thermal: fix Mediatek thermal controller build
[linux/fpc-iii.git] / net / rds / ib_rdma.c
blobf7164ac1ffc1e2940b88de0455e02c3ab59ed8d1
1 /*
2 * Copyright (c) 2006 Oracle. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
33 #include <linux/kernel.h>
34 #include <linux/slab.h>
35 #include <linux/rculist.h>
36 #include <linux/llist.h>
38 #include "ib_mr.h"
40 struct workqueue_struct *rds_ib_mr_wq;
42 static DEFINE_PER_CPU(unsigned long, clean_list_grace);
43 #define CLEAN_LIST_BUSY_BIT 0
45 static struct rds_ib_device *rds_ib_get_device(__be32 ipaddr)
47 struct rds_ib_device *rds_ibdev;
48 struct rds_ib_ipaddr *i_ipaddr;
50 rcu_read_lock();
51 list_for_each_entry_rcu(rds_ibdev, &rds_ib_devices, list) {
52 list_for_each_entry_rcu(i_ipaddr, &rds_ibdev->ipaddr_list, list) {
53 if (i_ipaddr->ipaddr == ipaddr) {
54 atomic_inc(&rds_ibdev->refcount);
55 rcu_read_unlock();
56 return rds_ibdev;
60 rcu_read_unlock();
62 return NULL;
65 static int rds_ib_add_ipaddr(struct rds_ib_device *rds_ibdev, __be32 ipaddr)
67 struct rds_ib_ipaddr *i_ipaddr;
69 i_ipaddr = kmalloc(sizeof *i_ipaddr, GFP_KERNEL);
70 if (!i_ipaddr)
71 return -ENOMEM;
73 i_ipaddr->ipaddr = ipaddr;
75 spin_lock_irq(&rds_ibdev->spinlock);
76 list_add_tail_rcu(&i_ipaddr->list, &rds_ibdev->ipaddr_list);
77 spin_unlock_irq(&rds_ibdev->spinlock);
79 return 0;
82 static void rds_ib_remove_ipaddr(struct rds_ib_device *rds_ibdev, __be32 ipaddr)
84 struct rds_ib_ipaddr *i_ipaddr;
85 struct rds_ib_ipaddr *to_free = NULL;
88 spin_lock_irq(&rds_ibdev->spinlock);
89 list_for_each_entry_rcu(i_ipaddr, &rds_ibdev->ipaddr_list, list) {
90 if (i_ipaddr->ipaddr == ipaddr) {
91 list_del_rcu(&i_ipaddr->list);
92 to_free = i_ipaddr;
93 break;
96 spin_unlock_irq(&rds_ibdev->spinlock);
98 if (to_free)
99 kfree_rcu(to_free, rcu);
102 int rds_ib_update_ipaddr(struct rds_ib_device *rds_ibdev, __be32 ipaddr)
104 struct rds_ib_device *rds_ibdev_old;
106 rds_ibdev_old = rds_ib_get_device(ipaddr);
107 if (!rds_ibdev_old)
108 return rds_ib_add_ipaddr(rds_ibdev, ipaddr);
110 if (rds_ibdev_old != rds_ibdev) {
111 rds_ib_remove_ipaddr(rds_ibdev_old, ipaddr);
112 rds_ib_dev_put(rds_ibdev_old);
113 return rds_ib_add_ipaddr(rds_ibdev, ipaddr);
115 rds_ib_dev_put(rds_ibdev_old);
117 return 0;
120 void rds_ib_add_conn(struct rds_ib_device *rds_ibdev, struct rds_connection *conn)
122 struct rds_ib_connection *ic = conn->c_transport_data;
124 /* conn was previously on the nodev_conns_list */
125 spin_lock_irq(&ib_nodev_conns_lock);
126 BUG_ON(list_empty(&ib_nodev_conns));
127 BUG_ON(list_empty(&ic->ib_node));
128 list_del(&ic->ib_node);
130 spin_lock(&rds_ibdev->spinlock);
131 list_add_tail(&ic->ib_node, &rds_ibdev->conn_list);
132 spin_unlock(&rds_ibdev->spinlock);
133 spin_unlock_irq(&ib_nodev_conns_lock);
135 ic->rds_ibdev = rds_ibdev;
136 atomic_inc(&rds_ibdev->refcount);
139 void rds_ib_remove_conn(struct rds_ib_device *rds_ibdev, struct rds_connection *conn)
141 struct rds_ib_connection *ic = conn->c_transport_data;
143 /* place conn on nodev_conns_list */
144 spin_lock(&ib_nodev_conns_lock);
146 spin_lock_irq(&rds_ibdev->spinlock);
147 BUG_ON(list_empty(&ic->ib_node));
148 list_del(&ic->ib_node);
149 spin_unlock_irq(&rds_ibdev->spinlock);
151 list_add_tail(&ic->ib_node, &ib_nodev_conns);
153 spin_unlock(&ib_nodev_conns_lock);
155 ic->rds_ibdev = NULL;
156 rds_ib_dev_put(rds_ibdev);
159 void rds_ib_destroy_nodev_conns(void)
161 struct rds_ib_connection *ic, *_ic;
162 LIST_HEAD(tmp_list);
164 /* avoid calling conn_destroy with irqs off */
165 spin_lock_irq(&ib_nodev_conns_lock);
166 list_splice(&ib_nodev_conns, &tmp_list);
167 spin_unlock_irq(&ib_nodev_conns_lock);
169 list_for_each_entry_safe(ic, _ic, &tmp_list, ib_node)
170 rds_conn_destroy(ic->conn);
173 void rds_ib_get_mr_info(struct rds_ib_device *rds_ibdev, struct rds_info_rdma_connection *iinfo)
175 struct rds_ib_mr_pool *pool_1m = rds_ibdev->mr_1m_pool;
177 iinfo->rdma_mr_max = pool_1m->max_items;
178 iinfo->rdma_mr_size = pool_1m->fmr_attr.max_pages;
181 struct rds_ib_mr *rds_ib_reuse_mr(struct rds_ib_mr_pool *pool)
183 struct rds_ib_mr *ibmr = NULL;
184 struct llist_node *ret;
185 unsigned long *flag;
187 preempt_disable();
188 flag = this_cpu_ptr(&clean_list_grace);
189 set_bit(CLEAN_LIST_BUSY_BIT, flag);
190 ret = llist_del_first(&pool->clean_list);
191 if (ret) {
192 ibmr = llist_entry(ret, struct rds_ib_mr, llnode);
193 if (pool->pool_type == RDS_IB_MR_8K_POOL)
194 rds_ib_stats_inc(s_ib_rdma_mr_8k_reused);
195 else
196 rds_ib_stats_inc(s_ib_rdma_mr_1m_reused);
199 clear_bit(CLEAN_LIST_BUSY_BIT, flag);
200 preempt_enable();
201 return ibmr;
204 static inline void wait_clean_list_grace(void)
206 int cpu;
207 unsigned long *flag;
209 for_each_online_cpu(cpu) {
210 flag = &per_cpu(clean_list_grace, cpu);
211 while (test_bit(CLEAN_LIST_BUSY_BIT, flag))
212 cpu_relax();
216 void rds_ib_sync_mr(void *trans_private, int direction)
218 struct rds_ib_mr *ibmr = trans_private;
219 struct rds_ib_device *rds_ibdev = ibmr->device;
221 switch (direction) {
222 case DMA_FROM_DEVICE:
223 ib_dma_sync_sg_for_cpu(rds_ibdev->dev, ibmr->sg,
224 ibmr->sg_dma_len, DMA_BIDIRECTIONAL);
225 break;
226 case DMA_TO_DEVICE:
227 ib_dma_sync_sg_for_device(rds_ibdev->dev, ibmr->sg,
228 ibmr->sg_dma_len, DMA_BIDIRECTIONAL);
229 break;
233 void __rds_ib_teardown_mr(struct rds_ib_mr *ibmr)
235 struct rds_ib_device *rds_ibdev = ibmr->device;
237 if (ibmr->sg_dma_len) {
238 ib_dma_unmap_sg(rds_ibdev->dev,
239 ibmr->sg, ibmr->sg_len,
240 DMA_BIDIRECTIONAL);
241 ibmr->sg_dma_len = 0;
244 /* Release the s/g list */
245 if (ibmr->sg_len) {
246 unsigned int i;
248 for (i = 0; i < ibmr->sg_len; ++i) {
249 struct page *page = sg_page(&ibmr->sg[i]);
251 /* FIXME we need a way to tell a r/w MR
252 * from a r/o MR */
253 WARN_ON(!page->mapping && irqs_disabled());
254 set_page_dirty(page);
255 put_page(page);
257 kfree(ibmr->sg);
259 ibmr->sg = NULL;
260 ibmr->sg_len = 0;
264 void rds_ib_teardown_mr(struct rds_ib_mr *ibmr)
266 unsigned int pinned = ibmr->sg_len;
268 __rds_ib_teardown_mr(ibmr);
269 if (pinned) {
270 struct rds_ib_mr_pool *pool = ibmr->pool;
272 atomic_sub(pinned, &pool->free_pinned);
276 static inline unsigned int rds_ib_flush_goal(struct rds_ib_mr_pool *pool, int free_all)
278 unsigned int item_count;
280 item_count = atomic_read(&pool->item_count);
281 if (free_all)
282 return item_count;
284 return 0;
288 * given an llist of mrs, put them all into the list_head for more processing
290 static unsigned int llist_append_to_list(struct llist_head *llist,
291 struct list_head *list)
293 struct rds_ib_mr *ibmr;
294 struct llist_node *node;
295 struct llist_node *next;
296 unsigned int count = 0;
298 node = llist_del_all(llist);
299 while (node) {
300 next = node->next;
301 ibmr = llist_entry(node, struct rds_ib_mr, llnode);
302 list_add_tail(&ibmr->unmap_list, list);
303 node = next;
304 count++;
306 return count;
310 * this takes a list head of mrs and turns it into linked llist nodes
311 * of clusters. Each cluster has linked llist nodes of
312 * MR_CLUSTER_SIZE mrs that are ready for reuse.
314 static void list_to_llist_nodes(struct rds_ib_mr_pool *pool,
315 struct list_head *list,
316 struct llist_node **nodes_head,
317 struct llist_node **nodes_tail)
319 struct rds_ib_mr *ibmr;
320 struct llist_node *cur = NULL;
321 struct llist_node **next = nodes_head;
323 list_for_each_entry(ibmr, list, unmap_list) {
324 cur = &ibmr->llnode;
325 *next = cur;
326 next = &cur->next;
328 *next = NULL;
329 *nodes_tail = cur;
333 * Flush our pool of MRs.
334 * At a minimum, all currently unused MRs are unmapped.
335 * If the number of MRs allocated exceeds the limit, we also try
336 * to free as many MRs as needed to get back to this limit.
338 int rds_ib_flush_mr_pool(struct rds_ib_mr_pool *pool,
339 int free_all, struct rds_ib_mr **ibmr_ret)
341 struct rds_ib_mr *ibmr;
342 struct llist_node *clean_nodes;
343 struct llist_node *clean_tail;
344 LIST_HEAD(unmap_list);
345 unsigned long unpinned = 0;
346 unsigned int nfreed = 0, dirty_to_clean = 0, free_goal;
348 if (pool->pool_type == RDS_IB_MR_8K_POOL)
349 rds_ib_stats_inc(s_ib_rdma_mr_8k_pool_flush);
350 else
351 rds_ib_stats_inc(s_ib_rdma_mr_1m_pool_flush);
353 if (ibmr_ret) {
354 DEFINE_WAIT(wait);
355 while (!mutex_trylock(&pool->flush_lock)) {
356 ibmr = rds_ib_reuse_mr(pool);
357 if (ibmr) {
358 *ibmr_ret = ibmr;
359 finish_wait(&pool->flush_wait, &wait);
360 goto out_nolock;
363 prepare_to_wait(&pool->flush_wait, &wait,
364 TASK_UNINTERRUPTIBLE);
365 if (llist_empty(&pool->clean_list))
366 schedule();
368 ibmr = rds_ib_reuse_mr(pool);
369 if (ibmr) {
370 *ibmr_ret = ibmr;
371 finish_wait(&pool->flush_wait, &wait);
372 goto out_nolock;
375 finish_wait(&pool->flush_wait, &wait);
376 } else
377 mutex_lock(&pool->flush_lock);
379 if (ibmr_ret) {
380 ibmr = rds_ib_reuse_mr(pool);
381 if (ibmr) {
382 *ibmr_ret = ibmr;
383 goto out;
387 /* Get the list of all MRs to be dropped. Ordering matters -
388 * we want to put drop_list ahead of free_list.
390 dirty_to_clean = llist_append_to_list(&pool->drop_list, &unmap_list);
391 dirty_to_clean += llist_append_to_list(&pool->free_list, &unmap_list);
392 if (free_all)
393 llist_append_to_list(&pool->clean_list, &unmap_list);
395 free_goal = rds_ib_flush_goal(pool, free_all);
397 if (list_empty(&unmap_list))
398 goto out;
400 if (pool->use_fastreg)
401 rds_ib_unreg_frmr(&unmap_list, &nfreed, &unpinned, free_goal);
402 else
403 rds_ib_unreg_fmr(&unmap_list, &nfreed, &unpinned, free_goal);
405 if (!list_empty(&unmap_list)) {
406 /* we have to make sure that none of the things we're about
407 * to put on the clean list would race with other cpus trying
408 * to pull items off. The llist would explode if we managed to
409 * remove something from the clean list and then add it back again
410 * while another CPU was spinning on that same item in llist_del_first.
412 * This is pretty unlikely, but just in case wait for an llist grace period
413 * here before adding anything back into the clean list.
415 wait_clean_list_grace();
417 list_to_llist_nodes(pool, &unmap_list, &clean_nodes, &clean_tail);
418 if (ibmr_ret)
419 *ibmr_ret = llist_entry(clean_nodes, struct rds_ib_mr, llnode);
421 /* more than one entry in llist nodes */
422 if (clean_nodes->next)
423 llist_add_batch(clean_nodes->next, clean_tail, &pool->clean_list);
427 atomic_sub(unpinned, &pool->free_pinned);
428 atomic_sub(dirty_to_clean, &pool->dirty_count);
429 atomic_sub(nfreed, &pool->item_count);
431 out:
432 mutex_unlock(&pool->flush_lock);
433 if (waitqueue_active(&pool->flush_wait))
434 wake_up(&pool->flush_wait);
435 out_nolock:
436 return 0;
439 struct rds_ib_mr *rds_ib_try_reuse_ibmr(struct rds_ib_mr_pool *pool)
441 struct rds_ib_mr *ibmr = NULL;
442 int iter = 0;
444 if (atomic_read(&pool->dirty_count) >= pool->max_items_soft / 10)
445 queue_delayed_work(rds_ib_mr_wq, &pool->flush_worker, 10);
447 while (1) {
448 ibmr = rds_ib_reuse_mr(pool);
449 if (ibmr)
450 return ibmr;
452 if (atomic_inc_return(&pool->item_count) <= pool->max_items)
453 break;
455 atomic_dec(&pool->item_count);
457 if (++iter > 2) {
458 if (pool->pool_type == RDS_IB_MR_8K_POOL)
459 rds_ib_stats_inc(s_ib_rdma_mr_8k_pool_depleted);
460 else
461 rds_ib_stats_inc(s_ib_rdma_mr_1m_pool_depleted);
462 return ERR_PTR(-EAGAIN);
465 /* We do have some empty MRs. Flush them out. */
466 if (pool->pool_type == RDS_IB_MR_8K_POOL)
467 rds_ib_stats_inc(s_ib_rdma_mr_8k_pool_wait);
468 else
469 rds_ib_stats_inc(s_ib_rdma_mr_1m_pool_wait);
471 rds_ib_flush_mr_pool(pool, 0, &ibmr);
472 if (ibmr)
473 return ibmr;
476 return ibmr;
479 static void rds_ib_mr_pool_flush_worker(struct work_struct *work)
481 struct rds_ib_mr_pool *pool = container_of(work, struct rds_ib_mr_pool, flush_worker.work);
483 rds_ib_flush_mr_pool(pool, 0, NULL);
486 void rds_ib_free_mr(void *trans_private, int invalidate)
488 struct rds_ib_mr *ibmr = trans_private;
489 struct rds_ib_mr_pool *pool = ibmr->pool;
490 struct rds_ib_device *rds_ibdev = ibmr->device;
492 rdsdebug("RDS/IB: free_mr nents %u\n", ibmr->sg_len);
494 /* Return it to the pool's free list */
495 if (rds_ibdev->use_fastreg)
496 rds_ib_free_frmr_list(ibmr);
497 else
498 rds_ib_free_fmr_list(ibmr);
500 atomic_add(ibmr->sg_len, &pool->free_pinned);
501 atomic_inc(&pool->dirty_count);
503 /* If we've pinned too many pages, request a flush */
504 if (atomic_read(&pool->free_pinned) >= pool->max_free_pinned ||
505 atomic_read(&pool->dirty_count) >= pool->max_items / 5)
506 queue_delayed_work(rds_ib_mr_wq, &pool->flush_worker, 10);
508 if (invalidate) {
509 if (likely(!in_interrupt())) {
510 rds_ib_flush_mr_pool(pool, 0, NULL);
511 } else {
512 /* We get here if the user created a MR marked
513 * as use_once and invalidate at the same time.
515 queue_delayed_work(rds_ib_mr_wq,
516 &pool->flush_worker, 10);
520 rds_ib_dev_put(rds_ibdev);
523 void rds_ib_flush_mrs(void)
525 struct rds_ib_device *rds_ibdev;
527 down_read(&rds_ib_devices_lock);
528 list_for_each_entry(rds_ibdev, &rds_ib_devices, list) {
529 if (rds_ibdev->mr_8k_pool)
530 rds_ib_flush_mr_pool(rds_ibdev->mr_8k_pool, 0, NULL);
532 if (rds_ibdev->mr_1m_pool)
533 rds_ib_flush_mr_pool(rds_ibdev->mr_1m_pool, 0, NULL);
535 up_read(&rds_ib_devices_lock);
538 void *rds_ib_get_mr(struct scatterlist *sg, unsigned long nents,
539 struct rds_sock *rs, u32 *key_ret)
541 struct rds_ib_device *rds_ibdev;
542 struct rds_ib_mr *ibmr = NULL;
543 struct rds_ib_connection *ic = rs->rs_conn->c_transport_data;
544 int ret;
546 rds_ibdev = rds_ib_get_device(rs->rs_bound_addr);
547 if (!rds_ibdev) {
548 ret = -ENODEV;
549 goto out;
552 if (!rds_ibdev->mr_8k_pool || !rds_ibdev->mr_1m_pool) {
553 ret = -ENODEV;
554 goto out;
557 if (rds_ibdev->use_fastreg)
558 ibmr = rds_ib_reg_frmr(rds_ibdev, ic, sg, nents, key_ret);
559 else
560 ibmr = rds_ib_reg_fmr(rds_ibdev, sg, nents, key_ret);
561 if (ibmr)
562 rds_ibdev = NULL;
564 out:
565 if (!ibmr)
566 pr_warn("RDS/IB: rds_ib_get_mr failed (errno=%d)\n", ret);
568 if (rds_ibdev)
569 rds_ib_dev_put(rds_ibdev);
571 return ibmr;
574 void rds_ib_destroy_mr_pool(struct rds_ib_mr_pool *pool)
576 cancel_delayed_work_sync(&pool->flush_worker);
577 rds_ib_flush_mr_pool(pool, 1, NULL);
578 WARN_ON(atomic_read(&pool->item_count));
579 WARN_ON(atomic_read(&pool->free_pinned));
580 kfree(pool);
583 struct rds_ib_mr_pool *rds_ib_create_mr_pool(struct rds_ib_device *rds_ibdev,
584 int pool_type)
586 struct rds_ib_mr_pool *pool;
588 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
589 if (!pool)
590 return ERR_PTR(-ENOMEM);
592 pool->pool_type = pool_type;
593 init_llist_head(&pool->free_list);
594 init_llist_head(&pool->drop_list);
595 init_llist_head(&pool->clean_list);
596 mutex_init(&pool->flush_lock);
597 init_waitqueue_head(&pool->flush_wait);
598 INIT_DELAYED_WORK(&pool->flush_worker, rds_ib_mr_pool_flush_worker);
600 if (pool_type == RDS_IB_MR_1M_POOL) {
601 /* +1 allows for unaligned MRs */
602 pool->fmr_attr.max_pages = RDS_MR_1M_MSG_SIZE + 1;
603 pool->max_items = RDS_MR_1M_POOL_SIZE;
604 } else {
605 /* pool_type == RDS_IB_MR_8K_POOL */
606 pool->fmr_attr.max_pages = RDS_MR_8K_MSG_SIZE + 1;
607 pool->max_items = RDS_MR_8K_POOL_SIZE;
610 pool->max_free_pinned = pool->max_items * pool->fmr_attr.max_pages / 4;
611 pool->fmr_attr.max_maps = rds_ibdev->fmr_max_remaps;
612 pool->fmr_attr.page_shift = PAGE_SHIFT;
613 pool->max_items_soft = rds_ibdev->max_mrs * 3 / 4;
614 pool->use_fastreg = rds_ibdev->use_fastreg;
616 return pool;
619 int rds_ib_mr_init(void)
621 rds_ib_mr_wq = create_workqueue("rds_mr_flushd");
622 if (!rds_ib_mr_wq)
623 return -ENOMEM;
624 return 0;
627 /* By the time this is called all the IB devices should have been torn down and
628 * had their pools freed. As each pool is freed its work struct is waited on,
629 * so the pool flushing work queue should be idle by the time we get here.
631 void rds_ib_mr_exit(void)
633 destroy_workqueue(rds_ib_mr_wq);