thermal: fix Mediatek thermal controller build
[linux/fpc-iii.git] / net / wireless / util.c
blob9f440a9de63b486e5fd565533fa01975621abbbb
1 /*
2 * Wireless utility functions
4 * Copyright 2007-2009 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2013-2014 Intel Mobile Communications GmbH
6 */
7 #include <linux/export.h>
8 #include <linux/bitops.h>
9 #include <linux/etherdevice.h>
10 #include <linux/slab.h>
11 #include <net/cfg80211.h>
12 #include <net/ip.h>
13 #include <net/dsfield.h>
14 #include <linux/if_vlan.h>
15 #include <linux/mpls.h>
16 #include "core.h"
17 #include "rdev-ops.h"
20 struct ieee80211_rate *
21 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
22 u32 basic_rates, int bitrate)
24 struct ieee80211_rate *result = &sband->bitrates[0];
25 int i;
27 for (i = 0; i < sband->n_bitrates; i++) {
28 if (!(basic_rates & BIT(i)))
29 continue;
30 if (sband->bitrates[i].bitrate > bitrate)
31 continue;
32 result = &sband->bitrates[i];
35 return result;
37 EXPORT_SYMBOL(ieee80211_get_response_rate);
39 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
40 enum nl80211_bss_scan_width scan_width)
42 struct ieee80211_rate *bitrates;
43 u32 mandatory_rates = 0;
44 enum ieee80211_rate_flags mandatory_flag;
45 int i;
47 if (WARN_ON(!sband))
48 return 1;
50 if (sband->band == IEEE80211_BAND_2GHZ) {
51 if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
52 scan_width == NL80211_BSS_CHAN_WIDTH_10)
53 mandatory_flag = IEEE80211_RATE_MANDATORY_G;
54 else
55 mandatory_flag = IEEE80211_RATE_MANDATORY_B;
56 } else {
57 mandatory_flag = IEEE80211_RATE_MANDATORY_A;
60 bitrates = sband->bitrates;
61 for (i = 0; i < sband->n_bitrates; i++)
62 if (bitrates[i].flags & mandatory_flag)
63 mandatory_rates |= BIT(i);
64 return mandatory_rates;
66 EXPORT_SYMBOL(ieee80211_mandatory_rates);
68 int ieee80211_channel_to_frequency(int chan, enum ieee80211_band band)
70 /* see 802.11 17.3.8.3.2 and Annex J
71 * there are overlapping channel numbers in 5GHz and 2GHz bands */
72 if (chan <= 0)
73 return 0; /* not supported */
74 switch (band) {
75 case IEEE80211_BAND_2GHZ:
76 if (chan == 14)
77 return 2484;
78 else if (chan < 14)
79 return 2407 + chan * 5;
80 break;
81 case IEEE80211_BAND_5GHZ:
82 if (chan >= 182 && chan <= 196)
83 return 4000 + chan * 5;
84 else
85 return 5000 + chan * 5;
86 break;
87 case IEEE80211_BAND_60GHZ:
88 if (chan < 5)
89 return 56160 + chan * 2160;
90 break;
91 default:
94 return 0; /* not supported */
96 EXPORT_SYMBOL(ieee80211_channel_to_frequency);
98 int ieee80211_frequency_to_channel(int freq)
100 /* see 802.11 17.3.8.3.2 and Annex J */
101 if (freq == 2484)
102 return 14;
103 else if (freq < 2484)
104 return (freq - 2407) / 5;
105 else if (freq >= 4910 && freq <= 4980)
106 return (freq - 4000) / 5;
107 else if (freq <= 45000) /* DMG band lower limit */
108 return (freq - 5000) / 5;
109 else if (freq >= 58320 && freq <= 64800)
110 return (freq - 56160) / 2160;
111 else
112 return 0;
114 EXPORT_SYMBOL(ieee80211_frequency_to_channel);
116 struct ieee80211_channel *__ieee80211_get_channel(struct wiphy *wiphy,
117 int freq)
119 enum ieee80211_band band;
120 struct ieee80211_supported_band *sband;
121 int i;
123 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
124 sband = wiphy->bands[band];
126 if (!sband)
127 continue;
129 for (i = 0; i < sband->n_channels; i++) {
130 if (sband->channels[i].center_freq == freq)
131 return &sband->channels[i];
135 return NULL;
137 EXPORT_SYMBOL(__ieee80211_get_channel);
139 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband,
140 enum ieee80211_band band)
142 int i, want;
144 switch (band) {
145 case IEEE80211_BAND_5GHZ:
146 want = 3;
147 for (i = 0; i < sband->n_bitrates; i++) {
148 if (sband->bitrates[i].bitrate == 60 ||
149 sband->bitrates[i].bitrate == 120 ||
150 sband->bitrates[i].bitrate == 240) {
151 sband->bitrates[i].flags |=
152 IEEE80211_RATE_MANDATORY_A;
153 want--;
156 WARN_ON(want);
157 break;
158 case IEEE80211_BAND_2GHZ:
159 want = 7;
160 for (i = 0; i < sband->n_bitrates; i++) {
161 if (sband->bitrates[i].bitrate == 10) {
162 sband->bitrates[i].flags |=
163 IEEE80211_RATE_MANDATORY_B |
164 IEEE80211_RATE_MANDATORY_G;
165 want--;
168 if (sband->bitrates[i].bitrate == 20 ||
169 sband->bitrates[i].bitrate == 55 ||
170 sband->bitrates[i].bitrate == 110 ||
171 sband->bitrates[i].bitrate == 60 ||
172 sband->bitrates[i].bitrate == 120 ||
173 sband->bitrates[i].bitrate == 240) {
174 sband->bitrates[i].flags |=
175 IEEE80211_RATE_MANDATORY_G;
176 want--;
179 if (sband->bitrates[i].bitrate != 10 &&
180 sband->bitrates[i].bitrate != 20 &&
181 sband->bitrates[i].bitrate != 55 &&
182 sband->bitrates[i].bitrate != 110)
183 sband->bitrates[i].flags |=
184 IEEE80211_RATE_ERP_G;
186 WARN_ON(want != 0 && want != 3 && want != 6);
187 break;
188 case IEEE80211_BAND_60GHZ:
189 /* check for mandatory HT MCS 1..4 */
190 WARN_ON(!sband->ht_cap.ht_supported);
191 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
192 break;
193 case IEEE80211_NUM_BANDS:
194 WARN_ON(1);
195 break;
199 void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
201 enum ieee80211_band band;
203 for (band = 0; band < IEEE80211_NUM_BANDS; band++)
204 if (wiphy->bands[band])
205 set_mandatory_flags_band(wiphy->bands[band], band);
208 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
210 int i;
211 for (i = 0; i < wiphy->n_cipher_suites; i++)
212 if (cipher == wiphy->cipher_suites[i])
213 return true;
214 return false;
217 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
218 struct key_params *params, int key_idx,
219 bool pairwise, const u8 *mac_addr)
221 if (key_idx > 5)
222 return -EINVAL;
224 if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
225 return -EINVAL;
227 if (pairwise && !mac_addr)
228 return -EINVAL;
230 switch (params->cipher) {
231 case WLAN_CIPHER_SUITE_TKIP:
232 case WLAN_CIPHER_SUITE_CCMP:
233 case WLAN_CIPHER_SUITE_CCMP_256:
234 case WLAN_CIPHER_SUITE_GCMP:
235 case WLAN_CIPHER_SUITE_GCMP_256:
236 /* Disallow pairwise keys with non-zero index unless it's WEP
237 * or a vendor specific cipher (because current deployments use
238 * pairwise WEP keys with non-zero indices and for vendor
239 * specific ciphers this should be validated in the driver or
240 * hardware level - but 802.11i clearly specifies to use zero)
242 if (pairwise && key_idx)
243 return -EINVAL;
244 break;
245 case WLAN_CIPHER_SUITE_AES_CMAC:
246 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
247 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
248 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
249 /* Disallow BIP (group-only) cipher as pairwise cipher */
250 if (pairwise)
251 return -EINVAL;
252 break;
253 default:
254 break;
257 switch (params->cipher) {
258 case WLAN_CIPHER_SUITE_WEP40:
259 if (params->key_len != WLAN_KEY_LEN_WEP40)
260 return -EINVAL;
261 break;
262 case WLAN_CIPHER_SUITE_TKIP:
263 if (params->key_len != WLAN_KEY_LEN_TKIP)
264 return -EINVAL;
265 break;
266 case WLAN_CIPHER_SUITE_CCMP:
267 if (params->key_len != WLAN_KEY_LEN_CCMP)
268 return -EINVAL;
269 break;
270 case WLAN_CIPHER_SUITE_CCMP_256:
271 if (params->key_len != WLAN_KEY_LEN_CCMP_256)
272 return -EINVAL;
273 break;
274 case WLAN_CIPHER_SUITE_GCMP:
275 if (params->key_len != WLAN_KEY_LEN_GCMP)
276 return -EINVAL;
277 break;
278 case WLAN_CIPHER_SUITE_GCMP_256:
279 if (params->key_len != WLAN_KEY_LEN_GCMP_256)
280 return -EINVAL;
281 break;
282 case WLAN_CIPHER_SUITE_WEP104:
283 if (params->key_len != WLAN_KEY_LEN_WEP104)
284 return -EINVAL;
285 break;
286 case WLAN_CIPHER_SUITE_AES_CMAC:
287 if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
288 return -EINVAL;
289 break;
290 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
291 if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
292 return -EINVAL;
293 break;
294 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
295 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
296 return -EINVAL;
297 break;
298 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
299 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
300 return -EINVAL;
301 break;
302 default:
304 * We don't know anything about this algorithm,
305 * allow using it -- but the driver must check
306 * all parameters! We still check below whether
307 * or not the driver supports this algorithm,
308 * of course.
310 break;
313 if (params->seq) {
314 switch (params->cipher) {
315 case WLAN_CIPHER_SUITE_WEP40:
316 case WLAN_CIPHER_SUITE_WEP104:
317 /* These ciphers do not use key sequence */
318 return -EINVAL;
319 case WLAN_CIPHER_SUITE_TKIP:
320 case WLAN_CIPHER_SUITE_CCMP:
321 case WLAN_CIPHER_SUITE_CCMP_256:
322 case WLAN_CIPHER_SUITE_GCMP:
323 case WLAN_CIPHER_SUITE_GCMP_256:
324 case WLAN_CIPHER_SUITE_AES_CMAC:
325 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
326 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
327 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
328 if (params->seq_len != 6)
329 return -EINVAL;
330 break;
334 if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
335 return -EINVAL;
337 return 0;
340 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
342 unsigned int hdrlen = 24;
344 if (ieee80211_is_data(fc)) {
345 if (ieee80211_has_a4(fc))
346 hdrlen = 30;
347 if (ieee80211_is_data_qos(fc)) {
348 hdrlen += IEEE80211_QOS_CTL_LEN;
349 if (ieee80211_has_order(fc))
350 hdrlen += IEEE80211_HT_CTL_LEN;
352 goto out;
355 if (ieee80211_is_mgmt(fc)) {
356 if (ieee80211_has_order(fc))
357 hdrlen += IEEE80211_HT_CTL_LEN;
358 goto out;
361 if (ieee80211_is_ctl(fc)) {
363 * ACK and CTS are 10 bytes, all others 16. To see how
364 * to get this condition consider
365 * subtype mask: 0b0000000011110000 (0x00F0)
366 * ACK subtype: 0b0000000011010000 (0x00D0)
367 * CTS subtype: 0b0000000011000000 (0x00C0)
368 * bits that matter: ^^^ (0x00E0)
369 * value of those: 0b0000000011000000 (0x00C0)
371 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
372 hdrlen = 10;
373 else
374 hdrlen = 16;
376 out:
377 return hdrlen;
379 EXPORT_SYMBOL(ieee80211_hdrlen);
381 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
383 const struct ieee80211_hdr *hdr =
384 (const struct ieee80211_hdr *)skb->data;
385 unsigned int hdrlen;
387 if (unlikely(skb->len < 10))
388 return 0;
389 hdrlen = ieee80211_hdrlen(hdr->frame_control);
390 if (unlikely(hdrlen > skb->len))
391 return 0;
392 return hdrlen;
394 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
396 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
398 int ae = flags & MESH_FLAGS_AE;
399 /* 802.11-2012, 8.2.4.7.3 */
400 switch (ae) {
401 default:
402 case 0:
403 return 6;
404 case MESH_FLAGS_AE_A4:
405 return 12;
406 case MESH_FLAGS_AE_A5_A6:
407 return 18;
411 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
413 return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
415 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
417 static int __ieee80211_data_to_8023(struct sk_buff *skb, struct ethhdr *ehdr,
418 const u8 *addr, enum nl80211_iftype iftype)
420 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
421 struct {
422 u8 hdr[ETH_ALEN] __aligned(2);
423 __be16 proto;
424 } payload;
425 struct ethhdr tmp;
426 u16 hdrlen;
427 u8 mesh_flags = 0;
429 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
430 return -1;
432 hdrlen = ieee80211_hdrlen(hdr->frame_control);
433 if (skb->len < hdrlen + 8)
434 return -1;
436 /* convert IEEE 802.11 header + possible LLC headers into Ethernet
437 * header
438 * IEEE 802.11 address fields:
439 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
440 * 0 0 DA SA BSSID n/a
441 * 0 1 DA BSSID SA n/a
442 * 1 0 BSSID SA DA n/a
443 * 1 1 RA TA DA SA
445 memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
446 memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
448 if (iftype == NL80211_IFTYPE_MESH_POINT)
449 skb_copy_bits(skb, hdrlen, &mesh_flags, 1);
451 switch (hdr->frame_control &
452 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
453 case cpu_to_le16(IEEE80211_FCTL_TODS):
454 if (unlikely(iftype != NL80211_IFTYPE_AP &&
455 iftype != NL80211_IFTYPE_AP_VLAN &&
456 iftype != NL80211_IFTYPE_P2P_GO))
457 return -1;
458 break;
459 case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
460 if (unlikely(iftype != NL80211_IFTYPE_WDS &&
461 iftype != NL80211_IFTYPE_MESH_POINT &&
462 iftype != NL80211_IFTYPE_AP_VLAN &&
463 iftype != NL80211_IFTYPE_STATION))
464 return -1;
465 if (iftype == NL80211_IFTYPE_MESH_POINT) {
466 if (mesh_flags & MESH_FLAGS_AE_A4)
467 return -1;
468 if (mesh_flags & MESH_FLAGS_AE_A5_A6) {
469 skb_copy_bits(skb, hdrlen +
470 offsetof(struct ieee80211s_hdr, eaddr1),
471 tmp.h_dest, 2 * ETH_ALEN);
473 hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
475 break;
476 case cpu_to_le16(IEEE80211_FCTL_FROMDS):
477 if ((iftype != NL80211_IFTYPE_STATION &&
478 iftype != NL80211_IFTYPE_P2P_CLIENT &&
479 iftype != NL80211_IFTYPE_MESH_POINT) ||
480 (is_multicast_ether_addr(tmp.h_dest) &&
481 ether_addr_equal(tmp.h_source, addr)))
482 return -1;
483 if (iftype == NL80211_IFTYPE_MESH_POINT) {
484 if (mesh_flags & MESH_FLAGS_AE_A5_A6)
485 return -1;
486 if (mesh_flags & MESH_FLAGS_AE_A4)
487 skb_copy_bits(skb, hdrlen +
488 offsetof(struct ieee80211s_hdr, eaddr1),
489 tmp.h_source, ETH_ALEN);
490 hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
492 break;
493 case cpu_to_le16(0):
494 if (iftype != NL80211_IFTYPE_ADHOC &&
495 iftype != NL80211_IFTYPE_STATION &&
496 iftype != NL80211_IFTYPE_OCB)
497 return -1;
498 break;
501 skb_copy_bits(skb, hdrlen, &payload, sizeof(payload));
502 tmp.h_proto = payload.proto;
504 if (likely((ether_addr_equal(payload.hdr, rfc1042_header) &&
505 tmp.h_proto != htons(ETH_P_AARP) &&
506 tmp.h_proto != htons(ETH_P_IPX)) ||
507 ether_addr_equal(payload.hdr, bridge_tunnel_header)))
508 /* remove RFC1042 or Bridge-Tunnel encapsulation and
509 * replace EtherType */
510 hdrlen += ETH_ALEN + 2;
511 else
512 tmp.h_proto = htons(skb->len);
514 pskb_pull(skb, hdrlen);
516 if (!ehdr)
517 ehdr = (struct ethhdr *) skb_push(skb, sizeof(struct ethhdr));
518 memcpy(ehdr, &tmp, sizeof(tmp));
520 return 0;
523 int ieee80211_data_to_8023(struct sk_buff *skb, const u8 *addr,
524 enum nl80211_iftype iftype)
526 return __ieee80211_data_to_8023(skb, NULL, addr, iftype);
528 EXPORT_SYMBOL(ieee80211_data_to_8023);
530 int ieee80211_data_from_8023(struct sk_buff *skb, const u8 *addr,
531 enum nl80211_iftype iftype,
532 const u8 *bssid, bool qos)
534 struct ieee80211_hdr hdr;
535 u16 hdrlen, ethertype;
536 __le16 fc;
537 const u8 *encaps_data;
538 int encaps_len, skip_header_bytes;
539 int nh_pos, h_pos;
540 int head_need;
542 if (unlikely(skb->len < ETH_HLEN))
543 return -EINVAL;
545 nh_pos = skb_network_header(skb) - skb->data;
546 h_pos = skb_transport_header(skb) - skb->data;
548 /* convert Ethernet header to proper 802.11 header (based on
549 * operation mode) */
550 ethertype = (skb->data[12] << 8) | skb->data[13];
551 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA);
553 switch (iftype) {
554 case NL80211_IFTYPE_AP:
555 case NL80211_IFTYPE_AP_VLAN:
556 case NL80211_IFTYPE_P2P_GO:
557 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS);
558 /* DA BSSID SA */
559 memcpy(hdr.addr1, skb->data, ETH_ALEN);
560 memcpy(hdr.addr2, addr, ETH_ALEN);
561 memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN);
562 hdrlen = 24;
563 break;
564 case NL80211_IFTYPE_STATION:
565 case NL80211_IFTYPE_P2P_CLIENT:
566 fc |= cpu_to_le16(IEEE80211_FCTL_TODS);
567 /* BSSID SA DA */
568 memcpy(hdr.addr1, bssid, ETH_ALEN);
569 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
570 memcpy(hdr.addr3, skb->data, ETH_ALEN);
571 hdrlen = 24;
572 break;
573 case NL80211_IFTYPE_OCB:
574 case NL80211_IFTYPE_ADHOC:
575 /* DA SA BSSID */
576 memcpy(hdr.addr1, skb->data, ETH_ALEN);
577 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
578 memcpy(hdr.addr3, bssid, ETH_ALEN);
579 hdrlen = 24;
580 break;
581 default:
582 return -EOPNOTSUPP;
585 if (qos) {
586 fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
587 hdrlen += 2;
590 hdr.frame_control = fc;
591 hdr.duration_id = 0;
592 hdr.seq_ctrl = 0;
594 skip_header_bytes = ETH_HLEN;
595 if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) {
596 encaps_data = bridge_tunnel_header;
597 encaps_len = sizeof(bridge_tunnel_header);
598 skip_header_bytes -= 2;
599 } else if (ethertype >= ETH_P_802_3_MIN) {
600 encaps_data = rfc1042_header;
601 encaps_len = sizeof(rfc1042_header);
602 skip_header_bytes -= 2;
603 } else {
604 encaps_data = NULL;
605 encaps_len = 0;
608 skb_pull(skb, skip_header_bytes);
609 nh_pos -= skip_header_bytes;
610 h_pos -= skip_header_bytes;
612 head_need = hdrlen + encaps_len - skb_headroom(skb);
614 if (head_need > 0 || skb_cloned(skb)) {
615 head_need = max(head_need, 0);
616 if (head_need)
617 skb_orphan(skb);
619 if (pskb_expand_head(skb, head_need, 0, GFP_ATOMIC))
620 return -ENOMEM;
622 skb->truesize += head_need;
625 if (encaps_data) {
626 memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len);
627 nh_pos += encaps_len;
628 h_pos += encaps_len;
631 memcpy(skb_push(skb, hdrlen), &hdr, hdrlen);
633 nh_pos += hdrlen;
634 h_pos += hdrlen;
636 /* Update skb pointers to various headers since this modified frame
637 * is going to go through Linux networking code that may potentially
638 * need things like pointer to IP header. */
639 skb_reset_mac_header(skb);
640 skb_set_network_header(skb, nh_pos);
641 skb_set_transport_header(skb, h_pos);
643 return 0;
645 EXPORT_SYMBOL(ieee80211_data_from_8023);
647 static void
648 __frame_add_frag(struct sk_buff *skb, struct page *page,
649 void *ptr, int len, int size)
651 struct skb_shared_info *sh = skb_shinfo(skb);
652 int page_offset;
654 atomic_inc(&page->_count);
655 page_offset = ptr - page_address(page);
656 skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
659 static void
660 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
661 int offset, int len)
663 struct skb_shared_info *sh = skb_shinfo(skb);
664 const skb_frag_t *frag = &sh->frags[-1];
665 struct page *frag_page;
666 void *frag_ptr;
667 int frag_len, frag_size;
668 int head_size = skb->len - skb->data_len;
669 int cur_len;
671 frag_page = virt_to_head_page(skb->head);
672 frag_ptr = skb->data;
673 frag_size = head_size;
675 while (offset >= frag_size) {
676 offset -= frag_size;
677 frag++;
678 frag_page = skb_frag_page(frag);
679 frag_ptr = skb_frag_address(frag);
680 frag_size = skb_frag_size(frag);
683 frag_ptr += offset;
684 frag_len = frag_size - offset;
686 cur_len = min(len, frag_len);
688 __frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
689 len -= cur_len;
691 while (len > 0) {
692 frag++;
693 frag_len = skb_frag_size(frag);
694 cur_len = min(len, frag_len);
695 __frame_add_frag(frame, skb_frag_page(frag),
696 skb_frag_address(frag), cur_len, frag_len);
697 len -= cur_len;
701 static struct sk_buff *
702 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
703 int offset, int len, bool reuse_frag)
705 struct sk_buff *frame;
706 int cur_len = len;
708 if (skb->len - offset < len)
709 return NULL;
712 * When reusing framents, copy some data to the head to simplify
713 * ethernet header handling and speed up protocol header processing
714 * in the stack later.
716 if (reuse_frag)
717 cur_len = min_t(int, len, 32);
720 * Allocate and reserve two bytes more for payload
721 * alignment since sizeof(struct ethhdr) is 14.
723 frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
725 skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
726 skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
728 len -= cur_len;
729 if (!len)
730 return frame;
732 offset += cur_len;
733 __ieee80211_amsdu_copy_frag(skb, frame, offset, len);
735 return frame;
738 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
739 const u8 *addr, enum nl80211_iftype iftype,
740 const unsigned int extra_headroom,
741 bool has_80211_header)
743 unsigned int hlen = ALIGN(extra_headroom, 4);
744 struct sk_buff *frame = NULL;
745 u16 ethertype;
746 u8 *payload;
747 int offset = 0, remaining, err;
748 struct ethhdr eth;
749 bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
750 bool reuse_skb = false;
751 bool last = false;
753 if (has_80211_header) {
754 err = __ieee80211_data_to_8023(skb, &eth, addr, iftype);
755 if (err)
756 goto out;
759 while (!last) {
760 unsigned int subframe_len;
761 int len;
762 u8 padding;
764 skb_copy_bits(skb, offset, &eth, sizeof(eth));
765 len = ntohs(eth.h_proto);
766 subframe_len = sizeof(struct ethhdr) + len;
767 padding = (4 - subframe_len) & 0x3;
769 /* the last MSDU has no padding */
770 remaining = skb->len - offset;
771 if (subframe_len > remaining)
772 goto purge;
774 offset += sizeof(struct ethhdr);
775 /* reuse skb for the last subframe */
776 last = remaining <= subframe_len + padding;
777 if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
778 skb_pull(skb, offset);
779 frame = skb;
780 reuse_skb = true;
781 } else {
782 frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
783 reuse_frag);
784 if (!frame)
785 goto purge;
787 offset += len + padding;
790 skb_reset_network_header(frame);
791 frame->dev = skb->dev;
792 frame->priority = skb->priority;
794 payload = frame->data;
795 ethertype = (payload[6] << 8) | payload[7];
796 if (likely((ether_addr_equal(payload, rfc1042_header) &&
797 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
798 ether_addr_equal(payload, bridge_tunnel_header))) {
799 eth.h_proto = htons(ethertype);
800 skb_pull(frame, ETH_ALEN + 2);
803 memcpy(skb_push(frame, sizeof(eth)), &eth, sizeof(eth));
804 __skb_queue_tail(list, frame);
807 if (!reuse_skb)
808 dev_kfree_skb(skb);
810 return;
812 purge:
813 __skb_queue_purge(list);
814 out:
815 dev_kfree_skb(skb);
817 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
819 /* Given a data frame determine the 802.1p/1d tag to use. */
820 unsigned int cfg80211_classify8021d(struct sk_buff *skb,
821 struct cfg80211_qos_map *qos_map)
823 unsigned int dscp;
824 unsigned char vlan_priority;
826 /* skb->priority values from 256->263 are magic values to
827 * directly indicate a specific 802.1d priority. This is used
828 * to allow 802.1d priority to be passed directly in from VLAN
829 * tags, etc.
831 if (skb->priority >= 256 && skb->priority <= 263)
832 return skb->priority - 256;
834 if (skb_vlan_tag_present(skb)) {
835 vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
836 >> VLAN_PRIO_SHIFT;
837 if (vlan_priority > 0)
838 return vlan_priority;
841 switch (skb->protocol) {
842 case htons(ETH_P_IP):
843 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
844 break;
845 case htons(ETH_P_IPV6):
846 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
847 break;
848 case htons(ETH_P_MPLS_UC):
849 case htons(ETH_P_MPLS_MC): {
850 struct mpls_label mpls_tmp, *mpls;
852 mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
853 sizeof(*mpls), &mpls_tmp);
854 if (!mpls)
855 return 0;
857 return (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
858 >> MPLS_LS_TC_SHIFT;
860 case htons(ETH_P_80221):
861 /* 802.21 is always network control traffic */
862 return 7;
863 default:
864 return 0;
867 if (qos_map) {
868 unsigned int i, tmp_dscp = dscp >> 2;
870 for (i = 0; i < qos_map->num_des; i++) {
871 if (tmp_dscp == qos_map->dscp_exception[i].dscp)
872 return qos_map->dscp_exception[i].up;
875 for (i = 0; i < 8; i++) {
876 if (tmp_dscp >= qos_map->up[i].low &&
877 tmp_dscp <= qos_map->up[i].high)
878 return i;
882 return dscp >> 5;
884 EXPORT_SYMBOL(cfg80211_classify8021d);
886 const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 ie)
888 const struct cfg80211_bss_ies *ies;
890 ies = rcu_dereference(bss->ies);
891 if (!ies)
892 return NULL;
894 return cfg80211_find_ie(ie, ies->data, ies->len);
896 EXPORT_SYMBOL(ieee80211_bss_get_ie);
898 void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
900 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
901 struct net_device *dev = wdev->netdev;
902 int i;
904 if (!wdev->connect_keys)
905 return;
907 for (i = 0; i < 6; i++) {
908 if (!wdev->connect_keys->params[i].cipher)
909 continue;
910 if (rdev_add_key(rdev, dev, i, false, NULL,
911 &wdev->connect_keys->params[i])) {
912 netdev_err(dev, "failed to set key %d\n", i);
913 continue;
915 if (wdev->connect_keys->def == i)
916 if (rdev_set_default_key(rdev, dev, i, true, true)) {
917 netdev_err(dev, "failed to set defkey %d\n", i);
918 continue;
920 if (wdev->connect_keys->defmgmt == i)
921 if (rdev_set_default_mgmt_key(rdev, dev, i))
922 netdev_err(dev, "failed to set mgtdef %d\n", i);
925 kzfree(wdev->connect_keys);
926 wdev->connect_keys = NULL;
929 void cfg80211_process_wdev_events(struct wireless_dev *wdev)
931 struct cfg80211_event *ev;
932 unsigned long flags;
933 const u8 *bssid = NULL;
935 spin_lock_irqsave(&wdev->event_lock, flags);
936 while (!list_empty(&wdev->event_list)) {
937 ev = list_first_entry(&wdev->event_list,
938 struct cfg80211_event, list);
939 list_del(&ev->list);
940 spin_unlock_irqrestore(&wdev->event_lock, flags);
942 wdev_lock(wdev);
943 switch (ev->type) {
944 case EVENT_CONNECT_RESULT:
945 if (!is_zero_ether_addr(ev->cr.bssid))
946 bssid = ev->cr.bssid;
947 __cfg80211_connect_result(
948 wdev->netdev, bssid,
949 ev->cr.req_ie, ev->cr.req_ie_len,
950 ev->cr.resp_ie, ev->cr.resp_ie_len,
951 ev->cr.status,
952 ev->cr.status == WLAN_STATUS_SUCCESS,
953 NULL);
954 break;
955 case EVENT_ROAMED:
956 __cfg80211_roamed(wdev, ev->rm.bss, ev->rm.req_ie,
957 ev->rm.req_ie_len, ev->rm.resp_ie,
958 ev->rm.resp_ie_len);
959 break;
960 case EVENT_DISCONNECTED:
961 __cfg80211_disconnected(wdev->netdev,
962 ev->dc.ie, ev->dc.ie_len,
963 ev->dc.reason,
964 !ev->dc.locally_generated);
965 break;
966 case EVENT_IBSS_JOINED:
967 __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
968 ev->ij.channel);
969 break;
970 case EVENT_STOPPED:
971 __cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
972 break;
974 wdev_unlock(wdev);
976 kfree(ev);
978 spin_lock_irqsave(&wdev->event_lock, flags);
980 spin_unlock_irqrestore(&wdev->event_lock, flags);
983 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
985 struct wireless_dev *wdev;
987 ASSERT_RTNL();
989 list_for_each_entry(wdev, &rdev->wdev_list, list)
990 cfg80211_process_wdev_events(wdev);
993 int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
994 struct net_device *dev, enum nl80211_iftype ntype,
995 u32 *flags, struct vif_params *params)
997 int err;
998 enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
1000 ASSERT_RTNL();
1002 /* don't support changing VLANs, you just re-create them */
1003 if (otype == NL80211_IFTYPE_AP_VLAN)
1004 return -EOPNOTSUPP;
1006 /* cannot change into P2P device type */
1007 if (ntype == NL80211_IFTYPE_P2P_DEVICE)
1008 return -EOPNOTSUPP;
1010 if (!rdev->ops->change_virtual_intf ||
1011 !(rdev->wiphy.interface_modes & (1 << ntype)))
1012 return -EOPNOTSUPP;
1014 /* if it's part of a bridge, reject changing type to station/ibss */
1015 if ((dev->priv_flags & IFF_BRIDGE_PORT) &&
1016 (ntype == NL80211_IFTYPE_ADHOC ||
1017 ntype == NL80211_IFTYPE_STATION ||
1018 ntype == NL80211_IFTYPE_P2P_CLIENT))
1019 return -EBUSY;
1021 if (ntype != otype) {
1022 dev->ieee80211_ptr->use_4addr = false;
1023 dev->ieee80211_ptr->mesh_id_up_len = 0;
1024 wdev_lock(dev->ieee80211_ptr);
1025 rdev_set_qos_map(rdev, dev, NULL);
1026 wdev_unlock(dev->ieee80211_ptr);
1028 switch (otype) {
1029 case NL80211_IFTYPE_AP:
1030 cfg80211_stop_ap(rdev, dev, true);
1031 break;
1032 case NL80211_IFTYPE_ADHOC:
1033 cfg80211_leave_ibss(rdev, dev, false);
1034 break;
1035 case NL80211_IFTYPE_STATION:
1036 case NL80211_IFTYPE_P2P_CLIENT:
1037 wdev_lock(dev->ieee80211_ptr);
1038 cfg80211_disconnect(rdev, dev,
1039 WLAN_REASON_DEAUTH_LEAVING, true);
1040 wdev_unlock(dev->ieee80211_ptr);
1041 break;
1042 case NL80211_IFTYPE_MESH_POINT:
1043 /* mesh should be handled? */
1044 break;
1045 default:
1046 break;
1049 cfg80211_process_rdev_events(rdev);
1052 err = rdev_change_virtual_intf(rdev, dev, ntype, flags, params);
1054 WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
1056 if (!err && params && params->use_4addr != -1)
1057 dev->ieee80211_ptr->use_4addr = params->use_4addr;
1059 if (!err) {
1060 dev->priv_flags &= ~IFF_DONT_BRIDGE;
1061 switch (ntype) {
1062 case NL80211_IFTYPE_STATION:
1063 if (dev->ieee80211_ptr->use_4addr)
1064 break;
1065 /* fall through */
1066 case NL80211_IFTYPE_OCB:
1067 case NL80211_IFTYPE_P2P_CLIENT:
1068 case NL80211_IFTYPE_ADHOC:
1069 dev->priv_flags |= IFF_DONT_BRIDGE;
1070 break;
1071 case NL80211_IFTYPE_P2P_GO:
1072 case NL80211_IFTYPE_AP:
1073 case NL80211_IFTYPE_AP_VLAN:
1074 case NL80211_IFTYPE_WDS:
1075 case NL80211_IFTYPE_MESH_POINT:
1076 /* bridging OK */
1077 break;
1078 case NL80211_IFTYPE_MONITOR:
1079 /* monitor can't bridge anyway */
1080 break;
1081 case NL80211_IFTYPE_UNSPECIFIED:
1082 case NUM_NL80211_IFTYPES:
1083 /* not happening */
1084 break;
1085 case NL80211_IFTYPE_P2P_DEVICE:
1086 WARN_ON(1);
1087 break;
1091 if (!err && ntype != otype && netif_running(dev)) {
1092 cfg80211_update_iface_num(rdev, ntype, 1);
1093 cfg80211_update_iface_num(rdev, otype, -1);
1096 return err;
1099 static u32 cfg80211_calculate_bitrate_60g(struct rate_info *rate)
1101 static const u32 __mcs2bitrate[] = {
1102 /* control PHY */
1103 [0] = 275,
1104 /* SC PHY */
1105 [1] = 3850,
1106 [2] = 7700,
1107 [3] = 9625,
1108 [4] = 11550,
1109 [5] = 12512, /* 1251.25 mbps */
1110 [6] = 15400,
1111 [7] = 19250,
1112 [8] = 23100,
1113 [9] = 25025,
1114 [10] = 30800,
1115 [11] = 38500,
1116 [12] = 46200,
1117 /* OFDM PHY */
1118 [13] = 6930,
1119 [14] = 8662, /* 866.25 mbps */
1120 [15] = 13860,
1121 [16] = 17325,
1122 [17] = 20790,
1123 [18] = 27720,
1124 [19] = 34650,
1125 [20] = 41580,
1126 [21] = 45045,
1127 [22] = 51975,
1128 [23] = 62370,
1129 [24] = 67568, /* 6756.75 mbps */
1130 /* LP-SC PHY */
1131 [25] = 6260,
1132 [26] = 8340,
1133 [27] = 11120,
1134 [28] = 12510,
1135 [29] = 16680,
1136 [30] = 22240,
1137 [31] = 25030,
1140 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1141 return 0;
1143 return __mcs2bitrate[rate->mcs];
1146 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1148 static const u32 base[4][10] = {
1149 { 6500000,
1150 13000000,
1151 19500000,
1152 26000000,
1153 39000000,
1154 52000000,
1155 58500000,
1156 65000000,
1157 78000000,
1160 { 13500000,
1161 27000000,
1162 40500000,
1163 54000000,
1164 81000000,
1165 108000000,
1166 121500000,
1167 135000000,
1168 162000000,
1169 180000000,
1171 { 29300000,
1172 58500000,
1173 87800000,
1174 117000000,
1175 175500000,
1176 234000000,
1177 263300000,
1178 292500000,
1179 351000000,
1180 390000000,
1182 { 58500000,
1183 117000000,
1184 175500000,
1185 234000000,
1186 351000000,
1187 468000000,
1188 526500000,
1189 585000000,
1190 702000000,
1191 780000000,
1194 u32 bitrate;
1195 int idx;
1197 if (WARN_ON_ONCE(rate->mcs > 9))
1198 return 0;
1200 switch (rate->bw) {
1201 case RATE_INFO_BW_160:
1202 idx = 3;
1203 break;
1204 case RATE_INFO_BW_80:
1205 idx = 2;
1206 break;
1207 case RATE_INFO_BW_40:
1208 idx = 1;
1209 break;
1210 case RATE_INFO_BW_5:
1211 case RATE_INFO_BW_10:
1212 default:
1213 WARN_ON(1);
1214 /* fall through */
1215 case RATE_INFO_BW_20:
1216 idx = 0;
1219 bitrate = base[idx][rate->mcs];
1220 bitrate *= rate->nss;
1222 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1223 bitrate = (bitrate / 9) * 10;
1225 /* do NOT round down here */
1226 return (bitrate + 50000) / 100000;
1229 u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1231 int modulation, streams, bitrate;
1233 if (!(rate->flags & RATE_INFO_FLAGS_MCS) &&
1234 !(rate->flags & RATE_INFO_FLAGS_VHT_MCS))
1235 return rate->legacy;
1236 if (rate->flags & RATE_INFO_FLAGS_60G)
1237 return cfg80211_calculate_bitrate_60g(rate);
1238 if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1239 return cfg80211_calculate_bitrate_vht(rate);
1241 /* the formula below does only work for MCS values smaller than 32 */
1242 if (WARN_ON_ONCE(rate->mcs >= 32))
1243 return 0;
1245 modulation = rate->mcs & 7;
1246 streams = (rate->mcs >> 3) + 1;
1248 bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
1250 if (modulation < 4)
1251 bitrate *= (modulation + 1);
1252 else if (modulation == 4)
1253 bitrate *= (modulation + 2);
1254 else
1255 bitrate *= (modulation + 3);
1257 bitrate *= streams;
1259 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1260 bitrate = (bitrate / 9) * 10;
1262 /* do NOT round down here */
1263 return (bitrate + 50000) / 100000;
1265 EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1267 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1268 enum ieee80211_p2p_attr_id attr,
1269 u8 *buf, unsigned int bufsize)
1271 u8 *out = buf;
1272 u16 attr_remaining = 0;
1273 bool desired_attr = false;
1274 u16 desired_len = 0;
1276 while (len > 0) {
1277 unsigned int iedatalen;
1278 unsigned int copy;
1279 const u8 *iedata;
1281 if (len < 2)
1282 return -EILSEQ;
1283 iedatalen = ies[1];
1284 if (iedatalen + 2 > len)
1285 return -EILSEQ;
1287 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1288 goto cont;
1290 if (iedatalen < 4)
1291 goto cont;
1293 iedata = ies + 2;
1295 /* check WFA OUI, P2P subtype */
1296 if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1297 iedata[2] != 0x9a || iedata[3] != 0x09)
1298 goto cont;
1300 iedatalen -= 4;
1301 iedata += 4;
1303 /* check attribute continuation into this IE */
1304 copy = min_t(unsigned int, attr_remaining, iedatalen);
1305 if (copy && desired_attr) {
1306 desired_len += copy;
1307 if (out) {
1308 memcpy(out, iedata, min(bufsize, copy));
1309 out += min(bufsize, copy);
1310 bufsize -= min(bufsize, copy);
1314 if (copy == attr_remaining)
1315 return desired_len;
1318 attr_remaining -= copy;
1319 if (attr_remaining)
1320 goto cont;
1322 iedatalen -= copy;
1323 iedata += copy;
1325 while (iedatalen > 0) {
1326 u16 attr_len;
1328 /* P2P attribute ID & size must fit */
1329 if (iedatalen < 3)
1330 return -EILSEQ;
1331 desired_attr = iedata[0] == attr;
1332 attr_len = get_unaligned_le16(iedata + 1);
1333 iedatalen -= 3;
1334 iedata += 3;
1336 copy = min_t(unsigned int, attr_len, iedatalen);
1338 if (desired_attr) {
1339 desired_len += copy;
1340 if (out) {
1341 memcpy(out, iedata, min(bufsize, copy));
1342 out += min(bufsize, copy);
1343 bufsize -= min(bufsize, copy);
1346 if (copy == attr_len)
1347 return desired_len;
1350 iedata += copy;
1351 iedatalen -= copy;
1352 attr_remaining = attr_len - copy;
1355 cont:
1356 len -= ies[1] + 2;
1357 ies += ies[1] + 2;
1360 if (attr_remaining && desired_attr)
1361 return -EILSEQ;
1363 return -ENOENT;
1365 EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1367 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id)
1369 int i;
1371 for (i = 0; i < n_ids; i++)
1372 if (ids[i] == id)
1373 return true;
1374 return false;
1377 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1378 const u8 *ids, int n_ids,
1379 const u8 *after_ric, int n_after_ric,
1380 size_t offset)
1382 size_t pos = offset;
1384 while (pos < ielen && ieee80211_id_in_list(ids, n_ids, ies[pos])) {
1385 if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1386 pos += 2 + ies[pos + 1];
1388 while (pos < ielen &&
1389 !ieee80211_id_in_list(after_ric, n_after_ric,
1390 ies[pos]))
1391 pos += 2 + ies[pos + 1];
1392 } else {
1393 pos += 2 + ies[pos + 1];
1397 return pos;
1399 EXPORT_SYMBOL(ieee80211_ie_split_ric);
1401 bool ieee80211_operating_class_to_band(u8 operating_class,
1402 enum ieee80211_band *band)
1404 switch (operating_class) {
1405 case 112:
1406 case 115 ... 127:
1407 case 128 ... 130:
1408 *band = IEEE80211_BAND_5GHZ;
1409 return true;
1410 case 81:
1411 case 82:
1412 case 83:
1413 case 84:
1414 *band = IEEE80211_BAND_2GHZ;
1415 return true;
1416 case 180:
1417 *band = IEEE80211_BAND_60GHZ;
1418 return true;
1421 return false;
1423 EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1425 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
1426 u8 *op_class)
1428 u8 vht_opclass;
1429 u16 freq = chandef->center_freq1;
1431 if (freq >= 2412 && freq <= 2472) {
1432 if (chandef->width > NL80211_CHAN_WIDTH_40)
1433 return false;
1435 /* 2.407 GHz, channels 1..13 */
1436 if (chandef->width == NL80211_CHAN_WIDTH_40) {
1437 if (freq > chandef->chan->center_freq)
1438 *op_class = 83; /* HT40+ */
1439 else
1440 *op_class = 84; /* HT40- */
1441 } else {
1442 *op_class = 81;
1445 return true;
1448 if (freq == 2484) {
1449 if (chandef->width > NL80211_CHAN_WIDTH_40)
1450 return false;
1452 *op_class = 82; /* channel 14 */
1453 return true;
1456 switch (chandef->width) {
1457 case NL80211_CHAN_WIDTH_80:
1458 vht_opclass = 128;
1459 break;
1460 case NL80211_CHAN_WIDTH_160:
1461 vht_opclass = 129;
1462 break;
1463 case NL80211_CHAN_WIDTH_80P80:
1464 vht_opclass = 130;
1465 break;
1466 case NL80211_CHAN_WIDTH_10:
1467 case NL80211_CHAN_WIDTH_5:
1468 return false; /* unsupported for now */
1469 default:
1470 vht_opclass = 0;
1471 break;
1474 /* 5 GHz, channels 36..48 */
1475 if (freq >= 5180 && freq <= 5240) {
1476 if (vht_opclass) {
1477 *op_class = vht_opclass;
1478 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1479 if (freq > chandef->chan->center_freq)
1480 *op_class = 116;
1481 else
1482 *op_class = 117;
1483 } else {
1484 *op_class = 115;
1487 return true;
1490 /* 5 GHz, channels 52..64 */
1491 if (freq >= 5260 && freq <= 5320) {
1492 if (vht_opclass) {
1493 *op_class = vht_opclass;
1494 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1495 if (freq > chandef->chan->center_freq)
1496 *op_class = 119;
1497 else
1498 *op_class = 120;
1499 } else {
1500 *op_class = 118;
1503 return true;
1506 /* 5 GHz, channels 100..144 */
1507 if (freq >= 5500 && freq <= 5720) {
1508 if (vht_opclass) {
1509 *op_class = vht_opclass;
1510 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1511 if (freq > chandef->chan->center_freq)
1512 *op_class = 122;
1513 else
1514 *op_class = 123;
1515 } else {
1516 *op_class = 121;
1519 return true;
1522 /* 5 GHz, channels 149..169 */
1523 if (freq >= 5745 && freq <= 5845) {
1524 if (vht_opclass) {
1525 *op_class = vht_opclass;
1526 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1527 if (freq > chandef->chan->center_freq)
1528 *op_class = 126;
1529 else
1530 *op_class = 127;
1531 } else if (freq <= 5805) {
1532 *op_class = 124;
1533 } else {
1534 *op_class = 125;
1537 return true;
1540 /* 56.16 GHz, channel 1..4 */
1541 if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 4) {
1542 if (chandef->width >= NL80211_CHAN_WIDTH_40)
1543 return false;
1545 *op_class = 180;
1546 return true;
1549 /* not supported yet */
1550 return false;
1552 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
1554 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
1555 u32 beacon_int)
1557 struct wireless_dev *wdev;
1558 int res = 0;
1560 if (!beacon_int)
1561 return -EINVAL;
1563 list_for_each_entry(wdev, &rdev->wdev_list, list) {
1564 if (!wdev->beacon_interval)
1565 continue;
1566 if (wdev->beacon_interval != beacon_int) {
1567 res = -EINVAL;
1568 break;
1572 return res;
1575 int cfg80211_iter_combinations(struct wiphy *wiphy,
1576 const int num_different_channels,
1577 const u8 radar_detect,
1578 const int iftype_num[NUM_NL80211_IFTYPES],
1579 void (*iter)(const struct ieee80211_iface_combination *c,
1580 void *data),
1581 void *data)
1583 const struct ieee80211_regdomain *regdom;
1584 enum nl80211_dfs_regions region = 0;
1585 int i, j, iftype;
1586 int num_interfaces = 0;
1587 u32 used_iftypes = 0;
1589 if (radar_detect) {
1590 rcu_read_lock();
1591 regdom = rcu_dereference(cfg80211_regdomain);
1592 if (regdom)
1593 region = regdom->dfs_region;
1594 rcu_read_unlock();
1597 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1598 num_interfaces += iftype_num[iftype];
1599 if (iftype_num[iftype] > 0 &&
1600 !(wiphy->software_iftypes & BIT(iftype)))
1601 used_iftypes |= BIT(iftype);
1604 for (i = 0; i < wiphy->n_iface_combinations; i++) {
1605 const struct ieee80211_iface_combination *c;
1606 struct ieee80211_iface_limit *limits;
1607 u32 all_iftypes = 0;
1609 c = &wiphy->iface_combinations[i];
1611 if (num_interfaces > c->max_interfaces)
1612 continue;
1613 if (num_different_channels > c->num_different_channels)
1614 continue;
1616 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
1617 GFP_KERNEL);
1618 if (!limits)
1619 return -ENOMEM;
1621 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1622 if (wiphy->software_iftypes & BIT(iftype))
1623 continue;
1624 for (j = 0; j < c->n_limits; j++) {
1625 all_iftypes |= limits[j].types;
1626 if (!(limits[j].types & BIT(iftype)))
1627 continue;
1628 if (limits[j].max < iftype_num[iftype])
1629 goto cont;
1630 limits[j].max -= iftype_num[iftype];
1634 if (radar_detect != (c->radar_detect_widths & radar_detect))
1635 goto cont;
1637 if (radar_detect && c->radar_detect_regions &&
1638 !(c->radar_detect_regions & BIT(region)))
1639 goto cont;
1641 /* Finally check that all iftypes that we're currently
1642 * using are actually part of this combination. If they
1643 * aren't then we can't use this combination and have
1644 * to continue to the next.
1646 if ((all_iftypes & used_iftypes) != used_iftypes)
1647 goto cont;
1649 /* This combination covered all interface types and
1650 * supported the requested numbers, so we're good.
1653 (*iter)(c, data);
1654 cont:
1655 kfree(limits);
1658 return 0;
1660 EXPORT_SYMBOL(cfg80211_iter_combinations);
1662 static void
1663 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
1664 void *data)
1666 int *num = data;
1667 (*num)++;
1670 int cfg80211_check_combinations(struct wiphy *wiphy,
1671 const int num_different_channels,
1672 const u8 radar_detect,
1673 const int iftype_num[NUM_NL80211_IFTYPES])
1675 int err, num = 0;
1677 err = cfg80211_iter_combinations(wiphy, num_different_channels,
1678 radar_detect, iftype_num,
1679 cfg80211_iter_sum_ifcombs, &num);
1680 if (err)
1681 return err;
1682 if (num == 0)
1683 return -EBUSY;
1685 return 0;
1687 EXPORT_SYMBOL(cfg80211_check_combinations);
1689 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
1690 const u8 *rates, unsigned int n_rates,
1691 u32 *mask)
1693 int i, j;
1695 if (!sband)
1696 return -EINVAL;
1698 if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
1699 return -EINVAL;
1701 *mask = 0;
1703 for (i = 0; i < n_rates; i++) {
1704 int rate = (rates[i] & 0x7f) * 5;
1705 bool found = false;
1707 for (j = 0; j < sband->n_bitrates; j++) {
1708 if (sband->bitrates[j].bitrate == rate) {
1709 found = true;
1710 *mask |= BIT(j);
1711 break;
1714 if (!found)
1715 return -EINVAL;
1719 * mask must have at least one bit set here since we
1720 * didn't accept a 0-length rates array nor allowed
1721 * entries in the array that didn't exist
1724 return 0;
1727 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
1729 enum ieee80211_band band;
1730 unsigned int n_channels = 0;
1732 for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1733 if (wiphy->bands[band])
1734 n_channels += wiphy->bands[band]->n_channels;
1736 return n_channels;
1738 EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
1740 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
1741 struct station_info *sinfo)
1743 struct cfg80211_registered_device *rdev;
1744 struct wireless_dev *wdev;
1746 wdev = dev->ieee80211_ptr;
1747 if (!wdev)
1748 return -EOPNOTSUPP;
1750 rdev = wiphy_to_rdev(wdev->wiphy);
1751 if (!rdev->ops->get_station)
1752 return -EOPNOTSUPP;
1754 return rdev_get_station(rdev, dev, mac_addr, sinfo);
1756 EXPORT_SYMBOL(cfg80211_get_station);
1758 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
1759 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
1760 const unsigned char rfc1042_header[] __aligned(2) =
1761 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
1762 EXPORT_SYMBOL(rfc1042_header);
1764 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
1765 const unsigned char bridge_tunnel_header[] __aligned(2) =
1766 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
1767 EXPORT_SYMBOL(bridge_tunnel_header);