thermal: fix Mediatek thermal controller build
[linux/fpc-iii.git] / net / openvswitch / flow.c
blob0ea128eeeab2f835221b2068b1098a81fe1d731d
1 /*
2 * Copyright (c) 2007-2014 Nicira, Inc.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16 * 02110-1301, USA
19 #include <linux/uaccess.h>
20 #include <linux/netdevice.h>
21 #include <linux/etherdevice.h>
22 #include <linux/if_ether.h>
23 #include <linux/if_vlan.h>
24 #include <net/llc_pdu.h>
25 #include <linux/kernel.h>
26 #include <linux/jhash.h>
27 #include <linux/jiffies.h>
28 #include <linux/llc.h>
29 #include <linux/module.h>
30 #include <linux/in.h>
31 #include <linux/rcupdate.h>
32 #include <linux/if_arp.h>
33 #include <linux/ip.h>
34 #include <linux/ipv6.h>
35 #include <linux/mpls.h>
36 #include <linux/sctp.h>
37 #include <linux/smp.h>
38 #include <linux/tcp.h>
39 #include <linux/udp.h>
40 #include <linux/icmp.h>
41 #include <linux/icmpv6.h>
42 #include <linux/rculist.h>
43 #include <net/ip.h>
44 #include <net/ip_tunnels.h>
45 #include <net/ipv6.h>
46 #include <net/mpls.h>
47 #include <net/ndisc.h>
49 #include "conntrack.h"
50 #include "datapath.h"
51 #include "flow.h"
52 #include "flow_netlink.h"
53 #include "vport.h"
55 u64 ovs_flow_used_time(unsigned long flow_jiffies)
57 struct timespec cur_ts;
58 u64 cur_ms, idle_ms;
60 ktime_get_ts(&cur_ts);
61 idle_ms = jiffies_to_msecs(jiffies - flow_jiffies);
62 cur_ms = (u64)cur_ts.tv_sec * MSEC_PER_SEC +
63 cur_ts.tv_nsec / NSEC_PER_MSEC;
65 return cur_ms - idle_ms;
68 #define TCP_FLAGS_BE16(tp) (*(__be16 *)&tcp_flag_word(tp) & htons(0x0FFF))
70 void ovs_flow_stats_update(struct sw_flow *flow, __be16 tcp_flags,
71 const struct sk_buff *skb)
73 struct flow_stats *stats;
74 int node = numa_node_id();
75 int len = skb->len + (skb_vlan_tag_present(skb) ? VLAN_HLEN : 0);
77 stats = rcu_dereference(flow->stats[node]);
79 /* Check if already have node-specific stats. */
80 if (likely(stats)) {
81 spin_lock(&stats->lock);
82 /* Mark if we write on the pre-allocated stats. */
83 if (node == 0 && unlikely(flow->stats_last_writer != node))
84 flow->stats_last_writer = node;
85 } else {
86 stats = rcu_dereference(flow->stats[0]); /* Pre-allocated. */
87 spin_lock(&stats->lock);
89 /* If the current NUMA-node is the only writer on the
90 * pre-allocated stats keep using them.
92 if (unlikely(flow->stats_last_writer != node)) {
93 /* A previous locker may have already allocated the
94 * stats, so we need to check again. If node-specific
95 * stats were already allocated, we update the pre-
96 * allocated stats as we have already locked them.
98 if (likely(flow->stats_last_writer != NUMA_NO_NODE)
99 && likely(!rcu_access_pointer(flow->stats[node]))) {
100 /* Try to allocate node-specific stats. */
101 struct flow_stats *new_stats;
103 new_stats =
104 kmem_cache_alloc_node(flow_stats_cache,
105 GFP_NOWAIT |
106 __GFP_THISNODE |
107 __GFP_NOWARN |
108 __GFP_NOMEMALLOC,
109 node);
110 if (likely(new_stats)) {
111 new_stats->used = jiffies;
112 new_stats->packet_count = 1;
113 new_stats->byte_count = len;
114 new_stats->tcp_flags = tcp_flags;
115 spin_lock_init(&new_stats->lock);
117 rcu_assign_pointer(flow->stats[node],
118 new_stats);
119 goto unlock;
122 flow->stats_last_writer = node;
126 stats->used = jiffies;
127 stats->packet_count++;
128 stats->byte_count += len;
129 stats->tcp_flags |= tcp_flags;
130 unlock:
131 spin_unlock(&stats->lock);
134 /* Must be called with rcu_read_lock or ovs_mutex. */
135 void ovs_flow_stats_get(const struct sw_flow *flow,
136 struct ovs_flow_stats *ovs_stats,
137 unsigned long *used, __be16 *tcp_flags)
139 int node;
141 *used = 0;
142 *tcp_flags = 0;
143 memset(ovs_stats, 0, sizeof(*ovs_stats));
145 for_each_node(node) {
146 struct flow_stats *stats = rcu_dereference_ovsl(flow->stats[node]);
148 if (stats) {
149 /* Local CPU may write on non-local stats, so we must
150 * block bottom-halves here.
152 spin_lock_bh(&stats->lock);
153 if (!*used || time_after(stats->used, *used))
154 *used = stats->used;
155 *tcp_flags |= stats->tcp_flags;
156 ovs_stats->n_packets += stats->packet_count;
157 ovs_stats->n_bytes += stats->byte_count;
158 spin_unlock_bh(&stats->lock);
163 /* Called with ovs_mutex. */
164 void ovs_flow_stats_clear(struct sw_flow *flow)
166 int node;
168 for_each_node(node) {
169 struct flow_stats *stats = ovsl_dereference(flow->stats[node]);
171 if (stats) {
172 spin_lock_bh(&stats->lock);
173 stats->used = 0;
174 stats->packet_count = 0;
175 stats->byte_count = 0;
176 stats->tcp_flags = 0;
177 spin_unlock_bh(&stats->lock);
182 static int check_header(struct sk_buff *skb, int len)
184 if (unlikely(skb->len < len))
185 return -EINVAL;
186 if (unlikely(!pskb_may_pull(skb, len)))
187 return -ENOMEM;
188 return 0;
191 static bool arphdr_ok(struct sk_buff *skb)
193 return pskb_may_pull(skb, skb_network_offset(skb) +
194 sizeof(struct arp_eth_header));
197 static int check_iphdr(struct sk_buff *skb)
199 unsigned int nh_ofs = skb_network_offset(skb);
200 unsigned int ip_len;
201 int err;
203 err = check_header(skb, nh_ofs + sizeof(struct iphdr));
204 if (unlikely(err))
205 return err;
207 ip_len = ip_hdrlen(skb);
208 if (unlikely(ip_len < sizeof(struct iphdr) ||
209 skb->len < nh_ofs + ip_len))
210 return -EINVAL;
212 skb_set_transport_header(skb, nh_ofs + ip_len);
213 return 0;
216 static bool tcphdr_ok(struct sk_buff *skb)
218 int th_ofs = skb_transport_offset(skb);
219 int tcp_len;
221 if (unlikely(!pskb_may_pull(skb, th_ofs + sizeof(struct tcphdr))))
222 return false;
224 tcp_len = tcp_hdrlen(skb);
225 if (unlikely(tcp_len < sizeof(struct tcphdr) ||
226 skb->len < th_ofs + tcp_len))
227 return false;
229 return true;
232 static bool udphdr_ok(struct sk_buff *skb)
234 return pskb_may_pull(skb, skb_transport_offset(skb) +
235 sizeof(struct udphdr));
238 static bool sctphdr_ok(struct sk_buff *skb)
240 return pskb_may_pull(skb, skb_transport_offset(skb) +
241 sizeof(struct sctphdr));
244 static bool icmphdr_ok(struct sk_buff *skb)
246 return pskb_may_pull(skb, skb_transport_offset(skb) +
247 sizeof(struct icmphdr));
250 static int parse_ipv6hdr(struct sk_buff *skb, struct sw_flow_key *key)
252 unsigned int nh_ofs = skb_network_offset(skb);
253 unsigned int nh_len;
254 int payload_ofs;
255 struct ipv6hdr *nh;
256 uint8_t nexthdr;
257 __be16 frag_off;
258 int err;
260 err = check_header(skb, nh_ofs + sizeof(*nh));
261 if (unlikely(err))
262 return err;
264 nh = ipv6_hdr(skb);
265 nexthdr = nh->nexthdr;
266 payload_ofs = (u8 *)(nh + 1) - skb->data;
268 key->ip.proto = NEXTHDR_NONE;
269 key->ip.tos = ipv6_get_dsfield(nh);
270 key->ip.ttl = nh->hop_limit;
271 key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
272 key->ipv6.addr.src = nh->saddr;
273 key->ipv6.addr.dst = nh->daddr;
275 payload_ofs = ipv6_skip_exthdr(skb, payload_ofs, &nexthdr, &frag_off);
277 if (frag_off) {
278 if (frag_off & htons(~0x7))
279 key->ip.frag = OVS_FRAG_TYPE_LATER;
280 else
281 key->ip.frag = OVS_FRAG_TYPE_FIRST;
282 } else {
283 key->ip.frag = OVS_FRAG_TYPE_NONE;
286 /* Delayed handling of error in ipv6_skip_exthdr() as it
287 * always sets frag_off to a valid value which may be
288 * used to set key->ip.frag above.
290 if (unlikely(payload_ofs < 0))
291 return -EPROTO;
293 nh_len = payload_ofs - nh_ofs;
294 skb_set_transport_header(skb, nh_ofs + nh_len);
295 key->ip.proto = nexthdr;
296 return nh_len;
299 static bool icmp6hdr_ok(struct sk_buff *skb)
301 return pskb_may_pull(skb, skb_transport_offset(skb) +
302 sizeof(struct icmp6hdr));
305 static int parse_vlan(struct sk_buff *skb, struct sw_flow_key *key)
307 struct qtag_prefix {
308 __be16 eth_type; /* ETH_P_8021Q */
309 __be16 tci;
311 struct qtag_prefix *qp;
313 if (unlikely(skb->len < sizeof(struct qtag_prefix) + sizeof(__be16)))
314 return 0;
316 if (unlikely(!pskb_may_pull(skb, sizeof(struct qtag_prefix) +
317 sizeof(__be16))))
318 return -ENOMEM;
320 qp = (struct qtag_prefix *) skb->data;
321 key->eth.tci = qp->tci | htons(VLAN_TAG_PRESENT);
322 __skb_pull(skb, sizeof(struct qtag_prefix));
324 return 0;
327 static __be16 parse_ethertype(struct sk_buff *skb)
329 struct llc_snap_hdr {
330 u8 dsap; /* Always 0xAA */
331 u8 ssap; /* Always 0xAA */
332 u8 ctrl;
333 u8 oui[3];
334 __be16 ethertype;
336 struct llc_snap_hdr *llc;
337 __be16 proto;
339 proto = *(__be16 *) skb->data;
340 __skb_pull(skb, sizeof(__be16));
342 if (eth_proto_is_802_3(proto))
343 return proto;
345 if (skb->len < sizeof(struct llc_snap_hdr))
346 return htons(ETH_P_802_2);
348 if (unlikely(!pskb_may_pull(skb, sizeof(struct llc_snap_hdr))))
349 return htons(0);
351 llc = (struct llc_snap_hdr *) skb->data;
352 if (llc->dsap != LLC_SAP_SNAP ||
353 llc->ssap != LLC_SAP_SNAP ||
354 (llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0)
355 return htons(ETH_P_802_2);
357 __skb_pull(skb, sizeof(struct llc_snap_hdr));
359 if (eth_proto_is_802_3(llc->ethertype))
360 return llc->ethertype;
362 return htons(ETH_P_802_2);
365 static int parse_icmpv6(struct sk_buff *skb, struct sw_flow_key *key,
366 int nh_len)
368 struct icmp6hdr *icmp = icmp6_hdr(skb);
370 /* The ICMPv6 type and code fields use the 16-bit transport port
371 * fields, so we need to store them in 16-bit network byte order.
373 key->tp.src = htons(icmp->icmp6_type);
374 key->tp.dst = htons(icmp->icmp6_code);
375 memset(&key->ipv6.nd, 0, sizeof(key->ipv6.nd));
377 if (icmp->icmp6_code == 0 &&
378 (icmp->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION ||
379 icmp->icmp6_type == NDISC_NEIGHBOUR_ADVERTISEMENT)) {
380 int icmp_len = skb->len - skb_transport_offset(skb);
381 struct nd_msg *nd;
382 int offset;
384 /* In order to process neighbor discovery options, we need the
385 * entire packet.
387 if (unlikely(icmp_len < sizeof(*nd)))
388 return 0;
390 if (unlikely(skb_linearize(skb)))
391 return -ENOMEM;
393 nd = (struct nd_msg *)skb_transport_header(skb);
394 key->ipv6.nd.target = nd->target;
396 icmp_len -= sizeof(*nd);
397 offset = 0;
398 while (icmp_len >= 8) {
399 struct nd_opt_hdr *nd_opt =
400 (struct nd_opt_hdr *)(nd->opt + offset);
401 int opt_len = nd_opt->nd_opt_len * 8;
403 if (unlikely(!opt_len || opt_len > icmp_len))
404 return 0;
406 /* Store the link layer address if the appropriate
407 * option is provided. It is considered an error if
408 * the same link layer option is specified twice.
410 if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LL_ADDR
411 && opt_len == 8) {
412 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.sll)))
413 goto invalid;
414 ether_addr_copy(key->ipv6.nd.sll,
415 &nd->opt[offset+sizeof(*nd_opt)]);
416 } else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LL_ADDR
417 && opt_len == 8) {
418 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.tll)))
419 goto invalid;
420 ether_addr_copy(key->ipv6.nd.tll,
421 &nd->opt[offset+sizeof(*nd_opt)]);
424 icmp_len -= opt_len;
425 offset += opt_len;
429 return 0;
431 invalid:
432 memset(&key->ipv6.nd.target, 0, sizeof(key->ipv6.nd.target));
433 memset(key->ipv6.nd.sll, 0, sizeof(key->ipv6.nd.sll));
434 memset(key->ipv6.nd.tll, 0, sizeof(key->ipv6.nd.tll));
436 return 0;
440 * key_extract - extracts a flow key from an Ethernet frame.
441 * @skb: sk_buff that contains the frame, with skb->data pointing to the
442 * Ethernet header
443 * @key: output flow key
445 * The caller must ensure that skb->len >= ETH_HLEN.
447 * Returns 0 if successful, otherwise a negative errno value.
449 * Initializes @skb header pointers as follows:
451 * - skb->mac_header: the Ethernet header.
453 * - skb->network_header: just past the Ethernet header, or just past the
454 * VLAN header, to the first byte of the Ethernet payload.
456 * - skb->transport_header: If key->eth.type is ETH_P_IP or ETH_P_IPV6
457 * on output, then just past the IP header, if one is present and
458 * of a correct length, otherwise the same as skb->network_header.
459 * For other key->eth.type values it is left untouched.
461 static int key_extract(struct sk_buff *skb, struct sw_flow_key *key)
463 int error;
464 struct ethhdr *eth;
466 /* Flags are always used as part of stats */
467 key->tp.flags = 0;
469 skb_reset_mac_header(skb);
471 /* Link layer. We are guaranteed to have at least the 14 byte Ethernet
472 * header in the linear data area.
474 eth = eth_hdr(skb);
475 ether_addr_copy(key->eth.src, eth->h_source);
476 ether_addr_copy(key->eth.dst, eth->h_dest);
478 __skb_pull(skb, 2 * ETH_ALEN);
479 /* We are going to push all headers that we pull, so no need to
480 * update skb->csum here.
483 key->eth.tci = 0;
484 if (skb_vlan_tag_present(skb))
485 key->eth.tci = htons(skb->vlan_tci);
486 else if (eth->h_proto == htons(ETH_P_8021Q))
487 if (unlikely(parse_vlan(skb, key)))
488 return -ENOMEM;
490 key->eth.type = parse_ethertype(skb);
491 if (unlikely(key->eth.type == htons(0)))
492 return -ENOMEM;
494 skb_reset_network_header(skb);
495 skb_reset_mac_len(skb);
496 __skb_push(skb, skb->data - skb_mac_header(skb));
498 /* Network layer. */
499 if (key->eth.type == htons(ETH_P_IP)) {
500 struct iphdr *nh;
501 __be16 offset;
503 error = check_iphdr(skb);
504 if (unlikely(error)) {
505 memset(&key->ip, 0, sizeof(key->ip));
506 memset(&key->ipv4, 0, sizeof(key->ipv4));
507 if (error == -EINVAL) {
508 skb->transport_header = skb->network_header;
509 error = 0;
511 return error;
514 nh = ip_hdr(skb);
515 key->ipv4.addr.src = nh->saddr;
516 key->ipv4.addr.dst = nh->daddr;
518 key->ip.proto = nh->protocol;
519 key->ip.tos = nh->tos;
520 key->ip.ttl = nh->ttl;
522 offset = nh->frag_off & htons(IP_OFFSET);
523 if (offset) {
524 key->ip.frag = OVS_FRAG_TYPE_LATER;
525 return 0;
527 if (nh->frag_off & htons(IP_MF) ||
528 skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
529 key->ip.frag = OVS_FRAG_TYPE_FIRST;
530 else
531 key->ip.frag = OVS_FRAG_TYPE_NONE;
533 /* Transport layer. */
534 if (key->ip.proto == IPPROTO_TCP) {
535 if (tcphdr_ok(skb)) {
536 struct tcphdr *tcp = tcp_hdr(skb);
537 key->tp.src = tcp->source;
538 key->tp.dst = tcp->dest;
539 key->tp.flags = TCP_FLAGS_BE16(tcp);
540 } else {
541 memset(&key->tp, 0, sizeof(key->tp));
544 } else if (key->ip.proto == IPPROTO_UDP) {
545 if (udphdr_ok(skb)) {
546 struct udphdr *udp = udp_hdr(skb);
547 key->tp.src = udp->source;
548 key->tp.dst = udp->dest;
549 } else {
550 memset(&key->tp, 0, sizeof(key->tp));
552 } else if (key->ip.proto == IPPROTO_SCTP) {
553 if (sctphdr_ok(skb)) {
554 struct sctphdr *sctp = sctp_hdr(skb);
555 key->tp.src = sctp->source;
556 key->tp.dst = sctp->dest;
557 } else {
558 memset(&key->tp, 0, sizeof(key->tp));
560 } else if (key->ip.proto == IPPROTO_ICMP) {
561 if (icmphdr_ok(skb)) {
562 struct icmphdr *icmp = icmp_hdr(skb);
563 /* The ICMP type and code fields use the 16-bit
564 * transport port fields, so we need to store
565 * them in 16-bit network byte order. */
566 key->tp.src = htons(icmp->type);
567 key->tp.dst = htons(icmp->code);
568 } else {
569 memset(&key->tp, 0, sizeof(key->tp));
573 } else if (key->eth.type == htons(ETH_P_ARP) ||
574 key->eth.type == htons(ETH_P_RARP)) {
575 struct arp_eth_header *arp;
576 bool arp_available = arphdr_ok(skb);
578 arp = (struct arp_eth_header *)skb_network_header(skb);
580 if (arp_available &&
581 arp->ar_hrd == htons(ARPHRD_ETHER) &&
582 arp->ar_pro == htons(ETH_P_IP) &&
583 arp->ar_hln == ETH_ALEN &&
584 arp->ar_pln == 4) {
586 /* We only match on the lower 8 bits of the opcode. */
587 if (ntohs(arp->ar_op) <= 0xff)
588 key->ip.proto = ntohs(arp->ar_op);
589 else
590 key->ip.proto = 0;
592 memcpy(&key->ipv4.addr.src, arp->ar_sip, sizeof(key->ipv4.addr.src));
593 memcpy(&key->ipv4.addr.dst, arp->ar_tip, sizeof(key->ipv4.addr.dst));
594 ether_addr_copy(key->ipv4.arp.sha, arp->ar_sha);
595 ether_addr_copy(key->ipv4.arp.tha, arp->ar_tha);
596 } else {
597 memset(&key->ip, 0, sizeof(key->ip));
598 memset(&key->ipv4, 0, sizeof(key->ipv4));
600 } else if (eth_p_mpls(key->eth.type)) {
601 size_t stack_len = MPLS_HLEN;
603 /* In the presence of an MPLS label stack the end of the L2
604 * header and the beginning of the L3 header differ.
606 * Advance network_header to the beginning of the L3
607 * header. mac_len corresponds to the end of the L2 header.
609 while (1) {
610 __be32 lse;
612 error = check_header(skb, skb->mac_len + stack_len);
613 if (unlikely(error))
614 return 0;
616 memcpy(&lse, skb_network_header(skb), MPLS_HLEN);
618 if (stack_len == MPLS_HLEN)
619 memcpy(&key->mpls.top_lse, &lse, MPLS_HLEN);
621 skb_set_network_header(skb, skb->mac_len + stack_len);
622 if (lse & htonl(MPLS_LS_S_MASK))
623 break;
625 stack_len += MPLS_HLEN;
627 } else if (key->eth.type == htons(ETH_P_IPV6)) {
628 int nh_len; /* IPv6 Header + Extensions */
630 nh_len = parse_ipv6hdr(skb, key);
631 if (unlikely(nh_len < 0)) {
632 switch (nh_len) {
633 case -EINVAL:
634 memset(&key->ip, 0, sizeof(key->ip));
635 memset(&key->ipv6.addr, 0, sizeof(key->ipv6.addr));
636 /* fall-through */
637 case -EPROTO:
638 skb->transport_header = skb->network_header;
639 error = 0;
640 break;
641 default:
642 error = nh_len;
644 return error;
647 if (key->ip.frag == OVS_FRAG_TYPE_LATER)
648 return 0;
649 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
650 key->ip.frag = OVS_FRAG_TYPE_FIRST;
652 /* Transport layer. */
653 if (key->ip.proto == NEXTHDR_TCP) {
654 if (tcphdr_ok(skb)) {
655 struct tcphdr *tcp = tcp_hdr(skb);
656 key->tp.src = tcp->source;
657 key->tp.dst = tcp->dest;
658 key->tp.flags = TCP_FLAGS_BE16(tcp);
659 } else {
660 memset(&key->tp, 0, sizeof(key->tp));
662 } else if (key->ip.proto == NEXTHDR_UDP) {
663 if (udphdr_ok(skb)) {
664 struct udphdr *udp = udp_hdr(skb);
665 key->tp.src = udp->source;
666 key->tp.dst = udp->dest;
667 } else {
668 memset(&key->tp, 0, sizeof(key->tp));
670 } else if (key->ip.proto == NEXTHDR_SCTP) {
671 if (sctphdr_ok(skb)) {
672 struct sctphdr *sctp = sctp_hdr(skb);
673 key->tp.src = sctp->source;
674 key->tp.dst = sctp->dest;
675 } else {
676 memset(&key->tp, 0, sizeof(key->tp));
678 } else if (key->ip.proto == NEXTHDR_ICMP) {
679 if (icmp6hdr_ok(skb)) {
680 error = parse_icmpv6(skb, key, nh_len);
681 if (error)
682 return error;
683 } else {
684 memset(&key->tp, 0, sizeof(key->tp));
688 return 0;
691 int ovs_flow_key_update(struct sk_buff *skb, struct sw_flow_key *key)
693 return key_extract(skb, key);
696 int ovs_flow_key_extract(const struct ip_tunnel_info *tun_info,
697 struct sk_buff *skb, struct sw_flow_key *key)
699 /* Extract metadata from packet. */
700 if (tun_info) {
701 key->tun_proto = ip_tunnel_info_af(tun_info);
702 memcpy(&key->tun_key, &tun_info->key, sizeof(key->tun_key));
704 if (tun_info->options_len) {
705 BUILD_BUG_ON((1 << (sizeof(tun_info->options_len) *
706 8)) - 1
707 > sizeof(key->tun_opts));
709 ip_tunnel_info_opts_get(TUN_METADATA_OPTS(key, tun_info->options_len),
710 tun_info);
711 key->tun_opts_len = tun_info->options_len;
712 } else {
713 key->tun_opts_len = 0;
715 } else {
716 key->tun_proto = 0;
717 key->tun_opts_len = 0;
718 memset(&key->tun_key, 0, sizeof(key->tun_key));
721 key->phy.priority = skb->priority;
722 key->phy.in_port = OVS_CB(skb)->input_vport->port_no;
723 key->phy.skb_mark = skb->mark;
724 ovs_ct_fill_key(skb, key);
725 key->ovs_flow_hash = 0;
726 key->recirc_id = 0;
728 return key_extract(skb, key);
731 int ovs_flow_key_extract_userspace(struct net *net, const struct nlattr *attr,
732 struct sk_buff *skb,
733 struct sw_flow_key *key, bool log)
735 int err;
737 memset(key, 0, OVS_SW_FLOW_KEY_METADATA_SIZE);
739 /* Extract metadata from netlink attributes. */
740 err = ovs_nla_get_flow_metadata(net, attr, key, log);
741 if (err)
742 return err;
744 return key_extract(skb, key);