thermal: fix Mediatek thermal controller build
[linux/fpc-iii.git] / net / rds / ib_recv.c
blobabc8cc805e8d063813d496d984e95a0c078ca0d3
1 /*
2 * Copyright (c) 2006 Oracle. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
33 #include <linux/kernel.h>
34 #include <linux/slab.h>
35 #include <linux/pci.h>
36 #include <linux/dma-mapping.h>
37 #include <rdma/rdma_cm.h>
39 #include "rds.h"
40 #include "ib.h"
42 static struct kmem_cache *rds_ib_incoming_slab;
43 static struct kmem_cache *rds_ib_frag_slab;
44 static atomic_t rds_ib_allocation = ATOMIC_INIT(0);
46 void rds_ib_recv_init_ring(struct rds_ib_connection *ic)
48 struct rds_ib_recv_work *recv;
49 u32 i;
51 for (i = 0, recv = ic->i_recvs; i < ic->i_recv_ring.w_nr; i++, recv++) {
52 struct ib_sge *sge;
54 recv->r_ibinc = NULL;
55 recv->r_frag = NULL;
57 recv->r_wr.next = NULL;
58 recv->r_wr.wr_id = i;
59 recv->r_wr.sg_list = recv->r_sge;
60 recv->r_wr.num_sge = RDS_IB_RECV_SGE;
62 sge = &recv->r_sge[0];
63 sge->addr = ic->i_recv_hdrs_dma + (i * sizeof(struct rds_header));
64 sge->length = sizeof(struct rds_header);
65 sge->lkey = ic->i_pd->local_dma_lkey;
67 sge = &recv->r_sge[1];
68 sge->addr = 0;
69 sge->length = RDS_FRAG_SIZE;
70 sge->lkey = ic->i_pd->local_dma_lkey;
75 * The entire 'from' list, including the from element itself, is put on
76 * to the tail of the 'to' list.
78 static void list_splice_entire_tail(struct list_head *from,
79 struct list_head *to)
81 struct list_head *from_last = from->prev;
83 list_splice_tail(from_last, to);
84 list_add_tail(from_last, to);
87 static void rds_ib_cache_xfer_to_ready(struct rds_ib_refill_cache *cache)
89 struct list_head *tmp;
91 tmp = xchg(&cache->xfer, NULL);
92 if (tmp) {
93 if (cache->ready)
94 list_splice_entire_tail(tmp, cache->ready);
95 else
96 cache->ready = tmp;
100 static int rds_ib_recv_alloc_cache(struct rds_ib_refill_cache *cache)
102 struct rds_ib_cache_head *head;
103 int cpu;
105 cache->percpu = alloc_percpu(struct rds_ib_cache_head);
106 if (!cache->percpu)
107 return -ENOMEM;
109 for_each_possible_cpu(cpu) {
110 head = per_cpu_ptr(cache->percpu, cpu);
111 head->first = NULL;
112 head->count = 0;
114 cache->xfer = NULL;
115 cache->ready = NULL;
117 return 0;
120 int rds_ib_recv_alloc_caches(struct rds_ib_connection *ic)
122 int ret;
124 ret = rds_ib_recv_alloc_cache(&ic->i_cache_incs);
125 if (!ret) {
126 ret = rds_ib_recv_alloc_cache(&ic->i_cache_frags);
127 if (ret)
128 free_percpu(ic->i_cache_incs.percpu);
131 return ret;
134 static void rds_ib_cache_splice_all_lists(struct rds_ib_refill_cache *cache,
135 struct list_head *caller_list)
137 struct rds_ib_cache_head *head;
138 int cpu;
140 for_each_possible_cpu(cpu) {
141 head = per_cpu_ptr(cache->percpu, cpu);
142 if (head->first) {
143 list_splice_entire_tail(head->first, caller_list);
144 head->first = NULL;
148 if (cache->ready) {
149 list_splice_entire_tail(cache->ready, caller_list);
150 cache->ready = NULL;
154 void rds_ib_recv_free_caches(struct rds_ib_connection *ic)
156 struct rds_ib_incoming *inc;
157 struct rds_ib_incoming *inc_tmp;
158 struct rds_page_frag *frag;
159 struct rds_page_frag *frag_tmp;
160 LIST_HEAD(list);
162 rds_ib_cache_xfer_to_ready(&ic->i_cache_incs);
163 rds_ib_cache_splice_all_lists(&ic->i_cache_incs, &list);
164 free_percpu(ic->i_cache_incs.percpu);
166 list_for_each_entry_safe(inc, inc_tmp, &list, ii_cache_entry) {
167 list_del(&inc->ii_cache_entry);
168 WARN_ON(!list_empty(&inc->ii_frags));
169 kmem_cache_free(rds_ib_incoming_slab, inc);
172 rds_ib_cache_xfer_to_ready(&ic->i_cache_frags);
173 rds_ib_cache_splice_all_lists(&ic->i_cache_frags, &list);
174 free_percpu(ic->i_cache_frags.percpu);
176 list_for_each_entry_safe(frag, frag_tmp, &list, f_cache_entry) {
177 list_del(&frag->f_cache_entry);
178 WARN_ON(!list_empty(&frag->f_item));
179 kmem_cache_free(rds_ib_frag_slab, frag);
183 /* fwd decl */
184 static void rds_ib_recv_cache_put(struct list_head *new_item,
185 struct rds_ib_refill_cache *cache);
186 static struct list_head *rds_ib_recv_cache_get(struct rds_ib_refill_cache *cache);
189 /* Recycle frag and attached recv buffer f_sg */
190 static void rds_ib_frag_free(struct rds_ib_connection *ic,
191 struct rds_page_frag *frag)
193 rdsdebug("frag %p page %p\n", frag, sg_page(&frag->f_sg));
195 rds_ib_recv_cache_put(&frag->f_cache_entry, &ic->i_cache_frags);
198 /* Recycle inc after freeing attached frags */
199 void rds_ib_inc_free(struct rds_incoming *inc)
201 struct rds_ib_incoming *ibinc;
202 struct rds_page_frag *frag;
203 struct rds_page_frag *pos;
204 struct rds_ib_connection *ic = inc->i_conn->c_transport_data;
206 ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
208 /* Free attached frags */
209 list_for_each_entry_safe(frag, pos, &ibinc->ii_frags, f_item) {
210 list_del_init(&frag->f_item);
211 rds_ib_frag_free(ic, frag);
213 BUG_ON(!list_empty(&ibinc->ii_frags));
215 rdsdebug("freeing ibinc %p inc %p\n", ibinc, inc);
216 rds_ib_recv_cache_put(&ibinc->ii_cache_entry, &ic->i_cache_incs);
219 static void rds_ib_recv_clear_one(struct rds_ib_connection *ic,
220 struct rds_ib_recv_work *recv)
222 if (recv->r_ibinc) {
223 rds_inc_put(&recv->r_ibinc->ii_inc);
224 recv->r_ibinc = NULL;
226 if (recv->r_frag) {
227 ib_dma_unmap_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, 1, DMA_FROM_DEVICE);
228 rds_ib_frag_free(ic, recv->r_frag);
229 recv->r_frag = NULL;
233 void rds_ib_recv_clear_ring(struct rds_ib_connection *ic)
235 u32 i;
237 for (i = 0; i < ic->i_recv_ring.w_nr; i++)
238 rds_ib_recv_clear_one(ic, &ic->i_recvs[i]);
241 static struct rds_ib_incoming *rds_ib_refill_one_inc(struct rds_ib_connection *ic,
242 gfp_t slab_mask)
244 struct rds_ib_incoming *ibinc;
245 struct list_head *cache_item;
246 int avail_allocs;
248 cache_item = rds_ib_recv_cache_get(&ic->i_cache_incs);
249 if (cache_item) {
250 ibinc = container_of(cache_item, struct rds_ib_incoming, ii_cache_entry);
251 } else {
252 avail_allocs = atomic_add_unless(&rds_ib_allocation,
253 1, rds_ib_sysctl_max_recv_allocation);
254 if (!avail_allocs) {
255 rds_ib_stats_inc(s_ib_rx_alloc_limit);
256 return NULL;
258 ibinc = kmem_cache_alloc(rds_ib_incoming_slab, slab_mask);
259 if (!ibinc) {
260 atomic_dec(&rds_ib_allocation);
261 return NULL;
264 INIT_LIST_HEAD(&ibinc->ii_frags);
265 rds_inc_init(&ibinc->ii_inc, ic->conn, ic->conn->c_faddr);
267 return ibinc;
270 static struct rds_page_frag *rds_ib_refill_one_frag(struct rds_ib_connection *ic,
271 gfp_t slab_mask, gfp_t page_mask)
273 struct rds_page_frag *frag;
274 struct list_head *cache_item;
275 int ret;
277 cache_item = rds_ib_recv_cache_get(&ic->i_cache_frags);
278 if (cache_item) {
279 frag = container_of(cache_item, struct rds_page_frag, f_cache_entry);
280 } else {
281 frag = kmem_cache_alloc(rds_ib_frag_slab, slab_mask);
282 if (!frag)
283 return NULL;
285 sg_init_table(&frag->f_sg, 1);
286 ret = rds_page_remainder_alloc(&frag->f_sg,
287 RDS_FRAG_SIZE, page_mask);
288 if (ret) {
289 kmem_cache_free(rds_ib_frag_slab, frag);
290 return NULL;
294 INIT_LIST_HEAD(&frag->f_item);
296 return frag;
299 static int rds_ib_recv_refill_one(struct rds_connection *conn,
300 struct rds_ib_recv_work *recv, gfp_t gfp)
302 struct rds_ib_connection *ic = conn->c_transport_data;
303 struct ib_sge *sge;
304 int ret = -ENOMEM;
305 gfp_t slab_mask = GFP_NOWAIT;
306 gfp_t page_mask = GFP_NOWAIT;
308 if (gfp & __GFP_DIRECT_RECLAIM) {
309 slab_mask = GFP_KERNEL;
310 page_mask = GFP_HIGHUSER;
313 if (!ic->i_cache_incs.ready)
314 rds_ib_cache_xfer_to_ready(&ic->i_cache_incs);
315 if (!ic->i_cache_frags.ready)
316 rds_ib_cache_xfer_to_ready(&ic->i_cache_frags);
319 * ibinc was taken from recv if recv contained the start of a message.
320 * recvs that were continuations will still have this allocated.
322 if (!recv->r_ibinc) {
323 recv->r_ibinc = rds_ib_refill_one_inc(ic, slab_mask);
324 if (!recv->r_ibinc)
325 goto out;
328 WARN_ON(recv->r_frag); /* leak! */
329 recv->r_frag = rds_ib_refill_one_frag(ic, slab_mask, page_mask);
330 if (!recv->r_frag)
331 goto out;
333 ret = ib_dma_map_sg(ic->i_cm_id->device, &recv->r_frag->f_sg,
334 1, DMA_FROM_DEVICE);
335 WARN_ON(ret != 1);
337 sge = &recv->r_sge[0];
338 sge->addr = ic->i_recv_hdrs_dma + (recv - ic->i_recvs) * sizeof(struct rds_header);
339 sge->length = sizeof(struct rds_header);
341 sge = &recv->r_sge[1];
342 sge->addr = ib_sg_dma_address(ic->i_cm_id->device, &recv->r_frag->f_sg);
343 sge->length = ib_sg_dma_len(ic->i_cm_id->device, &recv->r_frag->f_sg);
345 ret = 0;
346 out:
347 return ret;
350 static int acquire_refill(struct rds_connection *conn)
352 return test_and_set_bit(RDS_RECV_REFILL, &conn->c_flags) == 0;
355 static void release_refill(struct rds_connection *conn)
357 clear_bit(RDS_RECV_REFILL, &conn->c_flags);
359 /* We don't use wait_on_bit()/wake_up_bit() because our waking is in a
360 * hot path and finding waiters is very rare. We don't want to walk
361 * the system-wide hashed waitqueue buckets in the fast path only to
362 * almost never find waiters.
364 if (waitqueue_active(&conn->c_waitq))
365 wake_up_all(&conn->c_waitq);
369 * This tries to allocate and post unused work requests after making sure that
370 * they have all the allocations they need to queue received fragments into
371 * sockets.
373 * -1 is returned if posting fails due to temporary resource exhaustion.
375 void rds_ib_recv_refill(struct rds_connection *conn, int prefill, gfp_t gfp)
377 struct rds_ib_connection *ic = conn->c_transport_data;
378 struct rds_ib_recv_work *recv;
379 struct ib_recv_wr *failed_wr;
380 unsigned int posted = 0;
381 int ret = 0;
382 bool can_wait = !!(gfp & __GFP_DIRECT_RECLAIM);
383 u32 pos;
385 /* the goal here is to just make sure that someone, somewhere
386 * is posting buffers. If we can't get the refill lock,
387 * let them do their thing
389 if (!acquire_refill(conn))
390 return;
392 while ((prefill || rds_conn_up(conn)) &&
393 rds_ib_ring_alloc(&ic->i_recv_ring, 1, &pos)) {
394 if (pos >= ic->i_recv_ring.w_nr) {
395 printk(KERN_NOTICE "Argh - ring alloc returned pos=%u\n",
396 pos);
397 break;
400 recv = &ic->i_recvs[pos];
401 ret = rds_ib_recv_refill_one(conn, recv, gfp);
402 if (ret) {
403 break;
406 /* XXX when can this fail? */
407 ret = ib_post_recv(ic->i_cm_id->qp, &recv->r_wr, &failed_wr);
408 rdsdebug("recv %p ibinc %p page %p addr %lu ret %d\n", recv,
409 recv->r_ibinc, sg_page(&recv->r_frag->f_sg),
410 (long) ib_sg_dma_address(
411 ic->i_cm_id->device,
412 &recv->r_frag->f_sg),
413 ret);
414 if (ret) {
415 rds_ib_conn_error(conn, "recv post on "
416 "%pI4 returned %d, disconnecting and "
417 "reconnecting\n", &conn->c_faddr,
418 ret);
419 break;
422 posted++;
425 /* We're doing flow control - update the window. */
426 if (ic->i_flowctl && posted)
427 rds_ib_advertise_credits(conn, posted);
429 if (ret)
430 rds_ib_ring_unalloc(&ic->i_recv_ring, 1);
432 release_refill(conn);
434 /* if we're called from the softirq handler, we'll be GFP_NOWAIT.
435 * in this case the ring being low is going to lead to more interrupts
436 * and we can safely let the softirq code take care of it unless the
437 * ring is completely empty.
439 * if we're called from krdsd, we'll be GFP_KERNEL. In this case
440 * we might have raced with the softirq code while we had the refill
441 * lock held. Use rds_ib_ring_low() instead of ring_empty to decide
442 * if we should requeue.
444 if (rds_conn_up(conn) &&
445 ((can_wait && rds_ib_ring_low(&ic->i_recv_ring)) ||
446 rds_ib_ring_empty(&ic->i_recv_ring))) {
447 queue_delayed_work(rds_wq, &conn->c_recv_w, 1);
452 * We want to recycle several types of recv allocations, like incs and frags.
453 * To use this, the *_free() function passes in the ptr to a list_head within
454 * the recyclee, as well as the cache to put it on.
456 * First, we put the memory on a percpu list. When this reaches a certain size,
457 * We move it to an intermediate non-percpu list in a lockless manner, with some
458 * xchg/compxchg wizardry.
460 * N.B. Instead of a list_head as the anchor, we use a single pointer, which can
461 * be NULL and xchg'd. The list is actually empty when the pointer is NULL, and
462 * list_empty() will return true with one element is actually present.
464 static void rds_ib_recv_cache_put(struct list_head *new_item,
465 struct rds_ib_refill_cache *cache)
467 unsigned long flags;
468 struct list_head *old, *chpfirst;
470 local_irq_save(flags);
472 chpfirst = __this_cpu_read(cache->percpu->first);
473 if (!chpfirst)
474 INIT_LIST_HEAD(new_item);
475 else /* put on front */
476 list_add_tail(new_item, chpfirst);
478 __this_cpu_write(cache->percpu->first, new_item);
479 __this_cpu_inc(cache->percpu->count);
481 if (__this_cpu_read(cache->percpu->count) < RDS_IB_RECYCLE_BATCH_COUNT)
482 goto end;
485 * Return our per-cpu first list to the cache's xfer by atomically
486 * grabbing the current xfer list, appending it to our per-cpu list,
487 * and then atomically returning that entire list back to the
488 * cache's xfer list as long as it's still empty.
490 do {
491 old = xchg(&cache->xfer, NULL);
492 if (old)
493 list_splice_entire_tail(old, chpfirst);
494 old = cmpxchg(&cache->xfer, NULL, chpfirst);
495 } while (old);
498 __this_cpu_write(cache->percpu->first, NULL);
499 __this_cpu_write(cache->percpu->count, 0);
500 end:
501 local_irq_restore(flags);
504 static struct list_head *rds_ib_recv_cache_get(struct rds_ib_refill_cache *cache)
506 struct list_head *head = cache->ready;
508 if (head) {
509 if (!list_empty(head)) {
510 cache->ready = head->next;
511 list_del_init(head);
512 } else
513 cache->ready = NULL;
516 return head;
519 int rds_ib_inc_copy_to_user(struct rds_incoming *inc, struct iov_iter *to)
521 struct rds_ib_incoming *ibinc;
522 struct rds_page_frag *frag;
523 unsigned long to_copy;
524 unsigned long frag_off = 0;
525 int copied = 0;
526 int ret;
527 u32 len;
529 ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
530 frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item);
531 len = be32_to_cpu(inc->i_hdr.h_len);
533 while (iov_iter_count(to) && copied < len) {
534 if (frag_off == RDS_FRAG_SIZE) {
535 frag = list_entry(frag->f_item.next,
536 struct rds_page_frag, f_item);
537 frag_off = 0;
539 to_copy = min_t(unsigned long, iov_iter_count(to),
540 RDS_FRAG_SIZE - frag_off);
541 to_copy = min_t(unsigned long, to_copy, len - copied);
543 /* XXX needs + offset for multiple recvs per page */
544 rds_stats_add(s_copy_to_user, to_copy);
545 ret = copy_page_to_iter(sg_page(&frag->f_sg),
546 frag->f_sg.offset + frag_off,
547 to_copy,
548 to);
549 if (ret != to_copy)
550 return -EFAULT;
552 frag_off += to_copy;
553 copied += to_copy;
556 return copied;
559 /* ic starts out kzalloc()ed */
560 void rds_ib_recv_init_ack(struct rds_ib_connection *ic)
562 struct ib_send_wr *wr = &ic->i_ack_wr;
563 struct ib_sge *sge = &ic->i_ack_sge;
565 sge->addr = ic->i_ack_dma;
566 sge->length = sizeof(struct rds_header);
567 sge->lkey = ic->i_pd->local_dma_lkey;
569 wr->sg_list = sge;
570 wr->num_sge = 1;
571 wr->opcode = IB_WR_SEND;
572 wr->wr_id = RDS_IB_ACK_WR_ID;
573 wr->send_flags = IB_SEND_SIGNALED | IB_SEND_SOLICITED;
577 * You'd think that with reliable IB connections you wouldn't need to ack
578 * messages that have been received. The problem is that IB hardware generates
579 * an ack message before it has DMAed the message into memory. This creates a
580 * potential message loss if the HCA is disabled for any reason between when it
581 * sends the ack and before the message is DMAed and processed. This is only a
582 * potential issue if another HCA is available for fail-over.
584 * When the remote host receives our ack they'll free the sent message from
585 * their send queue. To decrease the latency of this we always send an ack
586 * immediately after we've received messages.
588 * For simplicity, we only have one ack in flight at a time. This puts
589 * pressure on senders to have deep enough send queues to absorb the latency of
590 * a single ack frame being in flight. This might not be good enough.
592 * This is implemented by have a long-lived send_wr and sge which point to a
593 * statically allocated ack frame. This ack wr does not fall under the ring
594 * accounting that the tx and rx wrs do. The QP attribute specifically makes
595 * room for it beyond the ring size. Send completion notices its special
596 * wr_id and avoids working with the ring in that case.
598 #ifndef KERNEL_HAS_ATOMIC64
599 void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq, int ack_required)
601 unsigned long flags;
603 spin_lock_irqsave(&ic->i_ack_lock, flags);
604 ic->i_ack_next = seq;
605 if (ack_required)
606 set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
607 spin_unlock_irqrestore(&ic->i_ack_lock, flags);
610 static u64 rds_ib_get_ack(struct rds_ib_connection *ic)
612 unsigned long flags;
613 u64 seq;
615 clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
617 spin_lock_irqsave(&ic->i_ack_lock, flags);
618 seq = ic->i_ack_next;
619 spin_unlock_irqrestore(&ic->i_ack_lock, flags);
621 return seq;
623 #else
624 void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq, int ack_required)
626 atomic64_set(&ic->i_ack_next, seq);
627 if (ack_required) {
628 smp_mb__before_atomic();
629 set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
633 static u64 rds_ib_get_ack(struct rds_ib_connection *ic)
635 clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
636 smp_mb__after_atomic();
638 return atomic64_read(&ic->i_ack_next);
640 #endif
643 static void rds_ib_send_ack(struct rds_ib_connection *ic, unsigned int adv_credits)
645 struct rds_header *hdr = ic->i_ack;
646 struct ib_send_wr *failed_wr;
647 u64 seq;
648 int ret;
650 seq = rds_ib_get_ack(ic);
652 rdsdebug("send_ack: ic %p ack %llu\n", ic, (unsigned long long) seq);
653 rds_message_populate_header(hdr, 0, 0, 0);
654 hdr->h_ack = cpu_to_be64(seq);
655 hdr->h_credit = adv_credits;
656 rds_message_make_checksum(hdr);
657 ic->i_ack_queued = jiffies;
659 ret = ib_post_send(ic->i_cm_id->qp, &ic->i_ack_wr, &failed_wr);
660 if (unlikely(ret)) {
661 /* Failed to send. Release the WR, and
662 * force another ACK.
664 clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
665 set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
667 rds_ib_stats_inc(s_ib_ack_send_failure);
669 rds_ib_conn_error(ic->conn, "sending ack failed\n");
670 } else
671 rds_ib_stats_inc(s_ib_ack_sent);
675 * There are 3 ways of getting acknowledgements to the peer:
676 * 1. We call rds_ib_attempt_ack from the recv completion handler
677 * to send an ACK-only frame.
678 * However, there can be only one such frame in the send queue
679 * at any time, so we may have to postpone it.
680 * 2. When another (data) packet is transmitted while there's
681 * an ACK in the queue, we piggyback the ACK sequence number
682 * on the data packet.
683 * 3. If the ACK WR is done sending, we get called from the
684 * send queue completion handler, and check whether there's
685 * another ACK pending (postponed because the WR was on the
686 * queue). If so, we transmit it.
688 * We maintain 2 variables:
689 * - i_ack_flags, which keeps track of whether the ACK WR
690 * is currently in the send queue or not (IB_ACK_IN_FLIGHT)
691 * - i_ack_next, which is the last sequence number we received
693 * Potentially, send queue and receive queue handlers can run concurrently.
694 * It would be nice to not have to use a spinlock to synchronize things,
695 * but the one problem that rules this out is that 64bit updates are
696 * not atomic on all platforms. Things would be a lot simpler if
697 * we had atomic64 or maybe cmpxchg64 everywhere.
699 * Reconnecting complicates this picture just slightly. When we
700 * reconnect, we may be seeing duplicate packets. The peer
701 * is retransmitting them, because it hasn't seen an ACK for
702 * them. It is important that we ACK these.
704 * ACK mitigation adds a header flag "ACK_REQUIRED"; any packet with
705 * this flag set *MUST* be acknowledged immediately.
709 * When we get here, we're called from the recv queue handler.
710 * Check whether we ought to transmit an ACK.
712 void rds_ib_attempt_ack(struct rds_ib_connection *ic)
714 unsigned int adv_credits;
716 if (!test_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
717 return;
719 if (test_and_set_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags)) {
720 rds_ib_stats_inc(s_ib_ack_send_delayed);
721 return;
724 /* Can we get a send credit? */
725 if (!rds_ib_send_grab_credits(ic, 1, &adv_credits, 0, RDS_MAX_ADV_CREDIT)) {
726 rds_ib_stats_inc(s_ib_tx_throttle);
727 clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
728 return;
731 clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
732 rds_ib_send_ack(ic, adv_credits);
736 * We get here from the send completion handler, when the
737 * adapter tells us the ACK frame was sent.
739 void rds_ib_ack_send_complete(struct rds_ib_connection *ic)
741 clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
742 rds_ib_attempt_ack(ic);
746 * This is called by the regular xmit code when it wants to piggyback
747 * an ACK on an outgoing frame.
749 u64 rds_ib_piggyb_ack(struct rds_ib_connection *ic)
751 if (test_and_clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
752 rds_ib_stats_inc(s_ib_ack_send_piggybacked);
753 return rds_ib_get_ack(ic);
757 * It's kind of lame that we're copying from the posted receive pages into
758 * long-lived bitmaps. We could have posted the bitmaps and rdma written into
759 * them. But receiving new congestion bitmaps should be a *rare* event, so
760 * hopefully we won't need to invest that complexity in making it more
761 * efficient. By copying we can share a simpler core with TCP which has to
762 * copy.
764 static void rds_ib_cong_recv(struct rds_connection *conn,
765 struct rds_ib_incoming *ibinc)
767 struct rds_cong_map *map;
768 unsigned int map_off;
769 unsigned int map_page;
770 struct rds_page_frag *frag;
771 unsigned long frag_off;
772 unsigned long to_copy;
773 unsigned long copied;
774 uint64_t uncongested = 0;
775 void *addr;
777 /* catch completely corrupt packets */
778 if (be32_to_cpu(ibinc->ii_inc.i_hdr.h_len) != RDS_CONG_MAP_BYTES)
779 return;
781 map = conn->c_fcong;
782 map_page = 0;
783 map_off = 0;
785 frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item);
786 frag_off = 0;
788 copied = 0;
790 while (copied < RDS_CONG_MAP_BYTES) {
791 uint64_t *src, *dst;
792 unsigned int k;
794 to_copy = min(RDS_FRAG_SIZE - frag_off, PAGE_SIZE - map_off);
795 BUG_ON(to_copy & 7); /* Must be 64bit aligned. */
797 addr = kmap_atomic(sg_page(&frag->f_sg));
799 src = addr + frag->f_sg.offset + frag_off;
800 dst = (void *)map->m_page_addrs[map_page] + map_off;
801 for (k = 0; k < to_copy; k += 8) {
802 /* Record ports that became uncongested, ie
803 * bits that changed from 0 to 1. */
804 uncongested |= ~(*src) & *dst;
805 *dst++ = *src++;
807 kunmap_atomic(addr);
809 copied += to_copy;
811 map_off += to_copy;
812 if (map_off == PAGE_SIZE) {
813 map_off = 0;
814 map_page++;
817 frag_off += to_copy;
818 if (frag_off == RDS_FRAG_SIZE) {
819 frag = list_entry(frag->f_item.next,
820 struct rds_page_frag, f_item);
821 frag_off = 0;
825 /* the congestion map is in little endian order */
826 uncongested = le64_to_cpu(uncongested);
828 rds_cong_map_updated(map, uncongested);
831 static void rds_ib_process_recv(struct rds_connection *conn,
832 struct rds_ib_recv_work *recv, u32 data_len,
833 struct rds_ib_ack_state *state)
835 struct rds_ib_connection *ic = conn->c_transport_data;
836 struct rds_ib_incoming *ibinc = ic->i_ibinc;
837 struct rds_header *ihdr, *hdr;
839 /* XXX shut down the connection if port 0,0 are seen? */
841 rdsdebug("ic %p ibinc %p recv %p byte len %u\n", ic, ibinc, recv,
842 data_len);
844 if (data_len < sizeof(struct rds_header)) {
845 rds_ib_conn_error(conn, "incoming message "
846 "from %pI4 didn't include a "
847 "header, disconnecting and "
848 "reconnecting\n",
849 &conn->c_faddr);
850 return;
852 data_len -= sizeof(struct rds_header);
854 ihdr = &ic->i_recv_hdrs[recv - ic->i_recvs];
856 /* Validate the checksum. */
857 if (!rds_message_verify_checksum(ihdr)) {
858 rds_ib_conn_error(conn, "incoming message "
859 "from %pI4 has corrupted header - "
860 "forcing a reconnect\n",
861 &conn->c_faddr);
862 rds_stats_inc(s_recv_drop_bad_checksum);
863 return;
866 /* Process the ACK sequence which comes with every packet */
867 state->ack_recv = be64_to_cpu(ihdr->h_ack);
868 state->ack_recv_valid = 1;
870 /* Process the credits update if there was one */
871 if (ihdr->h_credit)
872 rds_ib_send_add_credits(conn, ihdr->h_credit);
874 if (ihdr->h_sport == 0 && ihdr->h_dport == 0 && data_len == 0) {
875 /* This is an ACK-only packet. The fact that it gets
876 * special treatment here is that historically, ACKs
877 * were rather special beasts.
879 rds_ib_stats_inc(s_ib_ack_received);
882 * Usually the frags make their way on to incs and are then freed as
883 * the inc is freed. We don't go that route, so we have to drop the
884 * page ref ourselves. We can't just leave the page on the recv
885 * because that confuses the dma mapping of pages and each recv's use
886 * of a partial page.
888 * FIXME: Fold this into the code path below.
890 rds_ib_frag_free(ic, recv->r_frag);
891 recv->r_frag = NULL;
892 return;
896 * If we don't already have an inc on the connection then this
897 * fragment has a header and starts a message.. copy its header
898 * into the inc and save the inc so we can hang upcoming fragments
899 * off its list.
901 if (!ibinc) {
902 ibinc = recv->r_ibinc;
903 recv->r_ibinc = NULL;
904 ic->i_ibinc = ibinc;
906 hdr = &ibinc->ii_inc.i_hdr;
907 memcpy(hdr, ihdr, sizeof(*hdr));
908 ic->i_recv_data_rem = be32_to_cpu(hdr->h_len);
910 rdsdebug("ic %p ibinc %p rem %u flag 0x%x\n", ic, ibinc,
911 ic->i_recv_data_rem, hdr->h_flags);
912 } else {
913 hdr = &ibinc->ii_inc.i_hdr;
914 /* We can't just use memcmp here; fragments of a
915 * single message may carry different ACKs */
916 if (hdr->h_sequence != ihdr->h_sequence ||
917 hdr->h_len != ihdr->h_len ||
918 hdr->h_sport != ihdr->h_sport ||
919 hdr->h_dport != ihdr->h_dport) {
920 rds_ib_conn_error(conn,
921 "fragment header mismatch; forcing reconnect\n");
922 return;
926 list_add_tail(&recv->r_frag->f_item, &ibinc->ii_frags);
927 recv->r_frag = NULL;
929 if (ic->i_recv_data_rem > RDS_FRAG_SIZE)
930 ic->i_recv_data_rem -= RDS_FRAG_SIZE;
931 else {
932 ic->i_recv_data_rem = 0;
933 ic->i_ibinc = NULL;
935 if (ibinc->ii_inc.i_hdr.h_flags == RDS_FLAG_CONG_BITMAP)
936 rds_ib_cong_recv(conn, ibinc);
937 else {
938 rds_recv_incoming(conn, conn->c_faddr, conn->c_laddr,
939 &ibinc->ii_inc, GFP_ATOMIC);
940 state->ack_next = be64_to_cpu(hdr->h_sequence);
941 state->ack_next_valid = 1;
944 /* Evaluate the ACK_REQUIRED flag *after* we received
945 * the complete frame, and after bumping the next_rx
946 * sequence. */
947 if (hdr->h_flags & RDS_FLAG_ACK_REQUIRED) {
948 rds_stats_inc(s_recv_ack_required);
949 state->ack_required = 1;
952 rds_inc_put(&ibinc->ii_inc);
956 void rds_ib_recv_cqe_handler(struct rds_ib_connection *ic,
957 struct ib_wc *wc,
958 struct rds_ib_ack_state *state)
960 struct rds_connection *conn = ic->conn;
961 struct rds_ib_recv_work *recv;
963 rdsdebug("wc wr_id 0x%llx status %u (%s) byte_len %u imm_data %u\n",
964 (unsigned long long)wc->wr_id, wc->status,
965 ib_wc_status_msg(wc->status), wc->byte_len,
966 be32_to_cpu(wc->ex.imm_data));
968 rds_ib_stats_inc(s_ib_rx_cq_event);
969 recv = &ic->i_recvs[rds_ib_ring_oldest(&ic->i_recv_ring)];
970 ib_dma_unmap_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, 1,
971 DMA_FROM_DEVICE);
973 /* Also process recvs in connecting state because it is possible
974 * to get a recv completion _before_ the rdmacm ESTABLISHED
975 * event is processed.
977 if (wc->status == IB_WC_SUCCESS) {
978 rds_ib_process_recv(conn, recv, wc->byte_len, state);
979 } else {
980 /* We expect errors as the qp is drained during shutdown */
981 if (rds_conn_up(conn) || rds_conn_connecting(conn))
982 rds_ib_conn_error(conn, "recv completion on %pI4 had status %u (%s), disconnecting and reconnecting\n",
983 &conn->c_faddr,
984 wc->status,
985 ib_wc_status_msg(wc->status));
988 /* rds_ib_process_recv() doesn't always consume the frag, and
989 * we might not have called it at all if the wc didn't indicate
990 * success. We already unmapped the frag's pages, though, and
991 * the following rds_ib_ring_free() call tells the refill path
992 * that it will not find an allocated frag here. Make sure we
993 * keep that promise by freeing a frag that's still on the ring.
995 if (recv->r_frag) {
996 rds_ib_frag_free(ic, recv->r_frag);
997 recv->r_frag = NULL;
999 rds_ib_ring_free(&ic->i_recv_ring, 1);
1001 /* If we ever end up with a really empty receive ring, we're
1002 * in deep trouble, as the sender will definitely see RNR
1003 * timeouts. */
1004 if (rds_ib_ring_empty(&ic->i_recv_ring))
1005 rds_ib_stats_inc(s_ib_rx_ring_empty);
1007 if (rds_ib_ring_low(&ic->i_recv_ring))
1008 rds_ib_recv_refill(conn, 0, GFP_NOWAIT);
1011 int rds_ib_recv(struct rds_connection *conn)
1013 struct rds_ib_connection *ic = conn->c_transport_data;
1014 int ret = 0;
1016 rdsdebug("conn %p\n", conn);
1017 if (rds_conn_up(conn)) {
1018 rds_ib_attempt_ack(ic);
1019 rds_ib_recv_refill(conn, 0, GFP_KERNEL);
1022 return ret;
1025 int rds_ib_recv_init(void)
1027 struct sysinfo si;
1028 int ret = -ENOMEM;
1030 /* Default to 30% of all available RAM for recv memory */
1031 si_meminfo(&si);
1032 rds_ib_sysctl_max_recv_allocation = si.totalram / 3 * PAGE_SIZE / RDS_FRAG_SIZE;
1034 rds_ib_incoming_slab = kmem_cache_create("rds_ib_incoming",
1035 sizeof(struct rds_ib_incoming),
1036 0, SLAB_HWCACHE_ALIGN, NULL);
1037 if (!rds_ib_incoming_slab)
1038 goto out;
1040 rds_ib_frag_slab = kmem_cache_create("rds_ib_frag",
1041 sizeof(struct rds_page_frag),
1042 0, SLAB_HWCACHE_ALIGN, NULL);
1043 if (!rds_ib_frag_slab) {
1044 kmem_cache_destroy(rds_ib_incoming_slab);
1045 rds_ib_incoming_slab = NULL;
1046 } else
1047 ret = 0;
1048 out:
1049 return ret;
1052 void rds_ib_recv_exit(void)
1054 kmem_cache_destroy(rds_ib_incoming_slab);
1055 kmem_cache_destroy(rds_ib_frag_slab);