2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
8 * Permission to use, copy, modify, and/or distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
23 * DOC: Wireless regulatory infrastructure
25 * The usual implementation is for a driver to read a device EEPROM to
26 * determine which regulatory domain it should be operating under, then
27 * looking up the allowable channels in a driver-local table and finally
28 * registering those channels in the wiphy structure.
30 * Another set of compliance enforcement is for drivers to use their
31 * own compliance limits which can be stored on the EEPROM. The host
32 * driver or firmware may ensure these are used.
34 * In addition to all this we provide an extra layer of regulatory
35 * conformance. For drivers which do not have any regulatory
36 * information CRDA provides the complete regulatory solution.
37 * For others it provides a community effort on further restrictions
38 * to enhance compliance.
40 * Note: When number of rules --> infinity we will not be able to
41 * index on alpha2 any more, instead we'll probably have to
42 * rely on some SHA1 checksum of the regdomain for example.
46 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
48 #include <linux/kernel.h>
49 #include <linux/export.h>
50 #include <linux/slab.h>
51 #include <linux/list.h>
52 #include <linux/ctype.h>
53 #include <linux/nl80211.h>
54 #include <linux/platform_device.h>
55 #include <linux/moduleparam.h>
56 #include <net/cfg80211.h>
64 * Grace period we give before making sure all current interfaces reside on
65 * channels allowed by the current regulatory domain.
67 #define REG_ENFORCE_GRACE_MS 60000
70 * enum reg_request_treatment - regulatory request treatment
72 * @REG_REQ_OK: continue processing the regulatory request
73 * @REG_REQ_IGNORE: ignore the regulatory request
74 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
75 * be intersected with the current one.
76 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
77 * regulatory settings, and no further processing is required.
79 enum reg_request_treatment
{
86 static struct regulatory_request core_request_world
= {
87 .initiator
= NL80211_REGDOM_SET_BY_CORE
,
92 .country_ie_env
= ENVIRON_ANY
,
96 * Receipt of information from last regulatory request,
97 * protected by RTNL (and can be accessed with RCU protection)
99 static struct regulatory_request __rcu
*last_request
=
100 (void __force __rcu
*)&core_request_world
;
102 /* To trigger userspace events */
103 static struct platform_device
*reg_pdev
;
106 * Central wireless core regulatory domains, we only need two,
107 * the current one and a world regulatory domain in case we have no
108 * information to give us an alpha2.
109 * (protected by RTNL, can be read under RCU)
111 const struct ieee80211_regdomain __rcu
*cfg80211_regdomain
;
114 * Number of devices that registered to the core
115 * that support cellular base station regulatory hints
116 * (protected by RTNL)
118 static int reg_num_devs_support_basehint
;
121 * State variable indicating if the platform on which the devices
122 * are attached is operating in an indoor environment. The state variable
123 * is relevant for all registered devices.
125 static bool reg_is_indoor
;
126 static spinlock_t reg_indoor_lock
;
128 /* Used to track the userspace process controlling the indoor setting */
129 static u32 reg_is_indoor_portid
;
131 static void restore_regulatory_settings(bool reset_user
);
133 static const struct ieee80211_regdomain
*get_cfg80211_regdom(void)
135 return rtnl_dereference(cfg80211_regdomain
);
138 const struct ieee80211_regdomain
*get_wiphy_regdom(struct wiphy
*wiphy
)
140 return rtnl_dereference(wiphy
->regd
);
143 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region
)
145 switch (dfs_region
) {
146 case NL80211_DFS_UNSET
:
148 case NL80211_DFS_FCC
:
150 case NL80211_DFS_ETSI
:
158 enum nl80211_dfs_regions
reg_get_dfs_region(struct wiphy
*wiphy
)
160 const struct ieee80211_regdomain
*regd
= NULL
;
161 const struct ieee80211_regdomain
*wiphy_regd
= NULL
;
163 regd
= get_cfg80211_regdom();
167 wiphy_regd
= get_wiphy_regdom(wiphy
);
171 if (wiphy_regd
->dfs_region
== regd
->dfs_region
)
174 pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
175 dev_name(&wiphy
->dev
),
176 reg_dfs_region_str(wiphy_regd
->dfs_region
),
177 reg_dfs_region_str(regd
->dfs_region
));
180 return regd
->dfs_region
;
183 static void rcu_free_regdom(const struct ieee80211_regdomain
*r
)
187 kfree_rcu((struct ieee80211_regdomain
*)r
, rcu_head
);
190 static struct regulatory_request
*get_last_request(void)
192 return rcu_dereference_rtnl(last_request
);
195 /* Used to queue up regulatory hints */
196 static LIST_HEAD(reg_requests_list
);
197 static spinlock_t reg_requests_lock
;
199 /* Used to queue up beacon hints for review */
200 static LIST_HEAD(reg_pending_beacons
);
201 static spinlock_t reg_pending_beacons_lock
;
203 /* Used to keep track of processed beacon hints */
204 static LIST_HEAD(reg_beacon_list
);
207 struct list_head list
;
208 struct ieee80211_channel chan
;
211 static void reg_check_chans_work(struct work_struct
*work
);
212 static DECLARE_DELAYED_WORK(reg_check_chans
, reg_check_chans_work
);
214 static void reg_todo(struct work_struct
*work
);
215 static DECLARE_WORK(reg_work
, reg_todo
);
217 /* We keep a static world regulatory domain in case of the absence of CRDA */
218 static const struct ieee80211_regdomain world_regdom
= {
222 /* IEEE 802.11b/g, channels 1..11 */
223 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
224 /* IEEE 802.11b/g, channels 12..13. */
225 REG_RULE(2467-10, 2472+10, 20, 6, 20,
226 NL80211_RRF_NO_IR
| NL80211_RRF_AUTO_BW
),
227 /* IEEE 802.11 channel 14 - Only JP enables
228 * this and for 802.11b only */
229 REG_RULE(2484-10, 2484+10, 20, 6, 20,
231 NL80211_RRF_NO_OFDM
),
232 /* IEEE 802.11a, channel 36..48 */
233 REG_RULE(5180-10, 5240+10, 80, 6, 20,
235 NL80211_RRF_AUTO_BW
),
237 /* IEEE 802.11a, channel 52..64 - DFS required */
238 REG_RULE(5260-10, 5320+10, 80, 6, 20,
240 NL80211_RRF_AUTO_BW
|
243 /* IEEE 802.11a, channel 100..144 - DFS required */
244 REG_RULE(5500-10, 5720+10, 160, 6, 20,
248 /* IEEE 802.11a, channel 149..165 */
249 REG_RULE(5745-10, 5825+10, 80, 6, 20,
252 /* IEEE 802.11ad (60GHz), channels 1..3 */
253 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
257 /* protected by RTNL */
258 static const struct ieee80211_regdomain
*cfg80211_world_regdom
=
261 static char *ieee80211_regdom
= "00";
262 static char user_alpha2
[2];
264 module_param(ieee80211_regdom
, charp
, 0444);
265 MODULE_PARM_DESC(ieee80211_regdom
, "IEEE 802.11 regulatory domain code");
267 static void reg_free_request(struct regulatory_request
*request
)
269 if (request
== &core_request_world
)
272 if (request
!= get_last_request())
276 static void reg_free_last_request(void)
278 struct regulatory_request
*lr
= get_last_request();
280 if (lr
!= &core_request_world
&& lr
)
281 kfree_rcu(lr
, rcu_head
);
284 static void reg_update_last_request(struct regulatory_request
*request
)
286 struct regulatory_request
*lr
;
288 lr
= get_last_request();
292 reg_free_last_request();
293 rcu_assign_pointer(last_request
, request
);
296 static void reset_regdomains(bool full_reset
,
297 const struct ieee80211_regdomain
*new_regdom
)
299 const struct ieee80211_regdomain
*r
;
303 r
= get_cfg80211_regdom();
305 /* avoid freeing static information or freeing something twice */
306 if (r
== cfg80211_world_regdom
)
308 if (cfg80211_world_regdom
== &world_regdom
)
309 cfg80211_world_regdom
= NULL
;
310 if (r
== &world_regdom
)
314 rcu_free_regdom(cfg80211_world_regdom
);
316 cfg80211_world_regdom
= &world_regdom
;
317 rcu_assign_pointer(cfg80211_regdomain
, new_regdom
);
322 reg_update_last_request(&core_request_world
);
326 * Dynamic world regulatory domain requested by the wireless
327 * core upon initialization
329 static void update_world_regdomain(const struct ieee80211_regdomain
*rd
)
331 struct regulatory_request
*lr
;
333 lr
= get_last_request();
337 reset_regdomains(false, rd
);
339 cfg80211_world_regdom
= rd
;
342 bool is_world_regdom(const char *alpha2
)
346 return alpha2
[0] == '0' && alpha2
[1] == '0';
349 static bool is_alpha2_set(const char *alpha2
)
353 return alpha2
[0] && alpha2
[1];
356 static bool is_unknown_alpha2(const char *alpha2
)
361 * Special case where regulatory domain was built by driver
362 * but a specific alpha2 cannot be determined
364 return alpha2
[0] == '9' && alpha2
[1] == '9';
367 static bool is_intersected_alpha2(const char *alpha2
)
372 * Special case where regulatory domain is the
373 * result of an intersection between two regulatory domain
376 return alpha2
[0] == '9' && alpha2
[1] == '8';
379 static bool is_an_alpha2(const char *alpha2
)
383 return isalpha(alpha2
[0]) && isalpha(alpha2
[1]);
386 static bool alpha2_equal(const char *alpha2_x
, const char *alpha2_y
)
388 if (!alpha2_x
|| !alpha2_y
)
390 return alpha2_x
[0] == alpha2_y
[0] && alpha2_x
[1] == alpha2_y
[1];
393 static bool regdom_changes(const char *alpha2
)
395 const struct ieee80211_regdomain
*r
= get_cfg80211_regdom();
399 return !alpha2_equal(r
->alpha2
, alpha2
);
403 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
404 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
405 * has ever been issued.
407 static bool is_user_regdom_saved(void)
409 if (user_alpha2
[0] == '9' && user_alpha2
[1] == '7')
412 /* This would indicate a mistake on the design */
413 if (WARN(!is_world_regdom(user_alpha2
) && !is_an_alpha2(user_alpha2
),
414 "Unexpected user alpha2: %c%c\n",
415 user_alpha2
[0], user_alpha2
[1]))
421 static const struct ieee80211_regdomain
*
422 reg_copy_regd(const struct ieee80211_regdomain
*src_regd
)
424 struct ieee80211_regdomain
*regd
;
429 sizeof(struct ieee80211_regdomain
) +
430 src_regd
->n_reg_rules
* sizeof(struct ieee80211_reg_rule
);
432 regd
= kzalloc(size_of_regd
, GFP_KERNEL
);
434 return ERR_PTR(-ENOMEM
);
436 memcpy(regd
, src_regd
, sizeof(struct ieee80211_regdomain
));
438 for (i
= 0; i
< src_regd
->n_reg_rules
; i
++)
439 memcpy(®d
->reg_rules
[i
], &src_regd
->reg_rules
[i
],
440 sizeof(struct ieee80211_reg_rule
));
445 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
446 struct reg_regdb_apply_request
{
447 struct list_head list
;
448 const struct ieee80211_regdomain
*regdom
;
451 static LIST_HEAD(reg_regdb_apply_list
);
452 static DEFINE_MUTEX(reg_regdb_apply_mutex
);
454 static void reg_regdb_apply(struct work_struct
*work
)
456 struct reg_regdb_apply_request
*request
;
460 mutex_lock(®_regdb_apply_mutex
);
461 while (!list_empty(®_regdb_apply_list
)) {
462 request
= list_first_entry(®_regdb_apply_list
,
463 struct reg_regdb_apply_request
,
465 list_del(&request
->list
);
467 set_regdom(request
->regdom
, REGD_SOURCE_INTERNAL_DB
);
470 mutex_unlock(®_regdb_apply_mutex
);
475 static DECLARE_WORK(reg_regdb_work
, reg_regdb_apply
);
477 static int reg_query_builtin(const char *alpha2
)
479 const struct ieee80211_regdomain
*regdom
= NULL
;
480 struct reg_regdb_apply_request
*request
;
483 for (i
= 0; i
< reg_regdb_size
; i
++) {
484 if (alpha2_equal(alpha2
, reg_regdb
[i
]->alpha2
)) {
485 regdom
= reg_regdb
[i
];
493 request
= kzalloc(sizeof(struct reg_regdb_apply_request
), GFP_KERNEL
);
497 request
->regdom
= reg_copy_regd(regdom
);
498 if (IS_ERR_OR_NULL(request
->regdom
)) {
503 mutex_lock(®_regdb_apply_mutex
);
504 list_add_tail(&request
->list
, ®_regdb_apply_list
);
505 mutex_unlock(®_regdb_apply_mutex
);
507 schedule_work(®_regdb_work
);
512 /* Feel free to add any other sanity checks here */
513 static void reg_regdb_size_check(void)
515 /* We should ideally BUILD_BUG_ON() but then random builds would fail */
516 WARN_ONCE(!reg_regdb_size
, "db.txt is empty, you should update it...");
519 static inline void reg_regdb_size_check(void) {}
520 static inline int reg_query_builtin(const char *alpha2
)
524 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
526 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
527 /* Max number of consecutive attempts to communicate with CRDA */
528 #define REG_MAX_CRDA_TIMEOUTS 10
530 static u32 reg_crda_timeouts
;
532 static void crda_timeout_work(struct work_struct
*work
);
533 static DECLARE_DELAYED_WORK(crda_timeout
, crda_timeout_work
);
535 static void crda_timeout_work(struct work_struct
*work
)
537 pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
540 restore_regulatory_settings(true);
544 static void cancel_crda_timeout(void)
546 cancel_delayed_work(&crda_timeout
);
549 static void cancel_crda_timeout_sync(void)
551 cancel_delayed_work_sync(&crda_timeout
);
554 static void reset_crda_timeouts(void)
556 reg_crda_timeouts
= 0;
560 * This lets us keep regulatory code which is updated on a regulatory
561 * basis in userspace.
563 static int call_crda(const char *alpha2
)
566 char *env
[] = { country
, NULL
};
569 snprintf(country
, sizeof(country
), "COUNTRY=%c%c",
570 alpha2
[0], alpha2
[1]);
572 if (reg_crda_timeouts
> REG_MAX_CRDA_TIMEOUTS
) {
573 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
577 if (!is_world_regdom((char *) alpha2
))
578 pr_debug("Calling CRDA for country: %c%c\n",
579 alpha2
[0], alpha2
[1]);
581 pr_debug("Calling CRDA to update world regulatory domain\n");
583 ret
= kobject_uevent_env(®_pdev
->dev
.kobj
, KOBJ_CHANGE
, env
);
587 queue_delayed_work(system_power_efficient_wq
,
588 &crda_timeout
, msecs_to_jiffies(3142));
592 static inline void cancel_crda_timeout(void) {}
593 static inline void cancel_crda_timeout_sync(void) {}
594 static inline void reset_crda_timeouts(void) {}
595 static inline int call_crda(const char *alpha2
)
599 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
601 static bool reg_query_database(struct regulatory_request
*request
)
603 /* query internal regulatory database (if it exists) */
604 if (reg_query_builtin(request
->alpha2
) == 0)
607 if (call_crda(request
->alpha2
) == 0)
613 bool reg_is_valid_request(const char *alpha2
)
615 struct regulatory_request
*lr
= get_last_request();
617 if (!lr
|| lr
->processed
)
620 return alpha2_equal(lr
->alpha2
, alpha2
);
623 static const struct ieee80211_regdomain
*reg_get_regdomain(struct wiphy
*wiphy
)
625 struct regulatory_request
*lr
= get_last_request();
628 * Follow the driver's regulatory domain, if present, unless a country
629 * IE has been processed or a user wants to help complaince further
631 if (lr
->initiator
!= NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
632 lr
->initiator
!= NL80211_REGDOM_SET_BY_USER
&&
634 return get_wiphy_regdom(wiphy
);
636 return get_cfg80211_regdom();
640 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain
*rd
,
641 const struct ieee80211_reg_rule
*rule
)
643 const struct ieee80211_freq_range
*freq_range
= &rule
->freq_range
;
644 const struct ieee80211_freq_range
*freq_range_tmp
;
645 const struct ieee80211_reg_rule
*tmp
;
646 u32 start_freq
, end_freq
, idx
, no
;
648 for (idx
= 0; idx
< rd
->n_reg_rules
; idx
++)
649 if (rule
== &rd
->reg_rules
[idx
])
652 if (idx
== rd
->n_reg_rules
)
659 tmp
= &rd
->reg_rules
[--no
];
660 freq_range_tmp
= &tmp
->freq_range
;
662 if (freq_range_tmp
->end_freq_khz
< freq_range
->start_freq_khz
)
665 freq_range
= freq_range_tmp
;
668 start_freq
= freq_range
->start_freq_khz
;
671 freq_range
= &rule
->freq_range
;
674 while (no
< rd
->n_reg_rules
- 1) {
675 tmp
= &rd
->reg_rules
[++no
];
676 freq_range_tmp
= &tmp
->freq_range
;
678 if (freq_range_tmp
->start_freq_khz
> freq_range
->end_freq_khz
)
681 freq_range
= freq_range_tmp
;
684 end_freq
= freq_range
->end_freq_khz
;
686 return end_freq
- start_freq
;
689 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain
*rd
,
690 const struct ieee80211_reg_rule
*rule
)
692 unsigned int bw
= reg_get_max_bandwidth_from_range(rd
, rule
);
694 if (rule
->flags
& NL80211_RRF_NO_160MHZ
)
695 bw
= min_t(unsigned int, bw
, MHZ_TO_KHZ(80));
696 if (rule
->flags
& NL80211_RRF_NO_80MHZ
)
697 bw
= min_t(unsigned int, bw
, MHZ_TO_KHZ(40));
700 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
703 if (rule
->flags
& NL80211_RRF_NO_HT40MINUS
&&
704 rule
->flags
& NL80211_RRF_NO_HT40PLUS
)
705 bw
= min_t(unsigned int, bw
, MHZ_TO_KHZ(20));
710 /* Sanity check on a regulatory rule */
711 static bool is_valid_reg_rule(const struct ieee80211_reg_rule
*rule
)
713 const struct ieee80211_freq_range
*freq_range
= &rule
->freq_range
;
716 if (freq_range
->start_freq_khz
<= 0 || freq_range
->end_freq_khz
<= 0)
719 if (freq_range
->start_freq_khz
> freq_range
->end_freq_khz
)
722 freq_diff
= freq_range
->end_freq_khz
- freq_range
->start_freq_khz
;
724 if (freq_range
->end_freq_khz
<= freq_range
->start_freq_khz
||
725 freq_range
->max_bandwidth_khz
> freq_diff
)
731 static bool is_valid_rd(const struct ieee80211_regdomain
*rd
)
733 const struct ieee80211_reg_rule
*reg_rule
= NULL
;
736 if (!rd
->n_reg_rules
)
739 if (WARN_ON(rd
->n_reg_rules
> NL80211_MAX_SUPP_REG_RULES
))
742 for (i
= 0; i
< rd
->n_reg_rules
; i
++) {
743 reg_rule
= &rd
->reg_rules
[i
];
744 if (!is_valid_reg_rule(reg_rule
))
751 static bool reg_does_bw_fit(const struct ieee80211_freq_range
*freq_range
,
752 u32 center_freq_khz
, u32 bw_khz
)
754 u32 start_freq_khz
, end_freq_khz
;
756 start_freq_khz
= center_freq_khz
- (bw_khz
/2);
757 end_freq_khz
= center_freq_khz
+ (bw_khz
/2);
759 if (start_freq_khz
>= freq_range
->start_freq_khz
&&
760 end_freq_khz
<= freq_range
->end_freq_khz
)
767 * freq_in_rule_band - tells us if a frequency is in a frequency band
768 * @freq_range: frequency rule we want to query
769 * @freq_khz: frequency we are inquiring about
771 * This lets us know if a specific frequency rule is or is not relevant to
772 * a specific frequency's band. Bands are device specific and artificial
773 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
774 * however it is safe for now to assume that a frequency rule should not be
775 * part of a frequency's band if the start freq or end freq are off by more
776 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
778 * This resolution can be lowered and should be considered as we add
779 * regulatory rule support for other "bands".
781 static bool freq_in_rule_band(const struct ieee80211_freq_range
*freq_range
,
784 #define ONE_GHZ_IN_KHZ 1000000
786 * From 802.11ad: directional multi-gigabit (DMG):
787 * Pertaining to operation in a frequency band containing a channel
788 * with the Channel starting frequency above 45 GHz.
790 u32 limit
= freq_khz
> 45 * ONE_GHZ_IN_KHZ
?
791 10 * ONE_GHZ_IN_KHZ
: 2 * ONE_GHZ_IN_KHZ
;
792 if (abs(freq_khz
- freq_range
->start_freq_khz
) <= limit
)
794 if (abs(freq_khz
- freq_range
->end_freq_khz
) <= limit
)
797 #undef ONE_GHZ_IN_KHZ
801 * Later on we can perhaps use the more restrictive DFS
802 * region but we don't have information for that yet so
803 * for now simply disallow conflicts.
805 static enum nl80211_dfs_regions
806 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1
,
807 const enum nl80211_dfs_regions dfs_region2
)
809 if (dfs_region1
!= dfs_region2
)
810 return NL80211_DFS_UNSET
;
815 * Helper for regdom_intersect(), this does the real
816 * mathematical intersection fun
818 static int reg_rules_intersect(const struct ieee80211_regdomain
*rd1
,
819 const struct ieee80211_regdomain
*rd2
,
820 const struct ieee80211_reg_rule
*rule1
,
821 const struct ieee80211_reg_rule
*rule2
,
822 struct ieee80211_reg_rule
*intersected_rule
)
824 const struct ieee80211_freq_range
*freq_range1
, *freq_range2
;
825 struct ieee80211_freq_range
*freq_range
;
826 const struct ieee80211_power_rule
*power_rule1
, *power_rule2
;
827 struct ieee80211_power_rule
*power_rule
;
828 u32 freq_diff
, max_bandwidth1
, max_bandwidth2
;
830 freq_range1
= &rule1
->freq_range
;
831 freq_range2
= &rule2
->freq_range
;
832 freq_range
= &intersected_rule
->freq_range
;
834 power_rule1
= &rule1
->power_rule
;
835 power_rule2
= &rule2
->power_rule
;
836 power_rule
= &intersected_rule
->power_rule
;
838 freq_range
->start_freq_khz
= max(freq_range1
->start_freq_khz
,
839 freq_range2
->start_freq_khz
);
840 freq_range
->end_freq_khz
= min(freq_range1
->end_freq_khz
,
841 freq_range2
->end_freq_khz
);
843 max_bandwidth1
= freq_range1
->max_bandwidth_khz
;
844 max_bandwidth2
= freq_range2
->max_bandwidth_khz
;
846 if (rule1
->flags
& NL80211_RRF_AUTO_BW
)
847 max_bandwidth1
= reg_get_max_bandwidth(rd1
, rule1
);
848 if (rule2
->flags
& NL80211_RRF_AUTO_BW
)
849 max_bandwidth2
= reg_get_max_bandwidth(rd2
, rule2
);
851 freq_range
->max_bandwidth_khz
= min(max_bandwidth1
, max_bandwidth2
);
853 intersected_rule
->flags
= rule1
->flags
| rule2
->flags
;
856 * In case NL80211_RRF_AUTO_BW requested for both rules
857 * set AUTO_BW in intersected rule also. Next we will
858 * calculate BW correctly in handle_channel function.
859 * In other case remove AUTO_BW flag while we calculate
860 * maximum bandwidth correctly and auto calculation is
863 if ((rule1
->flags
& NL80211_RRF_AUTO_BW
) &&
864 (rule2
->flags
& NL80211_RRF_AUTO_BW
))
865 intersected_rule
->flags
|= NL80211_RRF_AUTO_BW
;
867 intersected_rule
->flags
&= ~NL80211_RRF_AUTO_BW
;
869 freq_diff
= freq_range
->end_freq_khz
- freq_range
->start_freq_khz
;
870 if (freq_range
->max_bandwidth_khz
> freq_diff
)
871 freq_range
->max_bandwidth_khz
= freq_diff
;
873 power_rule
->max_eirp
= min(power_rule1
->max_eirp
,
874 power_rule2
->max_eirp
);
875 power_rule
->max_antenna_gain
= min(power_rule1
->max_antenna_gain
,
876 power_rule2
->max_antenna_gain
);
878 intersected_rule
->dfs_cac_ms
= max(rule1
->dfs_cac_ms
,
881 if (!is_valid_reg_rule(intersected_rule
))
887 /* check whether old rule contains new rule */
888 static bool rule_contains(struct ieee80211_reg_rule
*r1
,
889 struct ieee80211_reg_rule
*r2
)
891 /* for simplicity, currently consider only same flags */
892 if (r1
->flags
!= r2
->flags
)
895 /* verify r1 is more restrictive */
896 if ((r1
->power_rule
.max_antenna_gain
>
897 r2
->power_rule
.max_antenna_gain
) ||
898 r1
->power_rule
.max_eirp
> r2
->power_rule
.max_eirp
)
901 /* make sure r2's range is contained within r1 */
902 if (r1
->freq_range
.start_freq_khz
> r2
->freq_range
.start_freq_khz
||
903 r1
->freq_range
.end_freq_khz
< r2
->freq_range
.end_freq_khz
)
906 /* and finally verify that r1.max_bw >= r2.max_bw */
907 if (r1
->freq_range
.max_bandwidth_khz
<
908 r2
->freq_range
.max_bandwidth_khz
)
914 /* add or extend current rules. do nothing if rule is already contained */
915 static void add_rule(struct ieee80211_reg_rule
*rule
,
916 struct ieee80211_reg_rule
*reg_rules
, u32
*n_rules
)
918 struct ieee80211_reg_rule
*tmp_rule
;
921 for (i
= 0; i
< *n_rules
; i
++) {
922 tmp_rule
= ®_rules
[i
];
923 /* rule is already contained - do nothing */
924 if (rule_contains(tmp_rule
, rule
))
927 /* extend rule if possible */
928 if (rule_contains(rule
, tmp_rule
)) {
929 memcpy(tmp_rule
, rule
, sizeof(*rule
));
934 memcpy(®_rules
[*n_rules
], rule
, sizeof(*rule
));
939 * regdom_intersect - do the intersection between two regulatory domains
940 * @rd1: first regulatory domain
941 * @rd2: second regulatory domain
943 * Use this function to get the intersection between two regulatory domains.
944 * Once completed we will mark the alpha2 for the rd as intersected, "98",
945 * as no one single alpha2 can represent this regulatory domain.
947 * Returns a pointer to the regulatory domain structure which will hold the
948 * resulting intersection of rules between rd1 and rd2. We will
949 * kzalloc() this structure for you.
951 static struct ieee80211_regdomain
*
952 regdom_intersect(const struct ieee80211_regdomain
*rd1
,
953 const struct ieee80211_regdomain
*rd2
)
957 unsigned int num_rules
= 0;
958 const struct ieee80211_reg_rule
*rule1
, *rule2
;
959 struct ieee80211_reg_rule intersected_rule
;
960 struct ieee80211_regdomain
*rd
;
966 * First we get a count of the rules we'll need, then we actually
967 * build them. This is to so we can malloc() and free() a
968 * regdomain once. The reason we use reg_rules_intersect() here
969 * is it will return -EINVAL if the rule computed makes no sense.
970 * All rules that do check out OK are valid.
973 for (x
= 0; x
< rd1
->n_reg_rules
; x
++) {
974 rule1
= &rd1
->reg_rules
[x
];
975 for (y
= 0; y
< rd2
->n_reg_rules
; y
++) {
976 rule2
= &rd2
->reg_rules
[y
];
977 if (!reg_rules_intersect(rd1
, rd2
, rule1
, rule2
,
986 size_of_regd
= sizeof(struct ieee80211_regdomain
) +
987 num_rules
* sizeof(struct ieee80211_reg_rule
);
989 rd
= kzalloc(size_of_regd
, GFP_KERNEL
);
993 for (x
= 0; x
< rd1
->n_reg_rules
; x
++) {
994 rule1
= &rd1
->reg_rules
[x
];
995 for (y
= 0; y
< rd2
->n_reg_rules
; y
++) {
996 rule2
= &rd2
->reg_rules
[y
];
997 r
= reg_rules_intersect(rd1
, rd2
, rule1
, rule2
,
1000 * No need to memset here the intersected rule here as
1001 * we're not using the stack anymore
1006 add_rule(&intersected_rule
, rd
->reg_rules
,
1011 rd
->alpha2
[0] = '9';
1012 rd
->alpha2
[1] = '8';
1013 rd
->dfs_region
= reg_intersect_dfs_region(rd1
->dfs_region
,
1020 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1021 * want to just have the channel structure use these
1023 static u32
map_regdom_flags(u32 rd_flags
)
1025 u32 channel_flags
= 0;
1026 if (rd_flags
& NL80211_RRF_NO_IR_ALL
)
1027 channel_flags
|= IEEE80211_CHAN_NO_IR
;
1028 if (rd_flags
& NL80211_RRF_DFS
)
1029 channel_flags
|= IEEE80211_CHAN_RADAR
;
1030 if (rd_flags
& NL80211_RRF_NO_OFDM
)
1031 channel_flags
|= IEEE80211_CHAN_NO_OFDM
;
1032 if (rd_flags
& NL80211_RRF_NO_OUTDOOR
)
1033 channel_flags
|= IEEE80211_CHAN_INDOOR_ONLY
;
1034 if (rd_flags
& NL80211_RRF_IR_CONCURRENT
)
1035 channel_flags
|= IEEE80211_CHAN_IR_CONCURRENT
;
1036 if (rd_flags
& NL80211_RRF_NO_HT40MINUS
)
1037 channel_flags
|= IEEE80211_CHAN_NO_HT40MINUS
;
1038 if (rd_flags
& NL80211_RRF_NO_HT40PLUS
)
1039 channel_flags
|= IEEE80211_CHAN_NO_HT40PLUS
;
1040 if (rd_flags
& NL80211_RRF_NO_80MHZ
)
1041 channel_flags
|= IEEE80211_CHAN_NO_80MHZ
;
1042 if (rd_flags
& NL80211_RRF_NO_160MHZ
)
1043 channel_flags
|= IEEE80211_CHAN_NO_160MHZ
;
1044 return channel_flags
;
1047 static const struct ieee80211_reg_rule
*
1048 freq_reg_info_regd(u32 center_freq
,
1049 const struct ieee80211_regdomain
*regd
, u32 bw
)
1052 bool band_rule_found
= false;
1053 bool bw_fits
= false;
1056 return ERR_PTR(-EINVAL
);
1058 for (i
= 0; i
< regd
->n_reg_rules
; i
++) {
1059 const struct ieee80211_reg_rule
*rr
;
1060 const struct ieee80211_freq_range
*fr
= NULL
;
1062 rr
= ®d
->reg_rules
[i
];
1063 fr
= &rr
->freq_range
;
1066 * We only need to know if one frequency rule was
1067 * was in center_freq's band, that's enough, so lets
1068 * not overwrite it once found
1070 if (!band_rule_found
)
1071 band_rule_found
= freq_in_rule_band(fr
, center_freq
);
1073 bw_fits
= reg_does_bw_fit(fr
, center_freq
, bw
);
1075 if (band_rule_found
&& bw_fits
)
1079 if (!band_rule_found
)
1080 return ERR_PTR(-ERANGE
);
1082 return ERR_PTR(-EINVAL
);
1085 static const struct ieee80211_reg_rule
*
1086 __freq_reg_info(struct wiphy
*wiphy
, u32 center_freq
, u32 min_bw
)
1088 const struct ieee80211_regdomain
*regd
= reg_get_regdomain(wiphy
);
1089 const struct ieee80211_reg_rule
*reg_rule
= NULL
;
1092 for (bw
= MHZ_TO_KHZ(20); bw
>= min_bw
; bw
= bw
/ 2) {
1093 reg_rule
= freq_reg_info_regd(center_freq
, regd
, bw
);
1094 if (!IS_ERR(reg_rule
))
1101 const struct ieee80211_reg_rule
*freq_reg_info(struct wiphy
*wiphy
,
1104 return __freq_reg_info(wiphy
, center_freq
, MHZ_TO_KHZ(20));
1106 EXPORT_SYMBOL(freq_reg_info
);
1108 const char *reg_initiator_name(enum nl80211_reg_initiator initiator
)
1110 switch (initiator
) {
1111 case NL80211_REGDOM_SET_BY_CORE
:
1113 case NL80211_REGDOM_SET_BY_USER
:
1115 case NL80211_REGDOM_SET_BY_DRIVER
:
1117 case NL80211_REGDOM_SET_BY_COUNTRY_IE
:
1118 return "country IE";
1124 EXPORT_SYMBOL(reg_initiator_name
);
1126 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain
*regd
,
1127 const struct ieee80211_reg_rule
*reg_rule
,
1128 const struct ieee80211_channel
*chan
)
1130 const struct ieee80211_freq_range
*freq_range
= NULL
;
1131 u32 max_bandwidth_khz
, bw_flags
= 0;
1133 freq_range
= ®_rule
->freq_range
;
1135 max_bandwidth_khz
= freq_range
->max_bandwidth_khz
;
1136 /* Check if auto calculation requested */
1137 if (reg_rule
->flags
& NL80211_RRF_AUTO_BW
)
1138 max_bandwidth_khz
= reg_get_max_bandwidth(regd
, reg_rule
);
1140 /* If we get a reg_rule we can assume that at least 5Mhz fit */
1141 if (!reg_does_bw_fit(freq_range
, MHZ_TO_KHZ(chan
->center_freq
),
1143 bw_flags
|= IEEE80211_CHAN_NO_10MHZ
;
1144 if (!reg_does_bw_fit(freq_range
, MHZ_TO_KHZ(chan
->center_freq
),
1146 bw_flags
|= IEEE80211_CHAN_NO_20MHZ
;
1148 if (max_bandwidth_khz
< MHZ_TO_KHZ(10))
1149 bw_flags
|= IEEE80211_CHAN_NO_10MHZ
;
1150 if (max_bandwidth_khz
< MHZ_TO_KHZ(20))
1151 bw_flags
|= IEEE80211_CHAN_NO_20MHZ
;
1152 if (max_bandwidth_khz
< MHZ_TO_KHZ(40))
1153 bw_flags
|= IEEE80211_CHAN_NO_HT40
;
1154 if (max_bandwidth_khz
< MHZ_TO_KHZ(80))
1155 bw_flags
|= IEEE80211_CHAN_NO_80MHZ
;
1156 if (max_bandwidth_khz
< MHZ_TO_KHZ(160))
1157 bw_flags
|= IEEE80211_CHAN_NO_160MHZ
;
1162 * Note that right now we assume the desired channel bandwidth
1163 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1164 * per channel, the primary and the extension channel).
1166 static void handle_channel(struct wiphy
*wiphy
,
1167 enum nl80211_reg_initiator initiator
,
1168 struct ieee80211_channel
*chan
)
1170 u32 flags
, bw_flags
= 0;
1171 const struct ieee80211_reg_rule
*reg_rule
= NULL
;
1172 const struct ieee80211_power_rule
*power_rule
= NULL
;
1173 struct wiphy
*request_wiphy
= NULL
;
1174 struct regulatory_request
*lr
= get_last_request();
1175 const struct ieee80211_regdomain
*regd
;
1177 request_wiphy
= wiphy_idx_to_wiphy(lr
->wiphy_idx
);
1179 flags
= chan
->orig_flags
;
1181 reg_rule
= freq_reg_info(wiphy
, MHZ_TO_KHZ(chan
->center_freq
));
1182 if (IS_ERR(reg_rule
)) {
1184 * We will disable all channels that do not match our
1185 * received regulatory rule unless the hint is coming
1186 * from a Country IE and the Country IE had no information
1187 * about a band. The IEEE 802.11 spec allows for an AP
1188 * to send only a subset of the regulatory rules allowed,
1189 * so an AP in the US that only supports 2.4 GHz may only send
1190 * a country IE with information for the 2.4 GHz band
1191 * while 5 GHz is still supported.
1193 if (initiator
== NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
1194 PTR_ERR(reg_rule
) == -ERANGE
)
1197 if (lr
->initiator
== NL80211_REGDOM_SET_BY_DRIVER
&&
1198 request_wiphy
&& request_wiphy
== wiphy
&&
1199 request_wiphy
->regulatory_flags
& REGULATORY_STRICT_REG
) {
1200 pr_debug("Disabling freq %d MHz for good\n",
1202 chan
->orig_flags
|= IEEE80211_CHAN_DISABLED
;
1203 chan
->flags
= chan
->orig_flags
;
1205 pr_debug("Disabling freq %d MHz\n",
1207 chan
->flags
|= IEEE80211_CHAN_DISABLED
;
1212 regd
= reg_get_regdomain(wiphy
);
1214 power_rule
= ®_rule
->power_rule
;
1215 bw_flags
= reg_rule_to_chan_bw_flags(regd
, reg_rule
, chan
);
1217 if (lr
->initiator
== NL80211_REGDOM_SET_BY_DRIVER
&&
1218 request_wiphy
&& request_wiphy
== wiphy
&&
1219 request_wiphy
->regulatory_flags
& REGULATORY_STRICT_REG
) {
1221 * This guarantees the driver's requested regulatory domain
1222 * will always be used as a base for further regulatory
1225 chan
->flags
= chan
->orig_flags
=
1226 map_regdom_flags(reg_rule
->flags
) | bw_flags
;
1227 chan
->max_antenna_gain
= chan
->orig_mag
=
1228 (int) MBI_TO_DBI(power_rule
->max_antenna_gain
);
1229 chan
->max_reg_power
= chan
->max_power
= chan
->orig_mpwr
=
1230 (int) MBM_TO_DBM(power_rule
->max_eirp
);
1232 if (chan
->flags
& IEEE80211_CHAN_RADAR
) {
1233 chan
->dfs_cac_ms
= IEEE80211_DFS_MIN_CAC_TIME_MS
;
1234 if (reg_rule
->dfs_cac_ms
)
1235 chan
->dfs_cac_ms
= reg_rule
->dfs_cac_ms
;
1241 chan
->dfs_state
= NL80211_DFS_USABLE
;
1242 chan
->dfs_state_entered
= jiffies
;
1244 chan
->beacon_found
= false;
1245 chan
->flags
= flags
| bw_flags
| map_regdom_flags(reg_rule
->flags
);
1246 chan
->max_antenna_gain
=
1247 min_t(int, chan
->orig_mag
,
1248 MBI_TO_DBI(power_rule
->max_antenna_gain
));
1249 chan
->max_reg_power
= (int) MBM_TO_DBM(power_rule
->max_eirp
);
1251 if (chan
->flags
& IEEE80211_CHAN_RADAR
) {
1252 if (reg_rule
->dfs_cac_ms
)
1253 chan
->dfs_cac_ms
= reg_rule
->dfs_cac_ms
;
1255 chan
->dfs_cac_ms
= IEEE80211_DFS_MIN_CAC_TIME_MS
;
1258 if (chan
->orig_mpwr
) {
1260 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1261 * will always follow the passed country IE power settings.
1263 if (initiator
== NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
1264 wiphy
->regulatory_flags
& REGULATORY_COUNTRY_IE_FOLLOW_POWER
)
1265 chan
->max_power
= chan
->max_reg_power
;
1267 chan
->max_power
= min(chan
->orig_mpwr
,
1268 chan
->max_reg_power
);
1270 chan
->max_power
= chan
->max_reg_power
;
1273 static void handle_band(struct wiphy
*wiphy
,
1274 enum nl80211_reg_initiator initiator
,
1275 struct ieee80211_supported_band
*sband
)
1282 for (i
= 0; i
< sband
->n_channels
; i
++)
1283 handle_channel(wiphy
, initiator
, &sband
->channels
[i
]);
1286 static bool reg_request_cell_base(struct regulatory_request
*request
)
1288 if (request
->initiator
!= NL80211_REGDOM_SET_BY_USER
)
1290 return request
->user_reg_hint_type
== NL80211_USER_REG_HINT_CELL_BASE
;
1293 bool reg_last_request_cell_base(void)
1295 return reg_request_cell_base(get_last_request());
1298 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1299 /* Core specific check */
1300 static enum reg_request_treatment
1301 reg_ignore_cell_hint(struct regulatory_request
*pending_request
)
1303 struct regulatory_request
*lr
= get_last_request();
1305 if (!reg_num_devs_support_basehint
)
1306 return REG_REQ_IGNORE
;
1308 if (reg_request_cell_base(lr
) &&
1309 !regdom_changes(pending_request
->alpha2
))
1310 return REG_REQ_ALREADY_SET
;
1315 /* Device specific check */
1316 static bool reg_dev_ignore_cell_hint(struct wiphy
*wiphy
)
1318 return !(wiphy
->features
& NL80211_FEATURE_CELL_BASE_REG_HINTS
);
1321 static enum reg_request_treatment
1322 reg_ignore_cell_hint(struct regulatory_request
*pending_request
)
1324 return REG_REQ_IGNORE
;
1327 static bool reg_dev_ignore_cell_hint(struct wiphy
*wiphy
)
1333 static bool wiphy_strict_alpha2_regd(struct wiphy
*wiphy
)
1335 if (wiphy
->regulatory_flags
& REGULATORY_STRICT_REG
&&
1336 !(wiphy
->regulatory_flags
& REGULATORY_CUSTOM_REG
))
1341 static bool ignore_reg_update(struct wiphy
*wiphy
,
1342 enum nl80211_reg_initiator initiator
)
1344 struct regulatory_request
*lr
= get_last_request();
1346 if (wiphy
->regulatory_flags
& REGULATORY_WIPHY_SELF_MANAGED
)
1350 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
1351 reg_initiator_name(initiator
));
1355 if (initiator
== NL80211_REGDOM_SET_BY_CORE
&&
1356 wiphy
->regulatory_flags
& REGULATORY_CUSTOM_REG
) {
1357 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
1358 reg_initiator_name(initiator
));
1363 * wiphy->regd will be set once the device has its own
1364 * desired regulatory domain set
1366 if (wiphy_strict_alpha2_regd(wiphy
) && !wiphy
->regd
&&
1367 initiator
!= NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
1368 !is_world_regdom(lr
->alpha2
)) {
1369 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
1370 reg_initiator_name(initiator
));
1374 if (reg_request_cell_base(lr
))
1375 return reg_dev_ignore_cell_hint(wiphy
);
1380 static bool reg_is_world_roaming(struct wiphy
*wiphy
)
1382 const struct ieee80211_regdomain
*cr
= get_cfg80211_regdom();
1383 const struct ieee80211_regdomain
*wr
= get_wiphy_regdom(wiphy
);
1384 struct regulatory_request
*lr
= get_last_request();
1386 if (is_world_regdom(cr
->alpha2
) || (wr
&& is_world_regdom(wr
->alpha2
)))
1389 if (lr
&& lr
->initiator
!= NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
1390 wiphy
->regulatory_flags
& REGULATORY_CUSTOM_REG
)
1396 static void handle_reg_beacon(struct wiphy
*wiphy
, unsigned int chan_idx
,
1397 struct reg_beacon
*reg_beacon
)
1399 struct ieee80211_supported_band
*sband
;
1400 struct ieee80211_channel
*chan
;
1401 bool channel_changed
= false;
1402 struct ieee80211_channel chan_before
;
1404 sband
= wiphy
->bands
[reg_beacon
->chan
.band
];
1405 chan
= &sband
->channels
[chan_idx
];
1407 if (likely(chan
->center_freq
!= reg_beacon
->chan
.center_freq
))
1410 if (chan
->beacon_found
)
1413 chan
->beacon_found
= true;
1415 if (!reg_is_world_roaming(wiphy
))
1418 if (wiphy
->regulatory_flags
& REGULATORY_DISABLE_BEACON_HINTS
)
1421 chan_before
.center_freq
= chan
->center_freq
;
1422 chan_before
.flags
= chan
->flags
;
1424 if (chan
->flags
& IEEE80211_CHAN_NO_IR
) {
1425 chan
->flags
&= ~IEEE80211_CHAN_NO_IR
;
1426 channel_changed
= true;
1429 if (channel_changed
)
1430 nl80211_send_beacon_hint_event(wiphy
, &chan_before
, chan
);
1434 * Called when a scan on a wiphy finds a beacon on
1437 static void wiphy_update_new_beacon(struct wiphy
*wiphy
,
1438 struct reg_beacon
*reg_beacon
)
1441 struct ieee80211_supported_band
*sband
;
1443 if (!wiphy
->bands
[reg_beacon
->chan
.band
])
1446 sband
= wiphy
->bands
[reg_beacon
->chan
.band
];
1448 for (i
= 0; i
< sband
->n_channels
; i
++)
1449 handle_reg_beacon(wiphy
, i
, reg_beacon
);
1453 * Called upon reg changes or a new wiphy is added
1455 static void wiphy_update_beacon_reg(struct wiphy
*wiphy
)
1458 struct ieee80211_supported_band
*sband
;
1459 struct reg_beacon
*reg_beacon
;
1461 list_for_each_entry(reg_beacon
, ®_beacon_list
, list
) {
1462 if (!wiphy
->bands
[reg_beacon
->chan
.band
])
1464 sband
= wiphy
->bands
[reg_beacon
->chan
.band
];
1465 for (i
= 0; i
< sband
->n_channels
; i
++)
1466 handle_reg_beacon(wiphy
, i
, reg_beacon
);
1470 /* Reap the advantages of previously found beacons */
1471 static void reg_process_beacons(struct wiphy
*wiphy
)
1474 * Means we are just firing up cfg80211, so no beacons would
1475 * have been processed yet.
1479 wiphy_update_beacon_reg(wiphy
);
1482 static bool is_ht40_allowed(struct ieee80211_channel
*chan
)
1486 if (chan
->flags
& IEEE80211_CHAN_DISABLED
)
1488 /* This would happen when regulatory rules disallow HT40 completely */
1489 if ((chan
->flags
& IEEE80211_CHAN_NO_HT40
) == IEEE80211_CHAN_NO_HT40
)
1494 static void reg_process_ht_flags_channel(struct wiphy
*wiphy
,
1495 struct ieee80211_channel
*channel
)
1497 struct ieee80211_supported_band
*sband
= wiphy
->bands
[channel
->band
];
1498 struct ieee80211_channel
*channel_before
= NULL
, *channel_after
= NULL
;
1501 if (!is_ht40_allowed(channel
)) {
1502 channel
->flags
|= IEEE80211_CHAN_NO_HT40
;
1507 * We need to ensure the extension channels exist to
1508 * be able to use HT40- or HT40+, this finds them (or not)
1510 for (i
= 0; i
< sband
->n_channels
; i
++) {
1511 struct ieee80211_channel
*c
= &sband
->channels
[i
];
1513 if (c
->center_freq
== (channel
->center_freq
- 20))
1515 if (c
->center_freq
== (channel
->center_freq
+ 20))
1520 * Please note that this assumes target bandwidth is 20 MHz,
1521 * if that ever changes we also need to change the below logic
1522 * to include that as well.
1524 if (!is_ht40_allowed(channel_before
))
1525 channel
->flags
|= IEEE80211_CHAN_NO_HT40MINUS
;
1527 channel
->flags
&= ~IEEE80211_CHAN_NO_HT40MINUS
;
1529 if (!is_ht40_allowed(channel_after
))
1530 channel
->flags
|= IEEE80211_CHAN_NO_HT40PLUS
;
1532 channel
->flags
&= ~IEEE80211_CHAN_NO_HT40PLUS
;
1535 static void reg_process_ht_flags_band(struct wiphy
*wiphy
,
1536 struct ieee80211_supported_band
*sband
)
1543 for (i
= 0; i
< sband
->n_channels
; i
++)
1544 reg_process_ht_flags_channel(wiphy
, &sband
->channels
[i
]);
1547 static void reg_process_ht_flags(struct wiphy
*wiphy
)
1549 enum ieee80211_band band
;
1554 for (band
= 0; band
< IEEE80211_NUM_BANDS
; band
++)
1555 reg_process_ht_flags_band(wiphy
, wiphy
->bands
[band
]);
1558 static void reg_call_notifier(struct wiphy
*wiphy
,
1559 struct regulatory_request
*request
)
1561 if (wiphy
->reg_notifier
)
1562 wiphy
->reg_notifier(wiphy
, request
);
1565 static bool reg_wdev_chan_valid(struct wiphy
*wiphy
, struct wireless_dev
*wdev
)
1567 struct cfg80211_chan_def chandef
;
1568 struct cfg80211_registered_device
*rdev
= wiphy_to_rdev(wiphy
);
1569 enum nl80211_iftype iftype
;
1572 iftype
= wdev
->iftype
;
1574 /* make sure the interface is active */
1575 if (!wdev
->netdev
|| !netif_running(wdev
->netdev
))
1576 goto wdev_inactive_unlock
;
1579 case NL80211_IFTYPE_AP
:
1580 case NL80211_IFTYPE_P2P_GO
:
1581 if (!wdev
->beacon_interval
)
1582 goto wdev_inactive_unlock
;
1583 chandef
= wdev
->chandef
;
1585 case NL80211_IFTYPE_ADHOC
:
1586 if (!wdev
->ssid_len
)
1587 goto wdev_inactive_unlock
;
1588 chandef
= wdev
->chandef
;
1590 case NL80211_IFTYPE_STATION
:
1591 case NL80211_IFTYPE_P2P_CLIENT
:
1592 if (!wdev
->current_bss
||
1593 !wdev
->current_bss
->pub
.channel
)
1594 goto wdev_inactive_unlock
;
1596 if (!rdev
->ops
->get_channel
||
1597 rdev_get_channel(rdev
, wdev
, &chandef
))
1598 cfg80211_chandef_create(&chandef
,
1599 wdev
->current_bss
->pub
.channel
,
1600 NL80211_CHAN_NO_HT
);
1602 case NL80211_IFTYPE_MONITOR
:
1603 case NL80211_IFTYPE_AP_VLAN
:
1604 case NL80211_IFTYPE_P2P_DEVICE
:
1605 /* no enforcement required */
1608 /* others not implemented for now */
1616 case NL80211_IFTYPE_AP
:
1617 case NL80211_IFTYPE_P2P_GO
:
1618 case NL80211_IFTYPE_ADHOC
:
1619 return cfg80211_reg_can_beacon_relax(wiphy
, &chandef
, iftype
);
1620 case NL80211_IFTYPE_STATION
:
1621 case NL80211_IFTYPE_P2P_CLIENT
:
1622 return cfg80211_chandef_usable(wiphy
, &chandef
,
1623 IEEE80211_CHAN_DISABLED
);
1630 wdev_inactive_unlock
:
1635 static void reg_leave_invalid_chans(struct wiphy
*wiphy
)
1637 struct wireless_dev
*wdev
;
1638 struct cfg80211_registered_device
*rdev
= wiphy_to_rdev(wiphy
);
1642 list_for_each_entry(wdev
, &rdev
->wdev_list
, list
)
1643 if (!reg_wdev_chan_valid(wiphy
, wdev
))
1644 cfg80211_leave(rdev
, wdev
);
1647 static void reg_check_chans_work(struct work_struct
*work
)
1649 struct cfg80211_registered_device
*rdev
;
1651 pr_debug("Verifying active interfaces after reg change\n");
1654 list_for_each_entry(rdev
, &cfg80211_rdev_list
, list
)
1655 if (!(rdev
->wiphy
.regulatory_flags
&
1656 REGULATORY_IGNORE_STALE_KICKOFF
))
1657 reg_leave_invalid_chans(&rdev
->wiphy
);
1662 static void reg_check_channels(void)
1665 * Give usermode a chance to do something nicer (move to another
1666 * channel, orderly disconnection), before forcing a disconnection.
1668 mod_delayed_work(system_power_efficient_wq
,
1670 msecs_to_jiffies(REG_ENFORCE_GRACE_MS
));
1673 static void wiphy_update_regulatory(struct wiphy
*wiphy
,
1674 enum nl80211_reg_initiator initiator
)
1676 enum ieee80211_band band
;
1677 struct regulatory_request
*lr
= get_last_request();
1679 if (ignore_reg_update(wiphy
, initiator
)) {
1681 * Regulatory updates set by CORE are ignored for custom
1682 * regulatory cards. Let us notify the changes to the driver,
1683 * as some drivers used this to restore its orig_* reg domain.
1685 if (initiator
== NL80211_REGDOM_SET_BY_CORE
&&
1686 wiphy
->regulatory_flags
& REGULATORY_CUSTOM_REG
)
1687 reg_call_notifier(wiphy
, lr
);
1691 lr
->dfs_region
= get_cfg80211_regdom()->dfs_region
;
1693 for (band
= 0; band
< IEEE80211_NUM_BANDS
; band
++)
1694 handle_band(wiphy
, initiator
, wiphy
->bands
[band
]);
1696 reg_process_beacons(wiphy
);
1697 reg_process_ht_flags(wiphy
);
1698 reg_call_notifier(wiphy
, lr
);
1701 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator
)
1703 struct cfg80211_registered_device
*rdev
;
1704 struct wiphy
*wiphy
;
1708 list_for_each_entry(rdev
, &cfg80211_rdev_list
, list
) {
1709 wiphy
= &rdev
->wiphy
;
1710 wiphy_update_regulatory(wiphy
, initiator
);
1713 reg_check_channels();
1716 static void handle_channel_custom(struct wiphy
*wiphy
,
1717 struct ieee80211_channel
*chan
,
1718 const struct ieee80211_regdomain
*regd
)
1721 const struct ieee80211_reg_rule
*reg_rule
= NULL
;
1722 const struct ieee80211_power_rule
*power_rule
= NULL
;
1725 for (bw
= MHZ_TO_KHZ(20); bw
>= MHZ_TO_KHZ(5); bw
= bw
/ 2) {
1726 reg_rule
= freq_reg_info_regd(MHZ_TO_KHZ(chan
->center_freq
),
1728 if (!IS_ERR(reg_rule
))
1732 if (IS_ERR(reg_rule
)) {
1733 pr_debug("Disabling freq %d MHz as custom regd has no rule that fits it\n",
1735 if (wiphy
->regulatory_flags
& REGULATORY_WIPHY_SELF_MANAGED
) {
1736 chan
->flags
|= IEEE80211_CHAN_DISABLED
;
1738 chan
->orig_flags
|= IEEE80211_CHAN_DISABLED
;
1739 chan
->flags
= chan
->orig_flags
;
1744 power_rule
= ®_rule
->power_rule
;
1745 bw_flags
= reg_rule_to_chan_bw_flags(regd
, reg_rule
, chan
);
1747 chan
->dfs_state_entered
= jiffies
;
1748 chan
->dfs_state
= NL80211_DFS_USABLE
;
1750 chan
->beacon_found
= false;
1752 if (wiphy
->regulatory_flags
& REGULATORY_WIPHY_SELF_MANAGED
)
1753 chan
->flags
= chan
->orig_flags
| bw_flags
|
1754 map_regdom_flags(reg_rule
->flags
);
1756 chan
->flags
|= map_regdom_flags(reg_rule
->flags
) | bw_flags
;
1758 chan
->max_antenna_gain
= (int) MBI_TO_DBI(power_rule
->max_antenna_gain
);
1759 chan
->max_reg_power
= chan
->max_power
=
1760 (int) MBM_TO_DBM(power_rule
->max_eirp
);
1762 if (chan
->flags
& IEEE80211_CHAN_RADAR
) {
1763 if (reg_rule
->dfs_cac_ms
)
1764 chan
->dfs_cac_ms
= reg_rule
->dfs_cac_ms
;
1766 chan
->dfs_cac_ms
= IEEE80211_DFS_MIN_CAC_TIME_MS
;
1769 chan
->max_power
= chan
->max_reg_power
;
1772 static void handle_band_custom(struct wiphy
*wiphy
,
1773 struct ieee80211_supported_band
*sband
,
1774 const struct ieee80211_regdomain
*regd
)
1781 for (i
= 0; i
< sband
->n_channels
; i
++)
1782 handle_channel_custom(wiphy
, &sband
->channels
[i
], regd
);
1785 /* Used by drivers prior to wiphy registration */
1786 void wiphy_apply_custom_regulatory(struct wiphy
*wiphy
,
1787 const struct ieee80211_regdomain
*regd
)
1789 enum ieee80211_band band
;
1790 unsigned int bands_set
= 0;
1792 WARN(!(wiphy
->regulatory_flags
& REGULATORY_CUSTOM_REG
),
1793 "wiphy should have REGULATORY_CUSTOM_REG\n");
1794 wiphy
->regulatory_flags
|= REGULATORY_CUSTOM_REG
;
1796 for (band
= 0; band
< IEEE80211_NUM_BANDS
; band
++) {
1797 if (!wiphy
->bands
[band
])
1799 handle_band_custom(wiphy
, wiphy
->bands
[band
], regd
);
1804 * no point in calling this if it won't have any effect
1805 * on your device's supported bands.
1807 WARN_ON(!bands_set
);
1809 EXPORT_SYMBOL(wiphy_apply_custom_regulatory
);
1811 static void reg_set_request_processed(void)
1813 bool need_more_processing
= false;
1814 struct regulatory_request
*lr
= get_last_request();
1816 lr
->processed
= true;
1818 spin_lock(®_requests_lock
);
1819 if (!list_empty(®_requests_list
))
1820 need_more_processing
= true;
1821 spin_unlock(®_requests_lock
);
1823 cancel_crda_timeout();
1825 if (need_more_processing
)
1826 schedule_work(®_work
);
1830 * reg_process_hint_core - process core regulatory requests
1831 * @pending_request: a pending core regulatory request
1833 * The wireless subsystem can use this function to process
1834 * a regulatory request issued by the regulatory core.
1836 static enum reg_request_treatment
1837 reg_process_hint_core(struct regulatory_request
*core_request
)
1839 if (reg_query_database(core_request
)) {
1840 core_request
->intersect
= false;
1841 core_request
->processed
= false;
1842 reg_update_last_request(core_request
);
1846 return REG_REQ_IGNORE
;
1849 static enum reg_request_treatment
1850 __reg_process_hint_user(struct regulatory_request
*user_request
)
1852 struct regulatory_request
*lr
= get_last_request();
1854 if (reg_request_cell_base(user_request
))
1855 return reg_ignore_cell_hint(user_request
);
1857 if (reg_request_cell_base(lr
))
1858 return REG_REQ_IGNORE
;
1860 if (lr
->initiator
== NL80211_REGDOM_SET_BY_COUNTRY_IE
)
1861 return REG_REQ_INTERSECT
;
1863 * If the user knows better the user should set the regdom
1864 * to their country before the IE is picked up
1866 if (lr
->initiator
== NL80211_REGDOM_SET_BY_USER
&&
1868 return REG_REQ_IGNORE
;
1870 * Process user requests only after previous user/driver/core
1871 * requests have been processed
1873 if ((lr
->initiator
== NL80211_REGDOM_SET_BY_CORE
||
1874 lr
->initiator
== NL80211_REGDOM_SET_BY_DRIVER
||
1875 lr
->initiator
== NL80211_REGDOM_SET_BY_USER
) &&
1876 regdom_changes(lr
->alpha2
))
1877 return REG_REQ_IGNORE
;
1879 if (!regdom_changes(user_request
->alpha2
))
1880 return REG_REQ_ALREADY_SET
;
1886 * reg_process_hint_user - process user regulatory requests
1887 * @user_request: a pending user regulatory request
1889 * The wireless subsystem can use this function to process
1890 * a regulatory request initiated by userspace.
1892 static enum reg_request_treatment
1893 reg_process_hint_user(struct regulatory_request
*user_request
)
1895 enum reg_request_treatment treatment
;
1897 treatment
= __reg_process_hint_user(user_request
);
1898 if (treatment
== REG_REQ_IGNORE
||
1899 treatment
== REG_REQ_ALREADY_SET
)
1900 return REG_REQ_IGNORE
;
1902 user_request
->intersect
= treatment
== REG_REQ_INTERSECT
;
1903 user_request
->processed
= false;
1905 if (reg_query_database(user_request
)) {
1906 reg_update_last_request(user_request
);
1907 user_alpha2
[0] = user_request
->alpha2
[0];
1908 user_alpha2
[1] = user_request
->alpha2
[1];
1912 return REG_REQ_IGNORE
;
1915 static enum reg_request_treatment
1916 __reg_process_hint_driver(struct regulatory_request
*driver_request
)
1918 struct regulatory_request
*lr
= get_last_request();
1920 if (lr
->initiator
== NL80211_REGDOM_SET_BY_CORE
) {
1921 if (regdom_changes(driver_request
->alpha2
))
1923 return REG_REQ_ALREADY_SET
;
1927 * This would happen if you unplug and plug your card
1928 * back in or if you add a new device for which the previously
1929 * loaded card also agrees on the regulatory domain.
1931 if (lr
->initiator
== NL80211_REGDOM_SET_BY_DRIVER
&&
1932 !regdom_changes(driver_request
->alpha2
))
1933 return REG_REQ_ALREADY_SET
;
1935 return REG_REQ_INTERSECT
;
1939 * reg_process_hint_driver - process driver regulatory requests
1940 * @driver_request: a pending driver regulatory request
1942 * The wireless subsystem can use this function to process
1943 * a regulatory request issued by an 802.11 driver.
1945 * Returns one of the different reg request treatment values.
1947 static enum reg_request_treatment
1948 reg_process_hint_driver(struct wiphy
*wiphy
,
1949 struct regulatory_request
*driver_request
)
1951 const struct ieee80211_regdomain
*regd
, *tmp
;
1952 enum reg_request_treatment treatment
;
1954 treatment
= __reg_process_hint_driver(driver_request
);
1956 switch (treatment
) {
1959 case REG_REQ_IGNORE
:
1960 return REG_REQ_IGNORE
;
1961 case REG_REQ_INTERSECT
:
1962 case REG_REQ_ALREADY_SET
:
1963 regd
= reg_copy_regd(get_cfg80211_regdom());
1965 return REG_REQ_IGNORE
;
1967 tmp
= get_wiphy_regdom(wiphy
);
1968 rcu_assign_pointer(wiphy
->regd
, regd
);
1969 rcu_free_regdom(tmp
);
1973 driver_request
->intersect
= treatment
== REG_REQ_INTERSECT
;
1974 driver_request
->processed
= false;
1977 * Since CRDA will not be called in this case as we already
1978 * have applied the requested regulatory domain before we just
1979 * inform userspace we have processed the request
1981 if (treatment
== REG_REQ_ALREADY_SET
) {
1982 nl80211_send_reg_change_event(driver_request
);
1983 reg_update_last_request(driver_request
);
1984 reg_set_request_processed();
1985 return REG_REQ_ALREADY_SET
;
1988 if (reg_query_database(driver_request
)) {
1989 reg_update_last_request(driver_request
);
1993 return REG_REQ_IGNORE
;
1996 static enum reg_request_treatment
1997 __reg_process_hint_country_ie(struct wiphy
*wiphy
,
1998 struct regulatory_request
*country_ie_request
)
2000 struct wiphy
*last_wiphy
= NULL
;
2001 struct regulatory_request
*lr
= get_last_request();
2003 if (reg_request_cell_base(lr
)) {
2004 /* Trust a Cell base station over the AP's country IE */
2005 if (regdom_changes(country_ie_request
->alpha2
))
2006 return REG_REQ_IGNORE
;
2007 return REG_REQ_ALREADY_SET
;
2009 if (wiphy
->regulatory_flags
& REGULATORY_COUNTRY_IE_IGNORE
)
2010 return REG_REQ_IGNORE
;
2013 if (unlikely(!is_an_alpha2(country_ie_request
->alpha2
)))
2016 if (lr
->initiator
!= NL80211_REGDOM_SET_BY_COUNTRY_IE
)
2019 last_wiphy
= wiphy_idx_to_wiphy(lr
->wiphy_idx
);
2021 if (last_wiphy
!= wiphy
) {
2023 * Two cards with two APs claiming different
2024 * Country IE alpha2s. We could
2025 * intersect them, but that seems unlikely
2026 * to be correct. Reject second one for now.
2028 if (regdom_changes(country_ie_request
->alpha2
))
2029 return REG_REQ_IGNORE
;
2030 return REG_REQ_ALREADY_SET
;
2033 if (regdom_changes(country_ie_request
->alpha2
))
2035 return REG_REQ_ALREADY_SET
;
2039 * reg_process_hint_country_ie - process regulatory requests from country IEs
2040 * @country_ie_request: a regulatory request from a country IE
2042 * The wireless subsystem can use this function to process
2043 * a regulatory request issued by a country Information Element.
2045 * Returns one of the different reg request treatment values.
2047 static enum reg_request_treatment
2048 reg_process_hint_country_ie(struct wiphy
*wiphy
,
2049 struct regulatory_request
*country_ie_request
)
2051 enum reg_request_treatment treatment
;
2053 treatment
= __reg_process_hint_country_ie(wiphy
, country_ie_request
);
2055 switch (treatment
) {
2058 case REG_REQ_IGNORE
:
2059 return REG_REQ_IGNORE
;
2060 case REG_REQ_ALREADY_SET
:
2061 reg_free_request(country_ie_request
);
2062 return REG_REQ_ALREADY_SET
;
2063 case REG_REQ_INTERSECT
:
2065 * This doesn't happen yet, not sure we
2066 * ever want to support it for this case.
2068 WARN_ONCE(1, "Unexpected intersection for country IEs");
2069 return REG_REQ_IGNORE
;
2072 country_ie_request
->intersect
= false;
2073 country_ie_request
->processed
= false;
2075 if (reg_query_database(country_ie_request
)) {
2076 reg_update_last_request(country_ie_request
);
2080 return REG_REQ_IGNORE
;
2083 /* This processes *all* regulatory hints */
2084 static void reg_process_hint(struct regulatory_request
*reg_request
)
2086 struct wiphy
*wiphy
= NULL
;
2087 enum reg_request_treatment treatment
;
2089 if (reg_request
->wiphy_idx
!= WIPHY_IDX_INVALID
)
2090 wiphy
= wiphy_idx_to_wiphy(reg_request
->wiphy_idx
);
2092 switch (reg_request
->initiator
) {
2093 case NL80211_REGDOM_SET_BY_CORE
:
2094 treatment
= reg_process_hint_core(reg_request
);
2096 case NL80211_REGDOM_SET_BY_USER
:
2097 treatment
= reg_process_hint_user(reg_request
);
2099 case NL80211_REGDOM_SET_BY_DRIVER
:
2102 treatment
= reg_process_hint_driver(wiphy
, reg_request
);
2104 case NL80211_REGDOM_SET_BY_COUNTRY_IE
:
2107 treatment
= reg_process_hint_country_ie(wiphy
, reg_request
);
2110 WARN(1, "invalid initiator %d\n", reg_request
->initiator
);
2114 if (treatment
== REG_REQ_IGNORE
)
2117 WARN(treatment
!= REG_REQ_OK
&& treatment
!= REG_REQ_ALREADY_SET
,
2118 "unexpected treatment value %d\n", treatment
);
2120 /* This is required so that the orig_* parameters are saved.
2121 * NOTE: treatment must be set for any case that reaches here!
2123 if (treatment
== REG_REQ_ALREADY_SET
&& wiphy
&&
2124 wiphy
->regulatory_flags
& REGULATORY_STRICT_REG
) {
2125 wiphy_update_regulatory(wiphy
, reg_request
->initiator
);
2126 reg_check_channels();
2132 reg_free_request(reg_request
);
2135 static bool reg_only_self_managed_wiphys(void)
2137 struct cfg80211_registered_device
*rdev
;
2138 struct wiphy
*wiphy
;
2139 bool self_managed_found
= false;
2143 list_for_each_entry(rdev
, &cfg80211_rdev_list
, list
) {
2144 wiphy
= &rdev
->wiphy
;
2145 if (wiphy
->regulatory_flags
& REGULATORY_WIPHY_SELF_MANAGED
)
2146 self_managed_found
= true;
2151 /* make sure at least one self-managed wiphy exists */
2152 return self_managed_found
;
2156 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
2157 * Regulatory hints come on a first come first serve basis and we
2158 * must process each one atomically.
2160 static void reg_process_pending_hints(void)
2162 struct regulatory_request
*reg_request
, *lr
;
2164 lr
= get_last_request();
2166 /* When last_request->processed becomes true this will be rescheduled */
2167 if (lr
&& !lr
->processed
) {
2168 reg_process_hint(lr
);
2172 spin_lock(®_requests_lock
);
2174 if (list_empty(®_requests_list
)) {
2175 spin_unlock(®_requests_lock
);
2179 reg_request
= list_first_entry(®_requests_list
,
2180 struct regulatory_request
,
2182 list_del_init(®_request
->list
);
2184 spin_unlock(®_requests_lock
);
2186 if (reg_only_self_managed_wiphys()) {
2187 reg_free_request(reg_request
);
2191 reg_process_hint(reg_request
);
2193 lr
= get_last_request();
2195 spin_lock(®_requests_lock
);
2196 if (!list_empty(®_requests_list
) && lr
&& lr
->processed
)
2197 schedule_work(®_work
);
2198 spin_unlock(®_requests_lock
);
2201 /* Processes beacon hints -- this has nothing to do with country IEs */
2202 static void reg_process_pending_beacon_hints(void)
2204 struct cfg80211_registered_device
*rdev
;
2205 struct reg_beacon
*pending_beacon
, *tmp
;
2207 /* This goes through the _pending_ beacon list */
2208 spin_lock_bh(®_pending_beacons_lock
);
2210 list_for_each_entry_safe(pending_beacon
, tmp
,
2211 ®_pending_beacons
, list
) {
2212 list_del_init(&pending_beacon
->list
);
2214 /* Applies the beacon hint to current wiphys */
2215 list_for_each_entry(rdev
, &cfg80211_rdev_list
, list
)
2216 wiphy_update_new_beacon(&rdev
->wiphy
, pending_beacon
);
2218 /* Remembers the beacon hint for new wiphys or reg changes */
2219 list_add_tail(&pending_beacon
->list
, ®_beacon_list
);
2222 spin_unlock_bh(®_pending_beacons_lock
);
2225 static void reg_process_self_managed_hints(void)
2227 struct cfg80211_registered_device
*rdev
;
2228 struct wiphy
*wiphy
;
2229 const struct ieee80211_regdomain
*tmp
;
2230 const struct ieee80211_regdomain
*regd
;
2231 enum ieee80211_band band
;
2232 struct regulatory_request request
= {};
2234 list_for_each_entry(rdev
, &cfg80211_rdev_list
, list
) {
2235 wiphy
= &rdev
->wiphy
;
2237 spin_lock(®_requests_lock
);
2238 regd
= rdev
->requested_regd
;
2239 rdev
->requested_regd
= NULL
;
2240 spin_unlock(®_requests_lock
);
2245 tmp
= get_wiphy_regdom(wiphy
);
2246 rcu_assign_pointer(wiphy
->regd
, regd
);
2247 rcu_free_regdom(tmp
);
2249 for (band
= 0; band
< IEEE80211_NUM_BANDS
; band
++)
2250 handle_band_custom(wiphy
, wiphy
->bands
[band
], regd
);
2252 reg_process_ht_flags(wiphy
);
2254 request
.wiphy_idx
= get_wiphy_idx(wiphy
);
2255 request
.alpha2
[0] = regd
->alpha2
[0];
2256 request
.alpha2
[1] = regd
->alpha2
[1];
2257 request
.initiator
= NL80211_REGDOM_SET_BY_DRIVER
;
2259 nl80211_send_wiphy_reg_change_event(&request
);
2262 reg_check_channels();
2265 static void reg_todo(struct work_struct
*work
)
2268 reg_process_pending_hints();
2269 reg_process_pending_beacon_hints();
2270 reg_process_self_managed_hints();
2274 static void queue_regulatory_request(struct regulatory_request
*request
)
2276 request
->alpha2
[0] = toupper(request
->alpha2
[0]);
2277 request
->alpha2
[1] = toupper(request
->alpha2
[1]);
2279 spin_lock(®_requests_lock
);
2280 list_add_tail(&request
->list
, ®_requests_list
);
2281 spin_unlock(®_requests_lock
);
2283 schedule_work(®_work
);
2287 * Core regulatory hint -- happens during cfg80211_init()
2288 * and when we restore regulatory settings.
2290 static int regulatory_hint_core(const char *alpha2
)
2292 struct regulatory_request
*request
;
2294 request
= kzalloc(sizeof(struct regulatory_request
), GFP_KERNEL
);
2298 request
->alpha2
[0] = alpha2
[0];
2299 request
->alpha2
[1] = alpha2
[1];
2300 request
->initiator
= NL80211_REGDOM_SET_BY_CORE
;
2302 queue_regulatory_request(request
);
2308 int regulatory_hint_user(const char *alpha2
,
2309 enum nl80211_user_reg_hint_type user_reg_hint_type
)
2311 struct regulatory_request
*request
;
2313 if (WARN_ON(!alpha2
))
2316 request
= kzalloc(sizeof(struct regulatory_request
), GFP_KERNEL
);
2320 request
->wiphy_idx
= WIPHY_IDX_INVALID
;
2321 request
->alpha2
[0] = alpha2
[0];
2322 request
->alpha2
[1] = alpha2
[1];
2323 request
->initiator
= NL80211_REGDOM_SET_BY_USER
;
2324 request
->user_reg_hint_type
= user_reg_hint_type
;
2326 /* Allow calling CRDA again */
2327 reset_crda_timeouts();
2329 queue_regulatory_request(request
);
2334 int regulatory_hint_indoor(bool is_indoor
, u32 portid
)
2336 spin_lock(®_indoor_lock
);
2338 /* It is possible that more than one user space process is trying to
2339 * configure the indoor setting. To handle such cases, clear the indoor
2340 * setting in case that some process does not think that the device
2341 * is operating in an indoor environment. In addition, if a user space
2342 * process indicates that it is controlling the indoor setting, save its
2343 * portid, i.e., make it the owner.
2345 reg_is_indoor
= is_indoor
;
2346 if (reg_is_indoor
) {
2347 if (!reg_is_indoor_portid
)
2348 reg_is_indoor_portid
= portid
;
2350 reg_is_indoor_portid
= 0;
2353 spin_unlock(®_indoor_lock
);
2356 reg_check_channels();
2361 void regulatory_netlink_notify(u32 portid
)
2363 spin_lock(®_indoor_lock
);
2365 if (reg_is_indoor_portid
!= portid
) {
2366 spin_unlock(®_indoor_lock
);
2370 reg_is_indoor
= false;
2371 reg_is_indoor_portid
= 0;
2373 spin_unlock(®_indoor_lock
);
2375 reg_check_channels();
2379 int regulatory_hint(struct wiphy
*wiphy
, const char *alpha2
)
2381 struct regulatory_request
*request
;
2383 if (WARN_ON(!alpha2
|| !wiphy
))
2386 wiphy
->regulatory_flags
&= ~REGULATORY_CUSTOM_REG
;
2388 request
= kzalloc(sizeof(struct regulatory_request
), GFP_KERNEL
);
2392 request
->wiphy_idx
= get_wiphy_idx(wiphy
);
2394 request
->alpha2
[0] = alpha2
[0];
2395 request
->alpha2
[1] = alpha2
[1];
2396 request
->initiator
= NL80211_REGDOM_SET_BY_DRIVER
;
2398 /* Allow calling CRDA again */
2399 reset_crda_timeouts();
2401 queue_regulatory_request(request
);
2405 EXPORT_SYMBOL(regulatory_hint
);
2407 void regulatory_hint_country_ie(struct wiphy
*wiphy
, enum ieee80211_band band
,
2408 const u8
*country_ie
, u8 country_ie_len
)
2411 enum environment_cap env
= ENVIRON_ANY
;
2412 struct regulatory_request
*request
= NULL
, *lr
;
2414 /* IE len must be evenly divisible by 2 */
2415 if (country_ie_len
& 0x01)
2418 if (country_ie_len
< IEEE80211_COUNTRY_IE_MIN_LEN
)
2421 request
= kzalloc(sizeof(*request
), GFP_KERNEL
);
2425 alpha2
[0] = country_ie
[0];
2426 alpha2
[1] = country_ie
[1];
2428 if (country_ie
[2] == 'I')
2429 env
= ENVIRON_INDOOR
;
2430 else if (country_ie
[2] == 'O')
2431 env
= ENVIRON_OUTDOOR
;
2434 lr
= get_last_request();
2440 * We will run this only upon a successful connection on cfg80211.
2441 * We leave conflict resolution to the workqueue, where can hold
2444 if (lr
->initiator
== NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
2445 lr
->wiphy_idx
!= WIPHY_IDX_INVALID
)
2448 request
->wiphy_idx
= get_wiphy_idx(wiphy
);
2449 request
->alpha2
[0] = alpha2
[0];
2450 request
->alpha2
[1] = alpha2
[1];
2451 request
->initiator
= NL80211_REGDOM_SET_BY_COUNTRY_IE
;
2452 request
->country_ie_env
= env
;
2454 /* Allow calling CRDA again */
2455 reset_crda_timeouts();
2457 queue_regulatory_request(request
);
2464 static void restore_alpha2(char *alpha2
, bool reset_user
)
2466 /* indicates there is no alpha2 to consider for restoration */
2470 /* The user setting has precedence over the module parameter */
2471 if (is_user_regdom_saved()) {
2472 /* Unless we're asked to ignore it and reset it */
2474 pr_debug("Restoring regulatory settings including user preference\n");
2475 user_alpha2
[0] = '9';
2476 user_alpha2
[1] = '7';
2479 * If we're ignoring user settings, we still need to
2480 * check the module parameter to ensure we put things
2481 * back as they were for a full restore.
2483 if (!is_world_regdom(ieee80211_regdom
)) {
2484 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2485 ieee80211_regdom
[0], ieee80211_regdom
[1]);
2486 alpha2
[0] = ieee80211_regdom
[0];
2487 alpha2
[1] = ieee80211_regdom
[1];
2490 pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
2491 user_alpha2
[0], user_alpha2
[1]);
2492 alpha2
[0] = user_alpha2
[0];
2493 alpha2
[1] = user_alpha2
[1];
2495 } else if (!is_world_regdom(ieee80211_regdom
)) {
2496 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2497 ieee80211_regdom
[0], ieee80211_regdom
[1]);
2498 alpha2
[0] = ieee80211_regdom
[0];
2499 alpha2
[1] = ieee80211_regdom
[1];
2501 pr_debug("Restoring regulatory settings\n");
2504 static void restore_custom_reg_settings(struct wiphy
*wiphy
)
2506 struct ieee80211_supported_band
*sband
;
2507 enum ieee80211_band band
;
2508 struct ieee80211_channel
*chan
;
2511 for (band
= 0; band
< IEEE80211_NUM_BANDS
; band
++) {
2512 sband
= wiphy
->bands
[band
];
2515 for (i
= 0; i
< sband
->n_channels
; i
++) {
2516 chan
= &sband
->channels
[i
];
2517 chan
->flags
= chan
->orig_flags
;
2518 chan
->max_antenna_gain
= chan
->orig_mag
;
2519 chan
->max_power
= chan
->orig_mpwr
;
2520 chan
->beacon_found
= false;
2526 * Restoring regulatory settings involves ingoring any
2527 * possibly stale country IE information and user regulatory
2528 * settings if so desired, this includes any beacon hints
2529 * learned as we could have traveled outside to another country
2530 * after disconnection. To restore regulatory settings we do
2531 * exactly what we did at bootup:
2533 * - send a core regulatory hint
2534 * - send a user regulatory hint if applicable
2536 * Device drivers that send a regulatory hint for a specific country
2537 * keep their own regulatory domain on wiphy->regd so that does does
2538 * not need to be remembered.
2540 static void restore_regulatory_settings(bool reset_user
)
2543 char world_alpha2
[2];
2544 struct reg_beacon
*reg_beacon
, *btmp
;
2545 LIST_HEAD(tmp_reg_req_list
);
2546 struct cfg80211_registered_device
*rdev
;
2551 * Clear the indoor setting in case that it is not controlled by user
2552 * space, as otherwise there is no guarantee that the device is still
2553 * operating in an indoor environment.
2555 spin_lock(®_indoor_lock
);
2556 if (reg_is_indoor
&& !reg_is_indoor_portid
) {
2557 reg_is_indoor
= false;
2558 reg_check_channels();
2560 spin_unlock(®_indoor_lock
);
2562 reset_regdomains(true, &world_regdom
);
2563 restore_alpha2(alpha2
, reset_user
);
2566 * If there's any pending requests we simply
2567 * stash them to a temporary pending queue and
2568 * add then after we've restored regulatory
2571 spin_lock(®_requests_lock
);
2572 list_splice_tail_init(®_requests_list
, &tmp_reg_req_list
);
2573 spin_unlock(®_requests_lock
);
2575 /* Clear beacon hints */
2576 spin_lock_bh(®_pending_beacons_lock
);
2577 list_for_each_entry_safe(reg_beacon
, btmp
, ®_pending_beacons
, list
) {
2578 list_del(®_beacon
->list
);
2581 spin_unlock_bh(®_pending_beacons_lock
);
2583 list_for_each_entry_safe(reg_beacon
, btmp
, ®_beacon_list
, list
) {
2584 list_del(®_beacon
->list
);
2588 /* First restore to the basic regulatory settings */
2589 world_alpha2
[0] = cfg80211_world_regdom
->alpha2
[0];
2590 world_alpha2
[1] = cfg80211_world_regdom
->alpha2
[1];
2592 list_for_each_entry(rdev
, &cfg80211_rdev_list
, list
) {
2593 if (rdev
->wiphy
.regulatory_flags
& REGULATORY_WIPHY_SELF_MANAGED
)
2595 if (rdev
->wiphy
.regulatory_flags
& REGULATORY_CUSTOM_REG
)
2596 restore_custom_reg_settings(&rdev
->wiphy
);
2599 regulatory_hint_core(world_alpha2
);
2602 * This restores the ieee80211_regdom module parameter
2603 * preference or the last user requested regulatory
2604 * settings, user regulatory settings takes precedence.
2606 if (is_an_alpha2(alpha2
))
2607 regulatory_hint_user(alpha2
, NL80211_USER_REG_HINT_USER
);
2609 spin_lock(®_requests_lock
);
2610 list_splice_tail_init(&tmp_reg_req_list
, ®_requests_list
);
2611 spin_unlock(®_requests_lock
);
2613 pr_debug("Kicking the queue\n");
2615 schedule_work(®_work
);
2618 void regulatory_hint_disconnect(void)
2620 pr_debug("All devices are disconnected, going to restore regulatory settings\n");
2621 restore_regulatory_settings(false);
2624 static bool freq_is_chan_12_13_14(u16 freq
)
2626 if (freq
== ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ
) ||
2627 freq
== ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ
) ||
2628 freq
== ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ
))
2633 static bool pending_reg_beacon(struct ieee80211_channel
*beacon_chan
)
2635 struct reg_beacon
*pending_beacon
;
2637 list_for_each_entry(pending_beacon
, ®_pending_beacons
, list
)
2638 if (beacon_chan
->center_freq
==
2639 pending_beacon
->chan
.center_freq
)
2644 int regulatory_hint_found_beacon(struct wiphy
*wiphy
,
2645 struct ieee80211_channel
*beacon_chan
,
2648 struct reg_beacon
*reg_beacon
;
2651 if (beacon_chan
->beacon_found
||
2652 beacon_chan
->flags
& IEEE80211_CHAN_RADAR
||
2653 (beacon_chan
->band
== IEEE80211_BAND_2GHZ
&&
2654 !freq_is_chan_12_13_14(beacon_chan
->center_freq
)))
2657 spin_lock_bh(®_pending_beacons_lock
);
2658 processing
= pending_reg_beacon(beacon_chan
);
2659 spin_unlock_bh(®_pending_beacons_lock
);
2664 reg_beacon
= kzalloc(sizeof(struct reg_beacon
), gfp
);
2668 pr_debug("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
2669 beacon_chan
->center_freq
,
2670 ieee80211_frequency_to_channel(beacon_chan
->center_freq
),
2673 memcpy(®_beacon
->chan
, beacon_chan
,
2674 sizeof(struct ieee80211_channel
));
2677 * Since we can be called from BH or and non-BH context
2678 * we must use spin_lock_bh()
2680 spin_lock_bh(®_pending_beacons_lock
);
2681 list_add_tail(®_beacon
->list
, ®_pending_beacons
);
2682 spin_unlock_bh(®_pending_beacons_lock
);
2684 schedule_work(®_work
);
2689 static void print_rd_rules(const struct ieee80211_regdomain
*rd
)
2692 const struct ieee80211_reg_rule
*reg_rule
= NULL
;
2693 const struct ieee80211_freq_range
*freq_range
= NULL
;
2694 const struct ieee80211_power_rule
*power_rule
= NULL
;
2695 char bw
[32], cac_time
[32];
2697 pr_debug(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
2699 for (i
= 0; i
< rd
->n_reg_rules
; i
++) {
2700 reg_rule
= &rd
->reg_rules
[i
];
2701 freq_range
= ®_rule
->freq_range
;
2702 power_rule
= ®_rule
->power_rule
;
2704 if (reg_rule
->flags
& NL80211_RRF_AUTO_BW
)
2705 snprintf(bw
, sizeof(bw
), "%d KHz, %d KHz AUTO",
2706 freq_range
->max_bandwidth_khz
,
2707 reg_get_max_bandwidth(rd
, reg_rule
));
2709 snprintf(bw
, sizeof(bw
), "%d KHz",
2710 freq_range
->max_bandwidth_khz
);
2712 if (reg_rule
->flags
& NL80211_RRF_DFS
)
2713 scnprintf(cac_time
, sizeof(cac_time
), "%u s",
2714 reg_rule
->dfs_cac_ms
/1000);
2716 scnprintf(cac_time
, sizeof(cac_time
), "N/A");
2720 * There may not be documentation for max antenna gain
2721 * in certain regions
2723 if (power_rule
->max_antenna_gain
)
2724 pr_debug(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
2725 freq_range
->start_freq_khz
,
2726 freq_range
->end_freq_khz
,
2728 power_rule
->max_antenna_gain
,
2729 power_rule
->max_eirp
,
2732 pr_debug(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
2733 freq_range
->start_freq_khz
,
2734 freq_range
->end_freq_khz
,
2736 power_rule
->max_eirp
,
2741 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region
)
2743 switch (dfs_region
) {
2744 case NL80211_DFS_UNSET
:
2745 case NL80211_DFS_FCC
:
2746 case NL80211_DFS_ETSI
:
2747 case NL80211_DFS_JP
:
2750 pr_debug("Ignoring uknown DFS master region: %d\n", dfs_region
);
2755 static void print_regdomain(const struct ieee80211_regdomain
*rd
)
2757 struct regulatory_request
*lr
= get_last_request();
2759 if (is_intersected_alpha2(rd
->alpha2
)) {
2760 if (lr
->initiator
== NL80211_REGDOM_SET_BY_COUNTRY_IE
) {
2761 struct cfg80211_registered_device
*rdev
;
2762 rdev
= cfg80211_rdev_by_wiphy_idx(lr
->wiphy_idx
);
2764 pr_debug("Current regulatory domain updated by AP to: %c%c\n",
2765 rdev
->country_ie_alpha2
[0],
2766 rdev
->country_ie_alpha2
[1]);
2768 pr_debug("Current regulatory domain intersected:\n");
2770 pr_debug("Current regulatory domain intersected:\n");
2771 } else if (is_world_regdom(rd
->alpha2
)) {
2772 pr_debug("World regulatory domain updated:\n");
2774 if (is_unknown_alpha2(rd
->alpha2
))
2775 pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
2777 if (reg_request_cell_base(lr
))
2778 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
2779 rd
->alpha2
[0], rd
->alpha2
[1]);
2781 pr_debug("Regulatory domain changed to country: %c%c\n",
2782 rd
->alpha2
[0], rd
->alpha2
[1]);
2786 pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd
->dfs_region
));
2790 static void print_regdomain_info(const struct ieee80211_regdomain
*rd
)
2792 pr_debug("Regulatory domain: %c%c\n", rd
->alpha2
[0], rd
->alpha2
[1]);
2796 static int reg_set_rd_core(const struct ieee80211_regdomain
*rd
)
2798 if (!is_world_regdom(rd
->alpha2
))
2800 update_world_regdomain(rd
);
2804 static int reg_set_rd_user(const struct ieee80211_regdomain
*rd
,
2805 struct regulatory_request
*user_request
)
2807 const struct ieee80211_regdomain
*intersected_rd
= NULL
;
2809 if (!regdom_changes(rd
->alpha2
))
2812 if (!is_valid_rd(rd
)) {
2813 pr_err("Invalid regulatory domain detected: %c%c\n",
2814 rd
->alpha2
[0], rd
->alpha2
[1]);
2815 print_regdomain_info(rd
);
2819 if (!user_request
->intersect
) {
2820 reset_regdomains(false, rd
);
2824 intersected_rd
= regdom_intersect(rd
, get_cfg80211_regdom());
2825 if (!intersected_rd
)
2830 reset_regdomains(false, intersected_rd
);
2835 static int reg_set_rd_driver(const struct ieee80211_regdomain
*rd
,
2836 struct regulatory_request
*driver_request
)
2838 const struct ieee80211_regdomain
*regd
;
2839 const struct ieee80211_regdomain
*intersected_rd
= NULL
;
2840 const struct ieee80211_regdomain
*tmp
;
2841 struct wiphy
*request_wiphy
;
2843 if (is_world_regdom(rd
->alpha2
))
2846 if (!regdom_changes(rd
->alpha2
))
2849 if (!is_valid_rd(rd
)) {
2850 pr_err("Invalid regulatory domain detected: %c%c\n",
2851 rd
->alpha2
[0], rd
->alpha2
[1]);
2852 print_regdomain_info(rd
);
2856 request_wiphy
= wiphy_idx_to_wiphy(driver_request
->wiphy_idx
);
2860 if (!driver_request
->intersect
) {
2861 if (request_wiphy
->regd
)
2864 regd
= reg_copy_regd(rd
);
2866 return PTR_ERR(regd
);
2868 rcu_assign_pointer(request_wiphy
->regd
, regd
);
2869 reset_regdomains(false, rd
);
2873 intersected_rd
= regdom_intersect(rd
, get_cfg80211_regdom());
2874 if (!intersected_rd
)
2878 * We can trash what CRDA provided now.
2879 * However if a driver requested this specific regulatory
2880 * domain we keep it for its private use
2882 tmp
= get_wiphy_regdom(request_wiphy
);
2883 rcu_assign_pointer(request_wiphy
->regd
, rd
);
2884 rcu_free_regdom(tmp
);
2888 reset_regdomains(false, intersected_rd
);
2893 static int reg_set_rd_country_ie(const struct ieee80211_regdomain
*rd
,
2894 struct regulatory_request
*country_ie_request
)
2896 struct wiphy
*request_wiphy
;
2898 if (!is_alpha2_set(rd
->alpha2
) && !is_an_alpha2(rd
->alpha2
) &&
2899 !is_unknown_alpha2(rd
->alpha2
))
2903 * Lets only bother proceeding on the same alpha2 if the current
2904 * rd is non static (it means CRDA was present and was used last)
2905 * and the pending request came in from a country IE
2908 if (!is_valid_rd(rd
)) {
2909 pr_err("Invalid regulatory domain detected: %c%c\n",
2910 rd
->alpha2
[0], rd
->alpha2
[1]);
2911 print_regdomain_info(rd
);
2915 request_wiphy
= wiphy_idx_to_wiphy(country_ie_request
->wiphy_idx
);
2919 if (country_ie_request
->intersect
)
2922 reset_regdomains(false, rd
);
2927 * Use this call to set the current regulatory domain. Conflicts with
2928 * multiple drivers can be ironed out later. Caller must've already
2929 * kmalloc'd the rd structure.
2931 int set_regdom(const struct ieee80211_regdomain
*rd
,
2932 enum ieee80211_regd_source regd_src
)
2934 struct regulatory_request
*lr
;
2935 bool user_reset
= false;
2938 if (!reg_is_valid_request(rd
->alpha2
)) {
2943 if (regd_src
== REGD_SOURCE_CRDA
)
2944 reset_crda_timeouts();
2946 lr
= get_last_request();
2948 /* Note that this doesn't update the wiphys, this is done below */
2949 switch (lr
->initiator
) {
2950 case NL80211_REGDOM_SET_BY_CORE
:
2951 r
= reg_set_rd_core(rd
);
2953 case NL80211_REGDOM_SET_BY_USER
:
2954 r
= reg_set_rd_user(rd
, lr
);
2957 case NL80211_REGDOM_SET_BY_DRIVER
:
2958 r
= reg_set_rd_driver(rd
, lr
);
2960 case NL80211_REGDOM_SET_BY_COUNTRY_IE
:
2961 r
= reg_set_rd_country_ie(rd
, lr
);
2964 WARN(1, "invalid initiator %d\n", lr
->initiator
);
2972 reg_set_request_processed();
2975 /* Back to world regulatory in case of errors */
2976 restore_regulatory_settings(user_reset
);
2983 /* This would make this whole thing pointless */
2984 if (WARN_ON(!lr
->intersect
&& rd
!= get_cfg80211_regdom()))
2987 /* update all wiphys now with the new established regulatory domain */
2988 update_all_wiphy_regulatory(lr
->initiator
);
2990 print_regdomain(get_cfg80211_regdom());
2992 nl80211_send_reg_change_event(lr
);
2994 reg_set_request_processed();
2999 static int __regulatory_set_wiphy_regd(struct wiphy
*wiphy
,
3000 struct ieee80211_regdomain
*rd
)
3002 const struct ieee80211_regdomain
*regd
;
3003 const struct ieee80211_regdomain
*prev_regd
;
3004 struct cfg80211_registered_device
*rdev
;
3006 if (WARN_ON(!wiphy
|| !rd
))
3009 if (WARN(!(wiphy
->regulatory_flags
& REGULATORY_WIPHY_SELF_MANAGED
),
3010 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
3013 if (WARN(!is_valid_rd(rd
), "Invalid regulatory domain detected\n")) {
3014 print_regdomain_info(rd
);
3018 regd
= reg_copy_regd(rd
);
3020 return PTR_ERR(regd
);
3022 rdev
= wiphy_to_rdev(wiphy
);
3024 spin_lock(®_requests_lock
);
3025 prev_regd
= rdev
->requested_regd
;
3026 rdev
->requested_regd
= regd
;
3027 spin_unlock(®_requests_lock
);
3033 int regulatory_set_wiphy_regd(struct wiphy
*wiphy
,
3034 struct ieee80211_regdomain
*rd
)
3036 int ret
= __regulatory_set_wiphy_regd(wiphy
, rd
);
3041 schedule_work(®_work
);
3044 EXPORT_SYMBOL(regulatory_set_wiphy_regd
);
3046 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy
*wiphy
,
3047 struct ieee80211_regdomain
*rd
)
3053 ret
= __regulatory_set_wiphy_regd(wiphy
, rd
);
3057 /* process the request immediately */
3058 reg_process_self_managed_hints();
3061 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl
);
3063 void wiphy_regulatory_register(struct wiphy
*wiphy
)
3065 struct regulatory_request
*lr
;
3067 /* self-managed devices ignore external hints */
3068 if (wiphy
->regulatory_flags
& REGULATORY_WIPHY_SELF_MANAGED
)
3069 wiphy
->regulatory_flags
|= REGULATORY_DISABLE_BEACON_HINTS
|
3070 REGULATORY_COUNTRY_IE_IGNORE
;
3072 if (!reg_dev_ignore_cell_hint(wiphy
))
3073 reg_num_devs_support_basehint
++;
3075 lr
= get_last_request();
3076 wiphy_update_regulatory(wiphy
, lr
->initiator
);
3079 void wiphy_regulatory_deregister(struct wiphy
*wiphy
)
3081 struct wiphy
*request_wiphy
= NULL
;
3082 struct regulatory_request
*lr
;
3084 lr
= get_last_request();
3086 if (!reg_dev_ignore_cell_hint(wiphy
))
3087 reg_num_devs_support_basehint
--;
3089 rcu_free_regdom(get_wiphy_regdom(wiphy
));
3090 RCU_INIT_POINTER(wiphy
->regd
, NULL
);
3093 request_wiphy
= wiphy_idx_to_wiphy(lr
->wiphy_idx
);
3095 if (!request_wiphy
|| request_wiphy
!= wiphy
)
3098 lr
->wiphy_idx
= WIPHY_IDX_INVALID
;
3099 lr
->country_ie_env
= ENVIRON_ANY
;
3103 * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for
3104 * UNII band definitions
3106 int cfg80211_get_unii(int freq
)
3109 if (freq
>= 5150 && freq
<= 5250)
3113 if (freq
> 5250 && freq
<= 5350)
3117 if (freq
> 5350 && freq
<= 5470)
3121 if (freq
> 5470 && freq
<= 5725)
3125 if (freq
> 5725 && freq
<= 5825)
3131 bool regulatory_indoor_allowed(void)
3133 return reg_is_indoor
;
3136 int __init
regulatory_init(void)
3140 reg_pdev
= platform_device_register_simple("regulatory", 0, NULL
, 0);
3141 if (IS_ERR(reg_pdev
))
3142 return PTR_ERR(reg_pdev
);
3144 spin_lock_init(®_requests_lock
);
3145 spin_lock_init(®_pending_beacons_lock
);
3146 spin_lock_init(®_indoor_lock
);
3148 reg_regdb_size_check();
3150 rcu_assign_pointer(cfg80211_regdomain
, cfg80211_world_regdom
);
3152 user_alpha2
[0] = '9';
3153 user_alpha2
[1] = '7';
3155 /* We always try to get an update for the static regdomain */
3156 err
= regulatory_hint_core(cfg80211_world_regdom
->alpha2
);
3158 if (err
== -ENOMEM
) {
3159 platform_device_unregister(reg_pdev
);
3163 * N.B. kobject_uevent_env() can fail mainly for when we're out
3164 * memory which is handled and propagated appropriately above
3165 * but it can also fail during a netlink_broadcast() or during
3166 * early boot for call_usermodehelper(). For now treat these
3167 * errors as non-fatal.
3169 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
3173 * Finally, if the user set the module parameter treat it
3176 if (!is_world_regdom(ieee80211_regdom
))
3177 regulatory_hint_user(ieee80211_regdom
,
3178 NL80211_USER_REG_HINT_USER
);
3183 void regulatory_exit(void)
3185 struct regulatory_request
*reg_request
, *tmp
;
3186 struct reg_beacon
*reg_beacon
, *btmp
;
3188 cancel_work_sync(®_work
);
3189 cancel_crda_timeout_sync();
3190 cancel_delayed_work_sync(®_check_chans
);
3192 /* Lock to suppress warnings */
3194 reset_regdomains(true, NULL
);
3197 dev_set_uevent_suppress(®_pdev
->dev
, true);
3199 platform_device_unregister(reg_pdev
);
3201 list_for_each_entry_safe(reg_beacon
, btmp
, ®_pending_beacons
, list
) {
3202 list_del(®_beacon
->list
);
3206 list_for_each_entry_safe(reg_beacon
, btmp
, ®_beacon_list
, list
) {
3207 list_del(®_beacon
->list
);
3211 list_for_each_entry_safe(reg_request
, tmp
, ®_requests_list
, list
) {
3212 list_del(®_request
->list
);