Linux 4.11-rc5
[linux/fpc-iii.git] / arch / powerpc / mm / init_64.c
blobc22f207aa6564ba93df40ecc03713de04cb20f99
1 /*
2 * PowerPC version
3 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
5 * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
6 * and Cort Dougan (PReP) (cort@cs.nmt.edu)
7 * Copyright (C) 1996 Paul Mackerras
9 * Derived from "arch/i386/mm/init.c"
10 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
12 * Dave Engebretsen <engebret@us.ibm.com>
13 * Rework for PPC64 port.
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version
18 * 2 of the License, or (at your option) any later version.
22 #undef DEBUG
24 #include <linux/signal.h>
25 #include <linux/sched.h>
26 #include <linux/kernel.h>
27 #include <linux/errno.h>
28 #include <linux/string.h>
29 #include <linux/types.h>
30 #include <linux/mman.h>
31 #include <linux/mm.h>
32 #include <linux/swap.h>
33 #include <linux/stddef.h>
34 #include <linux/vmalloc.h>
35 #include <linux/init.h>
36 #include <linux/delay.h>
37 #include <linux/highmem.h>
38 #include <linux/idr.h>
39 #include <linux/nodemask.h>
40 #include <linux/module.h>
41 #include <linux/poison.h>
42 #include <linux/memblock.h>
43 #include <linux/hugetlb.h>
44 #include <linux/slab.h>
45 #include <linux/of_fdt.h>
46 #include <linux/libfdt.h>
48 #include <asm/pgalloc.h>
49 #include <asm/page.h>
50 #include <asm/prom.h>
51 #include <asm/rtas.h>
52 #include <asm/io.h>
53 #include <asm/mmu_context.h>
54 #include <asm/pgtable.h>
55 #include <asm/mmu.h>
56 #include <linux/uaccess.h>
57 #include <asm/smp.h>
58 #include <asm/machdep.h>
59 #include <asm/tlb.h>
60 #include <asm/eeh.h>
61 #include <asm/processor.h>
62 #include <asm/mmzone.h>
63 #include <asm/cputable.h>
64 #include <asm/sections.h>
65 #include <asm/iommu.h>
66 #include <asm/vdso.h>
68 #include "mmu_decl.h"
70 #ifdef CONFIG_PPC_STD_MMU_64
71 #if H_PGTABLE_RANGE > USER_VSID_RANGE
72 #warning Limited user VSID range means pagetable space is wasted
73 #endif
75 #if (TASK_SIZE_USER64 < H_PGTABLE_RANGE) && (TASK_SIZE_USER64 < USER_VSID_RANGE)
76 #warning TASK_SIZE is smaller than it needs to be.
77 #endif
78 #endif /* CONFIG_PPC_STD_MMU_64 */
80 phys_addr_t memstart_addr = ~0;
81 EXPORT_SYMBOL_GPL(memstart_addr);
82 phys_addr_t kernstart_addr;
83 EXPORT_SYMBOL_GPL(kernstart_addr);
85 #ifdef CONFIG_SPARSEMEM_VMEMMAP
87 * Given an address within the vmemmap, determine the pfn of the page that
88 * represents the start of the section it is within. Note that we have to
89 * do this by hand as the proffered address may not be correctly aligned.
90 * Subtraction of non-aligned pointers produces undefined results.
92 static unsigned long __meminit vmemmap_section_start(unsigned long page)
94 unsigned long offset = page - ((unsigned long)(vmemmap));
96 /* Return the pfn of the start of the section. */
97 return (offset / sizeof(struct page)) & PAGE_SECTION_MASK;
101 * Check if this vmemmap page is already initialised. If any section
102 * which overlaps this vmemmap page is initialised then this page is
103 * initialised already.
105 static int __meminit vmemmap_populated(unsigned long start, int page_size)
107 unsigned long end = start + page_size;
108 start = (unsigned long)(pfn_to_page(vmemmap_section_start(start)));
110 for (; start < end; start += (PAGES_PER_SECTION * sizeof(struct page)))
111 if (pfn_valid(page_to_pfn((struct page *)start)))
112 return 1;
114 return 0;
117 struct vmemmap_backing *vmemmap_list;
118 static struct vmemmap_backing *next;
119 static int num_left;
120 static int num_freed;
122 static __meminit struct vmemmap_backing * vmemmap_list_alloc(int node)
124 struct vmemmap_backing *vmem_back;
125 /* get from freed entries first */
126 if (num_freed) {
127 num_freed--;
128 vmem_back = next;
129 next = next->list;
131 return vmem_back;
134 /* allocate a page when required and hand out chunks */
135 if (!num_left) {
136 next = vmemmap_alloc_block(PAGE_SIZE, node);
137 if (unlikely(!next)) {
138 WARN_ON(1);
139 return NULL;
141 num_left = PAGE_SIZE / sizeof(struct vmemmap_backing);
144 num_left--;
146 return next++;
149 static __meminit void vmemmap_list_populate(unsigned long phys,
150 unsigned long start,
151 int node)
153 struct vmemmap_backing *vmem_back;
155 vmem_back = vmemmap_list_alloc(node);
156 if (unlikely(!vmem_back)) {
157 WARN_ON(1);
158 return;
161 vmem_back->phys = phys;
162 vmem_back->virt_addr = start;
163 vmem_back->list = vmemmap_list;
165 vmemmap_list = vmem_back;
168 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node)
170 unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
172 /* Align to the page size of the linear mapping. */
173 start = _ALIGN_DOWN(start, page_size);
175 pr_debug("vmemmap_populate %lx..%lx, node %d\n", start, end, node);
177 for (; start < end; start += page_size) {
178 void *p;
179 int rc;
181 if (vmemmap_populated(start, page_size))
182 continue;
184 p = vmemmap_alloc_block(page_size, node);
185 if (!p)
186 return -ENOMEM;
188 vmemmap_list_populate(__pa(p), start, node);
190 pr_debug(" * %016lx..%016lx allocated at %p\n",
191 start, start + page_size, p);
193 rc = vmemmap_create_mapping(start, page_size, __pa(p));
194 if (rc < 0) {
195 pr_warning(
196 "vmemmap_populate: Unable to create vmemmap mapping: %d\n",
197 rc);
198 return -EFAULT;
202 return 0;
205 #ifdef CONFIG_MEMORY_HOTPLUG
206 static unsigned long vmemmap_list_free(unsigned long start)
208 struct vmemmap_backing *vmem_back, *vmem_back_prev;
210 vmem_back_prev = vmem_back = vmemmap_list;
212 /* look for it with prev pointer recorded */
213 for (; vmem_back; vmem_back = vmem_back->list) {
214 if (vmem_back->virt_addr == start)
215 break;
216 vmem_back_prev = vmem_back;
219 if (unlikely(!vmem_back)) {
220 WARN_ON(1);
221 return 0;
224 /* remove it from vmemmap_list */
225 if (vmem_back == vmemmap_list) /* remove head */
226 vmemmap_list = vmem_back->list;
227 else
228 vmem_back_prev->list = vmem_back->list;
230 /* next point to this freed entry */
231 vmem_back->list = next;
232 next = vmem_back;
233 num_freed++;
235 return vmem_back->phys;
238 void __ref vmemmap_free(unsigned long start, unsigned long end)
240 unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
242 start = _ALIGN_DOWN(start, page_size);
244 pr_debug("vmemmap_free %lx...%lx\n", start, end);
246 for (; start < end; start += page_size) {
247 unsigned long addr;
250 * the section has already be marked as invalid, so
251 * vmemmap_populated() true means some other sections still
252 * in this page, so skip it.
254 if (vmemmap_populated(start, page_size))
255 continue;
257 addr = vmemmap_list_free(start);
258 if (addr) {
259 struct page *page = pfn_to_page(addr >> PAGE_SHIFT);
261 if (PageReserved(page)) {
262 /* allocated from bootmem */
263 if (page_size < PAGE_SIZE) {
265 * this shouldn't happen, but if it is
266 * the case, leave the memory there
268 WARN_ON_ONCE(1);
269 } else {
270 unsigned int nr_pages =
271 1 << get_order(page_size);
272 while (nr_pages--)
273 free_reserved_page(page++);
275 } else
276 free_pages((unsigned long)(__va(addr)),
277 get_order(page_size));
279 vmemmap_remove_mapping(start, page_size);
283 #endif
284 void register_page_bootmem_memmap(unsigned long section_nr,
285 struct page *start_page, unsigned long size)
290 * We do not have access to the sparsemem vmemmap, so we fallback to
291 * walking the list of sparsemem blocks which we already maintain for
292 * the sake of crashdump. In the long run, we might want to maintain
293 * a tree if performance of that linear walk becomes a problem.
295 * realmode_pfn_to_page functions can fail due to:
296 * 1) As real sparsemem blocks do not lay in RAM continously (they
297 * are in virtual address space which is not available in the real mode),
298 * the requested page struct can be split between blocks so get_page/put_page
299 * may fail.
300 * 2) When huge pages are used, the get_page/put_page API will fail
301 * in real mode as the linked addresses in the page struct are virtual
302 * too.
304 struct page *realmode_pfn_to_page(unsigned long pfn)
306 struct vmemmap_backing *vmem_back;
307 struct page *page;
308 unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
309 unsigned long pg_va = (unsigned long) pfn_to_page(pfn);
311 for (vmem_back = vmemmap_list; vmem_back; vmem_back = vmem_back->list) {
312 if (pg_va < vmem_back->virt_addr)
313 continue;
315 /* After vmemmap_list entry free is possible, need check all */
316 if ((pg_va + sizeof(struct page)) <=
317 (vmem_back->virt_addr + page_size)) {
318 page = (struct page *) (vmem_back->phys + pg_va -
319 vmem_back->virt_addr);
320 return page;
324 /* Probably that page struct is split between real pages */
325 return NULL;
327 EXPORT_SYMBOL_GPL(realmode_pfn_to_page);
329 #elif defined(CONFIG_FLATMEM)
331 struct page *realmode_pfn_to_page(unsigned long pfn)
333 struct page *page = pfn_to_page(pfn);
334 return page;
336 EXPORT_SYMBOL_GPL(realmode_pfn_to_page);
338 #endif /* CONFIG_SPARSEMEM_VMEMMAP/CONFIG_FLATMEM */
340 #ifdef CONFIG_PPC_STD_MMU_64
341 static bool disable_radix;
342 static int __init parse_disable_radix(char *p)
344 disable_radix = true;
345 return 0;
347 early_param("disable_radix", parse_disable_radix);
350 * If we're running under a hypervisor, we need to check the contents of
351 * /chosen/ibm,architecture-vec-5 to see if the hypervisor is willing to do
352 * radix. If not, we clear the radix feature bit so we fall back to hash.
354 static void early_check_vec5(void)
356 unsigned long root, chosen;
357 int size;
358 const u8 *vec5;
359 u8 mmu_supported;
361 root = of_get_flat_dt_root();
362 chosen = of_get_flat_dt_subnode_by_name(root, "chosen");
363 if (chosen == -FDT_ERR_NOTFOUND) {
364 cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
365 return;
367 vec5 = of_get_flat_dt_prop(chosen, "ibm,architecture-vec-5", &size);
368 if (!vec5) {
369 cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
370 return;
372 if (size <= OV5_INDX(OV5_MMU_SUPPORT)) {
373 cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
374 return;
377 /* Check for supported configuration */
378 mmu_supported = vec5[OV5_INDX(OV5_MMU_SUPPORT)] &
379 OV5_FEAT(OV5_MMU_SUPPORT);
380 if (mmu_supported == OV5_FEAT(OV5_MMU_RADIX)) {
381 /* Hypervisor only supports radix - check enabled && GTSE */
382 if (!early_radix_enabled()) {
383 pr_warn("WARNING: Ignoring cmdline option disable_radix\n");
385 if (!(vec5[OV5_INDX(OV5_RADIX_GTSE)] &
386 OV5_FEAT(OV5_RADIX_GTSE))) {
387 pr_warn("WARNING: Hypervisor doesn't support RADIX with GTSE\n");
389 /* Do radix anyway - the hypervisor said we had to */
390 cur_cpu_spec->mmu_features |= MMU_FTR_TYPE_RADIX;
391 } else if (mmu_supported == OV5_FEAT(OV5_MMU_HASH)) {
392 /* Hypervisor only supports hash - disable radix */
393 cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
397 void __init mmu_early_init_devtree(void)
399 /* Disable radix mode based on kernel command line. */
400 if (disable_radix)
401 cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
404 * Check /chosen/ibm,architecture-vec-5 if running as a guest.
405 * When running bare-metal, we can use radix if we like
406 * even though the ibm,architecture-vec-5 property created by
407 * skiboot doesn't have the necessary bits set.
409 if (!(mfmsr() & MSR_HV))
410 early_check_vec5();
412 if (early_radix_enabled())
413 radix__early_init_devtree();
414 else
415 hash__early_init_devtree();
417 #endif /* CONFIG_PPC_STD_MMU_64 */