mutex_unlock(&xps_map_mutex);
2013 static struct xps_map *expand_xps_map(struct xps_map *map,
2014 int cpu, u16 index)
2016 struct xps_map *new_map;
2017 int alloc_len = XPS_MIN_MAP_ALLOC;
2018 int i, pos;
2020 for (pos = 0; map && pos < map->len; pos++) {
2021 if (map->queues[pos] != index)
2022 continue;
2023 return map;
2026 /* Need to add queue to this CPU's existing map */
2027 if (map) {
2028 if (pos < map->alloc_len)
2029 return map;
2031 alloc_len = map->alloc_len * 2;
2034 /* Need to allocate new map to store queue on this CPU's map */
2035 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2036 cpu_to_node(cpu));
2037 if (!new_map)
2038 return NULL;
2040 for (i = 0; i < pos; i++)
2041 new_map->queues[i] = map->queues[i];
2042 new_map->alloc_len = alloc_len;
2043 new_map->len = pos;
2045 return new_map;
2048 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2049 u16 index)
2051 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2052 struct xps_map *map, *new_map;
2053 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
2054 int cpu, numa_node_id = -2;
2055 bool active = false;
2057 mutex_lock(&xps_map_mutex);
2059 dev_maps = xmap_dereference(dev->xps_maps);
2061 /* allocate memory for queue storage */
2062 for_each_online_cpu(cpu) {
2063 if (!cpumask_test_cpu(cpu, mask))
2064 continue;
2066 if (!new_dev_maps)
2067 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2068 if (!new_dev_maps) {
2069 mutex_unlock(&xps_map_mutex);
2070 return -ENOMEM;
2073 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2074 NULL;
2076 map = expand_xps_map(map, cpu, index);
2077 if (!map)
2078 goto error;
2080 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2083 if (!new_dev_maps)
2084 goto out_no_new_maps;
2086 for_each_possible_cpu(cpu) {
2087 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2088 /* add queue to CPU maps */
2089 int pos = 0;
2091 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2092 while ((pos < map->len) && (map->queues[pos] != index))
2093 pos++;
2095 if (pos == map->len)
2096 map->queues[map->len++] = index;
2097 #ifdef CONFIG_NUMA
2098 if (numa_node_id == -2)
2099 numa_node_id = cpu_to_node(cpu);
2100 else if (numa_node_id != cpu_to_node(cpu))
2101 numa_node_id = -1;
2102 #endif
2103 } else if (dev_maps) {
2104 /* fill in the new device map from the old device map */
2105 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2106 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2111 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2113 /* Cleanup old maps */
2114 if (dev_maps) {
2115 for_each_possible_cpu(cpu) {
2116 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2117 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2118 if (map && map != new_map)
2119 kfree_rcu(map, rcu);
2122 kfree_rcu(dev_maps, rcu);
2125 dev_maps = new_dev_maps;
2126 active = true;
2128 out_no_new_maps:
2129 /* update Tx queue numa node */
2130 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2131 (numa_node_id >= 0) ? numa_node_id :
2132 NUMA_NO_NODE);
2134 if (!dev_maps)
2135 goto out_no_maps;
2137 /* removes queue from unused CPUs */
2138 for_each_possible_cpu(cpu) {
2139 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2140 continue;
2142 if (remove_xps_queue(dev_maps, cpu, index))
2143 active = true;
2146 /* free map if not active */
2147 if (!active) {
2148 RCU_INIT_POINTER(dev->xps_maps, NULL);
2149 kfree_rcu(dev_maps, rcu);
2152 out_no_maps:
2153 mutex_unlock(&xps_map_mutex);
2155 return 0;
2156 error:
2157 /* remove any maps that we added */
2158 for_each_possible_cpu(cpu) {
2159 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2160 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2161 NULL;
2162 if (new_map && new_map != map)
2163 kfree(new_map);
2166 mutex_unlock(&xps_map_mutex);
2168 kfree(new_dev_maps);
2169 return -ENOMEM;
2171 EXPORT_SYMBOL(netif_set_xps_queue);
2173 #endif
2175 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2176 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2178 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2180 int rc;
2182 if (txq < 1 || txq > dev->num_tx_queues)
2183 return -EINVAL;
2185 if (dev->reg_state == NETREG_REGISTERED ||
2186 dev->reg_state == NETREG_UNREGISTERING) {
2187 ASSERT_RTNL();
2189 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2190 txq);
2191 if (rc)
2192 return rc;
2194 if (dev->num_tc)
2195 netif_setup_tc(dev, txq);
2197 if (txq < dev->real_num_tx_queues) {
2198 qdisc_reset_all_tx_gt(dev, txq);
2199 #ifdef CONFIG_XPS
2200 netif_reset_xps_queues_gt(dev, txq);
2201 #endif
2205 dev->real_num_tx_queues = txq;
2206 return 0;
2208 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2210 #ifdef CONFIG_SYSFS
2212 * netif_set_real_num_rx_queues - set actual number of RX queues used
2213 * @dev: Network device
2214 * @rxq: Actual number of RX queues
2216 * This must be called either with the rtnl_lock held or before
2217 * registration of the net device. Returns 0 on success, or a
2218 * negative error code. If called before registration, it always
2219 * succeeds.
2221 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2223 int rc;
2225 if (rxq < 1 || rxq > dev->num_rx_queues)
2226 return -EINVAL;
2228 if (dev->reg_state == NETREG_REGISTERED) {
2229 ASSERT_RTNL();
2231 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2232 rxq);
2233 if (rc)
2234 return rc;
2237 dev->real_num_rx_queues = rxq;
2238 return 0;
2240 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2241 #endif
2244 * netif_get_num_default_rss_queues - default number of RSS queues
2246 * This routine should set an upper limit on the number of RSS queues
2247 * used by default by multiqueue devices.
2249 int netif_get_num_default_rss_queues(void)
2251 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2253 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2255 static inline void __netif_reschedule(struct Qdisc *q)
2257 struct softnet_data *sd;
2258 unsigned long flags;
2260 local_irq_save(flags);
2261 sd = this_cpu_ptr(&softnet_data);
2262 q->next_sched = NULL;
2263 *sd->output_queue_tailp = q;
2264 sd->output_queue_tailp = &q->next_sched;
2265 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2266 local_irq_restore(flags);
2269 void __netif_schedule(struct Qdisc *q)
2271 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2272 __netif_reschedule(q);
2274 EXPORT_SYMBOL(__netif_schedule);
2276 struct dev_kfree_skb_cb {
2277 enum skb_free_reason reason;
2280 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2282 return (struct dev_kfree_skb_cb *)skb->cb;
2285 void netif_schedule_queue(struct netdev_queue *txq)
2287 rcu_read_lock();
2288 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2289 struct Qdisc *q = rcu_dereference(txq->qdisc);
2291 __netif_schedule(q);
2293 rcu_read_unlock();
2295 EXPORT_SYMBOL(netif_schedule_queue);
2298 * netif_wake_subqueue - allow sending packets on subqueue
2299 * @dev: network device
2300 * @queue_index: sub queue index
2302 * Resume individual transmit queue of a device with multiple transmit queues.
2304 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2306 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2308 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2309 struct Qdisc *q;
2311 rcu_read_lock();
2312 q = rcu_dereference(txq->qdisc);
2313 __netif_schedule(q);
2314 rcu_read_unlock();
2317 EXPORT_SYMBOL(netif_wake_subqueue);
2319 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2321 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2322 struct Qdisc *q;
2324 rcu_read_lock();
2325 q = rcu_dereference(dev_queue->qdisc);
2326 __netif_schedule(q);
2327 rcu_read_unlock();
2330 EXPORT_SYMBOL(netif_tx_wake_queue);
2332 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2334 unsigned long flags;
2336 if (likely(atomic_read(&skb->users) == 1)) {
2337 smp_rmb();
2338 atomic_set(&skb->users, 0);
2339 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2340 return;
2342 get_kfree_skb_cb(skb)->reason = reason;
2343 local_irq_save(flags);
2344 skb->next = __this_cpu_read(softnet_data.completion_queue);
2345 __this_cpu_write(softnet_data.completion_queue, skb);
2346 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2347 local_irq_restore(flags);
2349 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2351 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2353 if (in_irq() || irqs_disabled())
2354 __dev_kfree_skb_irq(skb, reason);
2355 else
2356 dev_kfree_skb(skb);
2358 EXPORT_SYMBOL(__dev_kfree_skb_any);
2362 * netif_device_detach - mark device as removed
2363 * @dev: network device
2365 * Mark device as removed from system and therefore no longer available.
2367 void netif_device_detach(struct net_device *dev)
2369 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2370 netif_running(dev)) {
2371 netif_tx_stop_all_queues(dev);
2374 EXPORT_SYMBOL(netif_device_detach);
2377 * netif_device_attach - mark device as attached
2378 * @dev: network device
2380 * Mark device as attached from system and restart if needed.
2382 void netif_device_attach(struct net_device *dev)
2384 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2385 netif_running(dev)) {
2386 netif_tx_wake_all_queues(dev);
2387 __netdev_watchdog_up(dev);
2390 EXPORT_SYMBOL(netif_device_attach);
2393 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2394 * to be used as a distribution range.
2396 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2397 unsigned int num_tx_queues)
2399 u32 hash;
2400 u16 qoffset = 0;
2401 u16 qcount = num_tx_queues;
2403 if (skb_rx_queue_recorded(skb)) {
2404 hash = skb_get_rx_queue(skb);
2405 while (unlikely(hash >= num_tx_queues))
2406 hash -= num_tx_queues;
2407 return hash;
2410 if (dev->num_tc) {
2411 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2412 qoffset = dev->tc_to_txq[tc].offset;
2413 qcount = dev->tc_to_txq[tc].count;
2416 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2418 EXPORT_SYMBOL(__skb_tx_hash);
2420 static void skb_warn_bad_offload(const struct sk_buff *skb)
2422 static const netdev_features_t null_features = 0;
2423 struct net_device *dev = skb->dev;
2424 const char *name = "";
2426 if (!net_ratelimit())
2427 return;
2429 if (dev) {
2430 if (dev->dev.parent)
2431 name = dev_driver_string(dev->dev.parent);
2432 else
2433 name = netdev_name(dev);
2435 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2436 "gso_type=%d ip_summed=%d\n",
2437 name, dev ? &dev->features : &null_features,
2438 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2439 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2440 skb_shinfo(skb)->gso_type, skb->ip_summed);
2444 * Invalidate hardware checksum when packet is to be mangled, and
2445 * complete checksum manually on outgoing path.
2447 int skb_checksum_help(struct sk_buff *skb)
2449 __wsum csum;
2450 int ret = 0, offset;
2452 if (skb->ip_summed == CHECKSUM_COMPLETE)
2453 goto out_set_summed;
2455 if (unlikely(skb_shinfo(skb)->gso_size)) {
2456 skb_warn_bad_offload(skb);
2457 return -EINVAL;
2460 /* Before computing a checksum, we should make sure no frag could
2461 * be modified by an external entity : checksum could be wrong.
2463 if (skb_has_shared_frag(skb)) {
2464 ret = __skb_linearize(skb);
2465 if (ret)
2466 goto out;
2469 offset = skb_checksum_start_offset(skb);
2470 BUG_ON(offset >= skb_headlen(skb));
2471 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2473 offset += skb->csum_offset;
2474 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2476 if (skb_cloned(skb) &&
2477 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2478 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2479 if (ret)
2480 goto out;
2483 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2484 out_set_summed:
2485 skb->ip_summed = CHECKSUM_NONE;
2486 out:
2487 return ret;
2489 EXPORT_SYMBOL(skb_checksum_help);
2491 /* skb_csum_offload_check - Driver helper function to determine if a device
2492 * with limited checksum offload capabilities is able to offload the checksum
2493 * for a given packet.
2495 * Arguments:
2496 * skb - sk_buff for the packet in question
2497 * spec - contains the description of what device can offload
2498 * csum_encapped - returns true if the checksum being offloaded is
2499 * encpasulated. That is it is checksum for the transport header
2500 * in the inner headers.
2501 * checksum_help - when set indicates that helper function should
2502 * call skb_checksum_help if offload checks fail
2504 * Returns:
2505 * true: Packet has passed the checksum checks and should be offloadable to
2506 * the device (a driver may still need to check for additional
2507 * restrictions of its device)
2508 * false: Checksum is not offloadable. If checksum_help was set then
2509 * skb_checksum_help was called to resolve checksum for non-GSO
2510 * packets and when IP protocol is not SCTP
2512 bool __skb_csum_offload_chk(struct sk_buff *skb,
2513 const struct skb_csum_offl_spec *spec,
2514 bool *csum_encapped,
2515 bool csum_help)
2517 struct iphdr *iph;
2518 struct ipv6hdr *ipv6;
2519 void *nhdr;
2520 int protocol;
2521 u8 ip_proto;
2523 if (skb->protocol == htons(ETH_P_8021Q) ||
2524 skb->protocol == htons(ETH_P_8021AD)) {
2525 if (!spec->vlan_okay)
2526 goto need_help;
2529 /* We check whether the checksum refers to a transport layer checksum in
2530 * the outermost header or an encapsulated transport layer checksum that
2531 * corresponds to the inner headers of the skb. If the checksum is for
2532 * something else in the packet we need help.
2534 if (skb_checksum_start_offset(skb) == skb_transport_offset(skb)) {
2535 /* Non-encapsulated checksum */
2536 protocol = eproto_to_ipproto(vlan_get_protocol(skb));
2537 nhdr = skb_network_header(skb);
2538 *csum_encapped = false;
2539 if (spec->no_not_encapped)
2540 goto need_help;
2541 } else if (skb->encapsulation && spec->encap_okay &&
2542 skb_checksum_start_offset(skb) ==
2543 skb_inner_transport_offset(skb)) {
2544 /* Encapsulated checksum */
2545 *csum_encapped = true;
2546 switch (skb->inner_protocol_type) {
2547 case ENCAP_TYPE_ETHER:
2548 protocol = eproto_to_ipproto(skb->inner_protocol);
2549 break;
2550 case ENCAP_TYPE_IPPROTO:
2551 protocol = skb->inner_protocol;
2552 break;
2554 nhdr = skb_inner_network_header(skb);
2555 } else {
2556 goto need_help;
2559 switch (protocol) {
2560 case IPPROTO_IP:
2561 if (!spec->ipv4_okay)
2562 goto need_help;
2563 iph = nhdr;
2564 ip_proto = iph->protocol;
2565 if (iph->ihl != 5 && !spec->ip_options_okay)
2566 goto need_help;
2567 break;
2568 case IPPROTO_IPV6:
2569 if (!spec->ipv6_okay)
2570 goto need_help;
2571 if (spec->no_encapped_ipv6 && *csum_encapped)
2572 goto need_help;
2573 ipv6 = nhdr;
2574 nhdr += sizeof(*ipv6);
2575 ip_proto = ipv6->nexthdr;
2576 break;
2577 default:
2578 goto need_help;
2581 ip_proto_again:
2582 switch (ip_proto) {
2583 case IPPROTO_TCP:
2584 if (!spec->tcp_okay ||
2585 skb->csum_offset != offsetof(struct tcphdr, check))
2586 goto need_help;
2587 break;
2588 case IPPROTO_UDP:
2589 if (!spec->udp_okay ||
2590 skb->csum_offset != offsetof(struct udphdr, check))
2591 goto need_help;
2592 break;
2593 case IPPROTO_SCTP:
2594 if (!spec->sctp_okay ||
2595 skb->csum_offset != offsetof(struct sctphdr, checksum))
2596 goto cant_help;
2597 break;
2598 case NEXTHDR_HOP:
2599 case NEXTHDR_ROUTING:
2600 case NEXTHDR_DEST: {
2601 u8 *opthdr = nhdr;
2603 if (protocol != IPPROTO_IPV6 || !spec->ext_hdrs_okay)
2604 goto need_help;
2606 ip_proto = opthdr[0];
2607 nhdr += (opthdr[1] + 1) << 3;
2609 goto ip_proto_again;
2611 default:
2612 goto need_help;
2615 /* Passed the tests for offloading checksum */
2616 return true;
2618 need_help:
2619 if (csum_help && !skb_shinfo(skb)->gso_size)
2620 skb_checksum_help(skb);
2621 cant_help:
2622 return false;
2624 EXPORT_SYMBOL(__skb_csum_offload_chk);
2626 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2628 __be16 type = skb->protocol;
2630 /* Tunnel gso handlers can set protocol to ethernet. */
2631 if (type == htons(ETH_P_TEB)) {
2632 struct ethhdr *eth;
2634 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2635 return 0;
2637 eth = (struct ethhdr *)skb_mac_header(skb);
2638 type = eth->h_proto;
2641 return __vlan_get_protocol(skb, type, depth);
2645 * skb_mac_gso_segment - mac layer segmentation handler.
2646 * @skb: buffer to segment
2647 * @features: features for the output path (see dev->features)
2649 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2650 netdev_features_t features)
2652 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2653 struct packet_offload *ptype;
2654 int vlan_depth = skb->mac_len;
2655 __be16 type = skb_network_protocol(skb, &vlan_depth);
2657 if (unlikely(!type))
2658 return ERR_PTR(-EINVAL);
2660 __skb_pull(skb, vlan_depth);
2662 rcu_read_lock();
2663 list_for_each_entry_rcu(ptype, &offload_base, list) {
2664 if (ptype->type == type && ptype->callbacks.gso_segment) {
2665 segs = ptype->callbacks.gso_segment(skb, features);
2666 break;
2669 rcu_read_unlock();
2671 __skb_push(skb, skb->data - skb_mac_header(skb));
2673 return segs;
2675 EXPORT_SYMBOL(skb_mac_gso_segment);
2678 /* openvswitch calls this on rx path, so we need a different check.
2680 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2682 if (tx_path)
2683 return skb->ip_summed != CHECKSUM_PARTIAL;
2684 else
2685 return skb->ip_summed == CHECKSUM_NONE;
2689 * __skb_gso_segment - Perform segmentation on skb.
2690 * @skb: buffer to segment
2691 * @features: features for the output path (see dev->features)
2692 * @tx_path: whether it is called in TX path
2694 * This function segments the given skb and returns a list of segments.
2696 * It may return NULL if the skb requires no segmentation. This is
2697 * only possible when GSO is used for verifying header integrity.
2699 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2701 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2702 netdev_features_t features, bool tx_path)
2704 if (unlikely(skb_needs_check(skb, tx_path))) {
2705 int err;
2707 skb_warn_bad_offload(skb);
2709 err = skb_cow_head(skb, 0);
2710 if (err < 0)
2711 return ERR_PTR(err);
2714 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2715 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2717 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2718 SKB_GSO_CB(skb)->encap_level = 0;
2720 skb_reset_mac_header(skb);
2721 skb_reset_mac_len(skb);
2723 return skb_mac_gso_segment(skb, features);
2725 EXPORT_SYMBOL(__skb_gso_segment);
2727 /* Take action when hardware reception checksum errors are detected. */
2728 #ifdef CONFIG_BUG
2729 void netdev_rx_csum_fault(struct net_device *dev)
2731 if (net_ratelimit()) {
2732 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2733 dump_stack();
2736 EXPORT_SYMBOL(netdev_rx_csum_fault);
2737 #endif
2739 /* Actually, we should eliminate this check as soon as we know, that:
2740 * 1. IOMMU is present and allows to map all the memory.
2741 * 2. No high memory really exists on this machine.
2744 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2746 #ifdef CONFIG_HIGHMEM
2747 int i;
2748 if (!(dev->features & NETIF_F_HIGHDMA)) {
2749 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2750 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2751 if (PageHighMem(skb_frag_page(frag)))
2752 return 1;
2756 if (PCI_DMA_BUS_IS_PHYS) {
2757 struct device *pdev = dev->dev.parent;
2759 if (!pdev)
2760 return 0;
2761 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2762 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2763 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2764 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2765 return 1;
2768 #endif
2769 return 0;
2772 /* If MPLS offload request, verify we are testing hardware MPLS features
2773 * instead of standard features for the netdev.
2775 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2776 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2777 netdev_features_t features,
2778 __be16 type)
2780 if (eth_p_mpls(type))
2781 features &= skb->dev->mpls_features;
2783 return features;
2785 #else
2786 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2787 netdev_features_t features,
2788 __be16 type)
2790 return features;
2792 #endif
2794 static netdev_features_t harmonize_features(struct sk_buff *skb,
2795 netdev_features_t features)
2797 int tmp;
2798 __be16 type;
2800 type = skb_network_protocol(skb, &tmp);
2801 features = net_mpls_features(skb, features, type);
2803 if (skb->ip_summed != CHECKSUM_NONE &&
2804 !can_checksum_protocol(features, type)) {
2805 features &= ~NETIF_F_CSUM_MASK;
2806 } else if (illegal_highdma(skb->dev, skb)) {
2807 features &= ~NETIF_F_SG;
2810 return features;
2813 netdev_features_t passthru_features_check(struct sk_buff *skb,
2814 struct net_device *dev,
2815 netdev_features_t features)
2817 return features;
2819 EXPORT_SYMBOL(passthru_features_check);
2821 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2822 struct net_device *dev,
2823 netdev_features_t features)
2825 return vlan_features_check(skb, features);
2828 netdev_features_t netif_skb_features(struct sk_buff *skb)
2830 struct net_device *dev = skb->dev;
2831 netdev_features_t features = dev->features;
2832 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2834 if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs)
2835 features &= ~NETIF_F_GSO_MASK;
2837 /* If encapsulation offload request, verify we are testing
2838 * hardware encapsulation features instead of standard
2839 * features for the netdev
2841 if (skb->encapsulation)
2842 features &= dev->hw_enc_features;
2844 if (skb_vlan_tagged(skb))
2845 features = netdev_intersect_features(features,
2846 dev->vlan_features |
2847 NETIF_F_HW_VLAN_CTAG_TX |
2848 NETIF_F_HW_VLAN_STAG_TX);
2850 if (dev->netdev_ops->ndo_features_check)
2851 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2852 features);
2853 else
2854 features &= dflt_features_check(skb, dev, features);
2856 return harmonize_features(skb, features);
2858 EXPORT_SYMBOL(netif_skb_features);
2860 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2861 struct netdev_queue *txq, bool more)
2863 unsigned int len;
2864 int rc;
2866 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2867 dev_queue_xmit_nit(skb, dev);
2869 len = skb->len;
2870 trace_net_dev_start_xmit(skb, dev);
2871 rc = netdev_start_xmit(skb, dev, txq, more);
2872 trace_net_dev_xmit(skb, rc, dev, len);
2874 return rc;
2877 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2878 struct netdev_queue *txq, int *ret)
2880 struct sk_buff *skb = first;
2881 int rc = NETDEV_TX_OK;
2883 while (skb) {
2884 struct sk_buff *next = skb->next;
2886 skb->next = NULL;
2887 rc = xmit_one(skb, dev, txq, next != NULL);
2888 if (unlikely(!dev_xmit_complete(rc))) {
2889 skb->next = next;
2890 goto out;
2893 skb = next;
2894 if (netif_xmit_stopped(txq) && skb) {
2895 rc = NETDEV_TX_BUSY;
2896 break;
2900 out:
2901 *ret = rc;
2902 return skb;
2905 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2906 netdev_features_t features)
2908 if (skb_vlan_tag_present(skb) &&
2909 !vlan_hw_offload_capable(features, skb->vlan_proto))
2910 skb = __vlan_hwaccel_push_inside(skb);
2911 return skb;
2914 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2916 netdev_features_t features;
2918 if (skb->next)
2919 return skb;
2921 features = netif_skb_features(skb);
2922 skb = validate_xmit_vlan(skb, features);
2923 if (unlikely(!skb))
2924 goto out_null;
2926 if (netif_needs_gso(skb, features)) {
2927 struct sk_buff *segs;
2929 segs = skb_gso_segment(skb, features);
2930 if (IS_ERR(segs)) {
2931 goto out_kfree_skb;
2932 } else if (segs) {
2933 consume_skb(skb);
2934 skb = segs;
2936 } else {
2937 if (skb_needs_linearize(skb, features) &&
2938 __skb_linearize(skb))
2939 goto out_kfree_skb;
2941 /* If packet is not checksummed and device does not
2942 * support checksumming for this protocol, complete
2943 * checksumming here.
2945 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2946 if (skb->encapsulation)
2947 skb_set_inner_transport_header(skb,
2948 skb_checksum_start_offset(skb));
2949 else
2950 skb_set_transport_header(skb,
2951 skb_checksum_start_offset(skb));
2952 if (!(features & NETIF_F_CSUM_MASK) &&
2953 skb_checksum_help(skb))
2954 goto out_kfree_skb;
2958 return skb;
2960 out_kfree_skb:
2961 kfree_skb(skb);
2962 out_null:
2963 return NULL;
2966 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2968 struct sk_buff *next, *head = NULL, *tail;
2970 for (; skb != NULL; skb = next) {
2971 next = skb->next;
2972 skb->next = NULL;
2974 /* in case skb wont be segmented, point to itself */
2975 skb->prev = skb;
2977 skb = validate_xmit_skb(skb, dev);
2978 if (!skb)
2979 continue;
2981 if (!head)
2982 head = skb;
2983 else
2984 tail->next = skb;
2985 /* If skb was segmented, skb->prev points to
2986 * the last segment. If not, it still contains skb.
2988 tail = skb->prev;
2990 return head;
2993 static void qdisc_pkt_len_init(struct sk_buff *skb)
2995 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2997 qdisc_skb_cb(skb)->pkt_len = skb->len;
2999 /* To get more precise estimation of bytes sent on wire,
3000 * we add to pkt_len the headers size of all segments
3002 if (shinfo->gso_size) {
3003 unsigned int hdr_len;
3004 u16 gso_segs = shinfo->gso_segs;
3006 /* mac layer + network layer */
3007 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3009 /* + transport layer */
3010 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3011 hdr_len += tcp_hdrlen(skb);
3012 else
3013 hdr_len += sizeof(struct udphdr);
3015 if (shinfo->gso_type & SKB_GSO_DODGY)
3016 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3017 shinfo->gso_size);
3019 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3023 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3024 struct net_device *dev,
3025 struct netdev_queue *txq)
3027 spinlock_t *root_lock = qdisc_lock(q);
3028 bool contended;
3029 int rc;
3031 qdisc_calculate_pkt_len(skb, q);
3033 * Heuristic to force contended enqueues to serialize on a
3034 * separate lock before trying to get qdisc main lock.
3035 * This permits __QDISC___STATE_RUNNING owner to get the lock more
3036 * often and dequeue packets faster.
3038 contended = qdisc_is_running(q);
3039 if (unlikely(contended))
3040 spin_lock(&q->busylock);
3042 spin_lock(root_lock);
3043 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3044 kfree_skb(skb);
3045 rc = NET_XMIT_DROP;
3046 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3047 qdisc_run_begin(q)) {
3049 * This is a work-conserving queue; there are no old skbs
3050 * waiting to be sent out; and the qdisc is not running -
3051 * xmit the skb directly.
3054 qdisc_bstats_update(q, skb);
3056 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3057 if (unlikely(contended)) {
3058 spin_unlock(&q->busylock);
3059 contended = false;
3061 __qdisc_run(q);
3062 } else
3063 qdisc_run_end(q);
3065 rc = NET_XMIT_SUCCESS;
3066 } else {
3067 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
3068 if (qdisc_run_begin(q)) {
3069 if (unlikely(contended)) {
3070 spin_unlock(&q->busylock);
3071 contended = false;
3073 __qdisc_run(q);
3076 spin_unlock(root_lock);
3077 if (unlikely(contended))
3078 spin_unlock(&q->busylock);
3079 return rc;
3082 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3083 static void skb_update_prio(struct sk_buff *skb)
3085 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3087 if (!skb->priority && skb->sk && map) {
3088 unsigned int prioidx =
3089 sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
3091 if (prioidx < map->priomap_len)
3092 skb->priority = map->priomap[prioidx];
3095 #else
3096 #define skb_update_prio(skb)
3097 #endif
3099 DEFINE_PER_CPU(int, xmit_recursion);
3100 EXPORT_SYMBOL(xmit_recursion);
3102 #define RECURSION_LIMIT 10
3105 * dev_loopback_xmit - loop back @skb
3106 * @net: network namespace this loopback is happening in
3107 * @sk: sk needed to be a netfilter okfn
3108 * @skb: buffer to transmit
3110 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3112 skb_reset_mac_header(skb);
3113 __skb_pull(skb, skb_network_offset(skb));
3114 skb->pkt_type = PACKET_LOOPBACK;
3115 skb->ip_summed = CHECKSUM_UNNECESSARY;
3116 WARN_ON(!skb_dst(skb));
3117 skb_dst_force(skb);
3118 netif_rx_ni(skb);
3119 return 0;
3121 EXPORT_SYMBOL(dev_loopback_xmit);
3123 #ifdef CONFIG_NET_EGRESS
3124 static struct sk_buff *
3125 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3127 struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3128 struct tcf_result cl_res;
3130 if (!cl)
3131 return skb;
3133 /* skb->tc_verd and qdisc_skb_cb(skb)->pkt_len were already set
3134 * earlier by the caller.
3136 qdisc_bstats_cpu_update(cl->q, skb);
3138 switch (tc_classify(skb, cl, &cl_res, false)) {
3139 case TC_ACT_OK:
3140 case TC_ACT_RECLASSIFY:
3141 skb->tc_index = TC_H_MIN(cl_res.classid);
3142 break;
3143 case TC_ACT_SHOT:
3144 qdisc_qstats_cpu_drop(cl->q);
3145 *ret = NET_XMIT_DROP;
3146 goto drop;
3147 case TC_ACT_STOLEN:
3148 case TC_ACT_QUEUED:
3149 *ret = NET_XMIT_SUCCESS;
3150 drop:
3151 kfree_skb(skb);
3152 return NULL;
3153 case TC_ACT_REDIRECT:
3154 /* No need to push/pop skb's mac_header here on egress! */
3155 skb_do_redirect(skb);
3156 *ret = NET_XMIT_SUCCESS;
3157 return NULL;
3158 default:
3159 break;
3162 return skb;
3164 #endif /* CONFIG_NET_EGRESS */
3166 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3168 #ifdef CONFIG_XPS
3169 struct xps_dev_maps *dev_maps;
3170 struct xps_map *map;
3171 int queue_index = -1;
3173 rcu_read_lock();
3174 dev_maps = rcu_dereference(dev->xps_maps);
3175 if (dev_maps) {
3176 map = rcu_dereference(
3177 dev_maps->cpu_map[skb->sender_cpu - 1]);
3178 if (map) {
3179 if (map->len == 1)
3180 queue_index = map->queues[0];
3181 else
3182 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3183 map->len)];
3184 if (unlikely(queue_index >= dev->real_num_tx_queues))
3185 queue_index = -1;
3188 rcu_read_unlock();
3190 return queue_index;
3191 #else
3192 return -1;
3193 #endif
3196 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3198 struct sock *sk = skb->sk;
3199 int queue_index = sk_tx_queue_get(sk);
3201 if (queue_index < 0 || skb->ooo_okay ||
3202 queue_index >= dev->real_num_tx_queues) {
3203 int new_index = get_xps_queue(dev, skb);
3204 if (new_index < 0)
3205 new_index = skb_tx_hash(dev, skb);
3207 if (queue_index != new_index && sk &&
3208 sk_fullsock(sk) &&
3209 rcu_access_pointer(sk->sk_dst_cache))
3210 sk_tx_queue_set(sk, new_index);
3212 queue_index = new_index;
3215 return queue_index;
3218 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3219 struct sk_buff *skb,
3220 void *accel_priv)
3222 int queue_index = 0;
3224 #ifdef CONFIG_XPS
3225 u32 sender_cpu = skb->sender_cpu - 1;
3227 if (sender_cpu >= (u32)NR_CPUS)
3228 skb->sender_cpu = raw_smp_processor_id() + 1;
3229 #endif
3231 if (dev->real_num_tx_queues != 1) {
3232 const struct net_device_ops *ops = dev->netdev_ops;
3233 if (ops->ndo_select_queue)
3234 queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3235 __netdev_pick_tx);
3236 else
3237 queue_index = __netdev_pick_tx(dev, skb);
3239 if (!accel_priv)
3240 queue_index = netdev_cap_txqueue(dev, queue_index);
3243 skb_set_queue_mapping(skb, queue_index);
3244 return netdev_get_tx_queue(dev, queue_index);
3248 * __dev_queue_xmit - transmit a buffer
3249 * @skb: buffer to transmit
3250 * @accel_priv: private data used for L2 forwarding offload
3252 * Queue a buffer for transmission to a network device. The caller must
3253 * have set the device and priority and built the buffer before calling
3254 * this function. The function can be called from an interrupt.
3256 * A negative errno code is returned on a failure. A success does not
3257 * guarantee the frame will be transmitted as it may be dropped due
3258 * to congestion or traffic shaping.
3260 * -----------------------------------------------------------------------------------
3261 * I notice this method can also return errors from the queue disciplines,
3262 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3263 * be positive.
3265 * Regardless of the return value, the skb is consumed, so it is currently
3266 * difficult to retry a send to this method. (You can bump the ref count
3267 * before sending to hold a reference for retry if you are careful.)
3269 * When calling this method, interrupts MUST be enabled. This is because
3270 * the BH enable code must have IRQs enabled so that it will not deadlock.
3271 * --BLG
3273 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3275 struct net_device *dev = skb->dev;
3276 struct netdev_queue *txq;
3277 struct Qdisc *q;
3278 int rc = -ENOMEM;
3280 skb_reset_mac_header(skb);
3282 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3283 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3285 /* Disable soft irqs for various locks below. Also
3286 * stops preemption for RCU.
3288 rcu_read_lock_bh();
3290 skb_update_prio(skb);
3292 qdisc_pkt_len_init(skb);
3293 #ifdef CONFIG_NET_CLS_ACT
3294 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
3295 # ifdef CONFIG_NET_EGRESS
3296 if (static_key_false(&egress_needed)) {
3297 skb = sch_handle_egress(skb, &rc, dev);
3298 if (!skb)
3299 goto out;
3301 # endif
3302 #endif
3303 /* If device/qdisc don't need skb->dst, release it right now while
3304 * its hot in this cpu cache.
3306 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3307 skb_dst_drop(skb);
3308 else
3309 skb_dst_force(skb);
3311 #ifdef CONFIG_NET_SWITCHDEV
3312 /* Don't forward if offload device already forwarded */
3313 if (skb->offload_fwd_mark &&
3314 skb->offload_fwd_mark == dev->offload_fwd_mark) {
3315 consume_skb(skb);
3316 rc = NET_XMIT_SUCCESS;
3317 goto out;
3319 #endif
3321 txq = netdev_pick_tx(dev, skb, accel_priv);
3322 q = rcu_dereference_bh(txq->qdisc);
3324 trace_net_dev_queue(skb);
3325 if (q->enqueue) {
3326 rc = __dev_xmit_skb(skb, q, dev, txq);
3327 goto out;
3330 /* The device has no queue. Common case for software devices:
3331 loopback, all the sorts of tunnels...
3333 Really, it is unlikely that netif_tx_lock protection is necessary
3334 here. (f.e. loopback and IP tunnels are clean ignoring statistics
3335 counters.)
3336 However, it is possible, that they rely on protection
3337 made by us here.
3339 Check this and shot the lock. It is not prone from deadlocks.
3340 Either shot noqueue qdisc, it is even simpler 8)
3342 if (dev->flags & IFF_UP) {
3343 int cpu = smp_processor_id(); /* ok because BHs are off */
3345 if (txq->xmit_lock_owner != cpu) {
3347 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
3348 goto recursion_alert;
3350 skb = validate_xmit_skb(skb, dev);
3351 if (!skb)
3352 goto drop;
3354 HARD_TX_LOCK(dev, txq, cpu);
3356 if (!netif_xmit_stopped(txq)) {
3357 __this_cpu_inc(xmit_recursion);
3358 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3359 __this_cpu_dec(xmit_recursion);
3360 if (dev_xmit_complete(rc)) {
3361 HARD_TX_UNLOCK(dev, txq);
3362 goto out;
3365 HARD_TX_UNLOCK(dev, txq);
3366 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3367 dev->name);
3368 } else {
3369 /* Recursion is detected! It is possible,
3370 * unfortunately
3372 recursion_alert:
3373 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3374 dev->name);
3378 rc = -ENETDOWN;
3379 drop:
3380 rcu_read_unlock_bh();
3382 atomic_long_inc(&dev->tx_dropped);
3383 kfree_skb_list(skb);
3384 return rc;
3385 out:
3386 rcu_read_unlock_bh();
3387 return rc;
3390 int dev_queue_xmit(struct sk_buff *skb)
3392 return __dev_queue_xmit(skb, NULL);
3394 EXPORT_SYMBOL(dev_queue_xmit);
3396 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3398 return __dev_queue_xmit(skb, accel_priv);
3400 EXPORT_SYMBOL(dev_queue_xmit_accel);
3403 /*=======================================================================
3404 Receiver routines
3405 =======================================================================*/
3407 int netdev_max_backlog __read_mostly = 1000;
3408 EXPORT_SYMBOL(netdev_max_backlog);
3410 int netdev_tstamp_prequeue __read_mostly = 1;
3411 int netdev_budget __read_mostly = 300;
3412 int weight_p __read_mostly = 64; /* old backlog weight */
3414 /* Called with irq disabled */
3415 static inline void ____napi_schedule(struct softnet_data *sd,
3416 struct napi_struct *napi)
3418 list_add_tail(&napi->poll_list, &sd->poll_list);
3419 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3422 #ifdef CONFIG_RPS
3424 /* One global table that all flow-based protocols share. */
3425 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3426 EXPORT_SYMBOL(rps_sock_flow_table);
3427 u32 rps_cpu_mask __read_mostly;
3428 EXPORT_SYMBOL(rps_cpu_mask);
3430 struct static_key rps_needed __read_mostly;
3432 static struct rps_dev_flow *
3433 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3434 struct rps_dev_flow *rflow, u16 next_cpu)
3436 if (next_cpu < nr_cpu_ids) {
3437 #ifdef CONFIG_RFS_ACCEL
3438 struct netdev_rx_queue *rxqueue;
3439 struct rps_dev_flow_table *flow_table;
3440 struct rps_dev_flow *old_rflow;
3441 u32 flow_id;
3442 u16 rxq_index;
3443 int rc;
3445 /* Should we steer this flow to a different hardware queue? */
3446 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3447 !(dev->features & NETIF_F_NTUPLE))
3448 goto out;
3449 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3450 if (rxq_index == skb_get_rx_queue(skb))
3451 goto out;
3453 rxqueue = dev->_rx + rxq_index;
3454 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3455 if (!flow_table)
3456 goto out;
3457 flow_id = skb_get_hash(skb) & flow_table->mask;
3458 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3459 rxq_index, flow_id);
3460 if (rc < 0)
3461 goto out;
3462 old_rflow = rflow;
3463 rflow = &flow_table->flows[flow_id];
3464 rflow->filter = rc;
3465 if (old_rflow->filter == rflow->filter)
3466 old_rflow->filter = RPS_NO_FILTER;
3467 out:
3468 #endif
3469 rflow->last_qtail =
3470 per_cpu(softnet_data, next_cpu).input_queue_head;
3473 rflow->cpu = next_cpu;
3474 return rflow;
3478 * get_rps_cpu is called from netif_receive_skb and returns the target
3479 * CPU from the RPS map of the receiving queue for a given skb.
3480 * rcu_read_lock must be held on entry.
3482 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3483 struct rps_dev_flow **rflowp)
3485 const struct rps_sock_flow_table *sock_flow_table;
3486 struct netdev_rx_queue *rxqueue = dev->_rx;
3487 struct rps_dev_flow_table *flow_table;
3488 struct rps_map *map;
3489 int cpu = -1;
3490 u32 tcpu;
3491 u32 hash;
3493 if (skb_rx_queue_recorded(skb)) {
3494 u16 index = skb_get_rx_queue(skb);
3496 if (unlikely(index >= dev->real_num_rx_queues)) {
3497 WARN_ONCE(dev->real_num_rx_queues > 1,
3498 "%s received packet on queue %u, but number "
3499 "of RX queues is %u\n",
3500 dev->name, index, dev->real_num_rx_queues);
3501 goto done;
3503 rxqueue += index;
3506 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3508 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3509 map = rcu_dereference(rxqueue->rps_map);
3510 if (!flow_table && !map)
3511 goto done;
3513 skb_reset_network_header(skb);
3514 hash = skb_get_hash(skb);
3515 if (!hash)
3516 goto done;
3518 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3519 if (flow_table && sock_flow_table) {
3520 struct rps_dev_flow *rflow;
3521 u32 next_cpu;
3522 u32 ident;
3524 /* First check into global flow table if there is a match */
3525 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3526 if ((ident ^ hash) & ~rps_cpu_mask)
3527 goto try_rps;
3529 next_cpu = ident & rps_cpu_mask;
3531 /* OK, now we know there is a match,
3532 * we can look at the local (per receive queue) flow table
3534 rflow = &flow_table->flows[hash & flow_table->mask];
3535 tcpu = rflow->cpu;
3538 * If the desired CPU (where last recvmsg was done) is
3539 * different from current CPU (one in the rx-queue flow
3540 * table entry), switch if one of the following holds:
3541 * - Current CPU is unset (>= nr_cpu_ids).
3542 * - Current CPU is offline.
3543 * - The current CPU's queue tail has advanced beyond the
3544 * last packet that was enqueued using this table entry.
3545 * This guarantees that all previous packets for the flow
3546 * have been dequeued, thus preserving in order delivery.
3548 if (unlikely(tcpu != next_cpu) &&
3549 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3550 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3551 rflow->last_qtail)) >= 0)) {
3552 tcpu = next_cpu;
3553 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3556 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3557 *rflowp = rflow;
3558 cpu = tcpu;
3559 goto done;
3563 try_rps:
3565 if (map) {
3566 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3567 if (cpu_online(tcpu)) {
3568 cpu = tcpu;
3569 goto done;
3573 done:
3574 return cpu;
3577 #ifdef CONFIG_RFS_ACCEL
3580 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3581 * @dev: Device on which the filter was set
3582 * @rxq_index: RX queue index
3583 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3584 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3586 * Drivers that implement ndo_rx_flow_steer() should periodically call
3587 * this function for each installed filter and remove the filters for
3588 * which it returns %true.
3590 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3591 u32 flow_id, u16 filter_id)
3593 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3594 struct rps_dev_flow_table *flow_table;
3595 struct rps_dev_flow *rflow;
3596 bool expire = true;
3597 unsigned int cpu;
3599 rcu_read_lock();
3600 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3601 if (flow_table && flow_id <= flow_table->mask) {
3602 rflow = &flow_table->flows[flow_id];
3603 cpu = ACCESS_ONCE(rflow->cpu);
3604 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3605 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3606 rflow->last_qtail) <
3607 (int)(10 * flow_table->mask)))
3608 expire = false;
3610 rcu_read_unlock();
3611 return expire;
3613 EXPORT_SYMBOL(rps_may_expire_flow);
3615 #endif /* CONFIG_RFS_ACCEL */
3617 /* Called from hardirq (IPI) context */
3618 static void rps_trigger_softirq(void *data)
3620 struct softnet_data *sd = data;
3622 ____napi_schedule(sd, &sd->backlog);
3623 sd->received_rps++;
3626 #endif /* CONFIG_RPS */
3629 * Check if this softnet_data structure is another cpu one
3630 * If yes, queue it to our IPI list and return 1
3631 * If no, return 0
3633 static int rps_ipi_queued(struct softnet_data *sd)
3635 #ifdef CONFIG_RPS
3636 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3638 if (sd != mysd) {
3639 sd->rps_ipi_next = mysd->rps_ipi_list;
3640 mysd->rps_ipi_list = sd;
3642 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3643 return 1;
3645 #endif /* CONFIG_RPS */
3646 return 0;
3649 #ifdef CONFIG_NET_FLOW_LIMIT
3650 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3651 #endif
3653 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3655 #ifdef CONFIG_NET_FLOW_LIMIT
3656 struct sd_flow_limit *fl;
3657 struct softnet_data *sd;
3658 unsigned int old_flow, new_flow;
3660 if (qlen < (netdev_max_backlog >> 1))
3661 return false;
3663 sd = this_cpu_ptr(&softnet_data);
3665 rcu_read_lock();
3666 fl = rcu_dereference(sd->flow_limit);
3667 if (fl) {
3668 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3669 old_flow = fl->history[fl->history_head];
3670 fl->history[fl->history_head] = new_flow;
3672 fl->history_head++;
3673 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3675 if (likely(fl->buckets[old_flow]))
3676 fl->buckets[old_flow]--;
3678 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3679 fl->count++;
3680 rcu_read_unlock();
3681 return true;
3684 rcu_read_unlock();
3685 #endif
3686 return false;
3690 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3691 * queue (may be a remote CPU queue).
3693 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3694 unsigned int *qtail)
3696 struct softnet_data *sd;
3697 unsigned long flags;
3698 unsigned int qlen;
3700 sd = &per_cpu(softnet_data, cpu);
3702 local_irq_save(flags);
3704 rps_lock(sd);
3705 if (!netif_running(skb->dev))
3706 goto drop;
3707 qlen = skb_queue_len(&sd->input_pkt_queue);
3708 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3709 if (qlen) {
3710 enqueue:
3711 __skb_queue_tail(&sd->input_pkt_queue, skb);
3712 input_queue_tail_incr_save(sd, qtail);
3713 rps_unlock(sd);
3714 local_irq_restore(flags);
3715 return NET_RX_SUCCESS;
3718 /* Schedule NAPI for backlog device
3719 * We can use non atomic operation since we own the queue lock
3721 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3722 if (!rps_ipi_queued(sd))
3723 ____napi_schedule(sd, &sd->backlog);
3725 goto enqueue;
3728 drop:
3729 sd->dropped++;
3730 rps_unlock(sd);
3732 local_irq_restore(flags);
3734 atomic_long_inc(&skb->dev->rx_dropped);
3735 kfree_skb(skb);
3736 return NET_RX_DROP;
3739 static int netif_rx_internal(struct sk_buff *skb)
3741 int ret;
3743 net_timestamp_check(netdev_tstamp_prequeue, skb);
3745 trace_netif_rx(skb);
3746 #ifdef CONFIG_RPS
3747 if (static_key_false(&rps_needed)) {
3748 struct rps_dev_flow voidflow, *rflow = &voidflow;
3749 int cpu;
3751 preempt_disable();
3752 rcu_read_lock();
3754 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3755 if (cpu < 0)
3756 cpu = smp_processor_id();
3758 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3760 rcu_read_unlock();
3761 preempt_enable();
3762 } else
3763 #endif
3765 unsigned int qtail;
3766 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3767 put_cpu();
3769 return ret;
3773 * netif_rx - post buffer to the network code
3774 * @skb: buffer to post
3776 * This function receives a packet from a device driver and queues it for
3777 * the upper (protocol) levels to process. It always succeeds. The buffer
3778 * may be dropped during processing for congestion control or by the
3779 * protocol layers.
3781 * return values:
3782 * NET_RX_SUCCESS (no congestion)
3783 * NET_RX_DROP (packet was dropped)
3787 int netif_rx(struct sk_buff *skb)
3789 trace_netif_rx_entry(skb);
3791 return netif_rx_internal(skb);
3793 EXPORT_SYMBOL(netif_rx);
3795 int netif_rx_ni(struct sk_buff *skb)
3797 int err;
3799 trace_netif_rx_ni_entry(skb);
3801 preempt_disable();
3802 err = netif_rx_internal(skb);
3803 if (local_softirq_pending())
3804 do_softirq();
3805 preempt_enable();
3807 return err;
3809 EXPORT_SYMBOL(netif_rx_ni);
3811 static void net_tx_action(struct softirq_action *h)
3813 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3815 if (sd->completion_queue) {
3816 struct sk_buff *clist;
3818 local_irq_disable();
3819 clist = sd->completion_queue;
3820 sd->completion_queue = NULL;
3821 local_irq_enable();
3823 while (clist) {
3824 struct sk_buff *skb = clist;
3825 clist = clist->next;
3827 WARN_ON(atomic_read(&skb->users));
3828 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3829 trace_consume_skb(skb);
3830 else
3831 trace_kfree_skb(skb, net_tx_action);
3833 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
3834 __kfree_skb(skb);
3835 else
3836 __kfree_skb_defer(skb);
3839 __kfree_skb_flush();
3842 if (sd->output_queue) {
3843 struct Qdisc *head;
3845 local_irq_disable();
3846 head = sd->output_queue;
3847 sd->output_queue = NULL;
3848 sd->output_queue_tailp = &sd->output_queue;
3849 local_irq_enable();
3851 while (head) {
3852 struct Qdisc *q = head;
3853 spinlock_t *root_lock;
3855 head = head->next_sched;
3857 root_lock = qdisc_lock(q);
3858 if (spin_trylock(root_lock)) {
3859 smp_mb__before_atomic();
3860 clear_bit(__QDISC_STATE_SCHED,
3861 &q->state);
3862 qdisc_run(q);
3863 spin_unlock(root_lock);
3864 } else {
3865 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3866 &q->state)) {
3867 __netif_reschedule(q);
3868 } else {
3869 smp_mb__before_atomic();
3870 clear_bit(__QDISC_STATE_SCHED,
3871 &q->state);
3878 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3879 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3880 /* This hook is defined here for ATM LANE */
3881 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3882 unsigned char *addr) __read_mostly;
3883 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3884 #endif
3886 static inline struct sk_buff *
3887 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3888 struct net_device *orig_dev)
3890 #ifdef CONFIG_NET_CLS_ACT
3891 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3892 struct tcf_result cl_res;
3894 /* If there's at least one ingress present somewhere (so
3895 * we get here via enabled static key), remaining devices
3896 * that are not configured with an ingress qdisc will bail
3897 * out here.
3899 if (!cl)
3900 return skb;
3901 if (*pt_prev) {
3902 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3903 *pt_prev = NULL;
3906 qdisc_skb_cb(skb)->pkt_len = skb->len;
3907 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3908 qdisc_bstats_cpu_update(cl->q, skb);
3910 switch (tc_classify(skb, cl, &cl_res, false)) {
3911 case TC_ACT_OK:
3912 case TC_ACT_RECLASSIFY:
3913 skb->tc_index = TC_H_MIN(cl_res.classid);
3914 break;
3915 case TC_ACT_SHOT:
3916 qdisc_qstats_cpu_drop(cl->q);
3917 case TC_ACT_STOLEN:
3918 case TC_ACT_QUEUED:
3919 kfree_skb(skb);
3920 return NULL;
3921 case TC_ACT_REDIRECT:
3922 /* skb_mac_header check was done by cls/act_bpf, so
3923 * we can safely push the L2 header back before
3924 * redirecting to another netdev
3926 __skb_push(skb, skb->mac_len);
3927 skb_do_redirect(skb);
3928 return NULL;
3929 default:
3930 break;
3932 #endif /* CONFIG_NET_CLS_ACT */
3933 return skb;
3937 * netdev_rx_handler_register - register receive handler
3938 * @dev: device to register a handler for
3939 * @rx_handler: receive handler to register
3940 * @rx_handler_data: data pointer that is used by rx handler
3942 * Register a receive handler for a device. This handler will then be
3943 * called from __netif_receive_skb. A negative errno code is returned
3944 * on a failure.
3946 * The caller must hold the rtnl_mutex.
3948 * For a general description of rx_handler, see enum rx_handler_result.
3950 int netdev_rx_handler_register(struct net_device *dev,
3951 rx_handler_func_t *rx_handler,
3952 void *rx_handler_data)
3954 ASSERT_RTNL();
3956 if (dev->rx_handler)
3957 return -EBUSY;
3959 /* Note: rx_handler_data must be set before rx_handler */
3960 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3961 rcu_assign_pointer(dev->rx_handler, rx_handler);
3963 return 0;
3965 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3968 * netdev_rx_handler_unregister - unregister receive handler
3969 * @dev: device to unregister a handler from
3971 * Unregister a receive handler from a device.
3973 * The caller must hold the rtnl_mutex.
3975 void netdev_rx_handler_unregister(struct net_device *dev)
3978 ASSERT_RTNL();
3979 RCU_INIT_POINTER(dev->rx_handler, NULL);
3980 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3981 * section has a guarantee to see a non NULL rx_handler_data
3982 * as well.
3984 synchronize_net();
3985 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3987 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3990 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3991 * the special handling of PFMEMALLOC skbs.
3993 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3995 switch (skb->protocol) {
3996 case htons(ETH_P_ARP):
3997 case htons(ETH_P_IP):
3998 case htons(ETH_P_IPV6):
3999 case htons(ETH_P_8021Q):
4000 case htons(ETH_P_8021AD):
4001 return true;
4002 default:
4003 return false;
4007 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4008 int *ret, struct net_device *orig_dev)
4010 #ifdef CONFIG_NETFILTER_INGRESS
4011 if (nf_hook_ingress_active(skb)) {
4012 if (*pt_prev) {
4013 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4014 *pt_prev = NULL;
4017 return nf_hook_ingress(skb);
4019 #endif /* CONFIG_NETFILTER_INGRESS */
4020 return 0;
4023 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4025 struct packet_type *ptype, *pt_prev;
4026 rx_handler_func_t *rx_handler;
4027 struct net_device *orig_dev;
4028 bool deliver_exact = false;
4029 int ret = NET_RX_DROP;
4030 __be16 type;
4032 net_timestamp_check(!netdev_tstamp_prequeue, skb);
4034 trace_netif_receive_skb(skb);
4036 orig_dev = skb->dev;
4038 skb_reset_network_header(skb);
4039 if (!skb_transport_header_was_set(skb))
4040 skb_reset_transport_header(skb);
4041 skb_reset_mac_len(skb);
4043 pt_prev = NULL;
4045 another_round:
4046 skb->skb_iif = skb->dev->ifindex;
4048 __this_cpu_inc(softnet_data.processed);
4050 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4051 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4052 skb = skb_vlan_untag(skb);
4053 if (unlikely(!skb))
4054 goto out;
4057 #ifdef CONFIG_NET_CLS_ACT
4058 if (skb->tc_verd & TC_NCLS) {
4059 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
4060 goto ncls;
4062 #endif
4064 if (pfmemalloc)
4065 goto skip_taps;
4067 list_for_each_entry_rcu(ptype, &ptype_all, list) {
4068 if (pt_prev)
4069 ret = deliver_skb(skb, pt_prev, orig_dev);
4070 pt_prev = ptype;
4073 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4074 if (pt_prev)
4075 ret = deliver_skb(skb, pt_prev, orig_dev);
4076 pt_prev = ptype;
4079 skip_taps:
4080 #ifdef CONFIG_NET_INGRESS
4081 if (static_key_false(&ingress_needed)) {
4082 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4083 if (!skb)
4084 goto out;
4086 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4087 goto out;
4089 #endif
4090 #ifdef CONFIG_NET_CLS_ACT
4091 skb->tc_verd = 0;
4092 ncls:
4093 #endif
4094 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4095 goto drop;
4097 if (skb_vlan_tag_present(skb)) {
4098 if (pt_prev) {
4099 ret = deliver_skb(skb, pt_prev, orig_dev);
4100 pt_prev = NULL;
4102 if (vlan_do_receive(&skb))
4103 goto another_round;
4104 else if (unlikely(!skb))
4105 goto out;
4108 rx_handler = rcu_dereference(skb->dev->rx_handler);
4109 if (rx_handler) {
4110 if (pt_prev) {
4111 ret = deliver_skb(skb, pt_prev, orig_dev);
4112 pt_prev = NULL;
4114 switch (rx_handler(&skb)) {
4115 case RX_HANDLER_CONSUMED:
4116 ret = NET_RX_SUCCESS;
4117 goto out;
4118 case RX_HANDLER_ANOTHER:
4119 goto another_round;
4120 case RX_HANDLER_EXACT:
4121 deliver_exact = true;
4122 case RX_HANDLER_PASS:
4123 break;
4124 default:
4125 BUG();
4129 if (unlikely(skb_vlan_tag_present(skb))) {
4130 if (skb_vlan_tag_get_id(skb))
4131 skb->pkt_type = PACKET_OTHERHOST;
4132 /* Note: we might in the future use prio bits
4133 * and set skb->priority like in vlan_do_receive()
4134 * For the time being, just ignore Priority Code Point
4136 skb->vlan_tci = 0;
4139 type = skb->protocol;
4141 /* deliver only exact match when indicated */
4142 if (likely(!deliver_exact)) {
4143 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4144 &ptype_base[ntohs(type) &
4145 PTYPE_HASH_MASK]);
4148 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4149 &orig_dev->ptype_specific);
4151 if (unlikely(skb->dev != orig_dev)) {
4152 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4153 &skb->dev->ptype_specific);
4156 if (pt_prev) {
4157 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
4158 goto drop;
4159 else
4160 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4161 } else {
4162 drop:
4163 if (!deliver_exact)
4164 atomic_long_inc(&skb->dev->rx_dropped);
4165 else
4166 atomic_long_inc(&skb->dev->rx_nohandler);
4167 kfree_skb(skb);
4168 /* Jamal, now you will not able to escape explaining
4169 * me how you were going to use this. :-)
4171 ret = NET_RX_DROP;
4174 out:
4175 return ret;
4178 static int __netif_receive_skb(struct sk_buff *skb)
4180 int ret;
4182 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4183 unsigned long pflags = current->flags;
4186 * PFMEMALLOC skbs are special, they should
4187 * - be delivered to SOCK_MEMALLOC sockets only
4188 * - stay away from userspace
4189 * - have bounded memory usage
4191 * Use PF_MEMALLOC as this saves us from propagating the allocation
4192 * context down to all allocation sites.
4194 current->flags |= PF_MEMALLOC;
4195 ret = __netif_receive_skb_core(skb, true);
4196 tsk_restore_flags(current, pflags, PF_MEMALLOC);
4197 } else
4198 ret = __netif_receive_skb_core(skb, false);
4200 return ret;
4203 static int netif_receive_skb_internal(struct sk_buff *skb)
4205 int ret;
4207 net_timestamp_check(netdev_tstamp_prequeue, skb);
4209 if (skb_defer_rx_timestamp(skb))
4210 return NET_RX_SUCCESS;
4212 rcu_read_lock();
4214 #ifdef CONFIG_RPS
4215 if (static_key_false(&rps_needed)) {
4216 struct rps_dev_flow voidflow, *rflow = &voidflow;
4217 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4219 if (cpu >= 0) {
4220 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4221 rcu_read_unlock();
4222 return ret;
4225 #endif
4226 ret = __netif_receive_skb(skb);
4227 rcu_read_unlock();
4228 return ret;
4232 * netif_receive_skb - process receive buffer from network
4233 * @skb: buffer to process
4235 * netif_receive_skb() is the main receive data processing function.
4236 * It always succeeds. The buffer may be dropped during processing
4237 * for congestion control or by the protocol layers.
4239 * This function may only be called from softirq context and interrupts
4240 * should be enabled.
4242 * Return values (usually ignored):
4243 * NET_RX_SUCCESS: no congestion
4244 * NET_RX_DROP: packet was dropped
4246 int netif_receive_skb(struct sk_buff *skb)
4248 trace_netif_receive_skb_entry(skb);
4250 return netif_receive_skb_internal(skb);
4252 EXPORT_SYMBOL(netif_receive_skb);
4254 /* Network device is going away, flush any packets still pending
4255 * Called with irqs disabled.
4257 static void flush_backlog(void *arg)
4259 struct net_device *dev = arg;
4260 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4261 struct sk_buff *skb, *tmp;
4263 rps_lock(sd);
4264 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4265 if (skb->dev == dev) {
4266 __skb_unlink(skb, &sd->input_pkt_queue);
4267 kfree_skb(skb);
4268 input_queue_head_incr(sd);
4271 rps_unlock(sd);
4273 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4274 if (skb->dev == dev) {
4275 __skb_unlink(skb, &sd->process_queue);
4276 kfree_skb(skb);
4277 input_queue_head_incr(sd);
4282 static int napi_gro_complete(struct sk_buff *skb)
4284 struct packet_offload *ptype;
4285 __be16 type = skb->protocol;
4286 struct list_head *head = &offload_base;
4287 int err = -ENOENT;
4289 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4291 if (NAPI_GRO_CB(skb)->count == 1) {
4292 skb_shinfo(skb)->gso_size = 0;
4293 goto out;
4296 rcu_read_lock();
4297 list_for_each_entry_rcu(ptype, head, list) {
4298 if (ptype->type != type || !ptype->callbacks.gro_complete)
4299 continue;
4301 err = ptype->callbacks.gro_complete(skb, 0);
4302 break;
4304 rcu_read_unlock();
4306 if (err) {
4307 WARN_ON(&ptype->list == head);
4308 kfree_skb(skb);
4309 return NET_RX_SUCCESS;
4312 out:
4313 return netif_receive_skb_internal(skb);
4316 /* napi->gro_list contains packets ordered by age.
4317 * youngest packets at the head of it.
4318 * Complete skbs in reverse order to reduce latencies.
4320 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4322 struct sk_buff *skb, *prev = NULL;
4324 /* scan list and build reverse chain */
4325 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4326 skb->prev = prev;
4327 prev = skb;
4330 for (skb = prev; skb; skb = prev) {
4331 skb->next = NULL;
4333 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4334 return;
4336 prev = skb->prev;
4337 napi_gro_complete(skb);
4338 napi->gro_count--;
4341 napi->gro_list = NULL;
4343 EXPORT_SYMBOL(napi_gro_flush);
4345 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4347 struct sk_buff *p;
4348 unsigned int maclen = skb->dev->hard_header_len;
4349 u32 hash = skb_get_hash_raw(skb);
4351 for (p = napi->gro_list; p; p = p->next) {
4352 unsigned long diffs;
4354 NAPI_GRO_CB(p)->flush = 0;
4356 if (hash != skb_get_hash_raw(p)) {
4357 NAPI_GRO_CB(p)->same_flow = 0;
4358 continue;
4361 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4362 diffs |= p->vlan_tci ^ skb->vlan_tci;
4363 diffs |= skb_metadata_dst_cmp(p, skb);
4364 if (maclen == ETH_HLEN)
4365 diffs |= compare_ether_header(skb_mac_header(p),
4366 skb_mac_header(skb));
4367 else if (!diffs)
4368 diffs = memcmp(skb_mac_header(p),
4369 skb_mac_header(skb),
4370 maclen);
4371 NAPI_GRO_CB(p)->same_flow = !diffs;
4375 static void skb_gro_reset_offset(struct sk_buff *skb)
4377 const struct skb_shared_info *pinfo = skb_shinfo(skb);
4378 const skb_frag_t *frag0 = &pinfo->frags[0];
4380 NAPI_GRO_CB(skb)->data_offset = 0;
4381 NAPI_GRO_CB(skb)->frag0 = NULL;
4382 NAPI_GRO_CB(skb)->frag0_len = 0;
4384 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4385 pinfo->nr_frags &&
4386 !PageHighMem(skb_frag_page(frag0))) {
4387 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4388 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
4392 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4394 struct skb_shared_info *pinfo = skb_shinfo(skb);
4396 BUG_ON(skb->end - skb->tail < grow);
4398 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4400 skb->data_len -= grow;
4401 skb->tail += grow;
4403 pinfo->frags[0].page_offset += grow;
4404 skb_frag_size_sub(&pinfo->frags[0], grow);
4406 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4407 skb_frag_unref(skb, 0);
4408 memmove(pinfo->frags, pinfo->frags + 1,
4409 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4413 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4415 struct sk_buff **pp = NULL;
4416 struct packet_offload *ptype;
4417 __be16 type = skb->protocol;
4418 struct list_head *head = &offload_base;
4419 int same_flow;
4420 enum gro_result ret;
4421 int grow;
4423 if (!(skb->dev->features & NETIF_F_GRO))
4424 goto normal;
4426 if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
4427 goto normal;
4429 gro_list_prepare(napi, skb);
4431 rcu_read_lock();
4432 list_for_each_entry_rcu(ptype, head, list) {
4433 if (ptype->type != type || !ptype->callbacks.gro_receive)
4434 continue;
4436 skb_set_network_header(skb, skb_gro_offset(skb));
4437 skb_reset_mac_len(skb);
4438 NAPI_GRO_CB(skb)->same_flow = 0;
4439 NAPI_GRO_CB(skb)->flush = 0;
4440 NAPI_GRO_CB(skb)->free = 0;
4441 NAPI_GRO_CB(skb)->encap_mark = 0;
4442 NAPI_GRO_CB(skb)->is_fou = 0;
4443 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4445 /* Setup for GRO checksum validation */
4446 switch (skb->ip_summed) {
4447 case CHECKSUM_COMPLETE:
4448 NAPI_GRO_CB(skb)->csum = skb->csum;
4449 NAPI_GRO_CB(skb)->csum_valid = 1;
4450 NAPI_GRO_CB(skb)->csum_cnt = 0;
4451 break;
4452 case CHECKSUM_UNNECESSARY:
4453 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4454 NAPI_GRO_CB(skb)->csum_valid = 0;
4455 break;
4456 default:
4457 NAPI_GRO_CB(skb)->csum_cnt = 0;
4458 NAPI_GRO_CB(skb)->csum_valid = 0;
4461 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4462 break;
4464 rcu_read_unlock();
4466 if (&ptype->list == head)
4467 goto normal;
4469 same_flow = NAPI_GRO_CB(skb)->same_flow;
4470 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4472 if (pp) {
4473 struct sk_buff *nskb = *pp;
4475 *pp = nskb->next;
4476 nskb->next = NULL;
4477 napi_gro_complete(nskb);
4478 napi->gro_count--;
4481 if (same_flow)
4482 goto ok;
4484 if (NAPI_GRO_CB(skb)->flush)
4485 goto normal;
4487 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4488 struct sk_buff *nskb = napi->gro_list;
4490 /* locate the end of the list to select the 'oldest' flow */
4491 while (nskb->next) {
4492 pp = &nskb->next;
4493 nskb = *pp;
4495 *pp = NULL;
4496 nskb->next = NULL;
4497 napi_gro_complete(nskb);
4498 } else {
4499 napi->gro_count++;
4501 NAPI_GRO_CB(skb)->count = 1;
4502 NAPI_GRO_CB(skb)->age = jiffies;
4503 NAPI_GRO_CB(skb)->last = skb;
4504 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4505 skb->next = napi->gro_list;
4506 napi->gro_list = skb;
4507 ret = GRO_HELD;
4509 pull:
4510 grow = skb_gro_offset(skb) - skb_headlen(skb);
4511 if (grow > 0)
4512 gro_pull_from_frag0(skb, grow);
4514 return ret;
4516 normal:
4517 ret = GRO_NORMAL;
4518 goto pull;
4521 struct packet_offload *gro_find_receive_by_type(__be16 type)
4523 struct list_head *offload_head = &offload_base;
4524 struct packet_offload *ptype;
4526 list_for_each_entry_rcu(ptype, offload_head, list) {
4527 if (ptype->type != type || !ptype->callbacks.gro_receive)
4528 continue;
4529 return ptype;
4531 return NULL;
4533 EXPORT_SYMBOL(gro_find_receive_by_type);
4535 struct packet_offload *gro_find_complete_by_type(__be16 type)
4537 struct list_head *offload_head = &offload_base;
4538 struct packet_offload *ptype;
4540 list_for_each_entry_rcu(ptype, offload_head, list) {
4541 if (ptype->type != type || !ptype->callbacks.gro_complete)
4542 continue;
4543 return ptype;
4545 return NULL;
4547 EXPORT_SYMBOL(gro_find_complete_by_type);
4549 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4551 switch (ret) {
4552 case GRO_NORMAL:
4553 if (netif_receive_skb_internal(skb))
4554 ret = GRO_DROP;
4555 break;
4557 case GRO_DROP:
4558 kfree_skb(skb);
4559 break;
4561 case GRO_MERGED_FREE:
4562 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4563 skb_dst_drop(skb);
4564 kmem_cache_free(skbuff_head_cache, skb);
4565 } else {
4566 __kfree_skb(skb);
4568 break;
4570 case GRO_HELD:
4571 case GRO_MERGED:
4572 break;
4575 return ret;
4578 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4580 skb_mark_napi_id(skb, napi);
4581 trace_napi_gro_receive_entry(skb);
4583 skb_gro_reset_offset(skb);
4585 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4587 EXPORT_SYMBOL(napi_gro_receive);
4589 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4591 if (unlikely(skb->pfmemalloc)) {
4592 consume_skb(skb);
4593 return;
4595 __skb_pull(skb, skb_headlen(skb));
4596 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4597 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4598 skb->vlan_tci = 0;
4599 skb->dev = napi->dev;
4600 skb->skb_iif = 0;
4601 skb->encapsulation = 0;
4602 skb_shinfo(skb)->gso_type = 0;
4603 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4605 napi->skb = skb;
4608 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4610 struct sk_buff *skb = napi->skb;
4612 if (!skb) {
4613 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4614 if (skb) {
4615 napi->skb = skb;
4616 skb_mark_napi_id(skb, napi);
4619 return skb;
4621 EXPORT_SYMBOL(napi_get_frags);
4623 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4624 struct sk_buff *skb,
4625 gro_result_t ret)
4627 switch (ret) {
4628 case GRO_NORMAL:
4629 case GRO_HELD:
4630 __skb_push(skb, ETH_HLEN);
4631 skb->protocol = eth_type_trans(skb, skb->dev);
4632 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4633 ret = GRO_DROP;
4634 break;
4636 case GRO_DROP:
4637 case GRO_MERGED_FREE:
4638 napi_reuse_skb(napi, skb);
4639 break;
4641 case GRO_MERGED:
4642 break;
4645 return ret;
4648 /* Upper GRO stack assumes network header starts at gro_offset=0
4649 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4650 * We copy ethernet header into skb->data to have a common layout.
4652 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4654 struct sk_buff *skb = napi->skb;
4655 const struct ethhdr *eth;
4656 unsigned int hlen = sizeof(*eth);
4658 napi->skb = NULL;
4660 skb_reset_mac_header(skb);
4661 skb_gro_reset_offset(skb);
4663 eth = skb_gro_header_fast(skb, 0);
4664 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4665 eth = skb_gro_header_slow(skb, hlen, 0);
4666 if (unlikely(!eth)) {
4667 napi_reuse_skb(napi, skb);
4668 return NULL;
4670 } else {
4671 gro_pull_from_frag0(skb, hlen);
4672 NAPI_GRO_CB(skb)->frag0 += hlen;
4673 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4675 __skb_pull(skb, hlen);
4678 * This works because the only protocols we care about don't require
4679 * special handling.
4680 * We'll fix it up properly in napi_frags_finish()
4682 skb->protocol = eth->h_proto;
4684 return skb;
4687 gro_result_t napi_gro_frags(struct napi_struct *napi)
4689 struct sk_buff *skb = napi_frags_skb(napi);
4691 if (!skb)
4692 return GRO_DROP;
4694 trace_napi_gro_frags_entry(skb);
4696 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4698 EXPORT_SYMBOL(napi_gro_frags);
4700 /* Compute the checksum from gro_offset and return the folded value
4701 * after adding in any pseudo checksum.
4703 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4705 __wsum wsum;
4706 __sum16 sum;
4708 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4710 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4711 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4712 if (likely(!sum)) {
4713 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4714 !skb->csum_complete_sw)
4715 netdev_rx_csum_fault(skb->dev);
4718 NAPI_GRO_CB(skb)->csum = wsum;
4719 NAPI_GRO_CB(skb)->csum_valid = 1;
4721 return sum;
4723 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4726 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4727 * Note: called with local irq disabled, but exits with local irq enabled.
4729 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4731 #ifdef CONFIG_RPS
4732 struct softnet_data *remsd = sd->rps_ipi_list;
4734 if (remsd) {
4735 sd->rps_ipi_list = NULL;
4737 local_irq_enable();
4739 /* Send pending IPI's to kick RPS processing on remote cpus. */
4740 while (remsd) {
4741 struct softnet_data *next = remsd->rps_ipi_next;
4743 if (cpu_online(remsd->cpu))
4744 smp_call_function_single_async(remsd->cpu,
4745 &remsd->csd);
4746 remsd = next;
4748 } else
4749 #endif
4750 local_irq_enable();
4753 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4755 #ifdef CONFIG_RPS
4756 return sd->rps_ipi_list != NULL;
4757 #else
4758 return false;
4759 #endif
4762 static int process_backlog(struct napi_struct *napi, int quota)
4764 int work = 0;
4765 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4767 /* Check if we have pending ipi, its better to send them now,
4768 * not waiting net_rx_action() end.
4770 if (sd_has_rps_ipi_waiting(sd)) {
4771 local_irq_disable();
4772 net_rps_action_and_irq_enable(sd);
4775 napi->weight = weight_p;
4776 local_irq_disable();
4777 while (1) {
4778 struct sk_buff *skb;
4780 while ((skb = __skb_dequeue(&sd->process_queue))) {
4781 rcu_read_lock();
4782 local_irq_enable();
4783 __netif_receive_skb(skb);
4784 rcu_read_unlock();
4785 local_irq_disable();
4786 input_queue_head_incr(sd);
4787 if (++work >= quota) {
4788 local_irq_enable();
4789 return work;
4793 rps_lock(sd);
4794 if (skb_queue_empty(&sd->input_pkt_queue)) {
4796 * Inline a custom version of __napi_complete().
4797 * only current cpu owns and manipulates this napi,
4798 * and NAPI_STATE_SCHED is the only possible flag set
4799 * on backlog.
4800 * We can use a plain write instead of clear_bit(),
4801 * and we dont need an smp_mb() memory barrier.
4803 napi->state = 0;
4804 rps_unlock(sd);
4806 break;
4809 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4810 &sd->process_queue);
4811 rps_unlock(sd);
4813 local_irq_enable();
4815 return work;
4819 * __napi_schedule - schedule for receive
4820 * @n: entry to schedule
4822 * The entry's receive function will be scheduled to run.
4823 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4825 void __napi_schedule(struct napi_struct *n)
4827 unsigned long flags;
4829 local_irq_save(flags);
4830 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4831 local_irq_restore(flags);
4833 EXPORT_SYMBOL(__napi_schedule);
4836 * __napi_schedule_irqoff - schedule for receive
4837 * @n: entry to schedule
4839 * Variant of __napi_schedule() assuming hard irqs are masked
4841 void __napi_schedule_irqoff(struct napi_struct *n)
4843 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4845 EXPORT_SYMBOL(__napi_schedule_irqoff);
4847 void __napi_complete(struct napi_struct *n)
4849 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4851 list_del_init(&n->poll_list);
4852 smp_mb__before_atomic();
4853 clear_bit(NAPI_STATE_SCHED, &n->state);
4855 EXPORT_SYMBOL(__napi_complete);
4857 void napi_complete_done(struct napi_struct *n, int work_done)
4859 unsigned long flags;
4862 * don't let napi dequeue from the cpu poll list
4863 * just in case its running on a different cpu
4865 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4866 return;
4868 if (n->gro_list) {
4869 unsigned long timeout = 0;
4871 if (work_done)
4872 timeout = n->dev->gro_flush_timeout;
4874 if (timeout)
4875 hrtimer_start(&n->timer, ns_to_ktime(timeout),
4876 HRTIMER_MODE_REL_PINNED);
4877 else
4878 napi_gro_flush(n, false);
4880 if (likely(list_empty(&n->poll_list))) {
4881 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4882 } else {
4883 /* If n->poll_list is not empty, we need to mask irqs */
4884 local_irq_save(flags);
4885 __napi_complete(n);
4886 local_irq_restore(flags);
4889 EXPORT_SYMBOL(napi_complete_done);
4891 /* must be called under rcu_read_lock(), as we dont take a reference */
4892 static struct napi_struct *napi_by_id(unsigned int napi_id)
4894 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4895 struct napi_struct *napi;
4897 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4898 if (napi->napi_id == napi_id)
4899 return napi;
4901 return NULL;
4904 #if defined(CONFIG_NET_RX_BUSY_POLL)
4905 #define BUSY_POLL_BUDGET 8
4906 bool sk_busy_loop(struct sock *sk, int nonblock)
4908 unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0;
4909 int (*busy_poll)(struct napi_struct *dev);
4910 struct napi_struct *napi;
4911 int rc = false;
4913 rcu_read_lock();
4915 napi = napi_by_id(sk->sk_napi_id);
4916 if (!napi)
4917 goto out;
4919 /* Note: ndo_busy_poll method is optional in linux-4.5 */
4920 busy_poll = napi->dev->netdev_ops->ndo_busy_poll;
4922 do {
4923 rc = 0;
4924 local_bh_disable();
4925 if (busy_poll) {
4926 rc = busy_poll(napi);
4927 } else if (napi_schedule_prep(napi)) {
4928 void *have = netpoll_poll_lock(napi);
4930 if (test_bit(NAPI_STATE_SCHED, &napi->state)) {
4931 rc = napi->poll(napi, BUSY_POLL_BUDGET);
4932 trace_napi_poll(napi);
4933 if (rc == BUSY_POLL_BUDGET) {
4934 napi_complete_done(napi, rc);
4935 napi_schedule(napi);
4938 netpoll_poll_unlock(have);
4940 if (rc > 0)
4941 NET_ADD_STATS_BH(sock_net(sk),
4942 LINUX_MIB_BUSYPOLLRXPACKETS, rc);
4943 local_bh_enable();
4945 if (rc == LL_FLUSH_FAILED)
4946 break; /* permanent failure */
4948 cpu_relax();
4949 } while (!nonblock && skb_queue_empty(&sk->sk_receive_queue) &&
4950 !need_resched() && !busy_loop_timeout(end_time));
4952 rc = !skb_queue_empty(&sk->sk_receive_queue);
4953 out:
4954 rcu_read_unlock();
4955 return rc;
4957 EXPORT_SYMBOL(sk_busy_loop);
4959 #endif /* CONFIG_NET_RX_BUSY_POLL */
4961 void napi_hash_add(struct napi_struct *napi)
4963 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
4964 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
4965 return;
4967 spin_lock(&napi_hash_lock);
4969 /* 0..NR_CPUS+1 range is reserved for sender_cpu use */
4970 do {
4971 if (unlikely(++napi_gen_id < NR_CPUS + 1))
4972 napi_gen_id = NR_CPUS + 1;
4973 } while (napi_by_id(napi_gen_id));
4974 napi->napi_id = napi_gen_id;
4976 hlist_add_head_rcu(&napi->napi_hash_node,
4977 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4979 spin_unlock(&napi_hash_lock);
4981 EXPORT_SYMBOL_GPL(napi_hash_add);
4983 /* Warning : caller is responsible to make sure rcu grace period
4984 * is respected before freeing memory containing @napi
4986 bool napi_hash_del(struct napi_struct *napi)
4988 bool rcu_sync_needed = false;
4990 spin_lock(&napi_hash_lock);
4992 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
4993 rcu_sync_needed = true;
4994 hlist_del_rcu(&napi->napi_hash_node);
4996 spin_unlock(&napi_hash_lock);
4997 return rcu_sync_needed;
4999 EXPORT_SYMBOL_GPL(napi_hash_del);
5001 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5003 struct napi_struct *napi;
5005 napi = container_of(timer, struct napi_struct, timer);
5006 if (napi->gro_list)
5007 napi_schedule(napi);
5009 return HRTIMER_NORESTART;
5012 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5013 int (*poll)(struct napi_struct *, int), int weight)
5015 INIT_LIST_HEAD(&napi->poll_list);
5016 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5017 napi->timer.function = napi_watchdog;
5018 napi->gro_count = 0;
5019 napi->gro_list = NULL;
5020 napi->skb = NULL;
5021 napi->poll = poll;
5022 if (weight > NAPI_POLL_WEIGHT)
5023 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5024 weight, dev->name);
5025 napi->weight = weight;
5026 list_add(&napi->dev_list, &dev->napi_list);
5027 napi->dev = dev;
5028 #ifdef CONFIG_NETPOLL
5029 spin_lock_init(&napi->poll_lock);
5030 napi->poll_owner = -1;
5031 #endif
5032 set_bit(NAPI_STATE_SCHED, &napi->state);
5033 napi_hash_add(napi);
5035 EXPORT_SYMBOL(netif_napi_add);
5037 void napi_disable(struct napi_struct *n)
5039 might_sleep();
5040 set_bit(NAPI_STATE_DISABLE, &n->state);
5042 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5043 msleep(1);
5044 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5045 msleep(1);
5047 hrtimer_cancel(&n->timer);
5049 clear_bit(NAPI_STATE_DISABLE, &n->state);
5051 EXPORT_SYMBOL(napi_disable);
5053 /* Must be called in process context */
5054 void netif_napi_del(struct napi_struct *napi)
5056 might_sleep();
5057 if (napi_hash_del(napi))
5058 synchronize_net();
5059 list_del_init(&napi->dev_list);
5060 napi_free_frags(napi);
5062 kfree_skb_list(napi->gro_list);
5063 napi->gro_list = NULL;
5064 napi->gro_count = 0;
5066 EXPORT_SYMBOL(netif_napi_del);
5068 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5070 void *have;
5071 int work, weight;
5073 list_del_init(&n->poll_list);
5075 have = netpoll_poll_lock(n);
5077 weight = n->weight;
5079 /* This NAPI_STATE_SCHED test is for avoiding a race
5080 * with netpoll's poll_napi(). Only the entity which
5081 * obtains the lock and sees NAPI_STATE_SCHED set will
5082 * actually make the ->poll() call. Therefore we avoid
5083 * accidentally calling ->poll() when NAPI is not scheduled.
5085 work = 0;
5086 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5087 work = n->poll(n, weight);
5088 trace_napi_poll(n);
5091 WARN_ON_ONCE(work > weight);
5093 if (likely(work < weight))
5094 goto out_unlock;
5096 /* Drivers must not modify the NAPI state if they
5097 * consume the entire weight. In such cases this code
5098 * still "owns" the NAPI instance and therefore can
5099 * move the instance around on the list at-will.
5101 if (unlikely(napi_disable_pending(n))) {
5102 napi_complete(n);
5103 goto out_unlock;
5106 if (n->gro_list) {
5107 /* flush too old packets
5108 * If HZ < 1000, flush all packets.
5110 napi_gro_flush(n, HZ >= 1000);
5113 /* Some drivers may have called napi_schedule
5114 * prior to exhausting their budget.
5116 if (unlikely(!list_empty(&n->poll_list))) {
5117 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5118 n->dev ? n->dev->name : "backlog");
5119 goto out_unlock;
5122 list_add_tail(&n->poll_list, repoll);
5124 out_unlock:
5125 netpoll_poll_unlock(have);
5127 return work;
5130 static void net_rx_action(struct softirq_action *h)
5132 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5133 unsigned long time_limit = jiffies + 2;
5134 int budget = netdev_budget;
5135 LIST_HEAD(list);
5136 LIST_HEAD(repoll);
5138 local_irq_disable();
5139 list_splice_init(&sd->poll_list, &list);
5140 local_irq_enable();
5142 for (;;) {
5143 struct napi_struct *n;
5145 if (list_empty(&list)) {
5146 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5147 return;
5148 break;
5151 n = list_first_entry(&list, struct napi_struct, poll_list);
5152 budget -= napi_poll(n, &repoll);
5154 /* If softirq window is exhausted then punt.
5155 * Allow this to run for 2 jiffies since which will allow
5156 * an average latency of 1.5/HZ.
5158 if (unlikely(budget <= 0 ||
5159 time_after_eq(jiffies, time_limit))) {
5160 sd->time_squeeze++;
5161 break;
5165 __kfree_skb_flush();
5166 local_irq_disable();
5168 list_splice_tail_init(&sd->poll_list, &list);
5169 list_splice_tail(&repoll, &list);
5170 list_splice(&list, &sd->poll_list);
5171 if (!list_empty(&sd->poll_list))
5172 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5174 net_rps_action_and_irq_enable(sd);
5177 struct netdev_adjacent {
5178 struct net_device *dev;
5180 /* upper master flag, there can only be one master device per list */
5181 bool master;
5183 /* counter for the number of times this device was added to us */
5184 u16 ref_nr;
5186 /* private field for the users */
5187 void *private;
5189 struct list_head list;
5190 struct rcu_head rcu;
5193 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5194 struct list_head *adj_list)
5196 struct netdev_adjacent *adj;
5198 list_for_each_entry(adj, adj_list, list) {
5199 if (adj->dev == adj_dev)
5200 return adj;
5202 return NULL;
5206 * netdev_has_upper_dev - Check if device is linked to an upper device
5207 * @dev: device
5208 * @upper_dev: upper device to check
5210 * Find out if a device is linked to specified upper device and return true
5211 * in case it is. Note that this checks only immediate upper device,
5212 * not through a complete stack of devices. The caller must hold the RTNL lock.
5214 bool netdev_has_upper_dev(struct net_device *dev,
5215 struct net_device *upper_dev)
5217 ASSERT_RTNL();
5219 return __netdev_find_adj(upper_dev, &dev->all_adj_list.upper);
5221 EXPORT_SYMBOL(netdev_has_upper_dev);
5224 * netdev_has_any_upper_dev - Check if device is linked to some device
5225 * @dev: device
5227 * Find out if a device is linked to an upper device and return true in case
5228 * it is. The caller must hold the RTNL lock.
5230 static bool netdev_has_any_upper_dev(struct net_device *dev)
5232 ASSERT_RTNL();
5234 return !list_empty(&dev->all_adj_list.upper);
5238 * netdev_master_upper_dev_get - Get master upper device
5239 * @dev: device
5241 * Find a master upper device and return pointer to it or NULL in case
5242 * it's not there. The caller must hold the RTNL lock.
5244 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5246 struct netdev_adjacent *upper;
5248 ASSERT_RTNL();
5250 if (list_empty(&dev->adj_list.upper))
5251 return NULL;
5253 upper = list_first_entry(&dev->adj_list.upper,
5254 struct netdev_adjacent, list);
5255 if (likely(upper->master))
5256 return upper->dev;
5257 return NULL;
5259 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5261 void *netdev_adjacent_get_private(struct list_head *adj_list)
5263 struct netdev_adjacent *adj;
5265 adj = list_entry(adj_list, struct netdev_adjacent, list);
5267 return adj->private;
5269 EXPORT_SYMBOL(netdev_adjacent_get_private);
5272 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5273 * @dev: device
5274 * @iter: list_head ** of the current position
5276 * Gets the next device from the dev's upper list, starting from iter
5277 * position. The caller must hold RCU read lock.
5279 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5280 struct list_head **iter)
5282 struct netdev_adjacent *upper;
5284 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5286 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5288 if (&upper->list == &dev->adj_list.upper)
5289 return NULL;
5291 *iter = &upper->list;
5293 return upper->dev;
5295 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5298 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
5299 * @dev: device
5300 * @iter: list_head ** of the current position
5302 * Gets the next device from the dev's upper list, starting from iter
5303 * position. The caller must hold RCU read lock.
5305 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
5306 struct list_head **iter)
5308 struct netdev_adjacent *upper;
5310 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5312 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5314 if (&upper->list == &dev->all_adj_list.upper)
5315 return NULL;
5317 *iter = &upper->list;
5319 return upper->dev;
5321 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
5324 * netdev_lower_get_next_private - Get the next ->private from the
5325 * lower neighbour list
5326 * @dev: device
5327 * @iter: list_head ** of the current position
5329 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5330 * list, starting from iter position. The caller must hold either hold the
5331 * RTNL lock or its own locking that guarantees that the neighbour lower
5332 * list will remain unchanged.
5334 void *netdev_lower_get_next_private(struct net_device *dev,
5335 struct list_head **iter)
5337 struct netdev_adjacent *lower;
5339 lower = list_entry(*iter, struct netdev_adjacent, list);
5341 if (&lower->list == &dev->adj_list.lower)
5342 return NULL;
5344 *iter = lower->list.next;
5346 return lower->private;
5348 EXPORT_SYMBOL(netdev_lower_get_next_private);
5351 * netdev_lower_get_next_private_rcu - Get the next ->private from the
5352 * lower neighbour list, RCU
5353 * variant
5354 * @dev: device
5355 * @iter: list_head ** of the current position
5357 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5358 * list, starting from iter position. The caller must hold RCU read lock.
5360 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5361 struct list_head **iter)
5363 struct netdev_adjacent *lower;
5365 WARN_ON_ONCE(!rcu_read_lock_held());
5367 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5369 if (&lower->list == &dev->adj_list.lower)
5370 return NULL;
5372 *iter = &lower->list;
5374 return lower->private;
5376 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5379 * netdev_lower_get_next - Get the next device from the lower neighbour
5380 * list
5381 * @dev: device
5382 * @iter: list_head ** of the current position
5384 * Gets the next netdev_adjacent from the dev's lower neighbour
5385 * list, starting from iter position. The caller must hold RTNL lock or
5386 * its own locking that guarantees that the neighbour lower
5387 * list will remain unchanged.
5389 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5391 struct netdev_adjacent *lower;
5393 lower = list_entry(*iter, struct netdev_adjacent, list);
5395 if (&lower->list == &dev->adj_list.lower)
5396 return NULL;
5398 *iter = lower->list.next;
5400 return lower->dev;
5402 EXPORT_SYMBOL(netdev_lower_get_next);
5405 * netdev_lower_get_first_private_rcu - Get the first ->private from the
5406 * lower neighbour list, RCU
5407 * variant
5408 * @dev: device
5410 * Gets the first netdev_adjacent->private from the dev's lower neighbour
5411 * list. The caller must hold RCU read lock.
5413 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5415 struct netdev_adjacent *lower;
5417 lower = list_first_or_null_rcu(&dev->adj_list.lower,
5418 struct netdev_adjacent, list);
5419 if (lower)
5420 return lower->private;
5421 return NULL;
5423 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5426 * netdev_master_upper_dev_get_rcu - Get master upper device
5427 * @dev: device
5429 * Find a master upper device and return pointer to it or NULL in case
5430 * it's not there. The caller must hold the RCU read lock.
5432 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5434 struct netdev_adjacent *upper;
5436 upper = list_first_or_null_rcu(&dev->adj_list.upper,
5437 struct netdev_adjacent, list);
5438 if (upper && likely(upper->master))
5439 return upper->dev;
5440 return NULL;
5442 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5444 static int netdev_adjacent_sysfs_add(struct net_device *dev,
5445 struct net_device *adj_dev,
5446 struct list_head *dev_list)
5448 char linkname[IFNAMSIZ+7];
5449 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5450 "upper_%s" : "lower_%s", adj_dev->name);
5451 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5452 linkname);
5454 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5455 char *name,
5456 struct list_head *dev_list)
5458 char linkname[IFNAMSIZ+7];
5459 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5460 "upper_%s" : "lower_%s", name);
5461 sysfs_remove_link(&(dev->dev.kobj), linkname);
5464 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5465 struct net_device *adj_dev,
5466 struct list_head *dev_list)
5468 return (dev_list == &dev->adj_list.upper ||
5469 dev_list == &dev->adj_list.lower) &&
5470 net_eq(dev_net(dev), dev_net(adj_dev));
5473 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5474 struct net_device *adj_dev,
5475 struct list_head *dev_list,
5476 void *private, bool master)
5478 struct netdev_adjacent *adj;
5479 int ret;
5481 adj = __netdev_find_adj(adj_dev, dev_list);
5483 if (adj) {
5484 adj->ref_nr++;
5485 return 0;
5488 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5489 if (!adj)
5490 return -ENOMEM;
5492 adj->dev = adj_dev;
5493 adj->master = master;
5494 adj->ref_nr = 1;
5495 adj->private = private;
5496 dev_hold(adj_dev);
5498 pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5499 adj_dev->name, dev->name, adj_dev->name);
5501 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5502 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5503 if (ret)
5504 goto free_adj;
5507 /* Ensure that master link is always the first item in list. */
5508 if (master) {
5509 ret = sysfs_create_link(&(dev->dev.kobj),
5510 &(adj_dev->dev.kobj), "master");
5511 if (ret)
5512 goto remove_symlinks;
5514 list_add_rcu(&adj->list, dev_list);
5515 } else {
5516 list_add_tail_rcu(&adj->list, dev_list);
5519 return 0;
5521 remove_symlinks:
5522 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5523 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5524 free_adj:
5525 kfree(adj);
5526 dev_put(adj_dev);
5528 return ret;
5531 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5532 struct net_device *adj_dev,
5533 struct list_head *dev_list)
5535 struct netdev_adjacent *adj;
5537 adj = __netdev_find_adj(adj_dev, dev_list);
5539 if (!adj) {
5540 pr_err("tried to remove device %s from %s\n",
5541 dev->name, adj_dev->name);
5542 BUG();
5545 if (adj->ref_nr > 1) {
5546 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5547 adj->ref_nr-1);
5548 adj->ref_nr--;
5549 return;
5552 if (adj->master)
5553 sysfs_remove_link(&(dev->dev.kobj), "master");
5555 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5556 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5558 list_del_rcu(&adj->list);
5559 pr_debug("dev_put for %s, because link removed from %s to %s\n",
5560 adj_dev->name, dev->name, adj_dev->name);
5561 dev_put(adj_dev);
5562 kfree_rcu(adj, rcu);
5565 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5566 struct net_device *upper_dev,
5567 struct list_head *up_list,
5568 struct list_head *down_list,
5569 void *private, bool master)
5571 int ret;
5573 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5574 master);
5575 if (ret)
5576 return ret;
5578 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5579 false);
5580 if (ret) {
5581 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5582 return ret;
5585 return 0;
5588 static int __netdev_adjacent_dev_link(struct net_device *dev,
5589 struct net_device *upper_dev)
5591 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5592 &dev->all_adj_list.upper,
5593 &upper_dev->all_adj_list.lower,
5594 NULL, false);
5597 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5598 struct net_device *upper_dev,
5599 struct list_head *up_list,
5600 struct list_head *down_list)
5602 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5603 __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5606 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5607 struct net_device *upper_dev)
5609 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5610 &dev->all_adj_list.upper,
5611 &upper_dev->all_adj_list.lower);
5614 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5615 struct net_device *upper_dev,
5616 void *private, bool master)
5618 int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5620 if (ret)
5621 return ret;
5623 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5624 &dev->adj_list.upper,
5625 &upper_dev->adj_list.lower,
5626 private, master);
5627 if (ret) {
5628 __netdev_adjacent_dev_unlink(dev, upper_dev);
5629 return ret;
5632 return 0;
5635 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5636 struct net_device *upper_dev)
5638 __netdev_adjacent_dev_unlink(dev, upper_dev);
5639 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5640 &dev->adj_list.upper,
5641 &upper_dev->adj_list.lower);
5644 static int __netdev_upper_dev_link(struct net_device *dev,
5645 struct net_device *upper_dev, bool master,
5646 void *upper_priv, void *upper_info)
5648 struct netdev_notifier_changeupper_info changeupper_info;
5649 struct netdev_adjacent *i, *j, *to_i, *to_j;
5650 int ret = 0;
5652 ASSERT_RTNL();
5654 if (dev == upper_dev)
5655 return -EBUSY;
5657 /* To prevent loops, check if dev is not upper device to upper_dev. */
5658 if (__netdev_find_adj(dev, &upper_dev->all_adj_list.upper))
5659 return -EBUSY;
5661 if (__netdev_find_adj(upper_dev, &dev->adj_list.upper))
5662 return -EEXIST;
5664 if (master && netdev_master_upper_dev_get(dev))
5665 return -EBUSY;
5667 changeupper_info.upper_dev = upper_dev;
5668 changeupper_info.master = master;
5669 changeupper_info.linking = true;
5670 changeupper_info.upper_info = upper_info;
5672 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5673 &changeupper_info.info);
5674 ret = notifier_to_errno(ret);
5675 if (ret)
5676 return ret;
5678 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
5679 master);
5680 if (ret)
5681 return ret;
5683 /* Now that we linked these devs, make all the upper_dev's
5684 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5685 * versa, and don't forget the devices itself. All of these
5686 * links are non-neighbours.
5688 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5689 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5690 pr_debug("Interlinking %s with %s, non-neighbour\n",
5691 i->dev->name, j->dev->name);
5692 ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5693 if (ret)
5694 goto rollback_mesh;
5698 /* add dev to every upper_dev's upper device */
5699 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5700 pr_debug("linking %s's upper device %s with %s\n",
5701 upper_dev->name, i->dev->name, dev->name);
5702 ret = __netdev_adjacent_dev_link(dev, i->dev);
5703 if (ret)
5704 goto rollback_upper_mesh;
5707 /* add upper_dev to every dev's lower device */
5708 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5709 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5710 i->dev->name, upper_dev->name);
5711 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5712 if (ret)
5713 goto rollback_lower_mesh;
5716 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5717 &changeupper_info.info);
5718 ret = notifier_to_errno(ret);
5719 if (ret)
5720 goto rollback_lower_mesh;
5722 return 0;
5724 rollback_lower_mesh:
5725 to_i = i;
5726 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5727 if (i == to_i)
5728 break;
5729 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5732 i = NULL;
5734 rollback_upper_mesh:
5735 to_i = i;
5736 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5737 if (i == to_i)
5738 break;
5739 __netdev_adjacent_dev_unlink(dev, i->dev);
5742 i = j = NULL;
5744 rollback_mesh:
5745 to_i = i;
5746 to_j = j;
5747 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5748 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5749 if (i == to_i && j == to_j)
5750 break;
5751 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5753 if (i == to_i)
5754 break;
5757 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5759 return ret;
5763 * netdev_upper_dev_link - Add a link to the upper device
5764 * @dev: device
5765 * @upper_dev: new upper device
5767 * Adds a link to device which is upper to this one. The caller must hold
5768 * the RTNL lock. On a failure a negative errno code is returned.
5769 * On success the reference counts are adjusted and the function
5770 * returns zero.
5772 int netdev_upper_dev_link(struct net_device *dev,
5773 struct net_device *upper_dev)
5775 return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
5777 EXPORT_SYMBOL(netdev_upper_dev_link);
5780 * netdev_master_upper_dev_link - Add a master link to the upper device
5781 * @dev: device
5782 * @upper_dev: new upper device
5783 * @upper_priv: upper device private
5784 * @upper_info: upper info to be passed down via notifier
5786 * Adds a link to device which is upper to this one. In this case, only
5787 * one master upper device can be linked, although other non-master devices
5788 * might be linked as well. The caller must hold the RTNL lock.
5789 * On a failure a negative errno code is returned. On success the reference
5790 * counts are adjusted and the function returns zero.
5792 int netdev_master_upper_dev_link(struct net_device *dev,
5793 struct net_device *upper_dev,
5794 void *upper_priv, void *upper_info)
5796 return __netdev_upper_dev_link(dev, upper_dev, true,
5797 upper_priv, upper_info);
5799 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5802 * netdev_upper_dev_unlink - Removes a link to upper device
5803 * @dev: device
5804 * @upper_dev: new upper device
5806 * Removes a link to device which is upper to this one. The caller must hold
5807 * the RTNL lock.
5809 void netdev_upper_dev_unlink(struct net_device *dev,
5810 struct net_device *upper_dev)
5812 struct netdev_notifier_changeupper_info changeupper_info;
5813 struct netdev_adjacent *i, *j;
5814 ASSERT_RTNL();
5816 changeupper_info.upper_dev = upper_dev;
5817 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5818 changeupper_info.linking = false;
5820 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5821 &changeupper_info.info);
5823 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5825 /* Here is the tricky part. We must remove all dev's lower
5826 * devices from all upper_dev's upper devices and vice
5827 * versa, to maintain the graph relationship.
5829 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5830 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5831 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5833 /* remove also the devices itself from lower/upper device
5834 * list
5836 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5837 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5839 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5840 __netdev_adjacent_dev_unlink(dev, i->dev);
5842 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5843 &changeupper_info.info);
5845 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5848 * netdev_bonding_info_change - Dispatch event about slave change
5849 * @dev: device
5850 * @bonding_info: info to dispatch
5852 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5853 * The caller must hold the RTNL lock.
5855 void netdev_bonding_info_change(struct net_device *dev,
5856 struct netdev_bonding_info *bonding_info)
5858 struct netdev_notifier_bonding_info info;
5860 memcpy(&info.bonding_info, bonding_info,
5861 sizeof(struct netdev_bonding_info));
5862 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5863 &info.info);
5865 EXPORT_SYMBOL(netdev_bonding_info_change);
5867 static void netdev_adjacent_add_links(struct net_device *dev)
5869 struct netdev_adjacent *iter;
5871 struct net *net = dev_net(dev);
5873 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5874 if (!net_eq(net,dev_net(iter->dev)))
5875 continue;
5876 netdev_adjacent_sysfs_add(iter->dev, dev,
5877 &iter->dev->adj_list.lower);
5878 netdev_adjacent_sysfs_add(dev, iter->dev,
5879 &dev->adj_list.upper);
5882 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5883 if (!net_eq(net,dev_net(iter->dev)))
5884 continue;
5885 netdev_adjacent_sysfs_add(iter->dev, dev,
5886 &iter->dev->adj_list.upper);
5887 netdev_adjacent_sysfs_add(dev, iter->dev,
5888 &dev->adj_list.lower);
5892 static void netdev_adjacent_del_links(struct net_device *dev)
5894 struct netdev_adjacent *iter;
5896 struct net *net = dev_net(dev);
5898 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5899 if (!net_eq(net,dev_net(iter->dev)))
5900 continue;
5901 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5902 &iter->dev->adj_list.lower);
5903 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5904 &dev->adj_list.upper);
5907 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5908 if (!net_eq(net,dev_net(iter->dev)))
5909 continue;
5910 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5911 &iter->dev->adj_list.upper);
5912 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5913 &dev->adj_list.lower);
5917 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5919 struct netdev_adjacent *iter;
5921 struct net *net = dev_net(dev);
5923 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5924 if (!net_eq(net,dev_net(iter->dev)))
5925 continue;
5926 netdev_adjacent_sysfs_del(iter->dev, oldname,
5927 &iter->dev->adj_list.lower);
5928 netdev_adjacent_sysfs_add(iter->dev, dev,
5929 &iter->dev->adj_list.lower);
5932 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5933 if (!net_eq(net,dev_net(iter->dev)))
5934 continue;
5935 netdev_adjacent_sysfs_del(iter->dev, oldname,
5936 &iter->dev->adj_list.upper);
5937 netdev_adjacent_sysfs_add(iter->dev, dev,
5938 &iter->dev->adj_list.upper);
5942 void *netdev_lower_dev_get_private(struct net_device *dev,
5943 struct net_device *lower_dev)
5945 struct netdev_adjacent *lower;
5947 if (!lower_dev)
5948 return NULL;
5949 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
5950 if (!lower)
5951 return NULL;
5953 return lower->private;
5955 EXPORT_SYMBOL(netdev_lower_dev_get_private);
5958 int dev_get_nest_level(struct net_device *dev,
5959 bool (*type_check)(const struct net_device *dev))
5961 struct net_device *lower = NULL;
5962 struct list_head *iter;
5963 int max_nest = -1;
5964 int nest;
5966 ASSERT_RTNL();
5968 netdev_for_each_lower_dev(dev, lower, iter) {
5969 nest = dev_get_nest_level(lower, type_check);
5970 if (max_nest < nest)
5971 max_nest = nest;
5974 if (type_check(dev))
5975 max_nest++;
5977 return max_nest;
5979 EXPORT_SYMBOL(dev_get_nest_level);
5982 * netdev_lower_change - Dispatch event about lower device state change
5983 * @lower_dev: device
5984 * @lower_state_info: state to dispatch
5986 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
5987 * The caller must hold the RTNL lock.
5989 void netdev_lower_state_changed(struct net_device *lower_dev,
5990 void *lower_state_info)
5992 struct netdev_notifier_changelowerstate_info changelowerstate_info;
5994 ASSERT_RTNL();
5995 changelowerstate_info.lower_state_info = lower_state_info;
5996 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
5997 &changelowerstate_info.info);
5999 EXPORT_SYMBOL(netdev_lower_state_changed);
6001 static void dev_change_rx_flags(struct net_device *dev, int flags)
6003 const struct net_device_ops *ops = dev->netdev_ops;
6005 if (ops->ndo_change_rx_flags)
6006 ops->ndo_change_rx_flags(dev, flags);
6009 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6011 unsigned int old_flags = dev->flags;
6012 kuid_t uid;
6013 kgid_t gid;
6015 ASSERT_RTNL();
6017 dev->flags |= IFF_PROMISC;
6018 dev->promiscuity += inc;
6019 if (dev->promiscuity == 0) {
6021 * Avoid overflow.
6022 * If inc causes overflow, untouch promisc and return error.
6024 if (inc < 0)
6025 dev->flags &= ~IFF_PROMISC;
6026 else {
6027 dev->promiscuity -= inc;
6028 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6029 dev->name);
6030 return -EOVERFLOW;
6033 if (dev->flags != old_flags) {
6034 pr_info("device %s %s promiscuous mode\n",
6035 dev->name,
6036 dev->flags & IFF_PROMISC ? "entered" : "left");
6037 if (audit_enabled) {
6038 current_uid_gid(&uid, &gid);
6039 audit_log(current->audit_context, GFP_ATOMIC,
6040 AUDIT_ANOM_PROMISCUOUS,
6041 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6042 dev->name, (dev->flags & IFF_PROMISC),
6043 (old_flags & IFF_PROMISC),
6044 from_kuid(&init_user_ns, audit_get_loginuid(current)),
6045 from_kuid(&init_user_ns, uid),
6046 from_kgid(&init_user_ns, gid),
6047 audit_get_sessionid(current));
6050 dev_change_rx_flags(dev, IFF_PROMISC);
6052 if (notify)
6053 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
6054 return 0;
6058 * dev_set_promiscuity - update promiscuity count on a device
6059 * @dev: device
6060 * @inc: modifier
6062 * Add or remove promiscuity from a device. While the count in the device
6063 * remains above zero the interface remains promiscuous. Once it hits zero
6064 * the device reverts back to normal filtering operation. A negative inc
6065 * value is used to drop promiscuity on the device.
6066 * Return 0 if successful or a negative errno code on error.
6068 int dev_set_promiscuity(struct net_device *dev, int inc)
6070 unsigned int old_flags = dev->flags;
6071 int err;
6073 err = __dev_set_promiscuity(dev, inc, true);
6074 if (err < 0)
6075 return err;
6076 if (dev->flags != old_flags)
6077 dev_set_rx_mode(dev);
6078 return err;
6080 EXPORT_SYMBOL(dev_set_promiscuity);
6082 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6084 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6086 ASSERT_RTNL();
6088 dev->flags |= IFF_ALLMULTI;
6089 dev->allmulti += inc;
6090 if (dev->allmulti == 0) {
6092 * Avoid overflow.
6093 * If inc causes overflow, untouch allmulti and return error.
6095 if (inc < 0)
6096 dev->flags &= ~IFF_ALLMULTI;
6097 else {
6098 dev->allmulti -= inc;
6099 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6100 dev->name);
6101 return -EOVERFLOW;
6104 if (dev->flags ^ old_flags) {
6105 dev_change_rx_flags(dev, IFF_ALLMULTI);
6106 dev_set_rx_mode(dev);
6107 if (notify)
6108 __dev_notify_flags(dev, old_flags,
6109 dev->gflags ^ old_gflags);
6111 return 0;
6115 * dev_set_allmulti - update allmulti count on a device
6116 * @dev: device
6117 * @inc: modifier
6119 * Add or remove reception of all multicast frames to a device. While the
6120 * count in the device remains above zero the interface remains listening
6121 * to all interfaces. Once it hits zero the device reverts back to normal
6122 * filtering operation. A negative @inc value is used to drop the counter
6123 * when releasing a resource needing all multicasts.
6124 * Return 0 if successful or a negative errno code on error.
6127 int dev_set_allmulti(struct net_device *dev, int inc)
6129 return __dev_set_allmulti(dev, inc, true);
6131 EXPORT_SYMBOL(dev_set_allmulti);
6134 * Upload unicast and multicast address lists to device and
6135 * configure RX filtering. When the device doesn't support unicast
6136 * filtering it is put in promiscuous mode while unicast addresses
6137 * are present.
6139 void __dev_set_rx_mode(struct net_device *dev)
6141 const struct net_device_ops *ops = dev->netdev_ops;
6143 /* dev_open will call this function so the list will stay sane. */
6144 if (!(dev->flags&IFF_UP))
6145 return;
6147 if (!netif_device_present(dev))
6148 return;
6150 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6151 /* Unicast addresses changes may only happen under the rtnl,
6152 * therefore calling __dev_set_promiscuity here is safe.
6154 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6155 __dev_set_promiscuity(dev, 1, false);
6156 dev->uc_promisc = true;
6157 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6158 __dev_set_promiscuity(dev, -1, false);
6159 dev->uc_promisc = false;
6163 if (ops->ndo_set_rx_mode)
6164 ops->ndo_set_rx_mode(dev);
6167 void dev_set_rx_mode(struct net_device *dev)
6169 netif_addr_lock_bh(dev);
6170 __dev_set_rx_mode(dev);
6171 netif_addr_unlock_bh(dev);
6175 * dev_get_flags - get flags reported to userspace
6176 * @dev: device
6178 * Get the combination of flag bits exported through APIs to userspace.
6180 unsigned int dev_get_flags(const struct net_device *dev)
6182 unsigned int flags;
6184 flags = (dev->flags & ~(IFF_PROMISC |
6185 IFF_ALLMULTI |
6186 IFF_RUNNING |
6187 IFF_LOWER_UP |
6188 IFF_DORMANT)) |
6189 (dev->gflags & (IFF_PROMISC |
6190 IFF_ALLMULTI));
6192 if (netif_running(dev)) {
6193 if (netif_oper_up(dev))
6194 flags |= IFF_RUNNING;
6195 if (netif_carrier_ok(dev))
6196 flags |= IFF_LOWER_UP;
6197 if (netif_dormant(dev))
6198 flags |= IFF_DORMANT;
6201 return flags;
6203 EXPORT_SYMBOL(dev_get_flags);
6205 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6207 unsigned int old_flags = dev->flags;
6208 int ret;
6210 ASSERT_RTNL();
6213 * Set the flags on our device.
6216 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6217 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6218 IFF_AUTOMEDIA)) |
6219 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6220 IFF_ALLMULTI));
6223 * Load in the correct multicast list now the flags have changed.
6226 if ((old_flags ^ flags) & IFF_MULTICAST)
6227 dev_change_rx_flags(dev, IFF_MULTICAST);
6229 dev_set_rx_mode(dev);
6232 * Have we downed the interface. We handle IFF_UP ourselves
6233 * according to user attempts to set it, rather than blindly
6234 * setting it.
6237 ret = 0;
6238 if ((old_flags ^ flags) & IFF_UP)
6239 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
6241 if ((flags ^ dev->gflags) & IFF_PROMISC) {
6242 int inc = (flags & IFF_PROMISC) ? 1 : -1;
6243 unsigned int old_flags = dev->flags;
6245 dev->gflags ^= IFF_PROMISC;
6247 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6248 if (dev->flags != old_flags)
6249 dev_set_rx_mode(dev);
6252 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6253 is important. Some (broken) drivers set IFF_PROMISC, when
6254 IFF_ALLMULTI is requested not asking us and not reporting.
6256 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6257 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6259 dev->gflags ^= IFF_ALLMULTI;
6260 __dev_set_allmulti(dev, inc, false);
6263 return ret;
6266 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6267 unsigned int gchanges)
6269 unsigned int changes = dev->flags ^ old_flags;
6271 if (gchanges)
6272 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6274 if (changes & IFF_UP) {
6275 if (dev->flags & IFF_UP)
6276 call_netdevice_notifiers(NETDEV_UP, dev);
6277 else
6278 call_netdevice_notifiers(NETDEV_DOWN, dev);
6281 if (dev->flags & IFF_UP &&
6282 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6283 struct netdev_notifier_change_info change_info;
6285 change_info.flags_changed = changes;
6286 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6287 &change_info.info);
6292 * dev_change_flags - change device settings
6293 * @dev: device
6294 * @flags: device state flags
6296 * Change settings on device based state flags. The flags are
6297 * in the userspace exported format.
6299 int dev_change_flags(struct net_device *dev, unsigned int flags)
6301 int ret;
6302 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6304 ret = __dev_change_flags(dev, flags);
6305 if (ret < 0)
6306 return ret;
6308 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6309 __dev_notify_flags(dev, old_flags, changes);
6310 return ret;
6312 EXPORT_SYMBOL(dev_change_flags);
6314 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6316 const struct net_device_ops *ops = dev->netdev_ops;
6318 if (ops->ndo_change_mtu)
6319 return ops->ndo_change_mtu(dev, new_mtu);
6321 dev->mtu = new_mtu;
6322 return 0;
6326 * dev_set_mtu - Change maximum transfer unit
6327 * @dev: device
6328 * @new_mtu: new transfer unit
6330 * Change the maximum transfer size of the network device.
6332 int dev_set_mtu(struct net_device *dev, int new_mtu)
6334 int err, orig_mtu;
6336 if (new_mtu == dev->mtu)
6337 return 0;
6339 /* MTU must be positive. */
6340 if (new_mtu < 0)
6341 return -EINVAL;
6343 if (!netif_device_present(dev))
6344 return -ENODEV;
6346 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6347 err = notifier_to_errno(err);
6348 if (err)
6349 return err;
6351 orig_mtu = dev->mtu;
6352 err = __dev_set_mtu(dev, new_mtu);
6354 if (!err) {
6355 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6356 err = notifier_to_errno(err);
6357 if (err) {
6358 /* setting mtu back and notifying everyone again,
6359 * so that they have a chance to revert changes.
6361 __dev_set_mtu(dev, orig_mtu);
6362 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6365 return err;
6367 EXPORT_SYMBOL(dev_set_mtu);
6370 * dev_set_group - Change group this device belongs to
6371 * @dev: device
6372 * @new_group: group this device should belong to
6374 void dev_set_group(struct net_device *dev, int new_group)
6376 dev->group = new_group;
6378 EXPORT_SYMBOL(dev_set_group);
6381 * dev_set_mac_address - Change Media Access Control Address
6382 * @dev: device
6383 * @sa: new address
6385 * Change the hardware (MAC) address of the device
6387 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6389 const struct net_device_ops *ops = dev->netdev_ops;
6390 int err;
6392 if (!ops->ndo_set_mac_address)
6393 return -EOPNOTSUPP;
6394 if (sa->sa_family != dev->type)
6395 return -EINVAL;
6396 if (!netif_device_present(dev))
6397 return -ENODEV;
6398 err = ops->ndo_set_mac_address(dev, sa);
6399 if (err)
6400 return err;
6401 dev->addr_assign_type = NET_ADDR_SET;
6402 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6403 add_device_randomness(dev->dev_addr, dev->addr_len);
6404 return 0;
6406 EXPORT_SYMBOL(dev_set_mac_address);
6409 * dev_change_carrier - Change device carrier
6410 * @dev: device
6411 * @new_carrier: new value
6413 * Change device carrier
6415 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6417 const struct net_device_ops *ops = dev->netdev_ops;
6419 if (!ops->ndo_change_carrier)
6420 return -EOPNOTSUPP;
6421 if (!netif_device_present(dev))
6422 return -ENODEV;
6423 return ops->ndo_change_carrier(dev, new_carrier);
6425 EXPORT_SYMBOL(dev_change_carrier);
6428 * dev_get_phys_port_id - Get device physical port ID
6429 * @dev: device
6430 * @ppid: port ID
6432 * Get device physical port ID
6434 int dev_get_phys_port_id(struct net_device *dev,
6435 struct netdev_phys_item_id *ppid)
6437 const struct net_device_ops *ops = dev->netdev_ops;
6439 if (!ops->ndo_get_phys_port_id)
6440 return -EOPNOTSUPP;
6441 return ops->ndo_get_phys_port_id(dev, ppid);
6443 EXPORT_SYMBOL(dev_get_phys_port_id);
6446 * dev_get_phys_port_name - Get device physical port name
6447 * @dev: device
6448 * @name: port name
6449 * @len: limit of bytes to copy to name
6451 * Get device physical port name
6453 int dev_get_phys_port_name(struct net_device *dev,
6454 char *name, size_t len)
6456 const struct net_device_ops *ops = dev->netdev_ops;
6458 if (!ops->ndo_get_phys_port_name)
6459 return -EOPNOTSUPP;
6460 return ops->ndo_get_phys_port_name(dev, name, len);
6462 EXPORT_SYMBOL(dev_get_phys_port_name);
6465 * dev_change_proto_down - update protocol port state information
6466 * @dev: device
6467 * @proto_down: new value
6469 * This info can be used by switch drivers to set the phys state of the
6470 * port.
6472 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6474 const struct net_device_ops *ops = dev->netdev_ops;
6476 if (!ops->ndo_change_proto_down)
6477 return -EOPNOTSUPP;
6478 if (!netif_device_present(dev))
6479 return -ENODEV;
6480 return ops->ndo_change_proto_down(dev, proto_down);
6482 EXPORT_SYMBOL(dev_change_proto_down);
6485 * dev_new_index - allocate an ifindex
6486 * @net: the applicable net namespace
6488 * Returns a suitable unique value for a new device interface
6489 * number. The caller must hold the rtnl semaphore or the
6490 * dev_base_lock to be sure it remains unique.
6492 static int dev_new_index(struct net *net)
6494 int ifindex = net->ifindex;
6495 for (;;) {
6496 if (++ifindex <= 0)
6497 ifindex = 1;
6498 if (!__dev_get_by_index(net, ifindex))
6499 return net->ifindex = ifindex;
6503 /* Delayed registration/unregisteration */
6504 static LIST_HEAD(net_todo_list);
6505 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6507 static void net_set_todo(struct net_device *dev)
6509 list_add_tail(&dev->todo_list, &net_todo_list);
6510 dev_net(dev)->dev_unreg_count++;
6513 static void rollback_registered_many(struct list_head *head)
6515 struct net_device *dev, *tmp;
6516 LIST_HEAD(close_head);
6518 BUG_ON(dev_boot_phase);
6519 ASSERT_RTNL();
6521 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6522 /* Some devices call without registering
6523 * for initialization unwind. Remove those
6524 * devices and proceed with the remaining.
6526 if (dev->reg_state == NETREG_UNINITIALIZED) {
6527 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6528 dev->name, dev);
6530 WARN_ON(1);
6531 list_del(&dev->unreg_list);
6532 continue;
6534 dev->dismantle = true;
6535 BUG_ON(dev->reg_state != NETREG_REGISTERED);
6538 /* If device is running, close it first. */
6539 list_for_each_entry(dev, head, unreg_list)
6540 list_add_tail(&dev->close_list, &close_head);
6541 dev_close_many(&close_head, true);
6543 list_for_each_entry(dev, head, unreg_list) {
6544 /* And unlink it from device chain. */
6545 unlist_netdevice(dev);
6547 dev->reg_state = NETREG_UNREGISTERING;
6548 on_each_cpu(flush_backlog, dev, 1);
6551 synchronize_net();
6553 list_for_each_entry(dev, head, unreg_list) {
6554 struct sk_buff *skb = NULL;
6556 /* Shutdown queueing discipline. */
6557 dev_shutdown(dev);
6560 /* Notify protocols, that we are about to destroy
6561 this device. They should clean all the things.
6563 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6565 if (!dev->rtnl_link_ops ||
6566 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6567 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6568 GFP_KERNEL);
6571 * Flush the unicast and multicast chains
6573 dev_uc_flush(dev);
6574 dev_mc_flush(dev);
6576 if (dev->netdev_ops->ndo_uninit)
6577 dev->netdev_ops->ndo_uninit(dev);
6579 if (skb)
6580 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6582 /* Notifier chain MUST detach us all upper devices. */
6583 WARN_ON(netdev_has_any_upper_dev(dev));
6585 /* Remove entries from kobject tree */
6586 netdev_unregister_kobject(dev);
6587 #ifdef CONFIG_XPS
6588 /* Remove XPS queueing entries */
6589 netif_reset_xps_queues_gt(dev, 0);
6590 #endif
6593 synchronize_net();
6595 list_for_each_entry(dev, head, unreg_list)
6596 dev_put(dev);
6599 static void rollback_registered(struct net_device *dev)
6601 LIST_HEAD(single);
6603 list_add(&dev->unreg_list, &single);
6604 rollback_registered_many(&single);
6605 list_del(&single);
6608 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6609 struct net_device *upper, netdev_features_t features)
6611 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6612 netdev_features_t feature;
6613 int feature_bit;
6615 for_each_netdev_feature(&upper_disables, feature_bit) {
6616 feature = __NETIF_F_BIT(feature_bit);
6617 if (!(upper->wanted_features & feature)
6618 && (features & feature)) {
6619 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6620 &feature, upper->name);
6621 features &= ~feature;
6625 return features;
6628 static void netdev_sync_lower_features(struct net_device *upper,
6629 struct net_device *lower, netdev_features_t features)
6631 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6632 netdev_features_t feature;
6633 int feature_bit;
6635 for_each_netdev_feature(&upper_disables, feature_bit) {
6636 feature = __NETIF_F_BIT(feature_bit);
6637 if (!(features & feature) && (lower->features & feature)) {
6638 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6639 &feature, lower->name);
6640 lower->wanted_features &= ~feature;
6641 netdev_update_features(lower);
6643 if (unlikely(lower->features & feature))
6644 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6645 &feature, lower->name);
6650 static netdev_features_t netdev_fix_features(struct net_device *dev,
6651 netdev_features_t features)
6653 /* Fix illegal checksum combinations */
6654 if ((features & NETIF_F_HW_CSUM) &&
6655 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6656 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6657 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6660 /* TSO requires that SG is present as well. */
6661 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6662 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6663 features &= ~NETIF_F_ALL_TSO;
6666 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6667 !(features & NETIF_F_IP_CSUM)) {
6668 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6669 features &= ~NETIF_F_TSO;
6670 features &= ~NETIF_F_TSO_ECN;
6673 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6674 !(features & NETIF_F_IPV6_CSUM)) {
6675 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6676 features &= ~NETIF_F_TSO6;
6679 /* TSO ECN requires that TSO is present as well. */
6680 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6681 features &= ~NETIF_F_TSO_ECN;
6683 /* Software GSO depends on SG. */
6684 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6685 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6686 features &= ~NETIF_F_GSO;
6689 /* UFO needs SG and checksumming */
6690 if (features & NETIF_F_UFO) {
6691 /* maybe split UFO into V4 and V6? */
6692 if (!(features & NETIF_F_HW_CSUM) &&
6693 ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
6694 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
6695 netdev_dbg(dev,
6696 "Dropping NETIF_F_UFO since no checksum offload features.\n");
6697 features &= ~NETIF_F_UFO;
6700 if (!(features & NETIF_F_SG)) {
6701 netdev_dbg(dev,
6702 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6703 features &= ~NETIF_F_UFO;
6707 #ifdef CONFIG_NET_RX_BUSY_POLL
6708 if (dev->netdev_ops->ndo_busy_poll)
6709 features |= NETIF_F_BUSY_POLL;
6710 else
6711 #endif
6712 features &= ~NETIF_F_BUSY_POLL;
6714 return features;
6717 int __netdev_update_features(struct net_device *dev)
6719 struct net_device *upper, *lower;
6720 netdev_features_t features;
6721 struct list_head *iter;
6722 int err = -1;
6724 ASSERT_RTNL();
6726 features = netdev_get_wanted_features(dev);
6728 if (dev->netdev_ops->ndo_fix_features)
6729 features = dev->netdev_ops->ndo_fix_features(dev, features);
6731 /* driver might be less strict about feature dependencies */
6732 features = netdev_fix_features(dev, features);
6734 /* some features can't be enabled if they're off an an upper device */
6735 netdev_for_each_upper_dev_rcu(dev, upper, iter)
6736 features = netdev_sync_upper_features(dev, upper, features);
6738 if (dev->features == features)
6739 goto sync_lower;
6741 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6742 &dev->features, &features);
6744 if (dev->netdev_ops->ndo_set_features)
6745 err = dev->netdev_ops->ndo_set_features(dev, features);
6746 else
6747 err = 0;
6749 if (unlikely(err < 0)) {
6750 netdev_err(dev,
6751 "set_features() failed (%d); wanted %pNF, left %pNF\n",
6752 err, &features, &dev->features);
6753 /* return non-0 since some features might have changed and
6754 * it's better to fire a spurious notification than miss it
6756 return -1;
6759 sync_lower:
6760 /* some features must be disabled on lower devices when disabled
6761 * on an upper device (think: bonding master or bridge)
6763 netdev_for_each_lower_dev(dev, lower, iter)
6764 netdev_sync_lower_features(dev, lower, features);
6766 if (!err)
6767 dev->features = features;
6769 return err < 0 ? 0 : 1;
6773 * netdev_update_features - recalculate device features
6774 * @dev: the device to check
6776 * Recalculate dev->features set and send notifications if it
6777 * has changed. Should be called after driver or hardware dependent
6778 * conditions might have changed that influence the features.
6780 void netdev_update_features(struct net_device *dev)
6782 if (__netdev_update_features(dev))
6783 netdev_features_change(dev);
6785 EXPORT_SYMBOL(netdev_update_features);
6788 * netdev_change_features - recalculate device features
6789 * @dev: the device to check
6791 * Recalculate dev->features set and send notifications even
6792 * if they have not changed. Should be called instead of
6793 * netdev_update_features() if also dev->vlan_features might
6794 * have changed to allow the changes to be propagated to stacked
6795 * VLAN devices.
6797 void netdev_change_features(struct net_device *dev)
6799 __netdev_update_features(dev);
6800 netdev_features_change(dev);
6802 EXPORT_SYMBOL(netdev_change_features);
6805 * netif_stacked_transfer_operstate - transfer operstate
6806 * @rootdev: the root or lower level device to transfer state from
6807 * @dev: the device to transfer operstate to
6809 * Transfer operational state from root to device. This is normally
6810 * called when a stacking relationship exists between the root
6811 * device and the device(a leaf device).
6813 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6814 struct net_device *dev)
6816 if (rootdev->operstate == IF_OPER_DORMANT)
6817 netif_dormant_on(dev);
6818 else
6819 netif_dormant_off(dev);
6821 if (netif_carrier_ok(rootdev)) {
6822 if (!netif_carrier_ok(dev))
6823 netif_carrier_on(dev);
6824 } else {
6825 if (netif_carrier_ok(dev))
6826 netif_carrier_off(dev);
6829 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6831 #ifdef CONFIG_SYSFS
6832 static int netif_alloc_rx_queues(struct net_device *dev)
6834 unsigned int i, count = dev->num_rx_queues;
6835 struct netdev_rx_queue *rx;
6836 size_t sz = count * sizeof(*rx);
6838 BUG_ON(count < 1);
6840 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6841 if (!rx) {
6842 rx = vzalloc(sz);
6843 if (!rx)
6844 return -ENOMEM;
6846 dev->_rx = rx;
6848 for (i = 0; i < count; i++)
6849 rx[i].dev = dev;
6850 return 0;
6852 #endif
6854 static void netdev_init_one_queue(struct net_device *dev,
6855 struct netdev_queue *queue, void *_unused)
6857 /* Initialize queue lock */
6858 spin_lock_init(&queue->_xmit_lock);
6859 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6860 queue->xmit_lock_owner = -1;
6861 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
6862 queue->dev = dev;
6863 #ifdef CONFIG_BQL
6864 dql_init(&queue->dql, HZ);
6865 #endif
6868 static void netif_free_tx_queues(struct net_device *dev)
6870 kvfree(dev->_tx);
6873 static int netif_alloc_netdev_queues(struct net_device *dev)
6875 unsigned int count = dev->num_tx_queues;
6876 struct netdev_queue *tx;
6877 size_t sz = count * sizeof(*tx);
6879 if (count < 1 || count > 0xffff)
6880 return -EINVAL;
6882 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6883 if (!tx) {
6884 tx = vzalloc(sz);
6885 if (!tx)
6886 return -ENOMEM;
6888 dev->_tx = tx;
6890 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6891 spin_lock_init(&dev->tx_global_lock);
6893 return 0;
6896 void netif_tx_stop_all_queues(struct net_device *dev)
6898 unsigned int i;
6900 for (i = 0; i < dev->num_tx_queues; i++) {
6901 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
6902 netif_tx_stop_queue(txq);
6905 EXPORT_SYMBOL(netif_tx_stop_all_queues);
6908 * register_netdevice - register a network device
6909 * @dev: device to register
6911 * Take a completed network device structure and add it to the kernel
6912 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6913 * chain. 0 is returned on success. A negative errno code is returned
6914 * on a failure to set up the device, or if the name is a duplicate.
6916 * Callers must hold the rtnl semaphore. You may want
6917 * register_netdev() instead of this.
6919 * BUGS:
6920 * The locking appears insufficient to guarantee two parallel registers
6921 * will not get the same name.
6924 int register_netdevice(struct net_device *dev)
6926 int ret;
6927 struct net *net = dev_net(dev);
6929 BUG_ON(dev_boot_phase);
6930 ASSERT_RTNL();
6932 might_sleep();
6934 /* When net_device's are persistent, this will be fatal. */
6935 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
6936 BUG_ON(!net);
6938 spin_lock_init(&dev->addr_list_lock);
6939 netdev_set_addr_lockdep_class(dev);
6941 ret = dev_get_valid_name(net, dev, dev->name);
6942 if (ret < 0)
6943 goto out;
6945 /* Init, if this function is available */
6946 if (dev->netdev_ops->ndo_init) {
6947 ret = dev->netdev_ops->ndo_init(dev);
6948 if (ret) {
6949 if (ret > 0)
6950 ret = -EIO;
6951 goto out;
6955 if (((dev->hw_features | dev->features) &
6956 NETIF_F_HW_VLAN_CTAG_FILTER) &&
6957 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6958 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6959 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6960 ret = -EINVAL;
6961 goto err_uninit;
6964 ret = -EBUSY;
6965 if (!dev->ifindex)
6966 dev->ifindex = dev_new_index(net);
6967 else if (__dev_get_by_index(net, dev->ifindex))
6968 goto err_uninit;
6970 /* Transfer changeable features to wanted_features and enable
6971 * software offloads (GSO and GRO).
6973 dev->hw_features |= NETIF_F_SOFT_FEATURES;
6974 dev->features |= NETIF_F_SOFT_FEATURES;
6975 dev->wanted_features = dev->features & dev->hw_features;
6977 if (!(dev->flags & IFF_LOOPBACK)) {
6978 dev->hw_features |= NETIF_F_NOCACHE_COPY;
6981 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6983 dev->vlan_features |= NETIF_F_HIGHDMA;
6985 /* Make NETIF_F_SG inheritable to tunnel devices.
6987 dev->hw_enc_features |= NETIF_F_SG;
6989 /* Make NETIF_F_SG inheritable to MPLS.
6991 dev->mpls_features |= NETIF_F_SG;
6993 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6994 ret = notifier_to_errno(ret);
6995 if (ret)
6996 goto err_uninit;
6998 ret = netdev_register_kobject(dev);
6999 if (ret)
7000 goto err_uninit;
7001 dev->reg_state = NETREG_REGISTERED;
7003 __netdev_update_features(dev);
7006 * Default initial state at registry is that the
7007 * device is present.
7010 set_bit(__LINK_STATE_PRESENT, &dev->state);
7012 linkwatch_init_dev(dev);
7014 dev_init_scheduler(dev);
7015 dev_hold(dev);
7016 list_netdevice(dev);
7017 add_device_randomness(dev->dev_addr, dev->addr_len);
7019 /* If the device has permanent device address, driver should
7020 * set dev_addr and also addr_assign_type should be set to
7021 * NET_ADDR_PERM (default value).
7023 if (dev->addr_assign_type == NET_ADDR_PERM)
7024 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7026 /* Notify protocols, that a new device appeared. */
7027 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7028 ret = notifier_to_errno(ret);
7029 if (ret) {
7030 rollback_registered(dev);
7031 dev->reg_state = NETREG_UNREGISTERED;
7034 * Prevent userspace races by waiting until the network
7035 * device is fully setup before sending notifications.
7037 if (!dev->rtnl_link_ops ||
7038 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7039 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7041 out:
7042 return ret;
7044 err_uninit:
7045 if (dev->netdev_ops->ndo_uninit)
7046 dev->netdev_ops->ndo_uninit(dev);
7047 goto out;
7049 EXPORT_SYMBOL(register_netdevice);
7052 * init_dummy_netdev - init a dummy network device for NAPI
7053 * @dev: device to init
7055 * This takes a network device structure and initialize the minimum
7056 * amount of fields so it can be used to schedule NAPI polls without
7057 * registering a full blown interface. This is to be used by drivers
7058 * that need to tie several hardware interfaces to a single NAPI
7059 * poll scheduler due to HW limitations.
7061 int init_dummy_netdev(struct net_device *dev)
7063 /* Clear everything. Note we don't initialize spinlocks
7064 * are they aren't supposed to be taken by any of the
7065 * NAPI code and this dummy netdev is supposed to be
7066 * only ever used for NAPI polls
7068 memset(dev, 0, sizeof(struct net_device));
7070 /* make sure we BUG if trying to hit standard
7071 * register/unregister code path
7073 dev->reg_state = NETREG_DUMMY;
7075 /* NAPI wants this */
7076 INIT_LIST_HEAD(&dev->napi_list);
7078 /* a dummy interface is started by default */
7079 set_bit(__LINK_STATE_PRESENT, &dev->state);
7080 set_bit(__LINK_STATE_START, &dev->state);
7082 /* Note : We dont allocate pcpu_refcnt for dummy devices,
7083 * because users of this 'device' dont need to change
7084 * its refcount.
7087 return 0;
7089 EXPORT_SYMBOL_GPL(init_dummy_netdev);
7093 * register_netdev - register a network device
7094 * @dev: device to register
7096 * Take a completed network device structure and add it to the kernel
7097 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7098 * chain. 0 is returned on success. A negative errno code is returned
7099 * on a failure to set up the device, or if the name is a duplicate.
7101 * This is a wrapper around register_netdevice that takes the rtnl semaphore
7102 * and expands the device name if you passed a format string to
7103 * alloc_netdev.
7105 int register_netdev(struct net_device *dev)
7107 int err;
7109 rtnl_lock();
7110 err = register_netdevice(dev);
7111 rtnl_unlock();
7112 return err;
7114 EXPORT_SYMBOL(register_netdev);
7116 int netdev_refcnt_read(const struct net_device *dev)
7118 int i, refcnt = 0;
7120 for_each_possible_cpu(i)
7121 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7122 return refcnt;
7124 EXPORT_SYMBOL(netdev_refcnt_read);
7127 * netdev_wait_allrefs - wait until all references are gone.
7128 * @dev: target net_device
7130 * This is called when unregistering network devices.
7132 * Any protocol or device that holds a reference should register
7133 * for netdevice notification, and cleanup and put back the
7134 * reference if they receive an UNREGISTER event.
7135 * We can get stuck here if buggy protocols don't correctly
7136 * call dev_put.
7138 static void netdev_wait_allrefs(struct net_device *dev)
7140 unsigned long rebroadcast_time, warning_time;
7141 int refcnt;
7143 linkwatch_forget_dev(dev);
7145 rebroadcast_time = warning_time = jiffies;
7146 refcnt = netdev_refcnt_read(dev);
7148 while (refcnt != 0) {
7149 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
7150 rtnl_lock();
7152 /* Rebroadcast unregister notification */
7153 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7155 __rtnl_unlock();
7156 rcu_barrier();
7157 rtnl_lock();
7159 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7160 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7161 &dev->state)) {
7162 /* We must not have linkwatch events
7163 * pending on unregister. If this
7164 * happens, we simply run the queue
7165 * unscheduled, resulting in a noop
7166 * for this device.
7168 linkwatch_run_queue();
7171 __rtnl_unlock();
7173 rebroadcast_time = jiffies;
7176 msleep(250);
7178 refcnt = netdev_refcnt_read(dev);
7180 if (time_after(jiffies, warning_time + 10 * HZ)) {
7181 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7182 dev->name, refcnt);
7183 warning_time = jiffies;
7188 /* The sequence is:
7190 * rtnl_lock();
7191 * ...
7192 * register_netdevice(x1);
7193 * register_netdevice(x2);
7194 * ...
7195 * unregister_netdevice(y1);
7196 * unregister_netdevice(y2);
7197 * ...
7198 * rtnl_unlock();
7199 * free_netdev(y1);
7200 * free_netdev(y2);
7202 * We are invoked by rtnl_unlock().
7203 * This allows us to deal with problems:
7204 * 1) We can delete sysfs objects which invoke hotplug
7205 * without deadlocking with linkwatch via keventd.
7206 * 2) Since we run with the RTNL semaphore not held, we can sleep
7207 * safely in order to wait for the netdev refcnt to drop to zero.
7209 * We must not return until all unregister events added during
7210 * the interval the lock was held have been completed.
7212 void netdev_run_todo(void)
7214 struct list_head list;
7216 /* Snapshot list, allow later requests */
7217 list_replace_init(&net_todo_list, &list);
7219 __rtnl_unlock();
7222 /* Wait for rcu callbacks to finish before next phase */
7223 if (!list_empty(&list))
7224 rcu_barrier();
7226 while (!list_empty(&list)) {
7227 struct net_device *dev
7228 = list_first_entry(&list, struct net_device, todo_list);
7229 list_del(&dev->todo_list);
7231 rtnl_lock();
7232 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7233 __rtnl_unlock();
7235 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7236 pr_err("network todo '%s' but state %d\n",
7237 dev->name, dev->reg_state);
7238 dump_stack();
7239 continue;
7242 dev->reg_state = NETREG_UNREGISTERED;
7244 netdev_wait_allrefs(dev);
7246 /* paranoia */
7247 BUG_ON(netdev_refcnt_read(dev));
7248 BUG_ON(!list_empty(&dev->ptype_all));
7249 BUG_ON(!list_empty(&dev->ptype_specific));
7250 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7251 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7252 WARN_ON(dev->dn_ptr);
7254 if (dev->destructor)
7255 dev->destructor(dev);
7257 /* Report a network device has been unregistered */
7258 rtnl_lock();
7259 dev_net(dev)->dev_unreg_count--;
7260 __rtnl_unlock();
7261 wake_up(&netdev_unregistering_wq);
7263 /* Free network device */
7264 kobject_put(&dev->dev.kobj);
7268 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7269 * all the same fields in the same order as net_device_stats, with only
7270 * the type differing, but rtnl_link_stats64 may have additional fields
7271 * at the end for newer counters.
7273 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7274 const struct net_device_stats *netdev_stats)
7276 #if BITS_PER_LONG == 64
7277 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
7278 memcpy(stats64, netdev_stats, sizeof(*stats64));
7279 /* zero out counters that only exist in rtnl_link_stats64 */
7280 memset((char *)stats64 + sizeof(*netdev_stats), 0,
7281 sizeof(*stats64) - sizeof(*netdev_stats));
7282 #else
7283 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
7284 const unsigned long *src = (const unsigned long *)netdev_stats;
7285 u64 *dst = (u64 *)stats64;
7287 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
7288 for (i = 0; i < n; i++)
7289 dst[i] = src[i];
7290 /* zero out counters that only exist in rtnl_link_stats64 */
7291 memset((char *)stats64 + n * sizeof(u64), 0,
7292 sizeof(*stats64) - n * sizeof(u64));
7293 #endif
7295 EXPORT_SYMBOL(netdev_stats_to_stats64);
7298 * dev_get_stats - get network device statistics
7299 * @dev: device to get statistics from
7300 * @storage: place to store stats
7302 * Get network statistics from device. Return @storage.
7303 * The device driver may provide its own method by setting
7304 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7305 * otherwise the internal statistics structure is used.
7307 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7308 struct rtnl_link_stats64 *storage)
7310 const struct net_device_ops *ops = dev->netdev_ops;
7312 if (ops->ndo_get_stats64) {
7313 memset(storage, 0, sizeof(*storage));
7314 ops->ndo_get_stats64(dev, storage);
7315 } else if (ops->ndo_get_stats) {
7316 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
7317 } else {
7318 netdev_stats_to_stats64(storage, &dev->stats);
7320 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
7321 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
7322 storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler);
7323 return storage;
7325 EXPORT_SYMBOL(dev_get_stats);
7327 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
7329 struct netdev_queue *queue = dev_ingress_queue(dev);
7331 #ifdef CONFIG_NET_CLS_ACT
7332 if (queue)
7333 return queue;
7334 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7335 if (!queue)
7336 return NULL;
7337 netdev_init_one_queue(dev, queue, NULL);
7338 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7339 queue->qdisc_sleeping = &noop_qdisc;
7340 rcu_assign_pointer(dev->ingress_queue, queue);
7341 #endif
7342 return queue;
7345 static const struct ethtool_ops default_ethtool_ops;
7347 void netdev_set_default_ethtool_ops(struct net_device *dev,
7348 const struct ethtool_ops *ops)
7350 if (dev->ethtool_ops == &default_ethtool_ops)
7351 dev->ethtool_ops = ops;
7353 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7355 void netdev_freemem(struct net_device *dev)
7357 char *addr = (char *)dev - dev->padded;
7359 kvfree(addr);
7363 * alloc_netdev_mqs - allocate network device
7364 * @sizeof_priv: size of private data to allocate space for
7365 * @name: device name format string
7366 * @name_assign_type: origin of device name
7367 * @setup: callback to initialize device
7368 * @txqs: the number of TX subqueues to allocate
7369 * @rxqs: the number of RX subqueues to allocate
7371 * Allocates a struct net_device with private data area for driver use
7372 * and performs basic initialization. Also allocates subqueue structs
7373 * for each queue on the device.
7375 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7376 unsigned char name_assign_type,
7377 void (*setup)(struct net_device *),
7378 unsigned int txqs, unsigned int rxqs)
7380 struct net_device *dev;
7381 size_t alloc_size;
7382 struct net_device *p;
7384 BUG_ON(strlen(name) >= sizeof(dev->name));
7386 if (txqs < 1) {
7387 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
7388 return NULL;
7391 #ifdef CONFIG_SYSFS
7392 if (rxqs < 1) {
7393 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
7394 return NULL;
7396 #endif
7398 alloc_size = sizeof(struct net_device);
7399 if (sizeof_priv) {
7400 /* ensure 32-byte alignment of private area */
7401 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
7402 alloc_size += sizeof_priv;
7404 /* ensure 32-byte alignment of whole construct */
7405 alloc_size += NETDEV_ALIGN - 1;
7407 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7408 if (!p)
7409 p = vzalloc(alloc_size);
7410 if (!p)
7411 return NULL;
7413 dev = PTR_ALIGN(p, NETDEV_ALIGN);
7414 dev->padded = (char *)dev - (char *)p;
7416 dev->pcpu_refcnt = alloc_percpu(int);
7417 if (!dev->pcpu_refcnt)
7418 goto free_dev;
7420 if (dev_addr_init(dev))
7421 goto free_pcpu;
7423 dev_mc_init(dev);
7424 dev_uc_init(dev);
7426 dev_net_set(dev, &init_net);
7428 dev->gso_max_size = GSO_MAX_SIZE;
7429 dev->gso_max_segs = GSO_MAX_SEGS;
7430 dev->gso_min_segs = 0;
7432 INIT_LIST_HEAD(&dev->napi_list);
7433 INIT_LIST_HEAD(&dev->unreg_list);
7434 INIT_LIST_HEAD(&dev->close_list);
7435 INIT_LIST_HEAD(&dev->link_watch_list);
7436 INIT_LIST_HEAD(&dev->adj_list.upper);
7437 INIT_LIST_HEAD(&dev->adj_list.lower);
7438 INIT_LIST_HEAD(&dev->all_adj_list.upper);
7439 INIT_LIST_HEAD(&dev->all_adj_list.lower);
7440 INIT_LIST_HEAD(&dev->ptype_all);
7441 INIT_LIST_HEAD(&dev->ptype_specific);
7442 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
7443 setup(dev);
7445 if (!dev->tx_queue_len) {
7446 dev->priv_flags |= IFF_NO_QUEUE;
7447 dev->tx_queue_len = 1;
7450 dev->num_tx_queues = txqs;
7451 dev->real_num_tx_queues = txqs;
7452 if (netif_alloc_netdev_queues(dev))
7453 goto free_all;
7455 #ifdef CONFIG_SYSFS
7456 dev->num_rx_queues = rxqs;
7457 dev->real_num_rx_queues = rxqs;
7458 if (netif_alloc_rx_queues(dev))
7459 goto free_all;
7460 #endif
7462 strcpy(dev->name, name);
7463 dev->name_assign_type = name_assign_type;
7464 dev->group = INIT_NETDEV_GROUP;
7465 if (!dev->ethtool_ops)
7466 dev->ethtool_ops = &default_ethtool_ops;
7468 nf_hook_ingress_init(dev);
7470 return dev;
7472 free_all:
7473 free_netdev(dev);
7474 return NULL;
7476 free_pcpu:
7477 free_percpu(dev->pcpu_refcnt);
7478 free_dev:
7479 netdev_freemem(dev);
7480 return NULL;
7482 EXPORT_SYMBOL(alloc_netdev_mqs);
7485 * free_netdev - free network device
7486 * @dev: device
7488 * This function does the last stage of destroying an allocated device
7489 * interface. The reference to the device object is released.
7490 * If this is the last reference then it will be freed.
7491 * Must be called in process context.
7493 void free_netdev(struct net_device *dev)
7495 struct napi_struct *p, *n;
7497 might_sleep();
7498 netif_free_tx_queues(dev);
7499 #ifdef CONFIG_SYSFS
7500 kvfree(dev->_rx);
7501 #endif
7503 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7505 /* Flush device addresses */
7506 dev_addr_flush(dev);
7508 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7509 netif_napi_del(p);
7511 free_percpu(dev->pcpu_refcnt);
7512 dev->pcpu_refcnt = NULL;
7514 /* Compatibility with error handling in drivers */
7515 if (dev->reg_state == NETREG_UNINITIALIZED) {
7516 netdev_freemem(dev);
7517 return;
7520 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7521 dev->reg_state = NETREG_RELEASED;
7523 /* will free via device release */
7524 put_device(&dev->dev);
7526 EXPORT_SYMBOL(free_netdev);
7529 * synchronize_net - Synchronize with packet receive processing
7531 * Wait for packets currently being received to be done.
7532 * Does not block later packets from starting.
7534 void synchronize_net(void)
7536 might_sleep();
7537 if (rtnl_is_locked())
7538 synchronize_rcu_expedited();
7539 else
7540 synchronize_rcu();
7542 EXPORT_SYMBOL(synchronize_net);
7545 * unregister_netdevice_queue - remove device from the kernel
7546 * @dev: device
7547 * @head: list
7549 * This function shuts down a device interface and removes it
7550 * from the kernel tables.
7551 * If head not NULL, device is queued to be unregistered later.
7553 * Callers must hold the rtnl semaphore. You may want
7554 * unregister_netdev() instead of this.
7557 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
7559 ASSERT_RTNL();
7561 if (head) {
7562 list_move_tail(&dev->unreg_list, head);
7563 } else {
7564 rollback_registered(dev);
7565 /* Finish processing unregister after unlock */
7566 net_set_todo(dev);
7569 EXPORT_SYMBOL(unregister_netdevice_queue);
7572 * unregister_netdevice_many - unregister many devices
7573 * @head: list of devices
7575 * Note: As most callers use a stack allocated list_head,
7576 * we force a list_del() to make sure stack wont be corrupted later.
7578 void unregister_netdevice_many(struct list_head *head)
7580 struct net_device *dev;
7582 if (!list_empty(head)) {
7583 rollback_registered_many(head);
7584 list_for_each_entry(dev, head, unreg_list)
7585 net_set_todo(dev);
7586 list_del(head);
7589 EXPORT_SYMBOL(unregister_netdevice_many);
7592 * unregister_netdev - remove device from the kernel
7593 * @dev: device
7595 * This function shuts down a device interface and removes it
7596 * from the kernel tables.
7598 * This is just a wrapper for unregister_netdevice that takes
7599 * the rtnl semaphore. In general you want to use this and not
7600 * unregister_netdevice.
7602 void unregister_netdev(struct net_device *dev)
7604 rtnl_lock();
7605 unregister_netdevice(dev);
7606 rtnl_unlock();
7608 EXPORT_SYMBOL(unregister_netdev);
7611 * dev_change_net_namespace - move device to different nethost namespace
7612 * @dev: device
7613 * @net: network namespace
7614 * @pat: If not NULL name pattern to try if the current device name
7615 * is already taken in the destination network namespace.
7617 * This function shuts down a device interface and moves it
7618 * to a new network namespace. On success 0 is returned, on
7619 * a failure a netagive errno code is returned.
7621 * Callers must hold the rtnl semaphore.
7624 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7626 int err;
7628 ASSERT_RTNL();
7630 /* Don't allow namespace local devices to be moved. */
7631 err = -EINVAL;
7632 if (dev->features & NETIF_F_NETNS_LOCAL)
7633 goto out;
7635 /* Ensure the device has been registrered */
7636 if (dev->reg_state != NETREG_REGISTERED)
7637 goto out;
7639 /* Get out if there is nothing todo */
7640 err = 0;
7641 if (net_eq(dev_net(dev), net))
7642 goto out;
7644 /* Pick the destination device name, and ensure
7645 * we can use it in the destination network namespace.
7647 err = -EEXIST;
7648 if (__dev_get_by_name(net, dev->name)) {
7649 /* We get here if we can't use the current device name */
7650 if (!pat)
7651 goto out;
7652 if (dev_get_valid_name(net, dev, pat) < 0)
7653 goto out;
7657 * And now a mini version of register_netdevice unregister_netdevice.
7660 /* If device is running close it first. */
7661 dev_close(dev);
7663 /* And unlink it from device chain */
7664 err = -ENODEV;
7665 unlist_netdevice(dev);
7667 synchronize_net();
7669 /* Shutdown queueing discipline. */
7670 dev_shutdown(dev);
7672 /* Notify protocols, that we are about to destroy
7673 this device. They should clean all the things.
7675 Note that dev->reg_state stays at NETREG_REGISTERED.
7676 This is wanted because this way 8021q and macvlan know
7677 the device is just moving and can keep their slaves up.
7679 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7680 rcu_barrier();
7681 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7682 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7685 * Flush the unicast and multicast chains
7687 dev_uc_flush(dev);
7688 dev_mc_flush(dev);
7690 /* Send a netdev-removed uevent to the old namespace */
7691 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7692 netdev_adjacent_del_links(dev);
7694 /* Actually switch the network namespace */
7695 dev_net_set(dev, net);
7697 /* If there is an ifindex conflict assign a new one */
7698 if (__dev_get_by_index(net, dev->ifindex))
7699 dev->ifindex = dev_new_index(net);
7701 /* Send a netdev-add uevent to the new namespace */
7702 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7703 netdev_adjacent_add_links(dev);
7705 /* Fixup kobjects */
7706 err = device_rename(&dev->dev, dev->name);
7707 WARN_ON(err);
7709 /* Add the device back in the hashes */
7710 list_netdevice(dev);
7712 /* Notify protocols, that a new device appeared. */
7713 call_netdevice_notifiers(NETDEV_REGISTER, dev);
7716 * Prevent userspace races by waiting until the network
7717 * device is fully setup before sending notifications.
7719 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7721 synchronize_net();
7722 err = 0;
7723 out:
7724 return err;
7726 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7728 static int dev_cpu_callback(struct notifier_block *nfb,
7729 unsigned long action,
7730 void *ocpu)
7732 struct sk_buff **list_skb;
7733 struct sk_buff *skb;
7734 unsigned int cpu, oldcpu = (unsigned long)ocpu;
7735 struct softnet_data *sd, *oldsd;
7737 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
7738 return NOTIFY_OK;
7740 local_irq_disable();
7741 cpu = smp_processor_id();
7742 sd = &per_cpu(softnet_data, cpu);
7743 oldsd = &per_cpu(softnet_data, oldcpu);
7745 /* Find end of our completion_queue. */
7746 list_skb = &sd->completion_queue;
7747 while (*list_skb)
7748 list_skb = &(*list_skb)->next;
7749 /* Append completion queue from offline CPU. */
7750 *list_skb = oldsd->completion_queue;
7751 oldsd->completion_queue = NULL;
7753 /* Append output queue from offline CPU. */
7754 if (oldsd->output_queue) {
7755 *sd->output_queue_tailp = oldsd->output_queue;
7756 sd->output_queue_tailp = oldsd->output_queue_tailp;
7757 oldsd->output_queue = NULL;
7758 oldsd->output_queue_tailp = &oldsd->output_queue;
7760 /* Append NAPI poll list from offline CPU, with one exception :
7761 * process_backlog() must be called by cpu owning percpu backlog.
7762 * We properly handle process_queue & input_pkt_queue later.
7764 while (!list_empty(&oldsd->poll_list)) {
7765 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7766 struct napi_struct,
7767 poll_list);
7769 list_del_init(&napi->poll_list);
7770 if (napi->poll == process_backlog)
7771 napi->state = 0;
7772 else
7773 ____napi_schedule(sd, napi);
7776 raise_softirq_irqoff(NET_TX_SOFTIRQ);
7777 local_irq_enable();
7779 /* Process offline CPU's input_pkt_queue */
7780 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
7781 netif_rx_ni(skb);
7782 input_queue_head_incr(oldsd);
7784 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
7785 netif_rx_ni(skb);
7786 input_queue_head_incr(oldsd);
7789 return NOTIFY_OK;
7794 * netdev_increment_features - increment feature set by one
7795 * @all: current feature set
7796 * @one: new feature set
7797 * @mask: mask feature set
7799 * Computes a new feature set after adding a device with feature set
7800 * @one to the master device with current feature set @all. Will not
7801 * enable anything that is off in @mask. Returns the new feature set.
7803 netdev_features_t netdev_increment_features(netdev_features_t all,
7804 netdev_features_t one, netdev_features_t mask)
7806 if (mask & NETIF_F_HW_CSUM)
7807 mask |= NETIF_F_CSUM_MASK;
7808 mask |= NETIF_F_VLAN_CHALLENGED;
7810 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
7811 all &= one | ~NETIF_F_ALL_FOR_ALL;
7813 /* If one device supports hw checksumming, set for all. */
7814 if (all & NETIF_F_HW_CSUM)
7815 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
7817 return all;
7819 EXPORT_SYMBOL(netdev_increment_features);
7821 static struct hlist_head * __net_init netdev_create_hash(void)
7823 int i;
7824 struct hlist_head *hash;
7826 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7827 if (hash != NULL)
7828 for (i = 0; i < NETDEV_HASHENTRIES; i++)
7829 INIT_HLIST_HEAD(&hash[i]);
7831 return hash;
7834 /* Initialize per network namespace state */
7835 static int __net_init netdev_init(struct net *net)
7837 if (net != &init_net)
7838 INIT_LIST_HEAD(&net->dev_base_head);
7840 net->dev_name_head = netdev_create_hash();
7841 if (net->dev_name_head == NULL)
7842 goto err_name;
7844 net->dev_index_head = netdev_create_hash();
7845 if (net->dev_index_head == NULL)
7846 goto err_idx;
7848 return 0;
7850 err_idx:
7851 kfree(net->dev_name_head);
7852 err_name:
7853 return -ENOMEM;
7857 * netdev_drivername - network driver for the device
7858 * @dev: network device
7860 * Determine network driver for device.
7862 const char *netdev_drivername(const struct net_device *dev)
7864 const struct device_driver *driver;
7865 const struct device *parent;
7866 const char *empty = "";
7868 parent = dev->dev.parent;
7869 if (!parent)
7870 return empty;
7872 driver = parent->driver;
7873 if (driver && driver->name)
7874 return driver->name;
7875 return empty;
7878 static void __netdev_printk(const char *level, const struct net_device *dev,
7879 struct va_format *vaf)
7881 if (dev && dev->dev.parent) {
7882 dev_printk_emit(level[1] - '0',
7883 dev->dev.parent,
7884 "%s %s %s%s: %pV",
7885 dev_driver_string(dev->dev.parent),
7886 dev_name(dev->dev.parent),
7887 netdev_name(dev), netdev_reg_state(dev),
7888 vaf);
7889 } else if (dev) {
7890 printk("%s%s%s: %pV",
7891 level, netdev_name(dev), netdev_reg_state(dev), vaf);
7892 } else {
7893 printk("%s(NULL net_device): %pV", level, vaf);
7897 void netdev_printk(const char *level, const struct net_device *dev,
7898 const char *format, ...)
7900 struct va_format vaf;
7901 va_list args;
7903 va_start(args, format);
7905 vaf.fmt = format;
7906 vaf.va = &args;
7908 __netdev_printk(level, dev, &vaf);
7910 va_end(args);
7912 EXPORT_SYMBOL(netdev_printk);
7914 #define define_netdev_printk_level(func, level) \
7915 void func(const struct net_device *dev, const char *fmt, ...) \
7917 struct va_format vaf; \
7918 va_list args; \
7920 va_start(args, fmt); \
7922 vaf.fmt = fmt; \
7923 vaf.va = &args; \
7925 __netdev_printk(level, dev, &vaf); \
7927 va_end(args); \
7929 EXPORT_SYMBOL(func);
7931 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7932 define_netdev_printk_level(netdev_alert, KERN_ALERT);
7933 define_netdev_printk_level(netdev_crit, KERN_CRIT);
7934 define_netdev_printk_level(netdev_err, KERN_ERR);
7935 define_netdev_printk_level(netdev_warn, KERN_WARNING);
7936 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7937 define_netdev_printk_level(netdev_info, KERN_INFO);
7939 static void __net_exit netdev_exit(struct net *net)
7941 kfree(net->dev_name_head);
7942 kfree(net->dev_index_head);
7945 static struct pernet_operations __net_initdata netdev_net_ops = {
7946 .init = netdev_init,
7947 .exit = netdev_exit,
7950 static void __net_exit default_device_exit(struct net *net)
7952 struct net_device *dev, *aux;
7954 * Push all migratable network devices back to the
7955 * initial network namespace
7957 rtnl_lock();
7958 for_each_netdev_safe(net, dev, aux) {
7959 int err;
7960 char fb_name[IFNAMSIZ];
7962 /* Ignore unmoveable devices (i.e. loopback) */
7963 if (dev->features & NETIF_F_NETNS_LOCAL)
7964 continue;
7966 /* Leave virtual devices for the generic cleanup */
7967 if (dev->rtnl_link_ops)
7968 continue;
7970 /* Push remaining network devices to init_net */
7971 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7972 err = dev_change_net_namespace(dev, &init_net, fb_name);
7973 if (err) {
7974 pr_emerg("%s: failed to move %s to init_net: %d\n",
7975 __func__, dev->name, err);
7976 BUG();
7979 rtnl_unlock();
7982 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7984 /* Return with the rtnl_lock held when there are no network
7985 * devices unregistering in any network namespace in net_list.
7987 struct net *net;
7988 bool unregistering;
7989 DEFINE_WAIT_FUNC(wait, woken_wake_function);
7991 add_wait_queue(&netdev_unregistering_wq, &wait);
7992 for (;;) {
7993 unregistering = false;
7994 rtnl_lock();
7995 list_for_each_entry(net, net_list, exit_list) {
7996 if (net->dev_unreg_count > 0) {
7997 unregistering = true;
7998 break;
8001 if (!unregistering)
8002 break;
8003 __rtnl_unlock();
8005 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8007 remove_wait_queue(&netdev_unregistering_wq, &wait);
8010 static void __net_exit default_device_exit_batch(struct list_head *net_list)
8012 /* At exit all network devices most be removed from a network
8013 * namespace. Do this in the reverse order of registration.
8014 * Do this across as many network namespaces as possible to
8015 * improve batching efficiency.
8017 struct net_device *dev;
8018 struct net *net;
8019 LIST_HEAD(dev_kill_list);
8021 /* To prevent network device cleanup code from dereferencing
8022 * loopback devices or network devices that have been freed
8023 * wait here for all pending unregistrations to complete,
8024 * before unregistring the loopback device and allowing the
8025 * network namespace be freed.
8027 * The netdev todo list containing all network devices
8028 * unregistrations that happen in default_device_exit_batch
8029 * will run in the rtnl_unlock() at the end of
8030 * default_device_exit_batch.
8032 rtnl_lock_unregistering(net_list);
8033 list_for_each_entry(net, net_list, exit_list) {
8034 for_each_netdev_reverse(net, dev) {
8035 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8036 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8037 else
8038 unregister_netdevice_queue(dev, &dev_kill_list);
8041 unregister_netdevice_many(&dev_kill_list);
8042 rtnl_unlock();
8045 static struct pernet_operations __net_initdata default_device_ops = {
8046 .exit = default_device_exit,
8047 .exit_batch = default_device_exit_batch,
8051 * Initialize the DEV module. At boot time this walks the device list and
8052 * unhooks any devices that fail to initialise (normally hardware not
8053 * present) and leaves us with a valid list of present and active devices.
8058 * This is called single threaded during boot, so no need
8059 * to take the rtnl semaphore.
8061 static int __init net_dev_init(void)
8063 int i, rc = -ENOMEM;
8065 BUG_ON(!dev_boot_phase);
8067 if (dev_proc_init())
8068 goto out;
8070 if (netdev_kobject_init())
8071 goto out;
8073 INIT_LIST_HEAD(&ptype_all);
8074 for (i = 0; i < PTYPE_HASH_SIZE; i++)
8075 INIT_LIST_HEAD(&ptype_base[i]);
8077 INIT_LIST_HEAD(&offload_base);
8079 if (register_pernet_subsys(&netdev_net_ops))
8080 goto out;
8083 * Initialise the packet receive queues.
8086 for_each_possible_cpu(i) {
8087 struct softnet_data *sd = &per_cpu(softnet_data, i);
8089 skb_queue_head_init(&sd->input_pkt_queue);
8090 skb_queue_head_init(&sd->process_queue);
8091 INIT_LIST_HEAD(&sd->poll_list);
8092 sd->output_queue_tailp = &sd->output_queue;
8093 #ifdef CONFIG_RPS
8094 sd->csd.func = rps_trigger_softirq;
8095 sd->csd.info = sd;
8096 sd->cpu = i;
8097 #endif
8099 sd->backlog.poll = process_backlog;
8100 sd->backlog.weight = weight_p;
8103 dev_boot_phase = 0;
8105 /* The loopback device is special if any other network devices
8106 * is present in a network namespace the loopback device must
8107 * be present. Since we now dynamically allocate and free the
8108 * loopback device ensure this invariant is maintained by
8109 * keeping the loopback device as the first device on the
8110 * list of network devices. Ensuring the loopback devices
8111 * is the first device that appears and the last network device
8112 * that disappears.
8114 if (register_pernet_device(&loopback_net_ops))
8115 goto out;
8117 if (register_pernet_device(&default_device_ops))
8118 goto out;
8120 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8121 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
8123 hotcpu_notifier(dev_cpu_callback, 0);
8124 dst_subsys_init();
8125 rc = 0;
8126 out:
8127 return rc;
8130 subsys_initcall(net_dev_init);