2 * Routines having to do with the 'struct sk_buff' memory handlers.
4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
8 * Alan Cox : Fixed the worst of the load
10 * Dave Platt : Interrupt stacking fix.
11 * Richard Kooijman : Timestamp fixes.
12 * Alan Cox : Changed buffer format.
13 * Alan Cox : destructor hook for AF_UNIX etc.
14 * Linus Torvalds : Better skb_clone.
15 * Alan Cox : Added skb_copy.
16 * Alan Cox : Added all the changed routines Linus
17 * only put in the headers
18 * Ray VanTassle : Fixed --skb->lock in free
19 * Alan Cox : skb_copy copy arp field
20 * Andi Kleen : slabified it.
21 * Robert Olsson : Removed skb_head_pool
24 * The __skb_ routines should be called with interrupts
25 * disabled, or you better be *real* sure that the operation is atomic
26 * with respect to whatever list is being frobbed (e.g. via lock_sock()
27 * or via disabling bottom half handlers, etc).
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
36 * The functions in this file will not compile correctly with gcc 2.4.x
39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/kmemcheck.h>
46 #include <linux/interrupt.h>
48 #include <linux/inet.h>
49 #include <linux/slab.h>
50 #include <linux/tcp.h>
51 #include <linux/udp.h>
52 #include <linux/netdevice.h>
53 #ifdef CONFIG_NET_CLS_ACT
54 #include <net/pkt_sched.h>
56 #include <linux/string.h>
57 #include <linux/skbuff.h>
58 #include <linux/splice.h>
59 #include <linux/cache.h>
60 #include <linux/rtnetlink.h>
61 #include <linux/init.h>
62 #include <linux/scatterlist.h>
63 #include <linux/errqueue.h>
64 #include <linux/prefetch.h>
65 #include <linux/if_vlan.h>
67 #include <net/protocol.h>
70 #include <net/checksum.h>
71 #include <net/ip6_checksum.h>
74 #include <asm/uaccess.h>
75 #include <trace/events/skb.h>
76 #include <linux/highmem.h>
77 #include <linux/capability.h>
78 #include <linux/user_namespace.h>
80 struct kmem_cache
*skbuff_head_cache __read_mostly
;
81 static struct kmem_cache
*skbuff_fclone_cache __read_mostly
;
82 int sysctl_max_skb_frags __read_mostly
= MAX_SKB_FRAGS
;
83 EXPORT_SYMBOL(sysctl_max_skb_frags
);
86 * skb_panic - private function for out-of-line support
90 * @msg: skb_over_panic or skb_under_panic
92 * Out-of-line support for skb_put() and skb_push().
93 * Called via the wrapper skb_over_panic() or skb_under_panic().
94 * Keep out of line to prevent kernel bloat.
95 * __builtin_return_address is not used because it is not always reliable.
97 static void skb_panic(struct sk_buff
*skb
, unsigned int sz
, void *addr
,
100 pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
101 msg
, addr
, skb
->len
, sz
, skb
->head
, skb
->data
,
102 (unsigned long)skb
->tail
, (unsigned long)skb
->end
,
103 skb
->dev
? skb
->dev
->name
: "<NULL>");
107 static void skb_over_panic(struct sk_buff
*skb
, unsigned int sz
, void *addr
)
109 skb_panic(skb
, sz
, addr
, __func__
);
112 static void skb_under_panic(struct sk_buff
*skb
, unsigned int sz
, void *addr
)
114 skb_panic(skb
, sz
, addr
, __func__
);
118 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
119 * the caller if emergency pfmemalloc reserves are being used. If it is and
120 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
121 * may be used. Otherwise, the packet data may be discarded until enough
124 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
125 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
127 static void *__kmalloc_reserve(size_t size
, gfp_t flags
, int node
,
128 unsigned long ip
, bool *pfmemalloc
)
131 bool ret_pfmemalloc
= false;
134 * Try a regular allocation, when that fails and we're not entitled
135 * to the reserves, fail.
137 obj
= kmalloc_node_track_caller(size
,
138 flags
| __GFP_NOMEMALLOC
| __GFP_NOWARN
,
140 if (obj
|| !(gfp_pfmemalloc_allowed(flags
)))
143 /* Try again but now we are using pfmemalloc reserves */
144 ret_pfmemalloc
= true;
145 obj
= kmalloc_node_track_caller(size
, flags
, node
);
149 *pfmemalloc
= ret_pfmemalloc
;
154 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
155 * 'private' fields and also do memory statistics to find all the
160 struct sk_buff
*__alloc_skb_head(gfp_t gfp_mask
, int node
)
165 skb
= kmem_cache_alloc_node(skbuff_head_cache
,
166 gfp_mask
& ~__GFP_DMA
, node
);
171 * Only clear those fields we need to clear, not those that we will
172 * actually initialise below. Hence, don't put any more fields after
173 * the tail pointer in struct sk_buff!
175 memset(skb
, 0, offsetof(struct sk_buff
, tail
));
177 skb
->truesize
= sizeof(struct sk_buff
);
178 atomic_set(&skb
->users
, 1);
180 skb
->mac_header
= (typeof(skb
->mac_header
))~0U;
186 * __alloc_skb - allocate a network buffer
187 * @size: size to allocate
188 * @gfp_mask: allocation mask
189 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
190 * instead of head cache and allocate a cloned (child) skb.
191 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
192 * allocations in case the data is required for writeback
193 * @node: numa node to allocate memory on
195 * Allocate a new &sk_buff. The returned buffer has no headroom and a
196 * tail room of at least size bytes. The object has a reference count
197 * of one. The return is the buffer. On a failure the return is %NULL.
199 * Buffers may only be allocated from interrupts using a @gfp_mask of
202 struct sk_buff
*__alloc_skb(unsigned int size
, gfp_t gfp_mask
,
205 struct kmem_cache
*cache
;
206 struct skb_shared_info
*shinfo
;
211 cache
= (flags
& SKB_ALLOC_FCLONE
)
212 ? skbuff_fclone_cache
: skbuff_head_cache
;
214 if (sk_memalloc_socks() && (flags
& SKB_ALLOC_RX
))
215 gfp_mask
|= __GFP_MEMALLOC
;
218 skb
= kmem_cache_alloc_node(cache
, gfp_mask
& ~__GFP_DMA
, node
);
223 /* We do our best to align skb_shared_info on a separate cache
224 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
225 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
226 * Both skb->head and skb_shared_info are cache line aligned.
228 size
= SKB_DATA_ALIGN(size
);
229 size
+= SKB_DATA_ALIGN(sizeof(struct skb_shared_info
));
230 data
= kmalloc_reserve(size
, gfp_mask
, node
, &pfmemalloc
);
233 /* kmalloc(size) might give us more room than requested.
234 * Put skb_shared_info exactly at the end of allocated zone,
235 * to allow max possible filling before reallocation.
237 size
= SKB_WITH_OVERHEAD(ksize(data
));
238 prefetchw(data
+ size
);
241 * Only clear those fields we need to clear, not those that we will
242 * actually initialise below. Hence, don't put any more fields after
243 * the tail pointer in struct sk_buff!
245 memset(skb
, 0, offsetof(struct sk_buff
, tail
));
246 /* Account for allocated memory : skb + skb->head */
247 skb
->truesize
= SKB_TRUESIZE(size
);
248 skb
->pfmemalloc
= pfmemalloc
;
249 atomic_set(&skb
->users
, 1);
252 skb_reset_tail_pointer(skb
);
253 skb
->end
= skb
->tail
+ size
;
254 skb
->mac_header
= (typeof(skb
->mac_header
))~0U;
255 skb
->transport_header
= (typeof(skb
->transport_header
))~0U;
257 /* make sure we initialize shinfo sequentially */
258 shinfo
= skb_shinfo(skb
);
259 memset(shinfo
, 0, offsetof(struct skb_shared_info
, dataref
));
260 atomic_set(&shinfo
->dataref
, 1);
261 kmemcheck_annotate_variable(shinfo
->destructor_arg
);
263 if (flags
& SKB_ALLOC_FCLONE
) {
264 struct sk_buff_fclones
*fclones
;
266 fclones
= container_of(skb
, struct sk_buff_fclones
, skb1
);
268 kmemcheck_annotate_bitfield(&fclones
->skb2
, flags1
);
269 skb
->fclone
= SKB_FCLONE_ORIG
;
270 atomic_set(&fclones
->fclone_ref
, 1);
272 fclones
->skb2
.fclone
= SKB_FCLONE_CLONE
;
273 fclones
->skb2
.pfmemalloc
= pfmemalloc
;
278 kmem_cache_free(cache
, skb
);
282 EXPORT_SYMBOL(__alloc_skb
);
285 * __build_skb - build a network buffer
286 * @data: data buffer provided by caller
287 * @frag_size: size of data, or 0 if head was kmalloced
289 * Allocate a new &sk_buff. Caller provides space holding head and
290 * skb_shared_info. @data must have been allocated by kmalloc() only if
291 * @frag_size is 0, otherwise data should come from the page allocator
293 * The return is the new skb buffer.
294 * On a failure the return is %NULL, and @data is not freed.
296 * Before IO, driver allocates only data buffer where NIC put incoming frame
297 * Driver should add room at head (NET_SKB_PAD) and
298 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
299 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
300 * before giving packet to stack.
301 * RX rings only contains data buffers, not full skbs.
303 struct sk_buff
*__build_skb(void *data
, unsigned int frag_size
)
305 struct skb_shared_info
*shinfo
;
307 unsigned int size
= frag_size
? : ksize(data
);
309 skb
= kmem_cache_alloc(skbuff_head_cache
, GFP_ATOMIC
);
313 size
-= SKB_DATA_ALIGN(sizeof(struct skb_shared_info
));
315 memset(skb
, 0, offsetof(struct sk_buff
, tail
));
316 skb
->truesize
= SKB_TRUESIZE(size
);
317 atomic_set(&skb
->users
, 1);
320 skb_reset_tail_pointer(skb
);
321 skb
->end
= skb
->tail
+ size
;
322 skb
->mac_header
= (typeof(skb
->mac_header
))~0U;
323 skb
->transport_header
= (typeof(skb
->transport_header
))~0U;
325 /* make sure we initialize shinfo sequentially */
326 shinfo
= skb_shinfo(skb
);
327 memset(shinfo
, 0, offsetof(struct skb_shared_info
, dataref
));
328 atomic_set(&shinfo
->dataref
, 1);
329 kmemcheck_annotate_variable(shinfo
->destructor_arg
);
334 /* build_skb() is wrapper over __build_skb(), that specifically
335 * takes care of skb->head and skb->pfmemalloc
336 * This means that if @frag_size is not zero, then @data must be backed
337 * by a page fragment, not kmalloc() or vmalloc()
339 struct sk_buff
*build_skb(void *data
, unsigned int frag_size
)
341 struct sk_buff
*skb
= __build_skb(data
, frag_size
);
343 if (skb
&& frag_size
) {
345 if (page_is_pfmemalloc(virt_to_head_page(data
)))
350 EXPORT_SYMBOL(build_skb
);
352 #define NAPI_SKB_CACHE_SIZE 64
354 struct napi_alloc_cache
{
355 struct page_frag_cache page
;
357 void *skb_cache
[NAPI_SKB_CACHE_SIZE
];
360 static DEFINE_PER_CPU(struct page_frag_cache
, netdev_alloc_cache
);
361 static DEFINE_PER_CPU(struct napi_alloc_cache
, napi_alloc_cache
);
363 static void *__netdev_alloc_frag(unsigned int fragsz
, gfp_t gfp_mask
)
365 struct page_frag_cache
*nc
;
369 local_irq_save(flags
);
370 nc
= this_cpu_ptr(&netdev_alloc_cache
);
371 data
= __alloc_page_frag(nc
, fragsz
, gfp_mask
);
372 local_irq_restore(flags
);
377 * netdev_alloc_frag - allocate a page fragment
378 * @fragsz: fragment size
380 * Allocates a frag from a page for receive buffer.
381 * Uses GFP_ATOMIC allocations.
383 void *netdev_alloc_frag(unsigned int fragsz
)
385 return __netdev_alloc_frag(fragsz
, GFP_ATOMIC
| __GFP_COLD
);
387 EXPORT_SYMBOL(netdev_alloc_frag
);
389 static void *__napi_alloc_frag(unsigned int fragsz
, gfp_t gfp_mask
)
391 struct napi_alloc_cache
*nc
= this_cpu_ptr(&napi_alloc_cache
);
393 return __alloc_page_frag(&nc
->page
, fragsz
, gfp_mask
);
396 void *napi_alloc_frag(unsigned int fragsz
)
398 return __napi_alloc_frag(fragsz
, GFP_ATOMIC
| __GFP_COLD
);
400 EXPORT_SYMBOL(napi_alloc_frag
);
403 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
404 * @dev: network device to receive on
405 * @len: length to allocate
406 * @gfp_mask: get_free_pages mask, passed to alloc_skb
408 * Allocate a new &sk_buff and assign it a usage count of one. The
409 * buffer has NET_SKB_PAD headroom built in. Users should allocate
410 * the headroom they think they need without accounting for the
411 * built in space. The built in space is used for optimisations.
413 * %NULL is returned if there is no free memory.
415 struct sk_buff
*__netdev_alloc_skb(struct net_device
*dev
, unsigned int len
,
418 struct page_frag_cache
*nc
;
426 if ((len
> SKB_WITH_OVERHEAD(PAGE_SIZE
)) ||
427 (gfp_mask
& (__GFP_DIRECT_RECLAIM
| GFP_DMA
))) {
428 skb
= __alloc_skb(len
, gfp_mask
, SKB_ALLOC_RX
, NUMA_NO_NODE
);
434 len
+= SKB_DATA_ALIGN(sizeof(struct skb_shared_info
));
435 len
= SKB_DATA_ALIGN(len
);
437 if (sk_memalloc_socks())
438 gfp_mask
|= __GFP_MEMALLOC
;
440 local_irq_save(flags
);
442 nc
= this_cpu_ptr(&netdev_alloc_cache
);
443 data
= __alloc_page_frag(nc
, len
, gfp_mask
);
444 pfmemalloc
= nc
->pfmemalloc
;
446 local_irq_restore(flags
);
451 skb
= __build_skb(data
, len
);
452 if (unlikely(!skb
)) {
457 /* use OR instead of assignment to avoid clearing of bits in mask */
463 skb_reserve(skb
, NET_SKB_PAD
);
469 EXPORT_SYMBOL(__netdev_alloc_skb
);
472 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
473 * @napi: napi instance this buffer was allocated for
474 * @len: length to allocate
475 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
477 * Allocate a new sk_buff for use in NAPI receive. This buffer will
478 * attempt to allocate the head from a special reserved region used
479 * only for NAPI Rx allocation. By doing this we can save several
480 * CPU cycles by avoiding having to disable and re-enable IRQs.
482 * %NULL is returned if there is no free memory.
484 struct sk_buff
*__napi_alloc_skb(struct napi_struct
*napi
, unsigned int len
,
487 struct napi_alloc_cache
*nc
= this_cpu_ptr(&napi_alloc_cache
);
491 len
+= NET_SKB_PAD
+ NET_IP_ALIGN
;
493 if ((len
> SKB_WITH_OVERHEAD(PAGE_SIZE
)) ||
494 (gfp_mask
& (__GFP_DIRECT_RECLAIM
| GFP_DMA
))) {
495 skb
= __alloc_skb(len
, gfp_mask
, SKB_ALLOC_RX
, NUMA_NO_NODE
);
501 len
+= SKB_DATA_ALIGN(sizeof(struct skb_shared_info
));
502 len
= SKB_DATA_ALIGN(len
);
504 if (sk_memalloc_socks())
505 gfp_mask
|= __GFP_MEMALLOC
;
507 data
= __alloc_page_frag(&nc
->page
, len
, gfp_mask
);
511 skb
= __build_skb(data
, len
);
512 if (unlikely(!skb
)) {
517 /* use OR instead of assignment to avoid clearing of bits in mask */
518 if (nc
->page
.pfmemalloc
)
523 skb_reserve(skb
, NET_SKB_PAD
+ NET_IP_ALIGN
);
524 skb
->dev
= napi
->dev
;
529 EXPORT_SYMBOL(__napi_alloc_skb
);
531 void skb_add_rx_frag(struct sk_buff
*skb
, int i
, struct page
*page
, int off
,
532 int size
, unsigned int truesize
)
534 skb_fill_page_desc(skb
, i
, page
, off
, size
);
536 skb
->data_len
+= size
;
537 skb
->truesize
+= truesize
;
539 EXPORT_SYMBOL(skb_add_rx_frag
);
541 void skb_coalesce_rx_frag(struct sk_buff
*skb
, int i
, int size
,
542 unsigned int truesize
)
544 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
546 skb_frag_size_add(frag
, size
);
548 skb
->data_len
+= size
;
549 skb
->truesize
+= truesize
;
551 EXPORT_SYMBOL(skb_coalesce_rx_frag
);
553 static void skb_drop_list(struct sk_buff
**listp
)
555 kfree_skb_list(*listp
);
559 static inline void skb_drop_fraglist(struct sk_buff
*skb
)
561 skb_drop_list(&skb_shinfo(skb
)->frag_list
);
564 static void skb_clone_fraglist(struct sk_buff
*skb
)
566 struct sk_buff
*list
;
568 skb_walk_frags(skb
, list
)
572 static void skb_free_head(struct sk_buff
*skb
)
574 unsigned char *head
= skb
->head
;
582 static void skb_release_data(struct sk_buff
*skb
)
584 struct skb_shared_info
*shinfo
= skb_shinfo(skb
);
588 atomic_sub_return(skb
->nohdr
? (1 << SKB_DATAREF_SHIFT
) + 1 : 1,
592 for (i
= 0; i
< shinfo
->nr_frags
; i
++)
593 __skb_frag_unref(&shinfo
->frags
[i
]);
596 * If skb buf is from userspace, we need to notify the caller
597 * the lower device DMA has done;
599 if (shinfo
->tx_flags
& SKBTX_DEV_ZEROCOPY
) {
600 struct ubuf_info
*uarg
;
602 uarg
= shinfo
->destructor_arg
;
604 uarg
->callback(uarg
, true);
607 if (shinfo
->frag_list
)
608 kfree_skb_list(shinfo
->frag_list
);
614 * Free an skbuff by memory without cleaning the state.
616 static void kfree_skbmem(struct sk_buff
*skb
)
618 struct sk_buff_fclones
*fclones
;
620 switch (skb
->fclone
) {
621 case SKB_FCLONE_UNAVAILABLE
:
622 kmem_cache_free(skbuff_head_cache
, skb
);
625 case SKB_FCLONE_ORIG
:
626 fclones
= container_of(skb
, struct sk_buff_fclones
, skb1
);
628 /* We usually free the clone (TX completion) before original skb
629 * This test would have no chance to be true for the clone,
630 * while here, branch prediction will be good.
632 if (atomic_read(&fclones
->fclone_ref
) == 1)
636 default: /* SKB_FCLONE_CLONE */
637 fclones
= container_of(skb
, struct sk_buff_fclones
, skb2
);
640 if (!atomic_dec_and_test(&fclones
->fclone_ref
))
643 kmem_cache_free(skbuff_fclone_cache
, fclones
);
646 static void skb_release_head_state(struct sk_buff
*skb
)
650 secpath_put(skb
->sp
);
652 if (skb
->destructor
) {
654 skb
->destructor(skb
);
656 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
657 nf_conntrack_put(skb
->nfct
);
659 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
660 nf_bridge_put(skb
->nf_bridge
);
664 /* Free everything but the sk_buff shell. */
665 static void skb_release_all(struct sk_buff
*skb
)
667 skb_release_head_state(skb
);
668 if (likely(skb
->head
))
669 skb_release_data(skb
);
673 * __kfree_skb - private function
676 * Free an sk_buff. Release anything attached to the buffer.
677 * Clean the state. This is an internal helper function. Users should
678 * always call kfree_skb
681 void __kfree_skb(struct sk_buff
*skb
)
683 skb_release_all(skb
);
686 EXPORT_SYMBOL(__kfree_skb
);
689 * kfree_skb - free an sk_buff
690 * @skb: buffer to free
692 * Drop a reference to the buffer and free it if the usage count has
695 void kfree_skb(struct sk_buff
*skb
)
699 if (likely(atomic_read(&skb
->users
) == 1))
701 else if (likely(!atomic_dec_and_test(&skb
->users
)))
703 trace_kfree_skb(skb
, __builtin_return_address(0));
706 EXPORT_SYMBOL(kfree_skb
);
708 void kfree_skb_list(struct sk_buff
*segs
)
711 struct sk_buff
*next
= segs
->next
;
717 EXPORT_SYMBOL(kfree_skb_list
);
720 * skb_tx_error - report an sk_buff xmit error
721 * @skb: buffer that triggered an error
723 * Report xmit error if a device callback is tracking this skb.
724 * skb must be freed afterwards.
726 void skb_tx_error(struct sk_buff
*skb
)
728 if (skb_shinfo(skb
)->tx_flags
& SKBTX_DEV_ZEROCOPY
) {
729 struct ubuf_info
*uarg
;
731 uarg
= skb_shinfo(skb
)->destructor_arg
;
733 uarg
->callback(uarg
, false);
734 skb_shinfo(skb
)->tx_flags
&= ~SKBTX_DEV_ZEROCOPY
;
737 EXPORT_SYMBOL(skb_tx_error
);
740 * consume_skb - free an skbuff
741 * @skb: buffer to free
743 * Drop a ref to the buffer and free it if the usage count has hit zero
744 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
745 * is being dropped after a failure and notes that
747 void consume_skb(struct sk_buff
*skb
)
751 if (likely(atomic_read(&skb
->users
) == 1))
753 else if (likely(!atomic_dec_and_test(&skb
->users
)))
755 trace_consume_skb(skb
);
758 EXPORT_SYMBOL(consume_skb
);
760 void __kfree_skb_flush(void)
762 struct napi_alloc_cache
*nc
= this_cpu_ptr(&napi_alloc_cache
);
764 /* flush skb_cache if containing objects */
766 kmem_cache_free_bulk(skbuff_head_cache
, nc
->skb_count
,
772 static inline void _kfree_skb_defer(struct sk_buff
*skb
)
774 struct napi_alloc_cache
*nc
= this_cpu_ptr(&napi_alloc_cache
);
776 /* drop skb->head and call any destructors for packet */
777 skb_release_all(skb
);
779 /* record skb to CPU local list */
780 nc
->skb_cache
[nc
->skb_count
++] = skb
;
783 /* SLUB writes into objects when freeing */
787 /* flush skb_cache if it is filled */
788 if (unlikely(nc
->skb_count
== NAPI_SKB_CACHE_SIZE
)) {
789 kmem_cache_free_bulk(skbuff_head_cache
, NAPI_SKB_CACHE_SIZE
,
794 void __kfree_skb_defer(struct sk_buff
*skb
)
796 _kfree_skb_defer(skb
);
799 void napi_consume_skb(struct sk_buff
*skb
, int budget
)
804 /* Zero budget indicate non-NAPI context called us, like netpoll */
805 if (unlikely(!budget
)) {
806 dev_consume_skb_any(skb
);
810 if (likely(atomic_read(&skb
->users
) == 1))
812 else if (likely(!atomic_dec_and_test(&skb
->users
)))
814 /* if reaching here SKB is ready to free */
815 trace_consume_skb(skb
);
817 /* if SKB is a clone, don't handle this case */
818 if (skb
->fclone
!= SKB_FCLONE_UNAVAILABLE
) {
823 _kfree_skb_defer(skb
);
825 EXPORT_SYMBOL(napi_consume_skb
);
827 /* Make sure a field is enclosed inside headers_start/headers_end section */
828 #define CHECK_SKB_FIELD(field) \
829 BUILD_BUG_ON(offsetof(struct sk_buff, field) < \
830 offsetof(struct sk_buff, headers_start)); \
831 BUILD_BUG_ON(offsetof(struct sk_buff, field) > \
832 offsetof(struct sk_buff, headers_end)); \
834 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
836 new->tstamp
= old
->tstamp
;
837 /* We do not copy old->sk */
839 memcpy(new->cb
, old
->cb
, sizeof(old
->cb
));
840 skb_dst_copy(new, old
);
842 new->sp
= secpath_get(old
->sp
);
844 __nf_copy(new, old
, false);
846 /* Note : this field could be in headers_start/headers_end section
847 * It is not yet because we do not want to have a 16 bit hole
849 new->queue_mapping
= old
->queue_mapping
;
851 memcpy(&new->headers_start
, &old
->headers_start
,
852 offsetof(struct sk_buff
, headers_end
) -
853 offsetof(struct sk_buff
, headers_start
));
854 CHECK_SKB_FIELD(protocol
);
855 CHECK_SKB_FIELD(csum
);
856 CHECK_SKB_FIELD(hash
);
857 CHECK_SKB_FIELD(priority
);
858 CHECK_SKB_FIELD(skb_iif
);
859 CHECK_SKB_FIELD(vlan_proto
);
860 CHECK_SKB_FIELD(vlan_tci
);
861 CHECK_SKB_FIELD(transport_header
);
862 CHECK_SKB_FIELD(network_header
);
863 CHECK_SKB_FIELD(mac_header
);
864 CHECK_SKB_FIELD(inner_protocol
);
865 CHECK_SKB_FIELD(inner_transport_header
);
866 CHECK_SKB_FIELD(inner_network_header
);
867 CHECK_SKB_FIELD(inner_mac_header
);
868 CHECK_SKB_FIELD(mark
);
869 #ifdef CONFIG_NETWORK_SECMARK
870 CHECK_SKB_FIELD(secmark
);
872 #ifdef CONFIG_NET_RX_BUSY_POLL
873 CHECK_SKB_FIELD(napi_id
);
876 CHECK_SKB_FIELD(sender_cpu
);
878 #ifdef CONFIG_NET_SCHED
879 CHECK_SKB_FIELD(tc_index
);
880 #ifdef CONFIG_NET_CLS_ACT
881 CHECK_SKB_FIELD(tc_verd
);
888 * You should not add any new code to this function. Add it to
889 * __copy_skb_header above instead.
891 static struct sk_buff
*__skb_clone(struct sk_buff
*n
, struct sk_buff
*skb
)
893 #define C(x) n->x = skb->x
895 n
->next
= n
->prev
= NULL
;
897 __copy_skb_header(n
, skb
);
902 n
->hdr_len
= skb
->nohdr
? skb_headroom(skb
) : skb
->hdr_len
;
905 n
->destructor
= NULL
;
912 atomic_set(&n
->users
, 1);
914 atomic_inc(&(skb_shinfo(skb
)->dataref
));
922 * skb_morph - morph one skb into another
923 * @dst: the skb to receive the contents
924 * @src: the skb to supply the contents
926 * This is identical to skb_clone except that the target skb is
927 * supplied by the user.
929 * The target skb is returned upon exit.
931 struct sk_buff
*skb_morph(struct sk_buff
*dst
, struct sk_buff
*src
)
933 skb_release_all(dst
);
934 return __skb_clone(dst
, src
);
936 EXPORT_SYMBOL_GPL(skb_morph
);
939 * skb_copy_ubufs - copy userspace skb frags buffers to kernel
940 * @skb: the skb to modify
941 * @gfp_mask: allocation priority
943 * This must be called on SKBTX_DEV_ZEROCOPY skb.
944 * It will copy all frags into kernel and drop the reference
945 * to userspace pages.
947 * If this function is called from an interrupt gfp_mask() must be
950 * Returns 0 on success or a negative error code on failure
951 * to allocate kernel memory to copy to.
953 int skb_copy_ubufs(struct sk_buff
*skb
, gfp_t gfp_mask
)
956 int num_frags
= skb_shinfo(skb
)->nr_frags
;
957 struct page
*page
, *head
= NULL
;
958 struct ubuf_info
*uarg
= skb_shinfo(skb
)->destructor_arg
;
960 for (i
= 0; i
< num_frags
; i
++) {
962 skb_frag_t
*f
= &skb_shinfo(skb
)->frags
[i
];
964 page
= alloc_page(gfp_mask
);
967 struct page
*next
= (struct page
*)page_private(head
);
973 vaddr
= kmap_atomic(skb_frag_page(f
));
974 memcpy(page_address(page
),
975 vaddr
+ f
->page_offset
, skb_frag_size(f
));
976 kunmap_atomic(vaddr
);
977 set_page_private(page
, (unsigned long)head
);
981 /* skb frags release userspace buffers */
982 for (i
= 0; i
< num_frags
; i
++)
983 skb_frag_unref(skb
, i
);
985 uarg
->callback(uarg
, false);
987 /* skb frags point to kernel buffers */
988 for (i
= num_frags
- 1; i
>= 0; i
--) {
989 __skb_fill_page_desc(skb
, i
, head
, 0,
990 skb_shinfo(skb
)->frags
[i
].size
);
991 head
= (struct page
*)page_private(head
);
994 skb_shinfo(skb
)->tx_flags
&= ~SKBTX_DEV_ZEROCOPY
;
997 EXPORT_SYMBOL_GPL(skb_copy_ubufs
);
1000 * skb_clone - duplicate an sk_buff
1001 * @skb: buffer to clone
1002 * @gfp_mask: allocation priority
1004 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
1005 * copies share the same packet data but not structure. The new
1006 * buffer has a reference count of 1. If the allocation fails the
1007 * function returns %NULL otherwise the new buffer is returned.
1009 * If this function is called from an interrupt gfp_mask() must be
1013 struct sk_buff
*skb_clone(struct sk_buff
*skb
, gfp_t gfp_mask
)
1015 struct sk_buff_fclones
*fclones
= container_of(skb
,
1016 struct sk_buff_fclones
,
1020 if (skb_orphan_frags(skb
, gfp_mask
))
1023 if (skb
->fclone
== SKB_FCLONE_ORIG
&&
1024 atomic_read(&fclones
->fclone_ref
) == 1) {
1026 atomic_set(&fclones
->fclone_ref
, 2);
1028 if (skb_pfmemalloc(skb
))
1029 gfp_mask
|= __GFP_MEMALLOC
;
1031 n
= kmem_cache_alloc(skbuff_head_cache
, gfp_mask
);
1035 kmemcheck_annotate_bitfield(n
, flags1
);
1036 n
->fclone
= SKB_FCLONE_UNAVAILABLE
;
1039 return __skb_clone(n
, skb
);
1041 EXPORT_SYMBOL(skb_clone
);
1043 static void skb_headers_offset_update(struct sk_buff
*skb
, int off
)
1045 /* Only adjust this if it actually is csum_start rather than csum */
1046 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
1047 skb
->csum_start
+= off
;
1048 /* {transport,network,mac}_header and tail are relative to skb->head */
1049 skb
->transport_header
+= off
;
1050 skb
->network_header
+= off
;
1051 if (skb_mac_header_was_set(skb
))
1052 skb
->mac_header
+= off
;
1053 skb
->inner_transport_header
+= off
;
1054 skb
->inner_network_header
+= off
;
1055 skb
->inner_mac_header
+= off
;
1058 static void copy_skb_header(struct sk_buff
*new, const struct sk_buff
*old
)
1060 __copy_skb_header(new, old
);
1062 skb_shinfo(new)->gso_size
= skb_shinfo(old
)->gso_size
;
1063 skb_shinfo(new)->gso_segs
= skb_shinfo(old
)->gso_segs
;
1064 skb_shinfo(new)->gso_type
= skb_shinfo(old
)->gso_type
;
1067 static inline int skb_alloc_rx_flag(const struct sk_buff
*skb
)
1069 if (skb_pfmemalloc(skb
))
1070 return SKB_ALLOC_RX
;
1075 * skb_copy - create private copy of an sk_buff
1076 * @skb: buffer to copy
1077 * @gfp_mask: allocation priority
1079 * Make a copy of both an &sk_buff and its data. This is used when the
1080 * caller wishes to modify the data and needs a private copy of the
1081 * data to alter. Returns %NULL on failure or the pointer to the buffer
1082 * on success. The returned buffer has a reference count of 1.
1084 * As by-product this function converts non-linear &sk_buff to linear
1085 * one, so that &sk_buff becomes completely private and caller is allowed
1086 * to modify all the data of returned buffer. This means that this
1087 * function is not recommended for use in circumstances when only
1088 * header is going to be modified. Use pskb_copy() instead.
1091 struct sk_buff
*skb_copy(const struct sk_buff
*skb
, gfp_t gfp_mask
)
1093 int headerlen
= skb_headroom(skb
);
1094 unsigned int size
= skb_end_offset(skb
) + skb
->data_len
;
1095 struct sk_buff
*n
= __alloc_skb(size
, gfp_mask
,
1096 skb_alloc_rx_flag(skb
), NUMA_NO_NODE
);
1101 /* Set the data pointer */
1102 skb_reserve(n
, headerlen
);
1103 /* Set the tail pointer and length */
1104 skb_put(n
, skb
->len
);
1106 if (skb_copy_bits(skb
, -headerlen
, n
->head
, headerlen
+ skb
->len
))
1109 copy_skb_header(n
, skb
);
1112 EXPORT_SYMBOL(skb_copy
);
1115 * __pskb_copy_fclone - create copy of an sk_buff with private head.
1116 * @skb: buffer to copy
1117 * @headroom: headroom of new skb
1118 * @gfp_mask: allocation priority
1119 * @fclone: if true allocate the copy of the skb from the fclone
1120 * cache instead of the head cache; it is recommended to set this
1121 * to true for the cases where the copy will likely be cloned
1123 * Make a copy of both an &sk_buff and part of its data, located
1124 * in header. Fragmented data remain shared. This is used when
1125 * the caller wishes to modify only header of &sk_buff and needs
1126 * private copy of the header to alter. Returns %NULL on failure
1127 * or the pointer to the buffer on success.
1128 * The returned buffer has a reference count of 1.
1131 struct sk_buff
*__pskb_copy_fclone(struct sk_buff
*skb
, int headroom
,
1132 gfp_t gfp_mask
, bool fclone
)
1134 unsigned int size
= skb_headlen(skb
) + headroom
;
1135 int flags
= skb_alloc_rx_flag(skb
) | (fclone
? SKB_ALLOC_FCLONE
: 0);
1136 struct sk_buff
*n
= __alloc_skb(size
, gfp_mask
, flags
, NUMA_NO_NODE
);
1141 /* Set the data pointer */
1142 skb_reserve(n
, headroom
);
1143 /* Set the tail pointer and length */
1144 skb_put(n
, skb_headlen(skb
));
1145 /* Copy the bytes */
1146 skb_copy_from_linear_data(skb
, n
->data
, n
->len
);
1148 n
->truesize
+= skb
->data_len
;
1149 n
->data_len
= skb
->data_len
;
1152 if (skb_shinfo(skb
)->nr_frags
) {
1155 if (skb_orphan_frags(skb
, gfp_mask
)) {
1160 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1161 skb_shinfo(n
)->frags
[i
] = skb_shinfo(skb
)->frags
[i
];
1162 skb_frag_ref(skb
, i
);
1164 skb_shinfo(n
)->nr_frags
= i
;
1167 if (skb_has_frag_list(skb
)) {
1168 skb_shinfo(n
)->frag_list
= skb_shinfo(skb
)->frag_list
;
1169 skb_clone_fraglist(n
);
1172 copy_skb_header(n
, skb
);
1176 EXPORT_SYMBOL(__pskb_copy_fclone
);
1179 * pskb_expand_head - reallocate header of &sk_buff
1180 * @skb: buffer to reallocate
1181 * @nhead: room to add at head
1182 * @ntail: room to add at tail
1183 * @gfp_mask: allocation priority
1185 * Expands (or creates identical copy, if @nhead and @ntail are zero)
1186 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1187 * reference count of 1. Returns zero in the case of success or error,
1188 * if expansion failed. In the last case, &sk_buff is not changed.
1190 * All the pointers pointing into skb header may change and must be
1191 * reloaded after call to this function.
1194 int pskb_expand_head(struct sk_buff
*skb
, int nhead
, int ntail
,
1199 int size
= nhead
+ skb_end_offset(skb
) + ntail
;
1204 if (skb_shared(skb
))
1207 size
= SKB_DATA_ALIGN(size
);
1209 if (skb_pfmemalloc(skb
))
1210 gfp_mask
|= __GFP_MEMALLOC
;
1211 data
= kmalloc_reserve(size
+ SKB_DATA_ALIGN(sizeof(struct skb_shared_info
)),
1212 gfp_mask
, NUMA_NO_NODE
, NULL
);
1215 size
= SKB_WITH_OVERHEAD(ksize(data
));
1217 /* Copy only real data... and, alas, header. This should be
1218 * optimized for the cases when header is void.
1220 memcpy(data
+ nhead
, skb
->head
, skb_tail_pointer(skb
) - skb
->head
);
1222 memcpy((struct skb_shared_info
*)(data
+ size
),
1224 offsetof(struct skb_shared_info
, frags
[skb_shinfo(skb
)->nr_frags
]));
1227 * if shinfo is shared we must drop the old head gracefully, but if it
1228 * is not we can just drop the old head and let the existing refcount
1229 * be since all we did is relocate the values
1231 if (skb_cloned(skb
)) {
1232 /* copy this zero copy skb frags */
1233 if (skb_orphan_frags(skb
, gfp_mask
))
1235 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++)
1236 skb_frag_ref(skb
, i
);
1238 if (skb_has_frag_list(skb
))
1239 skb_clone_fraglist(skb
);
1241 skb_release_data(skb
);
1245 off
= (data
+ nhead
) - skb
->head
;
1250 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1254 skb
->end
= skb
->head
+ size
;
1257 skb_headers_offset_update(skb
, nhead
);
1261 atomic_set(&skb_shinfo(skb
)->dataref
, 1);
1269 EXPORT_SYMBOL(pskb_expand_head
);
1271 /* Make private copy of skb with writable head and some headroom */
1273 struct sk_buff
*skb_realloc_headroom(struct sk_buff
*skb
, unsigned int headroom
)
1275 struct sk_buff
*skb2
;
1276 int delta
= headroom
- skb_headroom(skb
);
1279 skb2
= pskb_copy(skb
, GFP_ATOMIC
);
1281 skb2
= skb_clone(skb
, GFP_ATOMIC
);
1282 if (skb2
&& pskb_expand_head(skb2
, SKB_DATA_ALIGN(delta
), 0,
1290 EXPORT_SYMBOL(skb_realloc_headroom
);
1293 * skb_copy_expand - copy and expand sk_buff
1294 * @skb: buffer to copy
1295 * @newheadroom: new free bytes at head
1296 * @newtailroom: new free bytes at tail
1297 * @gfp_mask: allocation priority
1299 * Make a copy of both an &sk_buff and its data and while doing so
1300 * allocate additional space.
1302 * This is used when the caller wishes to modify the data and needs a
1303 * private copy of the data to alter as well as more space for new fields.
1304 * Returns %NULL on failure or the pointer to the buffer
1305 * on success. The returned buffer has a reference count of 1.
1307 * You must pass %GFP_ATOMIC as the allocation priority if this function
1308 * is called from an interrupt.
1310 struct sk_buff
*skb_copy_expand(const struct sk_buff
*skb
,
1311 int newheadroom
, int newtailroom
,
1315 * Allocate the copy buffer
1317 struct sk_buff
*n
= __alloc_skb(newheadroom
+ skb
->len
+ newtailroom
,
1318 gfp_mask
, skb_alloc_rx_flag(skb
),
1320 int oldheadroom
= skb_headroom(skb
);
1321 int head_copy_len
, head_copy_off
;
1326 skb_reserve(n
, newheadroom
);
1328 /* Set the tail pointer and length */
1329 skb_put(n
, skb
->len
);
1331 head_copy_len
= oldheadroom
;
1333 if (newheadroom
<= head_copy_len
)
1334 head_copy_len
= newheadroom
;
1336 head_copy_off
= newheadroom
- head_copy_len
;
1338 /* Copy the linear header and data. */
1339 if (skb_copy_bits(skb
, -head_copy_len
, n
->head
+ head_copy_off
,
1340 skb
->len
+ head_copy_len
))
1343 copy_skb_header(n
, skb
);
1345 skb_headers_offset_update(n
, newheadroom
- oldheadroom
);
1349 EXPORT_SYMBOL(skb_copy_expand
);
1352 * skb_pad - zero pad the tail of an skb
1353 * @skb: buffer to pad
1354 * @pad: space to pad
1356 * Ensure that a buffer is followed by a padding area that is zero
1357 * filled. Used by network drivers which may DMA or transfer data
1358 * beyond the buffer end onto the wire.
1360 * May return error in out of memory cases. The skb is freed on error.
1363 int skb_pad(struct sk_buff
*skb
, int pad
)
1368 /* If the skbuff is non linear tailroom is always zero.. */
1369 if (!skb_cloned(skb
) && skb_tailroom(skb
) >= pad
) {
1370 memset(skb
->data
+skb
->len
, 0, pad
);
1374 ntail
= skb
->data_len
+ pad
- (skb
->end
- skb
->tail
);
1375 if (likely(skb_cloned(skb
) || ntail
> 0)) {
1376 err
= pskb_expand_head(skb
, 0, ntail
, GFP_ATOMIC
);
1381 /* FIXME: The use of this function with non-linear skb's really needs
1384 err
= skb_linearize(skb
);
1388 memset(skb
->data
+ skb
->len
, 0, pad
);
1395 EXPORT_SYMBOL(skb_pad
);
1398 * pskb_put - add data to the tail of a potentially fragmented buffer
1399 * @skb: start of the buffer to use
1400 * @tail: tail fragment of the buffer to use
1401 * @len: amount of data to add
1403 * This function extends the used data area of the potentially
1404 * fragmented buffer. @tail must be the last fragment of @skb -- or
1405 * @skb itself. If this would exceed the total buffer size the kernel
1406 * will panic. A pointer to the first byte of the extra data is
1410 unsigned char *pskb_put(struct sk_buff
*skb
, struct sk_buff
*tail
, int len
)
1413 skb
->data_len
+= len
;
1416 return skb_put(tail
, len
);
1418 EXPORT_SYMBOL_GPL(pskb_put
);
1421 * skb_put - add data to a buffer
1422 * @skb: buffer to use
1423 * @len: amount of data to add
1425 * This function extends the used data area of the buffer. If this would
1426 * exceed the total buffer size the kernel will panic. A pointer to the
1427 * first byte of the extra data is returned.
1429 unsigned char *skb_put(struct sk_buff
*skb
, unsigned int len
)
1431 unsigned char *tmp
= skb_tail_pointer(skb
);
1432 SKB_LINEAR_ASSERT(skb
);
1435 if (unlikely(skb
->tail
> skb
->end
))
1436 skb_over_panic(skb
, len
, __builtin_return_address(0));
1439 EXPORT_SYMBOL(skb_put
);
1442 * skb_push - add data to the start of a buffer
1443 * @skb: buffer to use
1444 * @len: amount of data to add
1446 * This function extends the used data area of the buffer at the buffer
1447 * start. If this would exceed the total buffer headroom the kernel will
1448 * panic. A pointer to the first byte of the extra data is returned.
1450 unsigned char *skb_push(struct sk_buff
*skb
, unsigned int len
)
1454 if (unlikely(skb
->data
<skb
->head
))
1455 skb_under_panic(skb
, len
, __builtin_return_address(0));
1458 EXPORT_SYMBOL(skb_push
);
1461 * skb_pull - remove data from the start of a buffer
1462 * @skb: buffer to use
1463 * @len: amount of data to remove
1465 * This function removes data from the start of a buffer, returning
1466 * the memory to the headroom. A pointer to the next data in the buffer
1467 * is returned. Once the data has been pulled future pushes will overwrite
1470 unsigned char *skb_pull(struct sk_buff
*skb
, unsigned int len
)
1472 return skb_pull_inline(skb
, len
);
1474 EXPORT_SYMBOL(skb_pull
);
1477 * skb_trim - remove end from a buffer
1478 * @skb: buffer to alter
1481 * Cut the length of a buffer down by removing data from the tail. If
1482 * the buffer is already under the length specified it is not modified.
1483 * The skb must be linear.
1485 void skb_trim(struct sk_buff
*skb
, unsigned int len
)
1488 __skb_trim(skb
, len
);
1490 EXPORT_SYMBOL(skb_trim
);
1492 /* Trims skb to length len. It can change skb pointers.
1495 int ___pskb_trim(struct sk_buff
*skb
, unsigned int len
)
1497 struct sk_buff
**fragp
;
1498 struct sk_buff
*frag
;
1499 int offset
= skb_headlen(skb
);
1500 int nfrags
= skb_shinfo(skb
)->nr_frags
;
1504 if (skb_cloned(skb
) &&
1505 unlikely((err
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
))))
1512 for (; i
< nfrags
; i
++) {
1513 int end
= offset
+ skb_frag_size(&skb_shinfo(skb
)->frags
[i
]);
1520 skb_frag_size_set(&skb_shinfo(skb
)->frags
[i
++], len
- offset
);
1523 skb_shinfo(skb
)->nr_frags
= i
;
1525 for (; i
< nfrags
; i
++)
1526 skb_frag_unref(skb
, i
);
1528 if (skb_has_frag_list(skb
))
1529 skb_drop_fraglist(skb
);
1533 for (fragp
= &skb_shinfo(skb
)->frag_list
; (frag
= *fragp
);
1534 fragp
= &frag
->next
) {
1535 int end
= offset
+ frag
->len
;
1537 if (skb_shared(frag
)) {
1538 struct sk_buff
*nfrag
;
1540 nfrag
= skb_clone(frag
, GFP_ATOMIC
);
1541 if (unlikely(!nfrag
))
1544 nfrag
->next
= frag
->next
;
1556 unlikely((err
= pskb_trim(frag
, len
- offset
))))
1560 skb_drop_list(&frag
->next
);
1565 if (len
> skb_headlen(skb
)) {
1566 skb
->data_len
-= skb
->len
- len
;
1571 skb_set_tail_pointer(skb
, len
);
1576 EXPORT_SYMBOL(___pskb_trim
);
1579 * __pskb_pull_tail - advance tail of skb header
1580 * @skb: buffer to reallocate
1581 * @delta: number of bytes to advance tail
1583 * The function makes a sense only on a fragmented &sk_buff,
1584 * it expands header moving its tail forward and copying necessary
1585 * data from fragmented part.
1587 * &sk_buff MUST have reference count of 1.
1589 * Returns %NULL (and &sk_buff does not change) if pull failed
1590 * or value of new tail of skb in the case of success.
1592 * All the pointers pointing into skb header may change and must be
1593 * reloaded after call to this function.
1596 /* Moves tail of skb head forward, copying data from fragmented part,
1597 * when it is necessary.
1598 * 1. It may fail due to malloc failure.
1599 * 2. It may change skb pointers.
1601 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1603 unsigned char *__pskb_pull_tail(struct sk_buff
*skb
, int delta
)
1605 /* If skb has not enough free space at tail, get new one
1606 * plus 128 bytes for future expansions. If we have enough
1607 * room at tail, reallocate without expansion only if skb is cloned.
1609 int i
, k
, eat
= (skb
->tail
+ delta
) - skb
->end
;
1611 if (eat
> 0 || skb_cloned(skb
)) {
1612 if (pskb_expand_head(skb
, 0, eat
> 0 ? eat
+ 128 : 0,
1617 if (skb_copy_bits(skb
, skb_headlen(skb
), skb_tail_pointer(skb
), delta
))
1620 /* Optimization: no fragments, no reasons to preestimate
1621 * size of pulled pages. Superb.
1623 if (!skb_has_frag_list(skb
))
1626 /* Estimate size of pulled pages. */
1628 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1629 int size
= skb_frag_size(&skb_shinfo(skb
)->frags
[i
]);
1636 /* If we need update frag list, we are in troubles.
1637 * Certainly, it possible to add an offset to skb data,
1638 * but taking into account that pulling is expected to
1639 * be very rare operation, it is worth to fight against
1640 * further bloating skb head and crucify ourselves here instead.
1641 * Pure masohism, indeed. 8)8)
1644 struct sk_buff
*list
= skb_shinfo(skb
)->frag_list
;
1645 struct sk_buff
*clone
= NULL
;
1646 struct sk_buff
*insp
= NULL
;
1651 if (list
->len
<= eat
) {
1652 /* Eaten as whole. */
1657 /* Eaten partially. */
1659 if (skb_shared(list
)) {
1660 /* Sucks! We need to fork list. :-( */
1661 clone
= skb_clone(list
, GFP_ATOMIC
);
1667 /* This may be pulled without
1671 if (!pskb_pull(list
, eat
)) {
1679 /* Free pulled out fragments. */
1680 while ((list
= skb_shinfo(skb
)->frag_list
) != insp
) {
1681 skb_shinfo(skb
)->frag_list
= list
->next
;
1684 /* And insert new clone at head. */
1687 skb_shinfo(skb
)->frag_list
= clone
;
1690 /* Success! Now we may commit changes to skb data. */
1695 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1696 int size
= skb_frag_size(&skb_shinfo(skb
)->frags
[i
]);
1699 skb_frag_unref(skb
, i
);
1702 skb_shinfo(skb
)->frags
[k
] = skb_shinfo(skb
)->frags
[i
];
1704 skb_shinfo(skb
)->frags
[k
].page_offset
+= eat
;
1705 skb_frag_size_sub(&skb_shinfo(skb
)->frags
[k
], eat
);
1711 skb_shinfo(skb
)->nr_frags
= k
;
1714 skb
->data_len
-= delta
;
1716 return skb_tail_pointer(skb
);
1718 EXPORT_SYMBOL(__pskb_pull_tail
);
1721 * skb_copy_bits - copy bits from skb to kernel buffer
1723 * @offset: offset in source
1724 * @to: destination buffer
1725 * @len: number of bytes to copy
1727 * Copy the specified number of bytes from the source skb to the
1728 * destination buffer.
1731 * If its prototype is ever changed,
1732 * check arch/{*}/net/{*}.S files,
1733 * since it is called from BPF assembly code.
1735 int skb_copy_bits(const struct sk_buff
*skb
, int offset
, void *to
, int len
)
1737 int start
= skb_headlen(skb
);
1738 struct sk_buff
*frag_iter
;
1741 if (offset
> (int)skb
->len
- len
)
1745 if ((copy
= start
- offset
) > 0) {
1748 skb_copy_from_linear_data_offset(skb
, offset
, to
, copy
);
1749 if ((len
-= copy
) == 0)
1755 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1757 skb_frag_t
*f
= &skb_shinfo(skb
)->frags
[i
];
1759 WARN_ON(start
> offset
+ len
);
1761 end
= start
+ skb_frag_size(f
);
1762 if ((copy
= end
- offset
) > 0) {
1768 vaddr
= kmap_atomic(skb_frag_page(f
));
1770 vaddr
+ f
->page_offset
+ offset
- start
,
1772 kunmap_atomic(vaddr
);
1774 if ((len
-= copy
) == 0)
1782 skb_walk_frags(skb
, frag_iter
) {
1785 WARN_ON(start
> offset
+ len
);
1787 end
= start
+ frag_iter
->len
;
1788 if ((copy
= end
- offset
) > 0) {
1791 if (skb_copy_bits(frag_iter
, offset
- start
, to
, copy
))
1793 if ((len
-= copy
) == 0)
1807 EXPORT_SYMBOL(skb_copy_bits
);
1810 * Callback from splice_to_pipe(), if we need to release some pages
1811 * at the end of the spd in case we error'ed out in filling the pipe.
1813 static void sock_spd_release(struct splice_pipe_desc
*spd
, unsigned int i
)
1815 put_page(spd
->pages
[i
]);
1818 static struct page
*linear_to_page(struct page
*page
, unsigned int *len
,
1819 unsigned int *offset
,
1822 struct page_frag
*pfrag
= sk_page_frag(sk
);
1824 if (!sk_page_frag_refill(sk
, pfrag
))
1827 *len
= min_t(unsigned int, *len
, pfrag
->size
- pfrag
->offset
);
1829 memcpy(page_address(pfrag
->page
) + pfrag
->offset
,
1830 page_address(page
) + *offset
, *len
);
1831 *offset
= pfrag
->offset
;
1832 pfrag
->offset
+= *len
;
1837 static bool spd_can_coalesce(const struct splice_pipe_desc
*spd
,
1839 unsigned int offset
)
1841 return spd
->nr_pages
&&
1842 spd
->pages
[spd
->nr_pages
- 1] == page
&&
1843 (spd
->partial
[spd
->nr_pages
- 1].offset
+
1844 spd
->partial
[spd
->nr_pages
- 1].len
== offset
);
1848 * Fill page/offset/length into spd, if it can hold more pages.
1850 static bool spd_fill_page(struct splice_pipe_desc
*spd
,
1851 struct pipe_inode_info
*pipe
, struct page
*page
,
1852 unsigned int *len
, unsigned int offset
,
1856 if (unlikely(spd
->nr_pages
== MAX_SKB_FRAGS
))
1860 page
= linear_to_page(page
, len
, &offset
, sk
);
1864 if (spd_can_coalesce(spd
, page
, offset
)) {
1865 spd
->partial
[spd
->nr_pages
- 1].len
+= *len
;
1869 spd
->pages
[spd
->nr_pages
] = page
;
1870 spd
->partial
[spd
->nr_pages
].len
= *len
;
1871 spd
->partial
[spd
->nr_pages
].offset
= offset
;
1877 static bool __splice_segment(struct page
*page
, unsigned int poff
,
1878 unsigned int plen
, unsigned int *off
,
1880 struct splice_pipe_desc
*spd
, bool linear
,
1882 struct pipe_inode_info
*pipe
)
1887 /* skip this segment if already processed */
1893 /* ignore any bits we already processed */
1899 unsigned int flen
= min(*len
, plen
);
1901 if (spd_fill_page(spd
, pipe
, page
, &flen
, poff
,
1907 } while (*len
&& plen
);
1913 * Map linear and fragment data from the skb to spd. It reports true if the
1914 * pipe is full or if we already spliced the requested length.
1916 static bool __skb_splice_bits(struct sk_buff
*skb
, struct pipe_inode_info
*pipe
,
1917 unsigned int *offset
, unsigned int *len
,
1918 struct splice_pipe_desc
*spd
, struct sock
*sk
)
1921 struct sk_buff
*iter
;
1923 /* map the linear part :
1924 * If skb->head_frag is set, this 'linear' part is backed by a
1925 * fragment, and if the head is not shared with any clones then
1926 * we can avoid a copy since we own the head portion of this page.
1928 if (__splice_segment(virt_to_page(skb
->data
),
1929 (unsigned long) skb
->data
& (PAGE_SIZE
- 1),
1932 skb_head_is_locked(skb
),
1937 * then map the fragments
1939 for (seg
= 0; seg
< skb_shinfo(skb
)->nr_frags
; seg
++) {
1940 const skb_frag_t
*f
= &skb_shinfo(skb
)->frags
[seg
];
1942 if (__splice_segment(skb_frag_page(f
),
1943 f
->page_offset
, skb_frag_size(f
),
1944 offset
, len
, spd
, false, sk
, pipe
))
1948 skb_walk_frags(skb
, iter
) {
1949 if (*offset
>= iter
->len
) {
1950 *offset
-= iter
->len
;
1953 /* __skb_splice_bits() only fails if the output has no room
1954 * left, so no point in going over the frag_list for the error
1957 if (__skb_splice_bits(iter
, pipe
, offset
, len
, spd
, sk
))
1964 ssize_t
skb_socket_splice(struct sock
*sk
,
1965 struct pipe_inode_info
*pipe
,
1966 struct splice_pipe_desc
*spd
)
1970 /* Drop the socket lock, otherwise we have reverse
1971 * locking dependencies between sk_lock and i_mutex
1972 * here as compared to sendfile(). We enter here
1973 * with the socket lock held, and splice_to_pipe() will
1974 * grab the pipe inode lock. For sendfile() emulation,
1975 * we call into ->sendpage() with the i_mutex lock held
1976 * and networking will grab the socket lock.
1979 ret
= splice_to_pipe(pipe
, spd
);
1986 * Map data from the skb to a pipe. Should handle both the linear part,
1987 * the fragments, and the frag list.
1989 int skb_splice_bits(struct sk_buff
*skb
, struct sock
*sk
, unsigned int offset
,
1990 struct pipe_inode_info
*pipe
, unsigned int tlen
,
1992 ssize_t (*splice_cb
)(struct sock
*,
1993 struct pipe_inode_info
*,
1994 struct splice_pipe_desc
*))
1996 struct partial_page partial
[MAX_SKB_FRAGS
];
1997 struct page
*pages
[MAX_SKB_FRAGS
];
1998 struct splice_pipe_desc spd
= {
2001 .nr_pages_max
= MAX_SKB_FRAGS
,
2003 .ops
= &nosteal_pipe_buf_ops
,
2004 .spd_release
= sock_spd_release
,
2008 __skb_splice_bits(skb
, pipe
, &offset
, &tlen
, &spd
, sk
);
2011 ret
= splice_cb(sk
, pipe
, &spd
);
2015 EXPORT_SYMBOL_GPL(skb_splice_bits
);
2018 * skb_store_bits - store bits from kernel buffer to skb
2019 * @skb: destination buffer
2020 * @offset: offset in destination
2021 * @from: source buffer
2022 * @len: number of bytes to copy
2024 * Copy the specified number of bytes from the source buffer to the
2025 * destination skb. This function handles all the messy bits of
2026 * traversing fragment lists and such.
2029 int skb_store_bits(struct sk_buff
*skb
, int offset
, const void *from
, int len
)
2031 int start
= skb_headlen(skb
);
2032 struct sk_buff
*frag_iter
;
2035 if (offset
> (int)skb
->len
- len
)
2038 if ((copy
= start
- offset
) > 0) {
2041 skb_copy_to_linear_data_offset(skb
, offset
, from
, copy
);
2042 if ((len
-= copy
) == 0)
2048 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
2049 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
2052 WARN_ON(start
> offset
+ len
);
2054 end
= start
+ skb_frag_size(frag
);
2055 if ((copy
= end
- offset
) > 0) {
2061 vaddr
= kmap_atomic(skb_frag_page(frag
));
2062 memcpy(vaddr
+ frag
->page_offset
+ offset
- start
,
2064 kunmap_atomic(vaddr
);
2066 if ((len
-= copy
) == 0)
2074 skb_walk_frags(skb
, frag_iter
) {
2077 WARN_ON(start
> offset
+ len
);
2079 end
= start
+ frag_iter
->len
;
2080 if ((copy
= end
- offset
) > 0) {
2083 if (skb_store_bits(frag_iter
, offset
- start
,
2086 if ((len
-= copy
) == 0)
2099 EXPORT_SYMBOL(skb_store_bits
);
2101 /* Checksum skb data. */
2102 __wsum
__skb_checksum(const struct sk_buff
*skb
, int offset
, int len
,
2103 __wsum csum
, const struct skb_checksum_ops
*ops
)
2105 int start
= skb_headlen(skb
);
2106 int i
, copy
= start
- offset
;
2107 struct sk_buff
*frag_iter
;
2110 /* Checksum header. */
2114 csum
= ops
->update(skb
->data
+ offset
, copy
, csum
);
2115 if ((len
-= copy
) == 0)
2121 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
2123 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
2125 WARN_ON(start
> offset
+ len
);
2127 end
= start
+ skb_frag_size(frag
);
2128 if ((copy
= end
- offset
) > 0) {
2134 vaddr
= kmap_atomic(skb_frag_page(frag
));
2135 csum2
= ops
->update(vaddr
+ frag
->page_offset
+
2136 offset
- start
, copy
, 0);
2137 kunmap_atomic(vaddr
);
2138 csum
= ops
->combine(csum
, csum2
, pos
, copy
);
2147 skb_walk_frags(skb
, frag_iter
) {
2150 WARN_ON(start
> offset
+ len
);
2152 end
= start
+ frag_iter
->len
;
2153 if ((copy
= end
- offset
) > 0) {
2157 csum2
= __skb_checksum(frag_iter
, offset
- start
,
2159 csum
= ops
->combine(csum
, csum2
, pos
, copy
);
2160 if ((len
-= copy
) == 0)
2171 EXPORT_SYMBOL(__skb_checksum
);
2173 __wsum
skb_checksum(const struct sk_buff
*skb
, int offset
,
2174 int len
, __wsum csum
)
2176 const struct skb_checksum_ops ops
= {
2177 .update
= csum_partial_ext
,
2178 .combine
= csum_block_add_ext
,
2181 return __skb_checksum(skb
, offset
, len
, csum
, &ops
);
2183 EXPORT_SYMBOL(skb_checksum
);
2185 /* Both of above in one bottle. */
2187 __wsum
skb_copy_and_csum_bits(const struct sk_buff
*skb
, int offset
,
2188 u8
*to
, int len
, __wsum csum
)
2190 int start
= skb_headlen(skb
);
2191 int i
, copy
= start
- offset
;
2192 struct sk_buff
*frag_iter
;
2199 csum
= csum_partial_copy_nocheck(skb
->data
+ offset
, to
,
2201 if ((len
-= copy
) == 0)
2208 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
2211 WARN_ON(start
> offset
+ len
);
2213 end
= start
+ skb_frag_size(&skb_shinfo(skb
)->frags
[i
]);
2214 if ((copy
= end
- offset
) > 0) {
2217 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
2221 vaddr
= kmap_atomic(skb_frag_page(frag
));
2222 csum2
= csum_partial_copy_nocheck(vaddr
+
2226 kunmap_atomic(vaddr
);
2227 csum
= csum_block_add(csum
, csum2
, pos
);
2237 skb_walk_frags(skb
, frag_iter
) {
2241 WARN_ON(start
> offset
+ len
);
2243 end
= start
+ frag_iter
->len
;
2244 if ((copy
= end
- offset
) > 0) {
2247 csum2
= skb_copy_and_csum_bits(frag_iter
,
2250 csum
= csum_block_add(csum
, csum2
, pos
);
2251 if ((len
-= copy
) == 0)
2262 EXPORT_SYMBOL(skb_copy_and_csum_bits
);
2265 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2266 * @from: source buffer
2268 * Calculates the amount of linear headroom needed in the 'to' skb passed
2269 * into skb_zerocopy().
2272 skb_zerocopy_headlen(const struct sk_buff
*from
)
2274 unsigned int hlen
= 0;
2276 if (!from
->head_frag
||
2277 skb_headlen(from
) < L1_CACHE_BYTES
||
2278 skb_shinfo(from
)->nr_frags
>= MAX_SKB_FRAGS
)
2279 hlen
= skb_headlen(from
);
2281 if (skb_has_frag_list(from
))
2286 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen
);
2289 * skb_zerocopy - Zero copy skb to skb
2290 * @to: destination buffer
2291 * @from: source buffer
2292 * @len: number of bytes to copy from source buffer
2293 * @hlen: size of linear headroom in destination buffer
2295 * Copies up to `len` bytes from `from` to `to` by creating references
2296 * to the frags in the source buffer.
2298 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2299 * headroom in the `to` buffer.
2302 * 0: everything is OK
2303 * -ENOMEM: couldn't orphan frags of @from due to lack of memory
2304 * -EFAULT: skb_copy_bits() found some problem with skb geometry
2307 skb_zerocopy(struct sk_buff
*to
, struct sk_buff
*from
, int len
, int hlen
)
2310 int plen
= 0; /* length of skb->head fragment */
2313 unsigned int offset
;
2315 BUG_ON(!from
->head_frag
&& !hlen
);
2317 /* dont bother with small payloads */
2318 if (len
<= skb_tailroom(to
))
2319 return skb_copy_bits(from
, 0, skb_put(to
, len
), len
);
2322 ret
= skb_copy_bits(from
, 0, skb_put(to
, hlen
), hlen
);
2327 plen
= min_t(int, skb_headlen(from
), len
);
2329 page
= virt_to_head_page(from
->head
);
2330 offset
= from
->data
- (unsigned char *)page_address(page
);
2331 __skb_fill_page_desc(to
, 0, page
, offset
, plen
);
2338 to
->truesize
+= len
+ plen
;
2339 to
->len
+= len
+ plen
;
2340 to
->data_len
+= len
+ plen
;
2342 if (unlikely(skb_orphan_frags(from
, GFP_ATOMIC
))) {
2347 for (i
= 0; i
< skb_shinfo(from
)->nr_frags
; i
++) {
2350 skb_shinfo(to
)->frags
[j
] = skb_shinfo(from
)->frags
[i
];
2351 skb_shinfo(to
)->frags
[j
].size
= min_t(int, skb_shinfo(to
)->frags
[j
].size
, len
);
2352 len
-= skb_shinfo(to
)->frags
[j
].size
;
2353 skb_frag_ref(to
, j
);
2356 skb_shinfo(to
)->nr_frags
= j
;
2360 EXPORT_SYMBOL_GPL(skb_zerocopy
);
2362 void skb_copy_and_csum_dev(const struct sk_buff
*skb
, u8
*to
)
2367 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
2368 csstart
= skb_checksum_start_offset(skb
);
2370 csstart
= skb_headlen(skb
);
2372 BUG_ON(csstart
> skb_headlen(skb
));
2374 skb_copy_from_linear_data(skb
, to
, csstart
);
2377 if (csstart
!= skb
->len
)
2378 csum
= skb_copy_and_csum_bits(skb
, csstart
, to
+ csstart
,
2379 skb
->len
- csstart
, 0);
2381 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
2382 long csstuff
= csstart
+ skb
->csum_offset
;
2384 *((__sum16
*)(to
+ csstuff
)) = csum_fold(csum
);
2387 EXPORT_SYMBOL(skb_copy_and_csum_dev
);
2390 * skb_dequeue - remove from the head of the queue
2391 * @list: list to dequeue from
2393 * Remove the head of the list. The list lock is taken so the function
2394 * may be used safely with other locking list functions. The head item is
2395 * returned or %NULL if the list is empty.
2398 struct sk_buff
*skb_dequeue(struct sk_buff_head
*list
)
2400 unsigned long flags
;
2401 struct sk_buff
*result
;
2403 spin_lock_irqsave(&list
->lock
, flags
);
2404 result
= __skb_dequeue(list
);
2405 spin_unlock_irqrestore(&list
->lock
, flags
);
2408 EXPORT_SYMBOL(skb_dequeue
);
2411 * skb_dequeue_tail - remove from the tail of the queue
2412 * @list: list to dequeue from
2414 * Remove the tail of the list. The list lock is taken so the function
2415 * may be used safely with other locking list functions. The tail item is
2416 * returned or %NULL if the list is empty.
2418 struct sk_buff
*skb_dequeue_tail(struct sk_buff_head
*list
)
2420 unsigned long flags
;
2421 struct sk_buff
*result
;
2423 spin_lock_irqsave(&list
->lock
, flags
);
2424 result
= __skb_dequeue_tail(list
);
2425 spin_unlock_irqrestore(&list
->lock
, flags
);
2428 EXPORT_SYMBOL(skb_dequeue_tail
);
2431 * skb_queue_purge - empty a list
2432 * @list: list to empty
2434 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2435 * the list and one reference dropped. This function takes the list
2436 * lock and is atomic with respect to other list locking functions.
2438 void skb_queue_purge(struct sk_buff_head
*list
)
2440 struct sk_buff
*skb
;
2441 while ((skb
= skb_dequeue(list
)) != NULL
)
2444 EXPORT_SYMBOL(skb_queue_purge
);
2447 * skb_queue_head - queue a buffer at the list head
2448 * @list: list to use
2449 * @newsk: buffer to queue
2451 * Queue a buffer at the start of the list. This function takes the
2452 * list lock and can be used safely with other locking &sk_buff functions
2455 * A buffer cannot be placed on two lists at the same time.
2457 void skb_queue_head(struct sk_buff_head
*list
, struct sk_buff
*newsk
)
2459 unsigned long flags
;
2461 spin_lock_irqsave(&list
->lock
, flags
);
2462 __skb_queue_head(list
, newsk
);
2463 spin_unlock_irqrestore(&list
->lock
, flags
);
2465 EXPORT_SYMBOL(skb_queue_head
);
2468 * skb_queue_tail - queue a buffer at the list tail
2469 * @list: list to use
2470 * @newsk: buffer to queue
2472 * Queue a buffer at the tail of the list. This function takes the
2473 * list lock and can be used safely with other locking &sk_buff functions
2476 * A buffer cannot be placed on two lists at the same time.
2478 void skb_queue_tail(struct sk_buff_head
*list
, struct sk_buff
*newsk
)
2480 unsigned long flags
;
2482 spin_lock_irqsave(&list
->lock
, flags
);
2483 __skb_queue_tail(list
, newsk
);
2484 spin_unlock_irqrestore(&list
->lock
, flags
);
2486 EXPORT_SYMBOL(skb_queue_tail
);
2489 * skb_unlink - remove a buffer from a list
2490 * @skb: buffer to remove
2491 * @list: list to use
2493 * Remove a packet from a list. The list locks are taken and this
2494 * function is atomic with respect to other list locked calls
2496 * You must know what list the SKB is on.
2498 void skb_unlink(struct sk_buff
*skb
, struct sk_buff_head
*list
)
2500 unsigned long flags
;
2502 spin_lock_irqsave(&list
->lock
, flags
);
2503 __skb_unlink(skb
, list
);
2504 spin_unlock_irqrestore(&list
->lock
, flags
);
2506 EXPORT_SYMBOL(skb_unlink
);
2509 * skb_append - append a buffer
2510 * @old: buffer to insert after
2511 * @newsk: buffer to insert
2512 * @list: list to use
2514 * Place a packet after a given packet in a list. The list locks are taken
2515 * and this function is atomic with respect to other list locked calls.
2516 * A buffer cannot be placed on two lists at the same time.
2518 void skb_append(struct sk_buff
*old
, struct sk_buff
*newsk
, struct sk_buff_head
*list
)
2520 unsigned long flags
;
2522 spin_lock_irqsave(&list
->lock
, flags
);
2523 __skb_queue_after(list
, old
, newsk
);
2524 spin_unlock_irqrestore(&list
->lock
, flags
);
2526 EXPORT_SYMBOL(skb_append
);
2529 * skb_insert - insert a buffer
2530 * @old: buffer to insert before
2531 * @newsk: buffer to insert
2532 * @list: list to use
2534 * Place a packet before a given packet in a list. The list locks are
2535 * taken and this function is atomic with respect to other list locked
2538 * A buffer cannot be placed on two lists at the same time.
2540 void skb_insert(struct sk_buff
*old
, struct sk_buff
*newsk
, struct sk_buff_head
*list
)
2542 unsigned long flags
;
2544 spin_lock_irqsave(&list
->lock
, flags
);
2545 __skb_insert(newsk
, old
->prev
, old
, list
);
2546 spin_unlock_irqrestore(&list
->lock
, flags
);
2548 EXPORT_SYMBOL(skb_insert
);
2550 static inline void skb_split_inside_header(struct sk_buff
*skb
,
2551 struct sk_buff
* skb1
,
2552 const u32 len
, const int pos
)
2556 skb_copy_from_linear_data_offset(skb
, len
, skb_put(skb1
, pos
- len
),
2558 /* And move data appendix as is. */
2559 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++)
2560 skb_shinfo(skb1
)->frags
[i
] = skb_shinfo(skb
)->frags
[i
];
2562 skb_shinfo(skb1
)->nr_frags
= skb_shinfo(skb
)->nr_frags
;
2563 skb_shinfo(skb
)->nr_frags
= 0;
2564 skb1
->data_len
= skb
->data_len
;
2565 skb1
->len
+= skb1
->data_len
;
2568 skb_set_tail_pointer(skb
, len
);
2571 static inline void skb_split_no_header(struct sk_buff
*skb
,
2572 struct sk_buff
* skb1
,
2573 const u32 len
, int pos
)
2576 const int nfrags
= skb_shinfo(skb
)->nr_frags
;
2578 skb_shinfo(skb
)->nr_frags
= 0;
2579 skb1
->len
= skb1
->data_len
= skb
->len
- len
;
2581 skb
->data_len
= len
- pos
;
2583 for (i
= 0; i
< nfrags
; i
++) {
2584 int size
= skb_frag_size(&skb_shinfo(skb
)->frags
[i
]);
2586 if (pos
+ size
> len
) {
2587 skb_shinfo(skb1
)->frags
[k
] = skb_shinfo(skb
)->frags
[i
];
2591 * We have two variants in this case:
2592 * 1. Move all the frag to the second
2593 * part, if it is possible. F.e.
2594 * this approach is mandatory for TUX,
2595 * where splitting is expensive.
2596 * 2. Split is accurately. We make this.
2598 skb_frag_ref(skb
, i
);
2599 skb_shinfo(skb1
)->frags
[0].page_offset
+= len
- pos
;
2600 skb_frag_size_sub(&skb_shinfo(skb1
)->frags
[0], len
- pos
);
2601 skb_frag_size_set(&skb_shinfo(skb
)->frags
[i
], len
- pos
);
2602 skb_shinfo(skb
)->nr_frags
++;
2606 skb_shinfo(skb
)->nr_frags
++;
2609 skb_shinfo(skb1
)->nr_frags
= k
;
2613 * skb_split - Split fragmented skb to two parts at length len.
2614 * @skb: the buffer to split
2615 * @skb1: the buffer to receive the second part
2616 * @len: new length for skb
2618 void skb_split(struct sk_buff
*skb
, struct sk_buff
*skb1
, const u32 len
)
2620 int pos
= skb_headlen(skb
);
2622 skb_shinfo(skb1
)->tx_flags
= skb_shinfo(skb
)->tx_flags
& SKBTX_SHARED_FRAG
;
2623 if (len
< pos
) /* Split line is inside header. */
2624 skb_split_inside_header(skb
, skb1
, len
, pos
);
2625 else /* Second chunk has no header, nothing to copy. */
2626 skb_split_no_header(skb
, skb1
, len
, pos
);
2628 EXPORT_SYMBOL(skb_split
);
2630 /* Shifting from/to a cloned skb is a no-go.
2632 * Caller cannot keep skb_shinfo related pointers past calling here!
2634 static int skb_prepare_for_shift(struct sk_buff
*skb
)
2636 return skb_cloned(skb
) && pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
2640 * skb_shift - Shifts paged data partially from skb to another
2641 * @tgt: buffer into which tail data gets added
2642 * @skb: buffer from which the paged data comes from
2643 * @shiftlen: shift up to this many bytes
2645 * Attempts to shift up to shiftlen worth of bytes, which may be less than
2646 * the length of the skb, from skb to tgt. Returns number bytes shifted.
2647 * It's up to caller to free skb if everything was shifted.
2649 * If @tgt runs out of frags, the whole operation is aborted.
2651 * Skb cannot include anything else but paged data while tgt is allowed
2652 * to have non-paged data as well.
2654 * TODO: full sized shift could be optimized but that would need
2655 * specialized skb free'er to handle frags without up-to-date nr_frags.
2657 int skb_shift(struct sk_buff
*tgt
, struct sk_buff
*skb
, int shiftlen
)
2659 int from
, to
, merge
, todo
;
2660 struct skb_frag_struct
*fragfrom
, *fragto
;
2662 BUG_ON(shiftlen
> skb
->len
);
2663 BUG_ON(skb_headlen(skb
)); /* Would corrupt stream */
2667 to
= skb_shinfo(tgt
)->nr_frags
;
2668 fragfrom
= &skb_shinfo(skb
)->frags
[from
];
2670 /* Actual merge is delayed until the point when we know we can
2671 * commit all, so that we don't have to undo partial changes
2674 !skb_can_coalesce(tgt
, to
, skb_frag_page(fragfrom
),
2675 fragfrom
->page_offset
)) {
2680 todo
-= skb_frag_size(fragfrom
);
2682 if (skb_prepare_for_shift(skb
) ||
2683 skb_prepare_for_shift(tgt
))
2686 /* All previous frag pointers might be stale! */
2687 fragfrom
= &skb_shinfo(skb
)->frags
[from
];
2688 fragto
= &skb_shinfo(tgt
)->frags
[merge
];
2690 skb_frag_size_add(fragto
, shiftlen
);
2691 skb_frag_size_sub(fragfrom
, shiftlen
);
2692 fragfrom
->page_offset
+= shiftlen
;
2700 /* Skip full, not-fitting skb to avoid expensive operations */
2701 if ((shiftlen
== skb
->len
) &&
2702 (skb_shinfo(skb
)->nr_frags
- from
) > (MAX_SKB_FRAGS
- to
))
2705 if (skb_prepare_for_shift(skb
) || skb_prepare_for_shift(tgt
))
2708 while ((todo
> 0) && (from
< skb_shinfo(skb
)->nr_frags
)) {
2709 if (to
== MAX_SKB_FRAGS
)
2712 fragfrom
= &skb_shinfo(skb
)->frags
[from
];
2713 fragto
= &skb_shinfo(tgt
)->frags
[to
];
2715 if (todo
>= skb_frag_size(fragfrom
)) {
2716 *fragto
= *fragfrom
;
2717 todo
-= skb_frag_size(fragfrom
);
2722 __skb_frag_ref(fragfrom
);
2723 fragto
->page
= fragfrom
->page
;
2724 fragto
->page_offset
= fragfrom
->page_offset
;
2725 skb_frag_size_set(fragto
, todo
);
2727 fragfrom
->page_offset
+= todo
;
2728 skb_frag_size_sub(fragfrom
, todo
);
2736 /* Ready to "commit" this state change to tgt */
2737 skb_shinfo(tgt
)->nr_frags
= to
;
2740 fragfrom
= &skb_shinfo(skb
)->frags
[0];
2741 fragto
= &skb_shinfo(tgt
)->frags
[merge
];
2743 skb_frag_size_add(fragto
, skb_frag_size(fragfrom
));
2744 __skb_frag_unref(fragfrom
);
2747 /* Reposition in the original skb */
2749 while (from
< skb_shinfo(skb
)->nr_frags
)
2750 skb_shinfo(skb
)->frags
[to
++] = skb_shinfo(skb
)->frags
[from
++];
2751 skb_shinfo(skb
)->nr_frags
= to
;
2753 BUG_ON(todo
> 0 && !skb_shinfo(skb
)->nr_frags
);
2756 /* Most likely the tgt won't ever need its checksum anymore, skb on
2757 * the other hand might need it if it needs to be resent
2759 tgt
->ip_summed
= CHECKSUM_PARTIAL
;
2760 skb
->ip_summed
= CHECKSUM_PARTIAL
;
2762 /* Yak, is it really working this way? Some helper please? */
2763 skb
->len
-= shiftlen
;
2764 skb
->data_len
-= shiftlen
;
2765 skb
->truesize
-= shiftlen
;
2766 tgt
->len
+= shiftlen
;
2767 tgt
->data_len
+= shiftlen
;
2768 tgt
->truesize
+= shiftlen
;
2774 * skb_prepare_seq_read - Prepare a sequential read of skb data
2775 * @skb: the buffer to read
2776 * @from: lower offset of data to be read
2777 * @to: upper offset of data to be read
2778 * @st: state variable
2780 * Initializes the specified state variable. Must be called before
2781 * invoking skb_seq_read() for the first time.
2783 void skb_prepare_seq_read(struct sk_buff
*skb
, unsigned int from
,
2784 unsigned int to
, struct skb_seq_state
*st
)
2786 st
->lower_offset
= from
;
2787 st
->upper_offset
= to
;
2788 st
->root_skb
= st
->cur_skb
= skb
;
2789 st
->frag_idx
= st
->stepped_offset
= 0;
2790 st
->frag_data
= NULL
;
2792 EXPORT_SYMBOL(skb_prepare_seq_read
);
2795 * skb_seq_read - Sequentially read skb data
2796 * @consumed: number of bytes consumed by the caller so far
2797 * @data: destination pointer for data to be returned
2798 * @st: state variable
2800 * Reads a block of skb data at @consumed relative to the
2801 * lower offset specified to skb_prepare_seq_read(). Assigns
2802 * the head of the data block to @data and returns the length
2803 * of the block or 0 if the end of the skb data or the upper
2804 * offset has been reached.
2806 * The caller is not required to consume all of the data
2807 * returned, i.e. @consumed is typically set to the number
2808 * of bytes already consumed and the next call to
2809 * skb_seq_read() will return the remaining part of the block.
2811 * Note 1: The size of each block of data returned can be arbitrary,
2812 * this limitation is the cost for zerocopy sequential
2813 * reads of potentially non linear data.
2815 * Note 2: Fragment lists within fragments are not implemented
2816 * at the moment, state->root_skb could be replaced with
2817 * a stack for this purpose.
2819 unsigned int skb_seq_read(unsigned int consumed
, const u8
**data
,
2820 struct skb_seq_state
*st
)
2822 unsigned int block_limit
, abs_offset
= consumed
+ st
->lower_offset
;
2825 if (unlikely(abs_offset
>= st
->upper_offset
)) {
2826 if (st
->frag_data
) {
2827 kunmap_atomic(st
->frag_data
);
2828 st
->frag_data
= NULL
;
2834 block_limit
= skb_headlen(st
->cur_skb
) + st
->stepped_offset
;
2836 if (abs_offset
< block_limit
&& !st
->frag_data
) {
2837 *data
= st
->cur_skb
->data
+ (abs_offset
- st
->stepped_offset
);
2838 return block_limit
- abs_offset
;
2841 if (st
->frag_idx
== 0 && !st
->frag_data
)
2842 st
->stepped_offset
+= skb_headlen(st
->cur_skb
);
2844 while (st
->frag_idx
< skb_shinfo(st
->cur_skb
)->nr_frags
) {
2845 frag
= &skb_shinfo(st
->cur_skb
)->frags
[st
->frag_idx
];
2846 block_limit
= skb_frag_size(frag
) + st
->stepped_offset
;
2848 if (abs_offset
< block_limit
) {
2850 st
->frag_data
= kmap_atomic(skb_frag_page(frag
));
2852 *data
= (u8
*) st
->frag_data
+ frag
->page_offset
+
2853 (abs_offset
- st
->stepped_offset
);
2855 return block_limit
- abs_offset
;
2858 if (st
->frag_data
) {
2859 kunmap_atomic(st
->frag_data
);
2860 st
->frag_data
= NULL
;
2864 st
->stepped_offset
+= skb_frag_size(frag
);
2867 if (st
->frag_data
) {
2868 kunmap_atomic(st
->frag_data
);
2869 st
->frag_data
= NULL
;
2872 if (st
->root_skb
== st
->cur_skb
&& skb_has_frag_list(st
->root_skb
)) {
2873 st
->cur_skb
= skb_shinfo(st
->root_skb
)->frag_list
;
2876 } else if (st
->cur_skb
->next
) {
2877 st
->cur_skb
= st
->cur_skb
->next
;
2884 EXPORT_SYMBOL(skb_seq_read
);
2887 * skb_abort_seq_read - Abort a sequential read of skb data
2888 * @st: state variable
2890 * Must be called if skb_seq_read() was not called until it
2893 void skb_abort_seq_read(struct skb_seq_state
*st
)
2896 kunmap_atomic(st
->frag_data
);
2898 EXPORT_SYMBOL(skb_abort_seq_read
);
2900 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
2902 static unsigned int skb_ts_get_next_block(unsigned int offset
, const u8
**text
,
2903 struct ts_config
*conf
,
2904 struct ts_state
*state
)
2906 return skb_seq_read(offset
, text
, TS_SKB_CB(state
));
2909 static void skb_ts_finish(struct ts_config
*conf
, struct ts_state
*state
)
2911 skb_abort_seq_read(TS_SKB_CB(state
));
2915 * skb_find_text - Find a text pattern in skb data
2916 * @skb: the buffer to look in
2917 * @from: search offset
2919 * @config: textsearch configuration
2921 * Finds a pattern in the skb data according to the specified
2922 * textsearch configuration. Use textsearch_next() to retrieve
2923 * subsequent occurrences of the pattern. Returns the offset
2924 * to the first occurrence or UINT_MAX if no match was found.
2926 unsigned int skb_find_text(struct sk_buff
*skb
, unsigned int from
,
2927 unsigned int to
, struct ts_config
*config
)
2929 struct ts_state state
;
2932 config
->get_next_block
= skb_ts_get_next_block
;
2933 config
->finish
= skb_ts_finish
;
2935 skb_prepare_seq_read(skb
, from
, to
, TS_SKB_CB(&state
));
2937 ret
= textsearch_find(config
, &state
);
2938 return (ret
<= to
- from
? ret
: UINT_MAX
);
2940 EXPORT_SYMBOL(skb_find_text
);
2943 * skb_append_datato_frags - append the user data to a skb
2944 * @sk: sock structure
2945 * @skb: skb structure to be appended with user data.
2946 * @getfrag: call back function to be used for getting the user data
2947 * @from: pointer to user message iov
2948 * @length: length of the iov message
2950 * Description: This procedure append the user data in the fragment part
2951 * of the skb if any page alloc fails user this procedure returns -ENOMEM
2953 int skb_append_datato_frags(struct sock
*sk
, struct sk_buff
*skb
,
2954 int (*getfrag
)(void *from
, char *to
, int offset
,
2955 int len
, int odd
, struct sk_buff
*skb
),
2956 void *from
, int length
)
2958 int frg_cnt
= skb_shinfo(skb
)->nr_frags
;
2962 struct page_frag
*pfrag
= ¤t
->task_frag
;
2965 /* Return error if we don't have space for new frag */
2966 if (frg_cnt
>= MAX_SKB_FRAGS
)
2969 if (!sk_page_frag_refill(sk
, pfrag
))
2972 /* copy the user data to page */
2973 copy
= min_t(int, length
, pfrag
->size
- pfrag
->offset
);
2975 ret
= getfrag(from
, page_address(pfrag
->page
) + pfrag
->offset
,
2976 offset
, copy
, 0, skb
);
2980 /* copy was successful so update the size parameters */
2981 skb_fill_page_desc(skb
, frg_cnt
, pfrag
->page
, pfrag
->offset
,
2984 pfrag
->offset
+= copy
;
2985 get_page(pfrag
->page
);
2987 skb
->truesize
+= copy
;
2988 atomic_add(copy
, &sk
->sk_wmem_alloc
);
2990 skb
->data_len
+= copy
;
2994 } while (length
> 0);
2998 EXPORT_SYMBOL(skb_append_datato_frags
);
3000 int skb_append_pagefrags(struct sk_buff
*skb
, struct page
*page
,
3001 int offset
, size_t size
)
3003 int i
= skb_shinfo(skb
)->nr_frags
;
3005 if (skb_can_coalesce(skb
, i
, page
, offset
)) {
3006 skb_frag_size_add(&skb_shinfo(skb
)->frags
[i
- 1], size
);
3007 } else if (i
< MAX_SKB_FRAGS
) {
3009 skb_fill_page_desc(skb
, i
, page
, offset
, size
);
3016 EXPORT_SYMBOL_GPL(skb_append_pagefrags
);
3019 * skb_push_rcsum - push skb and update receive checksum
3020 * @skb: buffer to update
3021 * @len: length of data pulled
3023 * This function performs an skb_push on the packet and updates
3024 * the CHECKSUM_COMPLETE checksum. It should be used on
3025 * receive path processing instead of skb_push unless you know
3026 * that the checksum difference is zero (e.g., a valid IP header)
3027 * or you are setting ip_summed to CHECKSUM_NONE.
3029 static unsigned char *skb_push_rcsum(struct sk_buff
*skb
, unsigned len
)
3032 skb_postpush_rcsum(skb
, skb
->data
, len
);
3037 * skb_pull_rcsum - pull skb and update receive checksum
3038 * @skb: buffer to update
3039 * @len: length of data pulled
3041 * This function performs an skb_pull on the packet and updates
3042 * the CHECKSUM_COMPLETE checksum. It should be used on
3043 * receive path processing instead of skb_pull unless you know
3044 * that the checksum difference is zero (e.g., a valid IP header)
3045 * or you are setting ip_summed to CHECKSUM_NONE.
3047 unsigned char *skb_pull_rcsum(struct sk_buff
*skb
, unsigned int len
)
3049 unsigned char *data
= skb
->data
;
3051 BUG_ON(len
> skb
->len
);
3052 __skb_pull(skb
, len
);
3053 skb_postpull_rcsum(skb
, data
, len
);
3056 EXPORT_SYMBOL_GPL(skb_pull_rcsum
);
3059 * skb_segment - Perform protocol segmentation on skb.
3060 * @head_skb: buffer to segment
3061 * @features: features for the output path (see dev->features)
3063 * This function performs segmentation on the given skb. It returns
3064 * a pointer to the first in a list of new skbs for the segments.
3065 * In case of error it returns ERR_PTR(err).
3067 struct sk_buff
*skb_segment(struct sk_buff
*head_skb
,
3068 netdev_features_t features
)
3070 struct sk_buff
*segs
= NULL
;
3071 struct sk_buff
*tail
= NULL
;
3072 struct sk_buff
*list_skb
= skb_shinfo(head_skb
)->frag_list
;
3073 skb_frag_t
*frag
= skb_shinfo(head_skb
)->frags
;
3074 unsigned int mss
= skb_shinfo(head_skb
)->gso_size
;
3075 unsigned int doffset
= head_skb
->data
- skb_mac_header(head_skb
);
3076 struct sk_buff
*frag_skb
= head_skb
;
3077 unsigned int offset
= doffset
;
3078 unsigned int tnl_hlen
= skb_tnl_header_len(head_skb
);
3079 unsigned int headroom
;
3083 int sg
= !!(features
& NETIF_F_SG
);
3084 int nfrags
= skb_shinfo(head_skb
)->nr_frags
;
3090 __skb_push(head_skb
, doffset
);
3091 proto
= skb_network_protocol(head_skb
, &dummy
);
3092 if (unlikely(!proto
))
3093 return ERR_PTR(-EINVAL
);
3095 csum
= !!can_checksum_protocol(features
, proto
);
3097 headroom
= skb_headroom(head_skb
);
3098 pos
= skb_headlen(head_skb
);
3101 struct sk_buff
*nskb
;
3102 skb_frag_t
*nskb_frag
;
3106 len
= head_skb
->len
- offset
;
3110 hsize
= skb_headlen(head_skb
) - offset
;
3113 if (hsize
> len
|| !sg
)
3116 if (!hsize
&& i
>= nfrags
&& skb_headlen(list_skb
) &&
3117 (skb_headlen(list_skb
) == len
|| sg
)) {
3118 BUG_ON(skb_headlen(list_skb
) > len
);
3121 nfrags
= skb_shinfo(list_skb
)->nr_frags
;
3122 frag
= skb_shinfo(list_skb
)->frags
;
3123 frag_skb
= list_skb
;
3124 pos
+= skb_headlen(list_skb
);
3126 while (pos
< offset
+ len
) {
3127 BUG_ON(i
>= nfrags
);
3129 size
= skb_frag_size(frag
);
3130 if (pos
+ size
> offset
+ len
)
3138 nskb
= skb_clone(list_skb
, GFP_ATOMIC
);
3139 list_skb
= list_skb
->next
;
3141 if (unlikely(!nskb
))
3144 if (unlikely(pskb_trim(nskb
, len
))) {
3149 hsize
= skb_end_offset(nskb
);
3150 if (skb_cow_head(nskb
, doffset
+ headroom
)) {
3155 nskb
->truesize
+= skb_end_offset(nskb
) - hsize
;
3156 skb_release_head_state(nskb
);
3157 __skb_push(nskb
, doffset
);
3159 nskb
= __alloc_skb(hsize
+ doffset
+ headroom
,
3160 GFP_ATOMIC
, skb_alloc_rx_flag(head_skb
),
3163 if (unlikely(!nskb
))
3166 skb_reserve(nskb
, headroom
);
3167 __skb_put(nskb
, doffset
);
3176 __copy_skb_header(nskb
, head_skb
);
3178 skb_headers_offset_update(nskb
, skb_headroom(nskb
) - headroom
);
3179 skb_reset_mac_len(nskb
);
3181 skb_copy_from_linear_data_offset(head_skb
, -tnl_hlen
,
3182 nskb
->data
- tnl_hlen
,
3183 doffset
+ tnl_hlen
);
3185 if (nskb
->len
== len
+ doffset
)
3186 goto perform_csum_check
;
3189 if (!nskb
->remcsum_offload
)
3190 nskb
->ip_summed
= CHECKSUM_NONE
;
3191 SKB_GSO_CB(nskb
)->csum
=
3192 skb_copy_and_csum_bits(head_skb
, offset
,
3195 SKB_GSO_CB(nskb
)->csum_start
=
3196 skb_headroom(nskb
) + doffset
;
3200 nskb_frag
= skb_shinfo(nskb
)->frags
;
3202 skb_copy_from_linear_data_offset(head_skb
, offset
,
3203 skb_put(nskb
, hsize
), hsize
);
3205 skb_shinfo(nskb
)->tx_flags
= skb_shinfo(head_skb
)->tx_flags
&
3208 while (pos
< offset
+ len
) {
3210 BUG_ON(skb_headlen(list_skb
));
3213 nfrags
= skb_shinfo(list_skb
)->nr_frags
;
3214 frag
= skb_shinfo(list_skb
)->frags
;
3215 frag_skb
= list_skb
;
3219 list_skb
= list_skb
->next
;
3222 if (unlikely(skb_shinfo(nskb
)->nr_frags
>=
3224 net_warn_ratelimited(
3225 "skb_segment: too many frags: %u %u\n",
3230 if (unlikely(skb_orphan_frags(frag_skb
, GFP_ATOMIC
)))
3234 __skb_frag_ref(nskb_frag
);
3235 size
= skb_frag_size(nskb_frag
);
3238 nskb_frag
->page_offset
+= offset
- pos
;
3239 skb_frag_size_sub(nskb_frag
, offset
- pos
);
3242 skb_shinfo(nskb
)->nr_frags
++;
3244 if (pos
+ size
<= offset
+ len
) {
3249 skb_frag_size_sub(nskb_frag
, pos
+ size
- (offset
+ len
));
3257 nskb
->data_len
= len
- hsize
;
3258 nskb
->len
+= nskb
->data_len
;
3259 nskb
->truesize
+= nskb
->data_len
;
3263 if (skb_has_shared_frag(nskb
)) {
3264 err
= __skb_linearize(nskb
);
3268 if (!nskb
->remcsum_offload
)
3269 nskb
->ip_summed
= CHECKSUM_NONE
;
3270 SKB_GSO_CB(nskb
)->csum
=
3271 skb_checksum(nskb
, doffset
,
3272 nskb
->len
- doffset
, 0);
3273 SKB_GSO_CB(nskb
)->csum_start
=
3274 skb_headroom(nskb
) + doffset
;
3276 } while ((offset
+= len
) < head_skb
->len
);
3278 /* Some callers want to get the end of the list.
3279 * Put it in segs->prev to avoid walking the list.
3280 * (see validate_xmit_skb_list() for example)
3284 /* Following permits correct backpressure, for protocols
3285 * using skb_set_owner_w().
3286 * Idea is to tranfert ownership from head_skb to last segment.
3288 if (head_skb
->destructor
== sock_wfree
) {
3289 swap(tail
->truesize
, head_skb
->truesize
);
3290 swap(tail
->destructor
, head_skb
->destructor
);
3291 swap(tail
->sk
, head_skb
->sk
);
3296 kfree_skb_list(segs
);
3297 return ERR_PTR(err
);
3299 EXPORT_SYMBOL_GPL(skb_segment
);
3301 int skb_gro_receive(struct sk_buff
**head
, struct sk_buff
*skb
)
3303 struct skb_shared_info
*pinfo
, *skbinfo
= skb_shinfo(skb
);
3304 unsigned int offset
= skb_gro_offset(skb
);
3305 unsigned int headlen
= skb_headlen(skb
);
3306 unsigned int len
= skb_gro_len(skb
);
3307 struct sk_buff
*lp
, *p
= *head
;
3308 unsigned int delta_truesize
;
3310 if (unlikely(p
->len
+ len
>= 65536))
3313 lp
= NAPI_GRO_CB(p
)->last
;
3314 pinfo
= skb_shinfo(lp
);
3316 if (headlen
<= offset
) {
3319 int i
= skbinfo
->nr_frags
;
3320 int nr_frags
= pinfo
->nr_frags
+ i
;
3322 if (nr_frags
> MAX_SKB_FRAGS
)
3326 pinfo
->nr_frags
= nr_frags
;
3327 skbinfo
->nr_frags
= 0;
3329 frag
= pinfo
->frags
+ nr_frags
;
3330 frag2
= skbinfo
->frags
+ i
;
3335 frag
->page_offset
+= offset
;
3336 skb_frag_size_sub(frag
, offset
);
3338 /* all fragments truesize : remove (head size + sk_buff) */
3339 delta_truesize
= skb
->truesize
-
3340 SKB_TRUESIZE(skb_end_offset(skb
));
3342 skb
->truesize
-= skb
->data_len
;
3343 skb
->len
-= skb
->data_len
;
3346 NAPI_GRO_CB(skb
)->free
= NAPI_GRO_FREE
;
3348 } else if (skb
->head_frag
) {
3349 int nr_frags
= pinfo
->nr_frags
;
3350 skb_frag_t
*frag
= pinfo
->frags
+ nr_frags
;
3351 struct page
*page
= virt_to_head_page(skb
->head
);
3352 unsigned int first_size
= headlen
- offset
;
3353 unsigned int first_offset
;
3355 if (nr_frags
+ 1 + skbinfo
->nr_frags
> MAX_SKB_FRAGS
)
3358 first_offset
= skb
->data
-
3359 (unsigned char *)page_address(page
) +
3362 pinfo
->nr_frags
= nr_frags
+ 1 + skbinfo
->nr_frags
;
3364 frag
->page
.p
= page
;
3365 frag
->page_offset
= first_offset
;
3366 skb_frag_size_set(frag
, first_size
);
3368 memcpy(frag
+ 1, skbinfo
->frags
, sizeof(*frag
) * skbinfo
->nr_frags
);
3369 /* We dont need to clear skbinfo->nr_frags here */
3371 delta_truesize
= skb
->truesize
- SKB_DATA_ALIGN(sizeof(struct sk_buff
));
3372 NAPI_GRO_CB(skb
)->free
= NAPI_GRO_FREE_STOLEN_HEAD
;
3377 delta_truesize
= skb
->truesize
;
3378 if (offset
> headlen
) {
3379 unsigned int eat
= offset
- headlen
;
3381 skbinfo
->frags
[0].page_offset
+= eat
;
3382 skb_frag_size_sub(&skbinfo
->frags
[0], eat
);
3383 skb
->data_len
-= eat
;
3388 __skb_pull(skb
, offset
);
3390 if (NAPI_GRO_CB(p
)->last
== p
)
3391 skb_shinfo(p
)->frag_list
= skb
;
3393 NAPI_GRO_CB(p
)->last
->next
= skb
;
3394 NAPI_GRO_CB(p
)->last
= skb
;
3395 __skb_header_release(skb
);
3399 NAPI_GRO_CB(p
)->count
++;
3401 p
->truesize
+= delta_truesize
;
3404 lp
->data_len
+= len
;
3405 lp
->truesize
+= delta_truesize
;
3408 NAPI_GRO_CB(skb
)->same_flow
= 1;
3412 void __init
skb_init(void)
3414 skbuff_head_cache
= kmem_cache_create("skbuff_head_cache",
3415 sizeof(struct sk_buff
),
3417 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
,
3419 skbuff_fclone_cache
= kmem_cache_create("skbuff_fclone_cache",
3420 sizeof(struct sk_buff_fclones
),
3422 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
,
3427 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
3428 * @skb: Socket buffer containing the buffers to be mapped
3429 * @sg: The scatter-gather list to map into
3430 * @offset: The offset into the buffer's contents to start mapping
3431 * @len: Length of buffer space to be mapped
3433 * Fill the specified scatter-gather list with mappings/pointers into a
3434 * region of the buffer space attached to a socket buffer.
3437 __skb_to_sgvec(struct sk_buff
*skb
, struct scatterlist
*sg
, int offset
, int len
)
3439 int start
= skb_headlen(skb
);
3440 int i
, copy
= start
- offset
;
3441 struct sk_buff
*frag_iter
;
3447 sg_set_buf(sg
, skb
->data
+ offset
, copy
);
3449 if ((len
-= copy
) == 0)
3454 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
3457 WARN_ON(start
> offset
+ len
);
3459 end
= start
+ skb_frag_size(&skb_shinfo(skb
)->frags
[i
]);
3460 if ((copy
= end
- offset
) > 0) {
3461 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
3465 sg_set_page(&sg
[elt
], skb_frag_page(frag
), copy
,
3466 frag
->page_offset
+offset
-start
);
3475 skb_walk_frags(skb
, frag_iter
) {
3478 WARN_ON(start
> offset
+ len
);
3480 end
= start
+ frag_iter
->len
;
3481 if ((copy
= end
- offset
) > 0) {
3484 elt
+= __skb_to_sgvec(frag_iter
, sg
+elt
, offset
- start
,
3486 if ((len
-= copy
) == 0)
3496 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
3497 * sglist without mark the sg which contain last skb data as the end.
3498 * So the caller can mannipulate sg list as will when padding new data after
3499 * the first call without calling sg_unmark_end to expend sg list.
3501 * Scenario to use skb_to_sgvec_nomark:
3503 * 2. skb_to_sgvec_nomark(payload1)
3504 * 3. skb_to_sgvec_nomark(payload2)
3506 * This is equivalent to:
3508 * 2. skb_to_sgvec(payload1)
3510 * 4. skb_to_sgvec(payload2)
3512 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
3513 * is more preferable.
3515 int skb_to_sgvec_nomark(struct sk_buff
*skb
, struct scatterlist
*sg
,
3516 int offset
, int len
)
3518 return __skb_to_sgvec(skb
, sg
, offset
, len
);
3520 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark
);
3522 int skb_to_sgvec(struct sk_buff
*skb
, struct scatterlist
*sg
, int offset
, int len
)
3524 int nsg
= __skb_to_sgvec(skb
, sg
, offset
, len
);
3526 sg_mark_end(&sg
[nsg
- 1]);
3530 EXPORT_SYMBOL_GPL(skb_to_sgvec
);
3533 * skb_cow_data - Check that a socket buffer's data buffers are writable
3534 * @skb: The socket buffer to check.
3535 * @tailbits: Amount of trailing space to be added
3536 * @trailer: Returned pointer to the skb where the @tailbits space begins
3538 * Make sure that the data buffers attached to a socket buffer are
3539 * writable. If they are not, private copies are made of the data buffers
3540 * and the socket buffer is set to use these instead.
3542 * If @tailbits is given, make sure that there is space to write @tailbits
3543 * bytes of data beyond current end of socket buffer. @trailer will be
3544 * set to point to the skb in which this space begins.
3546 * The number of scatterlist elements required to completely map the
3547 * COW'd and extended socket buffer will be returned.
3549 int skb_cow_data(struct sk_buff
*skb
, int tailbits
, struct sk_buff
**trailer
)
3553 struct sk_buff
*skb1
, **skb_p
;
3555 /* If skb is cloned or its head is paged, reallocate
3556 * head pulling out all the pages (pages are considered not writable
3557 * at the moment even if they are anonymous).
3559 if ((skb_cloned(skb
) || skb_shinfo(skb
)->nr_frags
) &&
3560 __pskb_pull_tail(skb
, skb_pagelen(skb
)-skb_headlen(skb
)) == NULL
)
3563 /* Easy case. Most of packets will go this way. */
3564 if (!skb_has_frag_list(skb
)) {
3565 /* A little of trouble, not enough of space for trailer.
3566 * This should not happen, when stack is tuned to generate
3567 * good frames. OK, on miss we reallocate and reserve even more
3568 * space, 128 bytes is fair. */
3570 if (skb_tailroom(skb
) < tailbits
&&
3571 pskb_expand_head(skb
, 0, tailbits
-skb_tailroom(skb
)+128, GFP_ATOMIC
))
3579 /* Misery. We are in troubles, going to mincer fragments... */
3582 skb_p
= &skb_shinfo(skb
)->frag_list
;
3585 while ((skb1
= *skb_p
) != NULL
) {
3588 /* The fragment is partially pulled by someone,
3589 * this can happen on input. Copy it and everything
3592 if (skb_shared(skb1
))
3595 /* If the skb is the last, worry about trailer. */
3597 if (skb1
->next
== NULL
&& tailbits
) {
3598 if (skb_shinfo(skb1
)->nr_frags
||
3599 skb_has_frag_list(skb1
) ||
3600 skb_tailroom(skb1
) < tailbits
)
3601 ntail
= tailbits
+ 128;
3607 skb_shinfo(skb1
)->nr_frags
||
3608 skb_has_frag_list(skb1
)) {
3609 struct sk_buff
*skb2
;
3611 /* Fuck, we are miserable poor guys... */
3613 skb2
= skb_copy(skb1
, GFP_ATOMIC
);
3615 skb2
= skb_copy_expand(skb1
,
3619 if (unlikely(skb2
== NULL
))
3623 skb_set_owner_w(skb2
, skb1
->sk
);
3625 /* Looking around. Are we still alive?
3626 * OK, link new skb, drop old one */
3628 skb2
->next
= skb1
->next
;
3635 skb_p
= &skb1
->next
;
3640 EXPORT_SYMBOL_GPL(skb_cow_data
);
3642 static void sock_rmem_free(struct sk_buff
*skb
)
3644 struct sock
*sk
= skb
->sk
;
3646 atomic_sub(skb
->truesize
, &sk
->sk_rmem_alloc
);
3650 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3652 int sock_queue_err_skb(struct sock
*sk
, struct sk_buff
*skb
)
3654 if (atomic_read(&sk
->sk_rmem_alloc
) + skb
->truesize
>=
3655 (unsigned int)sk
->sk_rcvbuf
)
3660 skb
->destructor
= sock_rmem_free
;
3661 atomic_add(skb
->truesize
, &sk
->sk_rmem_alloc
);
3663 /* before exiting rcu section, make sure dst is refcounted */
3666 skb_queue_tail(&sk
->sk_error_queue
, skb
);
3667 if (!sock_flag(sk
, SOCK_DEAD
))
3668 sk
->sk_data_ready(sk
);
3671 EXPORT_SYMBOL(sock_queue_err_skb
);
3673 struct sk_buff
*sock_dequeue_err_skb(struct sock
*sk
)
3675 struct sk_buff_head
*q
= &sk
->sk_error_queue
;
3676 struct sk_buff
*skb
, *skb_next
;
3677 unsigned long flags
;
3680 spin_lock_irqsave(&q
->lock
, flags
);
3681 skb
= __skb_dequeue(q
);
3682 if (skb
&& (skb_next
= skb_peek(q
)))
3683 err
= SKB_EXT_ERR(skb_next
)->ee
.ee_errno
;
3684 spin_unlock_irqrestore(&q
->lock
, flags
);
3688 sk
->sk_error_report(sk
);
3692 EXPORT_SYMBOL(sock_dequeue_err_skb
);
3695 * skb_clone_sk - create clone of skb, and take reference to socket
3696 * @skb: the skb to clone
3698 * This function creates a clone of a buffer that holds a reference on
3699 * sk_refcnt. Buffers created via this function are meant to be
3700 * returned using sock_queue_err_skb, or free via kfree_skb.
3702 * When passing buffers allocated with this function to sock_queue_err_skb
3703 * it is necessary to wrap the call with sock_hold/sock_put in order to
3704 * prevent the socket from being released prior to being enqueued on
3705 * the sk_error_queue.
3707 struct sk_buff
*skb_clone_sk(struct sk_buff
*skb
)
3709 struct sock
*sk
= skb
->sk
;
3710 struct sk_buff
*clone
;
3712 if (!sk
|| !atomic_inc_not_zero(&sk
->sk_refcnt
))
3715 clone
= skb_clone(skb
, GFP_ATOMIC
);
3722 clone
->destructor
= sock_efree
;
3726 EXPORT_SYMBOL(skb_clone_sk
);
3728 static void __skb_complete_tx_timestamp(struct sk_buff
*skb
,
3732 struct sock_exterr_skb
*serr
;
3735 serr
= SKB_EXT_ERR(skb
);
3736 memset(serr
, 0, sizeof(*serr
));
3737 serr
->ee
.ee_errno
= ENOMSG
;
3738 serr
->ee
.ee_origin
= SO_EE_ORIGIN_TIMESTAMPING
;
3739 serr
->ee
.ee_info
= tstype
;
3740 if (sk
->sk_tsflags
& SOF_TIMESTAMPING_OPT_ID
) {
3741 serr
->ee
.ee_data
= skb_shinfo(skb
)->tskey
;
3742 if (sk
->sk_protocol
== IPPROTO_TCP
&&
3743 sk
->sk_type
== SOCK_STREAM
)
3744 serr
->ee
.ee_data
-= sk
->sk_tskey
;
3747 err
= sock_queue_err_skb(sk
, skb
);
3753 static bool skb_may_tx_timestamp(struct sock
*sk
, bool tsonly
)
3757 if (likely(sysctl_tstamp_allow_data
|| tsonly
))
3760 read_lock_bh(&sk
->sk_callback_lock
);
3761 ret
= sk
->sk_socket
&& sk
->sk_socket
->file
&&
3762 file_ns_capable(sk
->sk_socket
->file
, &init_user_ns
, CAP_NET_RAW
);
3763 read_unlock_bh(&sk
->sk_callback_lock
);
3767 void skb_complete_tx_timestamp(struct sk_buff
*skb
,
3768 struct skb_shared_hwtstamps
*hwtstamps
)
3770 struct sock
*sk
= skb
->sk
;
3772 if (!skb_may_tx_timestamp(sk
, false))
3775 /* take a reference to prevent skb_orphan() from freeing the socket */
3778 *skb_hwtstamps(skb
) = *hwtstamps
;
3779 __skb_complete_tx_timestamp(skb
, sk
, SCM_TSTAMP_SND
);
3783 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp
);
3785 void __skb_tstamp_tx(struct sk_buff
*orig_skb
,
3786 struct skb_shared_hwtstamps
*hwtstamps
,
3787 struct sock
*sk
, int tstype
)
3789 struct sk_buff
*skb
;
3795 tsonly
= sk
->sk_tsflags
& SOF_TIMESTAMPING_OPT_TSONLY
;
3796 if (!skb_may_tx_timestamp(sk
, tsonly
))
3800 skb
= alloc_skb(0, GFP_ATOMIC
);
3802 skb
= skb_clone(orig_skb
, GFP_ATOMIC
);
3807 skb_shinfo(skb
)->tx_flags
= skb_shinfo(orig_skb
)->tx_flags
;
3808 skb_shinfo(skb
)->tskey
= skb_shinfo(orig_skb
)->tskey
;
3812 *skb_hwtstamps(skb
) = *hwtstamps
;
3814 skb
->tstamp
= ktime_get_real();
3816 __skb_complete_tx_timestamp(skb
, sk
, tstype
);
3818 EXPORT_SYMBOL_GPL(__skb_tstamp_tx
);
3820 void skb_tstamp_tx(struct sk_buff
*orig_skb
,
3821 struct skb_shared_hwtstamps
*hwtstamps
)
3823 return __skb_tstamp_tx(orig_skb
, hwtstamps
, orig_skb
->sk
,
3826 EXPORT_SYMBOL_GPL(skb_tstamp_tx
);
3828 void skb_complete_wifi_ack(struct sk_buff
*skb
, bool acked
)
3830 struct sock
*sk
= skb
->sk
;
3831 struct sock_exterr_skb
*serr
;
3834 skb
->wifi_acked_valid
= 1;
3835 skb
->wifi_acked
= acked
;
3837 serr
= SKB_EXT_ERR(skb
);
3838 memset(serr
, 0, sizeof(*serr
));
3839 serr
->ee
.ee_errno
= ENOMSG
;
3840 serr
->ee
.ee_origin
= SO_EE_ORIGIN_TXSTATUS
;
3842 /* take a reference to prevent skb_orphan() from freeing the socket */
3845 err
= sock_queue_err_skb(sk
, skb
);
3851 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack
);
3854 * skb_partial_csum_set - set up and verify partial csum values for packet
3855 * @skb: the skb to set
3856 * @start: the number of bytes after skb->data to start checksumming.
3857 * @off: the offset from start to place the checksum.
3859 * For untrusted partially-checksummed packets, we need to make sure the values
3860 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3862 * This function checks and sets those values and skb->ip_summed: if this
3863 * returns false you should drop the packet.
3865 bool skb_partial_csum_set(struct sk_buff
*skb
, u16 start
, u16 off
)
3867 if (unlikely(start
> skb_headlen(skb
)) ||
3868 unlikely((int)start
+ off
> skb_headlen(skb
) - 2)) {
3869 net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
3870 start
, off
, skb_headlen(skb
));
3873 skb
->ip_summed
= CHECKSUM_PARTIAL
;
3874 skb
->csum_start
= skb_headroom(skb
) + start
;
3875 skb
->csum_offset
= off
;
3876 skb_set_transport_header(skb
, start
);
3879 EXPORT_SYMBOL_GPL(skb_partial_csum_set
);
3881 static int skb_maybe_pull_tail(struct sk_buff
*skb
, unsigned int len
,
3884 if (skb_headlen(skb
) >= len
)
3887 /* If we need to pullup then pullup to the max, so we
3888 * won't need to do it again.
3893 if (__pskb_pull_tail(skb
, max
- skb_headlen(skb
)) == NULL
)
3896 if (skb_headlen(skb
) < len
)
3902 #define MAX_TCP_HDR_LEN (15 * 4)
3904 static __sum16
*skb_checksum_setup_ip(struct sk_buff
*skb
,
3905 typeof(IPPROTO_IP
) proto
,
3912 err
= skb_maybe_pull_tail(skb
, off
+ sizeof(struct tcphdr
),
3913 off
+ MAX_TCP_HDR_LEN
);
3914 if (!err
&& !skb_partial_csum_set(skb
, off
,
3915 offsetof(struct tcphdr
,
3918 return err
? ERR_PTR(err
) : &tcp_hdr(skb
)->check
;
3921 err
= skb_maybe_pull_tail(skb
, off
+ sizeof(struct udphdr
),
3922 off
+ sizeof(struct udphdr
));
3923 if (!err
&& !skb_partial_csum_set(skb
, off
,
3924 offsetof(struct udphdr
,
3927 return err
? ERR_PTR(err
) : &udp_hdr(skb
)->check
;
3930 return ERR_PTR(-EPROTO
);
3933 /* This value should be large enough to cover a tagged ethernet header plus
3934 * maximally sized IP and TCP or UDP headers.
3936 #define MAX_IP_HDR_LEN 128
3938 static int skb_checksum_setup_ipv4(struct sk_buff
*skb
, bool recalculate
)
3947 err
= skb_maybe_pull_tail(skb
,
3948 sizeof(struct iphdr
),
3953 if (ip_hdr(skb
)->frag_off
& htons(IP_OFFSET
| IP_MF
))
3956 off
= ip_hdrlen(skb
);
3963 csum
= skb_checksum_setup_ip(skb
, ip_hdr(skb
)->protocol
, off
);
3965 return PTR_ERR(csum
);
3968 *csum
= ~csum_tcpudp_magic(ip_hdr(skb
)->saddr
,
3971 ip_hdr(skb
)->protocol
, 0);
3978 /* This value should be large enough to cover a tagged ethernet header plus
3979 * an IPv6 header, all options, and a maximal TCP or UDP header.
3981 #define MAX_IPV6_HDR_LEN 256
3983 #define OPT_HDR(type, skb, off) \
3984 (type *)(skb_network_header(skb) + (off))
3986 static int skb_checksum_setup_ipv6(struct sk_buff
*skb
, bool recalculate
)
3999 off
= sizeof(struct ipv6hdr
);
4001 err
= skb_maybe_pull_tail(skb
, off
, MAX_IPV6_HDR_LEN
);
4005 nexthdr
= ipv6_hdr(skb
)->nexthdr
;
4007 len
= sizeof(struct ipv6hdr
) + ntohs(ipv6_hdr(skb
)->payload_len
);
4008 while (off
<= len
&& !done
) {
4010 case IPPROTO_DSTOPTS
:
4011 case IPPROTO_HOPOPTS
:
4012 case IPPROTO_ROUTING
: {
4013 struct ipv6_opt_hdr
*hp
;
4015 err
= skb_maybe_pull_tail(skb
,
4017 sizeof(struct ipv6_opt_hdr
),
4022 hp
= OPT_HDR(struct ipv6_opt_hdr
, skb
, off
);
4023 nexthdr
= hp
->nexthdr
;
4024 off
+= ipv6_optlen(hp
);
4028 struct ip_auth_hdr
*hp
;
4030 err
= skb_maybe_pull_tail(skb
,
4032 sizeof(struct ip_auth_hdr
),
4037 hp
= OPT_HDR(struct ip_auth_hdr
, skb
, off
);
4038 nexthdr
= hp
->nexthdr
;
4039 off
+= ipv6_authlen(hp
);
4042 case IPPROTO_FRAGMENT
: {
4043 struct frag_hdr
*hp
;
4045 err
= skb_maybe_pull_tail(skb
,
4047 sizeof(struct frag_hdr
),
4052 hp
= OPT_HDR(struct frag_hdr
, skb
, off
);
4054 if (hp
->frag_off
& htons(IP6_OFFSET
| IP6_MF
))
4057 nexthdr
= hp
->nexthdr
;
4058 off
+= sizeof(struct frag_hdr
);
4069 if (!done
|| fragment
)
4072 csum
= skb_checksum_setup_ip(skb
, nexthdr
, off
);
4074 return PTR_ERR(csum
);
4077 *csum
= ~csum_ipv6_magic(&ipv6_hdr(skb
)->saddr
,
4078 &ipv6_hdr(skb
)->daddr
,
4079 skb
->len
- off
, nexthdr
, 0);
4087 * skb_checksum_setup - set up partial checksum offset
4088 * @skb: the skb to set up
4089 * @recalculate: if true the pseudo-header checksum will be recalculated
4091 int skb_checksum_setup(struct sk_buff
*skb
, bool recalculate
)
4095 switch (skb
->protocol
) {
4096 case htons(ETH_P_IP
):
4097 err
= skb_checksum_setup_ipv4(skb
, recalculate
);
4100 case htons(ETH_P_IPV6
):
4101 err
= skb_checksum_setup_ipv6(skb
, recalculate
);
4111 EXPORT_SYMBOL(skb_checksum_setup
);
4114 * skb_checksum_maybe_trim - maybe trims the given skb
4115 * @skb: the skb to check
4116 * @transport_len: the data length beyond the network header
4118 * Checks whether the given skb has data beyond the given transport length.
4119 * If so, returns a cloned skb trimmed to this transport length.
4120 * Otherwise returns the provided skb. Returns NULL in error cases
4121 * (e.g. transport_len exceeds skb length or out-of-memory).
4123 * Caller needs to set the skb transport header and free any returned skb if it
4124 * differs from the provided skb.
4126 static struct sk_buff
*skb_checksum_maybe_trim(struct sk_buff
*skb
,
4127 unsigned int transport_len
)
4129 struct sk_buff
*skb_chk
;
4130 unsigned int len
= skb_transport_offset(skb
) + transport_len
;
4135 else if (skb
->len
== len
)
4138 skb_chk
= skb_clone(skb
, GFP_ATOMIC
);
4142 ret
= pskb_trim_rcsum(skb_chk
, len
);
4152 * skb_checksum_trimmed - validate checksum of an skb
4153 * @skb: the skb to check
4154 * @transport_len: the data length beyond the network header
4155 * @skb_chkf: checksum function to use
4157 * Applies the given checksum function skb_chkf to the provided skb.
4158 * Returns a checked and maybe trimmed skb. Returns NULL on error.
4160 * If the skb has data beyond the given transport length, then a
4161 * trimmed & cloned skb is checked and returned.
4163 * Caller needs to set the skb transport header and free any returned skb if it
4164 * differs from the provided skb.
4166 struct sk_buff
*skb_checksum_trimmed(struct sk_buff
*skb
,
4167 unsigned int transport_len
,
4168 __sum16(*skb_chkf
)(struct sk_buff
*skb
))
4170 struct sk_buff
*skb_chk
;
4171 unsigned int offset
= skb_transport_offset(skb
);
4174 skb_chk
= skb_checksum_maybe_trim(skb
, transport_len
);
4178 if (!pskb_may_pull(skb_chk
, offset
))
4181 skb_pull_rcsum(skb_chk
, offset
);
4182 ret
= skb_chkf(skb_chk
);
4183 skb_push_rcsum(skb_chk
, offset
);
4191 if (skb_chk
&& skb_chk
!= skb
)
4197 EXPORT_SYMBOL(skb_checksum_trimmed
);
4199 void __skb_warn_lro_forwarding(const struct sk_buff
*skb
)
4201 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
4204 EXPORT_SYMBOL(__skb_warn_lro_forwarding
);
4206 void kfree_skb_partial(struct sk_buff
*skb
, bool head_stolen
)
4209 skb_release_head_state(skb
);
4210 kmem_cache_free(skbuff_head_cache
, skb
);
4215 EXPORT_SYMBOL(kfree_skb_partial
);
4218 * skb_try_coalesce - try to merge skb to prior one
4220 * @from: buffer to add
4221 * @fragstolen: pointer to boolean
4222 * @delta_truesize: how much more was allocated than was requested
4224 bool skb_try_coalesce(struct sk_buff
*to
, struct sk_buff
*from
,
4225 bool *fragstolen
, int *delta_truesize
)
4227 int i
, delta
, len
= from
->len
;
4229 *fragstolen
= false;
4234 if (len
<= skb_tailroom(to
)) {
4236 BUG_ON(skb_copy_bits(from
, 0, skb_put(to
, len
), len
));
4237 *delta_truesize
= 0;
4241 if (skb_has_frag_list(to
) || skb_has_frag_list(from
))
4244 if (skb_headlen(from
) != 0) {
4246 unsigned int offset
;
4248 if (skb_shinfo(to
)->nr_frags
+
4249 skb_shinfo(from
)->nr_frags
>= MAX_SKB_FRAGS
)
4252 if (skb_head_is_locked(from
))
4255 delta
= from
->truesize
- SKB_DATA_ALIGN(sizeof(struct sk_buff
));
4257 page
= virt_to_head_page(from
->head
);
4258 offset
= from
->data
- (unsigned char *)page_address(page
);
4260 skb_fill_page_desc(to
, skb_shinfo(to
)->nr_frags
,
4261 page
, offset
, skb_headlen(from
));
4264 if (skb_shinfo(to
)->nr_frags
+
4265 skb_shinfo(from
)->nr_frags
> MAX_SKB_FRAGS
)
4268 delta
= from
->truesize
- SKB_TRUESIZE(skb_end_offset(from
));
4271 WARN_ON_ONCE(delta
< len
);
4273 memcpy(skb_shinfo(to
)->frags
+ skb_shinfo(to
)->nr_frags
,
4274 skb_shinfo(from
)->frags
,
4275 skb_shinfo(from
)->nr_frags
* sizeof(skb_frag_t
));
4276 skb_shinfo(to
)->nr_frags
+= skb_shinfo(from
)->nr_frags
;
4278 if (!skb_cloned(from
))
4279 skb_shinfo(from
)->nr_frags
= 0;
4281 /* if the skb is not cloned this does nothing
4282 * since we set nr_frags to 0.
4284 for (i
= 0; i
< skb_shinfo(from
)->nr_frags
; i
++)
4285 skb_frag_ref(from
, i
);
4287 to
->truesize
+= delta
;
4289 to
->data_len
+= len
;
4291 *delta_truesize
= delta
;
4294 EXPORT_SYMBOL(skb_try_coalesce
);
4297 * skb_scrub_packet - scrub an skb
4299 * @skb: buffer to clean
4300 * @xnet: packet is crossing netns
4302 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
4303 * into/from a tunnel. Some information have to be cleared during these
4305 * skb_scrub_packet can also be used to clean a skb before injecting it in
4306 * another namespace (@xnet == true). We have to clear all information in the
4307 * skb that could impact namespace isolation.
4309 void skb_scrub_packet(struct sk_buff
*skb
, bool xnet
)
4311 skb
->tstamp
.tv64
= 0;
4312 skb
->pkt_type
= PACKET_HOST
;
4318 nf_reset_trace(skb
);
4326 EXPORT_SYMBOL_GPL(skb_scrub_packet
);
4329 * skb_gso_transport_seglen - Return length of individual segments of a gso packet
4333 * skb_gso_transport_seglen is used to determine the real size of the
4334 * individual segments, including Layer4 headers (TCP/UDP).
4336 * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
4338 unsigned int skb_gso_transport_seglen(const struct sk_buff
*skb
)
4340 const struct skb_shared_info
*shinfo
= skb_shinfo(skb
);
4341 unsigned int thlen
= 0;
4343 if (skb
->encapsulation
) {
4344 thlen
= skb_inner_transport_header(skb
) -
4345 skb_transport_header(skb
);
4347 if (likely(shinfo
->gso_type
& (SKB_GSO_TCPV4
| SKB_GSO_TCPV6
)))
4348 thlen
+= inner_tcp_hdrlen(skb
);
4349 } else if (likely(shinfo
->gso_type
& (SKB_GSO_TCPV4
| SKB_GSO_TCPV6
))) {
4350 thlen
= tcp_hdrlen(skb
);
4352 /* UFO sets gso_size to the size of the fragmentation
4353 * payload, i.e. the size of the L4 (UDP) header is already
4356 return thlen
+ shinfo
->gso_size
;
4358 EXPORT_SYMBOL_GPL(skb_gso_transport_seglen
);
4360 static struct sk_buff
*skb_reorder_vlan_header(struct sk_buff
*skb
)
4362 if (skb_cow(skb
, skb_headroom(skb
)) < 0) {
4367 memmove(skb
->data
- ETH_HLEN
, skb
->data
- skb
->mac_len
- VLAN_HLEN
,
4369 skb
->mac_header
+= VLAN_HLEN
;
4373 struct sk_buff
*skb_vlan_untag(struct sk_buff
*skb
)
4375 struct vlan_hdr
*vhdr
;
4378 if (unlikely(skb_vlan_tag_present(skb
))) {
4379 /* vlan_tci is already set-up so leave this for another time */
4383 skb
= skb_share_check(skb
, GFP_ATOMIC
);
4387 if (unlikely(!pskb_may_pull(skb
, VLAN_HLEN
)))
4390 vhdr
= (struct vlan_hdr
*)skb
->data
;
4391 vlan_tci
= ntohs(vhdr
->h_vlan_TCI
);
4392 __vlan_hwaccel_put_tag(skb
, skb
->protocol
, vlan_tci
);
4394 skb_pull_rcsum(skb
, VLAN_HLEN
);
4395 vlan_set_encap_proto(skb
, vhdr
);
4397 skb
= skb_reorder_vlan_header(skb
);
4401 skb_reset_network_header(skb
);
4402 skb_reset_transport_header(skb
);
4403 skb_reset_mac_len(skb
);
4411 EXPORT_SYMBOL(skb_vlan_untag
);
4413 int skb_ensure_writable(struct sk_buff
*skb
, int write_len
)
4415 if (!pskb_may_pull(skb
, write_len
))
4418 if (!skb_cloned(skb
) || skb_clone_writable(skb
, write_len
))
4421 return pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
4423 EXPORT_SYMBOL(skb_ensure_writable
);
4425 /* remove VLAN header from packet and update csum accordingly. */
4426 static int __skb_vlan_pop(struct sk_buff
*skb
, u16
*vlan_tci
)
4428 struct vlan_hdr
*vhdr
;
4429 unsigned int offset
= skb
->data
- skb_mac_header(skb
);
4432 __skb_push(skb
, offset
);
4433 err
= skb_ensure_writable(skb
, VLAN_ETH_HLEN
);
4437 skb_postpull_rcsum(skb
, skb
->data
+ (2 * ETH_ALEN
), VLAN_HLEN
);
4439 vhdr
= (struct vlan_hdr
*)(skb
->data
+ ETH_HLEN
);
4440 *vlan_tci
= ntohs(vhdr
->h_vlan_TCI
);
4442 memmove(skb
->data
+ VLAN_HLEN
, skb
->data
, 2 * ETH_ALEN
);
4443 __skb_pull(skb
, VLAN_HLEN
);
4445 vlan_set_encap_proto(skb
, vhdr
);
4446 skb
->mac_header
+= VLAN_HLEN
;
4448 if (skb_network_offset(skb
) < ETH_HLEN
)
4449 skb_set_network_header(skb
, ETH_HLEN
);
4451 skb_reset_mac_len(skb
);
4453 __skb_pull(skb
, offset
);
4458 int skb_vlan_pop(struct sk_buff
*skb
)
4464 if (likely(skb_vlan_tag_present(skb
))) {
4467 if (unlikely((skb
->protocol
!= htons(ETH_P_8021Q
) &&
4468 skb
->protocol
!= htons(ETH_P_8021AD
)) ||
4469 skb
->len
< VLAN_ETH_HLEN
))
4472 err
= __skb_vlan_pop(skb
, &vlan_tci
);
4476 /* move next vlan tag to hw accel tag */
4477 if (likely((skb
->protocol
!= htons(ETH_P_8021Q
) &&
4478 skb
->protocol
!= htons(ETH_P_8021AD
)) ||
4479 skb
->len
< VLAN_ETH_HLEN
))
4482 vlan_proto
= skb
->protocol
;
4483 err
= __skb_vlan_pop(skb
, &vlan_tci
);
4487 __vlan_hwaccel_put_tag(skb
, vlan_proto
, vlan_tci
);
4490 EXPORT_SYMBOL(skb_vlan_pop
);
4492 int skb_vlan_push(struct sk_buff
*skb
, __be16 vlan_proto
, u16 vlan_tci
)
4494 if (skb_vlan_tag_present(skb
)) {
4495 unsigned int offset
= skb
->data
- skb_mac_header(skb
);
4498 /* __vlan_insert_tag expect skb->data pointing to mac header.
4499 * So change skb->data before calling it and change back to
4500 * original position later
4502 __skb_push(skb
, offset
);
4503 err
= __vlan_insert_tag(skb
, skb
->vlan_proto
,
4504 skb_vlan_tag_get(skb
));
4507 skb
->protocol
= skb
->vlan_proto
;
4508 skb
->mac_len
+= VLAN_HLEN
;
4509 __skb_pull(skb
, offset
);
4511 skb_postpush_rcsum(skb
, skb
->data
+ (2 * ETH_ALEN
), VLAN_HLEN
);
4513 __vlan_hwaccel_put_tag(skb
, vlan_proto
, vlan_tci
);
4516 EXPORT_SYMBOL(skb_vlan_push
);
4519 * alloc_skb_with_frags - allocate skb with page frags
4521 * @header_len: size of linear part
4522 * @data_len: needed length in frags
4523 * @max_page_order: max page order desired.
4524 * @errcode: pointer to error code if any
4525 * @gfp_mask: allocation mask
4527 * This can be used to allocate a paged skb, given a maximal order for frags.
4529 struct sk_buff
*alloc_skb_with_frags(unsigned long header_len
,
4530 unsigned long data_len
,
4535 int npages
= (data_len
+ (PAGE_SIZE
- 1)) >> PAGE_SHIFT
;
4536 unsigned long chunk
;
4537 struct sk_buff
*skb
;
4542 *errcode
= -EMSGSIZE
;
4543 /* Note this test could be relaxed, if we succeed to allocate
4544 * high order pages...
4546 if (npages
> MAX_SKB_FRAGS
)
4549 gfp_head
= gfp_mask
;
4550 if (gfp_head
& __GFP_DIRECT_RECLAIM
)
4551 gfp_head
|= __GFP_REPEAT
;
4553 *errcode
= -ENOBUFS
;
4554 skb
= alloc_skb(header_len
, gfp_head
);
4558 skb
->truesize
+= npages
<< PAGE_SHIFT
;
4560 for (i
= 0; npages
> 0; i
++) {
4561 int order
= max_page_order
;
4564 if (npages
>= 1 << order
) {
4565 page
= alloc_pages((gfp_mask
& ~__GFP_DIRECT_RECLAIM
) |
4572 /* Do not retry other high order allocations */
4578 page
= alloc_page(gfp_mask
);
4582 chunk
= min_t(unsigned long, data_len
,
4583 PAGE_SIZE
<< order
);
4584 skb_fill_page_desc(skb
, i
, page
, 0, chunk
);
4586 npages
-= 1 << order
;
4594 EXPORT_SYMBOL(alloc_skb_with_frags
);