2 * linux/arch/x86_64/entry.S
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 2000, 2001, 2002 Andi Kleen SuSE Labs
6 * Copyright (C) 2000 Pavel Machek <pavel@suse.cz>
8 * entry.S contains the system-call and fault low-level handling routines.
10 * Some of this is documented in Documentation/x86/entry_64.txt
12 * A note on terminology:
13 * - iret frame: Architecture defined interrupt frame from SS to RIP
14 * at the top of the kernel process stack.
17 * - ENTRY/END: Define functions in the symbol table.
18 * - TRACE_IRQ_*: Trace hardirq state for lock debugging.
19 * - idtentry: Define exception entry points.
21 #include <linux/linkage.h>
22 #include <asm/segment.h>
23 #include <asm/cache.h>
24 #include <asm/errno.h>
26 #include <asm/asm-offsets.h>
28 #include <asm/unistd.h>
29 #include <asm/thread_info.h>
30 #include <asm/hw_irq.h>
31 #include <asm/page_types.h>
32 #include <asm/irqflags.h>
33 #include <asm/paravirt.h>
34 #include <asm/percpu.h>
37 #include <asm/pgtable_types.h>
38 #include <asm/export.h>
39 #include <asm/frame.h>
40 #include <linux/err.h>
43 .section .entry.text, "ax"
45 #ifdef CONFIG_PARAVIRT
46 ENTRY(native_usergs_sysret64)
49 ENDPROC(native_usergs_sysret64)
50 #endif /* CONFIG_PARAVIRT */
52 .macro TRACE_IRQS_IRETQ
53 #ifdef CONFIG_TRACE_IRQFLAGS
54 bt $9, EFLAGS(%rsp) /* interrupts off? */
62 * When dynamic function tracer is enabled it will add a breakpoint
63 * to all locations that it is about to modify, sync CPUs, update
64 * all the code, sync CPUs, then remove the breakpoints. In this time
65 * if lockdep is enabled, it might jump back into the debug handler
66 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
68 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
69 * make sure the stack pointer does not get reset back to the top
70 * of the debug stack, and instead just reuses the current stack.
72 #if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)
74 .macro TRACE_IRQS_OFF_DEBUG
75 call debug_stack_set_zero
77 call debug_stack_reset
80 .macro TRACE_IRQS_ON_DEBUG
81 call debug_stack_set_zero
83 call debug_stack_reset
86 .macro TRACE_IRQS_IRETQ_DEBUG
87 bt $9, EFLAGS(%rsp) /* interrupts off? */
94 # define TRACE_IRQS_OFF_DEBUG TRACE_IRQS_OFF
95 # define TRACE_IRQS_ON_DEBUG TRACE_IRQS_ON
96 # define TRACE_IRQS_IRETQ_DEBUG TRACE_IRQS_IRETQ
100 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
102 * This is the only entry point used for 64-bit system calls. The
103 * hardware interface is reasonably well designed and the register to
104 * argument mapping Linux uses fits well with the registers that are
105 * available when SYSCALL is used.
107 * SYSCALL instructions can be found inlined in libc implementations as
108 * well as some other programs and libraries. There are also a handful
109 * of SYSCALL instructions in the vDSO used, for example, as a
110 * clock_gettimeofday fallback.
112 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
113 * then loads new ss, cs, and rip from previously programmed MSRs.
114 * rflags gets masked by a value from another MSR (so CLD and CLAC
115 * are not needed). SYSCALL does not save anything on the stack
116 * and does not change rsp.
118 * Registers on entry:
119 * rax system call number
121 * r11 saved rflags (note: r11 is callee-clobbered register in C ABI)
125 * r10 arg3 (needs to be moved to rcx to conform to C ABI)
128 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
130 * Only called from user space.
132 * When user can change pt_regs->foo always force IRET. That is because
133 * it deals with uncanonical addresses better. SYSRET has trouble
134 * with them due to bugs in both AMD and Intel CPUs.
137 ENTRY(entry_SYSCALL_64)
139 * Interrupts are off on entry.
140 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
141 * it is too small to ever cause noticeable irq latency.
145 * A hypervisor implementation might want to use a label
146 * after the swapgs, so that it can do the swapgs
147 * for the guest and jump here on syscall.
149 GLOBAL(entry_SYSCALL_64_after_swapgs)
151 movq %rsp, PER_CPU_VAR(rsp_scratch)
152 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
156 /* Construct struct pt_regs on stack */
157 pushq $__USER_DS /* pt_regs->ss */
158 pushq PER_CPU_VAR(rsp_scratch) /* pt_regs->sp */
159 pushq %r11 /* pt_regs->flags */
160 pushq $__USER_CS /* pt_regs->cs */
161 pushq %rcx /* pt_regs->ip */
162 pushq %rax /* pt_regs->orig_ax */
163 pushq %rdi /* pt_regs->di */
164 pushq %rsi /* pt_regs->si */
165 pushq %rdx /* pt_regs->dx */
166 pushq %rcx /* pt_regs->cx */
167 pushq $-ENOSYS /* pt_regs->ax */
168 pushq %r8 /* pt_regs->r8 */
169 pushq %r9 /* pt_regs->r9 */
170 pushq %r10 /* pt_regs->r10 */
171 pushq %r11 /* pt_regs->r11 */
172 sub $(6*8), %rsp /* pt_regs->bp, bx, r12-15 not saved */
175 * If we need to do entry work or if we guess we'll need to do
176 * exit work, go straight to the slow path.
178 movq PER_CPU_VAR(current_task), %r11
179 testl $_TIF_WORK_SYSCALL_ENTRY|_TIF_ALLWORK_MASK, TASK_TI_flags(%r11)
180 jnz entry_SYSCALL64_slow_path
182 entry_SYSCALL_64_fastpath:
184 * Easy case: enable interrupts and issue the syscall. If the syscall
185 * needs pt_regs, we'll call a stub that disables interrupts again
186 * and jumps to the slow path.
189 ENABLE_INTERRUPTS(CLBR_NONE)
190 #if __SYSCALL_MASK == ~0
191 cmpq $__NR_syscall_max, %rax
193 andl $__SYSCALL_MASK, %eax
194 cmpl $__NR_syscall_max, %eax
196 ja 1f /* return -ENOSYS (already in pt_regs->ax) */
200 * This call instruction is handled specially in stub_ptregs_64.
201 * It might end up jumping to the slow path. If it jumps, RAX
202 * and all argument registers are clobbered.
204 call *sys_call_table(, %rax, 8)
205 .Lentry_SYSCALL_64_after_fastpath_call:
211 * If we get here, then we know that pt_regs is clean for SYSRET64.
212 * If we see that no exit work is required (which we are required
213 * to check with IRQs off), then we can go straight to SYSRET64.
215 DISABLE_INTERRUPTS(CLBR_NONE)
217 movq PER_CPU_VAR(current_task), %r11
218 testl $_TIF_ALLWORK_MASK, TASK_TI_flags(%r11)
222 TRACE_IRQS_ON /* user mode is traced as IRQs on */
224 movq EFLAGS(%rsp), %r11
225 RESTORE_C_REGS_EXCEPT_RCX_R11
231 * The fast path looked good when we started, but something changed
232 * along the way and we need to switch to the slow path. Calling
233 * raise(3) will trigger this, for example. IRQs are off.
236 ENABLE_INTERRUPTS(CLBR_NONE)
239 call syscall_return_slowpath /* returns with IRQs disabled */
240 jmp return_from_SYSCALL_64
242 entry_SYSCALL64_slow_path:
246 call do_syscall_64 /* returns with IRQs disabled */
248 return_from_SYSCALL_64:
250 TRACE_IRQS_IRETQ /* we're about to change IF */
253 * Try to use SYSRET instead of IRET if we're returning to
254 * a completely clean 64-bit userspace context.
258 cmpq %rcx, %r11 /* RCX == RIP */
259 jne opportunistic_sysret_failed
262 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
263 * in kernel space. This essentially lets the user take over
264 * the kernel, since userspace controls RSP.
266 * If width of "canonical tail" ever becomes variable, this will need
267 * to be updated to remain correct on both old and new CPUs.
269 .ifne __VIRTUAL_MASK_SHIFT - 47
270 .error "virtual address width changed -- SYSRET checks need update"
273 /* Change top 16 bits to be the sign-extension of 47th bit */
274 shl $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
275 sar $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
277 /* If this changed %rcx, it was not canonical */
279 jne opportunistic_sysret_failed
281 cmpq $__USER_CS, CS(%rsp) /* CS must match SYSRET */
282 jne opportunistic_sysret_failed
285 cmpq %r11, EFLAGS(%rsp) /* R11 == RFLAGS */
286 jne opportunistic_sysret_failed
289 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
290 * restore RF properly. If the slowpath sets it for whatever reason, we
291 * need to restore it correctly.
293 * SYSRET can restore TF, but unlike IRET, restoring TF results in a
294 * trap from userspace immediately after SYSRET. This would cause an
295 * infinite loop whenever #DB happens with register state that satisfies
296 * the opportunistic SYSRET conditions. For example, single-stepping
299 * movq $stuck_here, %rcx
304 * would never get past 'stuck_here'.
306 testq $(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
307 jnz opportunistic_sysret_failed
309 /* nothing to check for RSP */
311 cmpq $__USER_DS, SS(%rsp) /* SS must match SYSRET */
312 jne opportunistic_sysret_failed
315 * We win! This label is here just for ease of understanding
316 * perf profiles. Nothing jumps here.
318 syscall_return_via_sysret:
319 /* rcx and r11 are already restored (see code above) */
320 RESTORE_C_REGS_EXCEPT_RCX_R11
324 opportunistic_sysret_failed:
326 jmp restore_c_regs_and_iret
327 END(entry_SYSCALL_64)
329 ENTRY(stub_ptregs_64)
331 * Syscalls marked as needing ptregs land here.
332 * If we are on the fast path, we need to save the extra regs,
333 * which we achieve by trying again on the slow path. If we are on
334 * the slow path, the extra regs are already saved.
336 * RAX stores a pointer to the C function implementing the syscall.
339 cmpq $.Lentry_SYSCALL_64_after_fastpath_call, (%rsp)
343 * Called from fast path -- disable IRQs again, pop return address
344 * and jump to slow path
346 DISABLE_INTERRUPTS(CLBR_NONE)
349 jmp entry_SYSCALL64_slow_path
352 jmp *%rax /* Called from C */
355 .macro ptregs_stub func
357 leaq \func(%rip), %rax
362 /* Instantiate ptregs_stub for each ptregs-using syscall */
363 #define __SYSCALL_64_QUAL_(sym)
364 #define __SYSCALL_64_QUAL_ptregs(sym) ptregs_stub sym
365 #define __SYSCALL_64(nr, sym, qual) __SYSCALL_64_QUAL_##qual(sym)
366 #include <asm/syscalls_64.h>
372 ENTRY(__switch_to_asm)
374 * Save callee-saved registers
375 * This must match the order in inactive_task_frame
385 movq %rsp, TASK_threadsp(%rdi)
386 movq TASK_threadsp(%rsi), %rsp
388 #ifdef CONFIG_CC_STACKPROTECTOR
389 movq TASK_stack_canary(%rsi), %rbx
390 movq %rbx, PER_CPU_VAR(irq_stack_union)+stack_canary_offset
393 /* restore callee-saved registers */
405 * A newly forked process directly context switches into this address.
407 * rax: prev task we switched from
408 * rbx: kernel thread func (NULL for user thread)
409 * r12: kernel thread arg
412 FRAME_BEGIN /* help unwinder find end of stack */
414 call schedule_tail /* rdi: 'prev' task parameter */
416 testq %rbx, %rbx /* from kernel_thread? */
417 jnz 1f /* kernel threads are uncommon */
420 leaq FRAME_OFFSET(%rsp),%rdi /* pt_regs pointer */
421 call syscall_return_slowpath /* returns with IRQs disabled */
422 TRACE_IRQS_ON /* user mode is traced as IRQS on */
425 jmp restore_regs_and_iret
432 * A kernel thread is allowed to return here after successfully
433 * calling do_execve(). Exit to userspace to complete the execve()
441 * Build the entry stubs with some assembler magic.
442 * We pack 1 stub into every 8-byte block.
445 ENTRY(irq_entries_start)
446 vector=FIRST_EXTERNAL_VECTOR
447 .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
448 pushq $(~vector+0x80) /* Note: always in signed byte range */
453 END(irq_entries_start)
456 * Interrupt entry/exit.
458 * Interrupt entry points save only callee clobbered registers in fast path.
460 * Entry runs with interrupts off.
463 /* 0(%rsp): ~(interrupt number) */
464 .macro interrupt func
466 ALLOC_PT_GPREGS_ON_STACK
475 * IRQ from user mode. Switch to kernel gsbase and inform context
476 * tracking that we're in kernel mode.
481 * We need to tell lockdep that IRQs are off. We can't do this until
482 * we fix gsbase, and we should do it before enter_from_user_mode
483 * (which can take locks). Since TRACE_IRQS_OFF idempotent,
484 * the simplest way to handle it is to just call it twice if
485 * we enter from user mode. There's no reason to optimize this since
486 * TRACE_IRQS_OFF is a no-op if lockdep is off.
490 CALL_enter_from_user_mode
494 * Save previous stack pointer, optionally switch to interrupt stack.
495 * irq_count is used to check if a CPU is already on an interrupt stack
496 * or not. While this is essentially redundant with preempt_count it is
497 * a little cheaper to use a separate counter in the PDA (short of
498 * moving irq_enter into assembly, which would be too much work)
501 incl PER_CPU_VAR(irq_count)
502 cmovzq PER_CPU_VAR(irq_stack_ptr), %rsp
504 /* We entered an interrupt context - irqs are off: */
507 call \func /* rdi points to pt_regs */
511 * The interrupt stubs push (~vector+0x80) onto the stack and
512 * then jump to common_interrupt.
514 .p2align CONFIG_X86_L1_CACHE_SHIFT
517 addq $-0x80, (%rsp) /* Adjust vector to [-256, -1] range */
519 /* 0(%rsp): old RSP */
521 DISABLE_INTERRUPTS(CLBR_NONE)
523 decl PER_CPU_VAR(irq_count)
525 /* Restore saved previous stack */
531 /* Interrupt came from user space */
534 call prepare_exit_to_usermode
537 jmp restore_regs_and_iret
539 /* Returning to kernel space */
541 #ifdef CONFIG_PREEMPT
542 /* Interrupts are off */
543 /* Check if we need preemption */
544 bt $9, EFLAGS(%rsp) /* were interrupts off? */
546 0: cmpl $0, PER_CPU_VAR(__preempt_count)
548 call preempt_schedule_irq
553 * The iretq could re-enable interrupts:
558 * At this label, code paths which return to kernel and to user,
559 * which come from interrupts/exception and from syscalls, merge.
561 GLOBAL(restore_regs_and_iret)
563 restore_c_regs_and_iret:
565 REMOVE_PT_GPREGS_FROM_STACK 8
570 * Are we returning to a stack segment from the LDT? Note: in
571 * 64-bit mode SS:RSP on the exception stack is always valid.
573 #ifdef CONFIG_X86_ESPFIX64
574 testb $4, (SS-RIP)(%rsp)
575 jnz native_irq_return_ldt
578 .global native_irq_return_iret
579 native_irq_return_iret:
581 * This may fault. Non-paranoid faults on return to userspace are
582 * handled by fixup_bad_iret. These include #SS, #GP, and #NP.
583 * Double-faults due to espfix64 are handled in do_double_fault.
584 * Other faults here are fatal.
588 #ifdef CONFIG_X86_ESPFIX64
589 native_irq_return_ldt:
591 * We are running with user GSBASE. All GPRs contain their user
592 * values. We have a percpu ESPFIX stack that is eight slots
593 * long (see ESPFIX_STACK_SIZE). espfix_waddr points to the bottom
594 * of the ESPFIX stack.
596 * We clobber RAX and RDI in this code. We stash RDI on the
597 * normal stack and RAX on the ESPFIX stack.
599 * The ESPFIX stack layout we set up looks like this:
601 * --- top of ESPFIX stack ---
606 * RIP <-- RSP points here when we're done
607 * RAX <-- espfix_waddr points here
608 * --- bottom of ESPFIX stack ---
611 pushq %rdi /* Stash user RDI */
613 movq PER_CPU_VAR(espfix_waddr), %rdi
614 movq %rax, (0*8)(%rdi) /* user RAX */
615 movq (1*8)(%rsp), %rax /* user RIP */
616 movq %rax, (1*8)(%rdi)
617 movq (2*8)(%rsp), %rax /* user CS */
618 movq %rax, (2*8)(%rdi)
619 movq (3*8)(%rsp), %rax /* user RFLAGS */
620 movq %rax, (3*8)(%rdi)
621 movq (5*8)(%rsp), %rax /* user SS */
622 movq %rax, (5*8)(%rdi)
623 movq (4*8)(%rsp), %rax /* user RSP */
624 movq %rax, (4*8)(%rdi)
625 /* Now RAX == RSP. */
627 andl $0xffff0000, %eax /* RAX = (RSP & 0xffff0000) */
628 popq %rdi /* Restore user RDI */
631 * espfix_stack[31:16] == 0. The page tables are set up such that
632 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
633 * espfix_waddr for any X. That is, there are 65536 RO aliases of
634 * the same page. Set up RSP so that RSP[31:16] contains the
635 * respective 16 bits of the /userspace/ RSP and RSP nonetheless
636 * still points to an RO alias of the ESPFIX stack.
638 orq PER_CPU_VAR(espfix_stack), %rax
643 * At this point, we cannot write to the stack any more, but we can
646 popq %rax /* Restore user RAX */
649 * RSP now points to an ordinary IRET frame, except that the page
650 * is read-only and RSP[31:16] are preloaded with the userspace
651 * values. We can now IRET back to userspace.
653 jmp native_irq_return_iret
655 END(common_interrupt)
660 .macro apicinterrupt3 num sym do_sym
670 #ifdef CONFIG_TRACING
671 #define trace(sym) trace_##sym
672 #define smp_trace(sym) smp_trace_##sym
674 .macro trace_apicinterrupt num sym
675 apicinterrupt3 \num trace(\sym) smp_trace(\sym)
678 .macro trace_apicinterrupt num sym do_sym
682 /* Make sure APIC interrupt handlers end up in the irqentry section: */
683 #if defined(CONFIG_FUNCTION_GRAPH_TRACER) || defined(CONFIG_KASAN)
684 # define PUSH_SECTION_IRQENTRY .pushsection .irqentry.text, "ax"
685 # define POP_SECTION_IRQENTRY .popsection
687 # define PUSH_SECTION_IRQENTRY
688 # define POP_SECTION_IRQENTRY
691 .macro apicinterrupt num sym do_sym
692 PUSH_SECTION_IRQENTRY
693 apicinterrupt3 \num \sym \do_sym
694 trace_apicinterrupt \num \sym
699 apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR irq_move_cleanup_interrupt smp_irq_move_cleanup_interrupt
700 apicinterrupt3 REBOOT_VECTOR reboot_interrupt smp_reboot_interrupt
704 apicinterrupt3 UV_BAU_MESSAGE uv_bau_message_intr1 uv_bau_message_interrupt
707 apicinterrupt LOCAL_TIMER_VECTOR apic_timer_interrupt smp_apic_timer_interrupt
708 apicinterrupt X86_PLATFORM_IPI_VECTOR x86_platform_ipi smp_x86_platform_ipi
710 #ifdef CONFIG_HAVE_KVM
711 apicinterrupt3 POSTED_INTR_VECTOR kvm_posted_intr_ipi smp_kvm_posted_intr_ipi
712 apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR kvm_posted_intr_wakeup_ipi smp_kvm_posted_intr_wakeup_ipi
715 #ifdef CONFIG_X86_MCE_THRESHOLD
716 apicinterrupt THRESHOLD_APIC_VECTOR threshold_interrupt smp_threshold_interrupt
719 #ifdef CONFIG_X86_MCE_AMD
720 apicinterrupt DEFERRED_ERROR_VECTOR deferred_error_interrupt smp_deferred_error_interrupt
723 #ifdef CONFIG_X86_THERMAL_VECTOR
724 apicinterrupt THERMAL_APIC_VECTOR thermal_interrupt smp_thermal_interrupt
728 apicinterrupt CALL_FUNCTION_SINGLE_VECTOR call_function_single_interrupt smp_call_function_single_interrupt
729 apicinterrupt CALL_FUNCTION_VECTOR call_function_interrupt smp_call_function_interrupt
730 apicinterrupt RESCHEDULE_VECTOR reschedule_interrupt smp_reschedule_interrupt
733 apicinterrupt ERROR_APIC_VECTOR error_interrupt smp_error_interrupt
734 apicinterrupt SPURIOUS_APIC_VECTOR spurious_interrupt smp_spurious_interrupt
736 #ifdef CONFIG_IRQ_WORK
737 apicinterrupt IRQ_WORK_VECTOR irq_work_interrupt smp_irq_work_interrupt
741 * Exception entry points.
743 #define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss) + (TSS_ist + ((x) - 1) * 8)
745 .macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1
748 .if \shift_ist != -1 && \paranoid == 0
749 .error "using shift_ist requires paranoid=1"
753 PARAVIRT_ADJUST_EXCEPTION_FRAME
755 .ifeq \has_error_code
756 pushq $-1 /* ORIG_RAX: no syscall to restart */
759 ALLOC_PT_GPREGS_ON_STACK
763 testb $3, CS(%rsp) /* If coming from userspace, switch stacks */
770 /* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
774 TRACE_IRQS_OFF_DEBUG /* reload IDT in case of recursion */
780 movq %rsp, %rdi /* pt_regs pointer */
783 movq ORIG_RAX(%rsp), %rsi /* get error code */
784 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
786 xorl %esi, %esi /* no error code */
790 subq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
796 addq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
799 /* these procedures expect "no swapgs" flag in ebx */
808 * Paranoid entry from userspace. Switch stacks and treat it
809 * as a normal entry. This means that paranoid handlers
810 * run in real process context if user_mode(regs).
816 movq %rsp, %rdi /* pt_regs pointer */
818 movq %rax, %rsp /* switch stack */
820 movq %rsp, %rdi /* pt_regs pointer */
823 movq ORIG_RAX(%rsp), %rsi /* get error code */
824 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
826 xorl %esi, %esi /* no error code */
831 jmp error_exit /* %ebx: no swapgs flag */
836 #ifdef CONFIG_TRACING
837 .macro trace_idtentry sym do_sym has_error_code:req
838 idtentry trace(\sym) trace(\do_sym) has_error_code=\has_error_code
839 idtentry \sym \do_sym has_error_code=\has_error_code
842 .macro trace_idtentry sym do_sym has_error_code:req
843 idtentry \sym \do_sym has_error_code=\has_error_code
847 idtentry divide_error do_divide_error has_error_code=0
848 idtentry overflow do_overflow has_error_code=0
849 idtentry bounds do_bounds has_error_code=0
850 idtentry invalid_op do_invalid_op has_error_code=0
851 idtentry device_not_available do_device_not_available has_error_code=0
852 idtentry double_fault do_double_fault has_error_code=1 paranoid=2
853 idtentry coprocessor_segment_overrun do_coprocessor_segment_overrun has_error_code=0
854 idtentry invalid_TSS do_invalid_TSS has_error_code=1
855 idtentry segment_not_present do_segment_not_present has_error_code=1
856 idtentry spurious_interrupt_bug do_spurious_interrupt_bug has_error_code=0
857 idtentry coprocessor_error do_coprocessor_error has_error_code=0
858 idtentry alignment_check do_alignment_check has_error_code=1
859 idtentry simd_coprocessor_error do_simd_coprocessor_error has_error_code=0
863 * Reload gs selector with exception handling
866 ENTRY(native_load_gs_index)
868 DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
872 2: ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
876 END(native_load_gs_index)
877 EXPORT_SYMBOL(native_load_gs_index)
879 _ASM_EXTABLE(.Lgs_change, bad_gs)
880 .section .fixup, "ax"
881 /* running with kernelgs */
883 SWAPGS /* switch back to user gs */
885 /* This can't be a string because the preprocessor needs to see it. */
886 movl $__USER_DS, %eax
889 ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
895 /* Call softirq on interrupt stack. Interrupts are off. */
896 ENTRY(do_softirq_own_stack)
899 incl PER_CPU_VAR(irq_count)
900 cmove PER_CPU_VAR(irq_stack_ptr), %rsp
901 push %rbp /* frame pointer backlink */
904 decl PER_CPU_VAR(irq_count)
906 END(do_softirq_own_stack)
909 idtentry xen_hypervisor_callback xen_do_hypervisor_callback has_error_code=0
912 * A note on the "critical region" in our callback handler.
913 * We want to avoid stacking callback handlers due to events occurring
914 * during handling of the last event. To do this, we keep events disabled
915 * until we've done all processing. HOWEVER, we must enable events before
916 * popping the stack frame (can't be done atomically) and so it would still
917 * be possible to get enough handler activations to overflow the stack.
918 * Although unlikely, bugs of that kind are hard to track down, so we'd
919 * like to avoid the possibility.
920 * So, on entry to the handler we detect whether we interrupted an
921 * existing activation in its critical region -- if so, we pop the current
922 * activation and restart the handler using the previous one.
924 ENTRY(xen_do_hypervisor_callback) /* do_hypervisor_callback(struct *pt_regs) */
927 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
928 * see the correct pointer to the pt_regs
930 movq %rdi, %rsp /* we don't return, adjust the stack frame */
931 11: incl PER_CPU_VAR(irq_count)
933 cmovzq PER_CPU_VAR(irq_stack_ptr), %rsp
934 pushq %rbp /* frame pointer backlink */
935 call xen_evtchn_do_upcall
937 decl PER_CPU_VAR(irq_count)
938 #ifndef CONFIG_PREEMPT
939 call xen_maybe_preempt_hcall
942 END(xen_do_hypervisor_callback)
945 * Hypervisor uses this for application faults while it executes.
946 * We get here for two reasons:
947 * 1. Fault while reloading DS, ES, FS or GS
948 * 2. Fault while executing IRET
949 * Category 1 we do not need to fix up as Xen has already reloaded all segment
950 * registers that could be reloaded and zeroed the others.
951 * Category 2 we fix up by killing the current process. We cannot use the
952 * normal Linux return path in this case because if we use the IRET hypercall
953 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
954 * We distinguish between categories by comparing each saved segment register
955 * with its current contents: any discrepancy means we in category 1.
957 ENTRY(xen_failsafe_callback)
970 /* All segments match their saved values => Category 2 (Bad IRET). */
977 jmp general_protection
978 1: /* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
982 pushq $-1 /* orig_ax = -1 => not a system call */
983 ALLOC_PT_GPREGS_ON_STACK
988 END(xen_failsafe_callback)
990 apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
991 xen_hvm_callback_vector xen_evtchn_do_upcall
993 #endif /* CONFIG_XEN */
995 #if IS_ENABLED(CONFIG_HYPERV)
996 apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
997 hyperv_callback_vector hyperv_vector_handler
998 #endif /* CONFIG_HYPERV */
1000 idtentry debug do_debug has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK
1001 idtentry int3 do_int3 has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK
1002 idtentry stack_segment do_stack_segment has_error_code=1
1005 idtentry xen_debug do_debug has_error_code=0
1006 idtentry xen_int3 do_int3 has_error_code=0
1007 idtentry xen_stack_segment do_stack_segment has_error_code=1
1010 idtentry general_protection do_general_protection has_error_code=1
1011 trace_idtentry page_fault do_page_fault has_error_code=1
1013 #ifdef CONFIG_KVM_GUEST
1014 idtentry async_page_fault do_async_page_fault has_error_code=1
1017 #ifdef CONFIG_X86_MCE
1018 idtentry machine_check has_error_code=0 paranoid=1 do_sym=*machine_check_vector(%rip)
1022 * Save all registers in pt_regs, and switch gs if needed.
1023 * Use slow, but surefire "are we in kernel?" check.
1024 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise
1026 ENTRY(paranoid_entry)
1030 ENCODE_FRAME_POINTER 8
1032 movl $MSR_GS_BASE, %ecx
1035 js 1f /* negative -> in kernel */
1042 * "Paranoid" exit path from exception stack. This is invoked
1043 * only on return from non-NMI IST interrupts that came
1044 * from kernel space.
1046 * We may be returning to very strange contexts (e.g. very early
1047 * in syscall entry), so checking for preemption here would
1048 * be complicated. Fortunately, we there's no good reason
1049 * to try to handle preemption here.
1051 * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
1053 ENTRY(paranoid_exit)
1054 DISABLE_INTERRUPTS(CLBR_NONE)
1055 TRACE_IRQS_OFF_DEBUG
1056 testl %ebx, %ebx /* swapgs needed? */
1057 jnz paranoid_exit_no_swapgs
1060 jmp paranoid_exit_restore
1061 paranoid_exit_no_swapgs:
1062 TRACE_IRQS_IRETQ_DEBUG
1063 paranoid_exit_restore:
1066 REMOVE_PT_GPREGS_FROM_STACK 8
1071 * Save all registers in pt_regs, and switch gs if needed.
1072 * Return: EBX=0: came from user mode; EBX=1: otherwise
1078 ENCODE_FRAME_POINTER 8
1080 testb $3, CS+8(%rsp)
1081 jz .Lerror_kernelspace
1084 * We entered from user mode or we're pretending to have entered
1085 * from user mode due to an IRET fault.
1089 .Lerror_entry_from_usermode_after_swapgs:
1091 * We need to tell lockdep that IRQs are off. We can't do this until
1092 * we fix gsbase, and we should do it before enter_from_user_mode
1093 * (which can take locks).
1096 CALL_enter_from_user_mode
1104 * There are two places in the kernel that can potentially fault with
1105 * usergs. Handle them here. B stepping K8s sometimes report a
1106 * truncated RIP for IRET exceptions returning to compat mode. Check
1107 * for these here too.
1109 .Lerror_kernelspace:
1111 leaq native_irq_return_iret(%rip), %rcx
1112 cmpq %rcx, RIP+8(%rsp)
1114 movl %ecx, %eax /* zero extend */
1115 cmpq %rax, RIP+8(%rsp)
1117 cmpq $.Lgs_change, RIP+8(%rsp)
1118 jne .Lerror_entry_done
1121 * hack: .Lgs_change can fail with user gsbase. If this happens, fix up
1122 * gsbase and proceed. We'll fix up the exception and land in
1123 * .Lgs_change's error handler with kernel gsbase.
1126 jmp .Lerror_entry_done
1129 /* Fix truncated RIP */
1130 movq %rcx, RIP+8(%rsp)
1135 * We came from an IRET to user mode, so we have user gsbase.
1136 * Switch to kernel gsbase:
1141 * Pretend that the exception came from user mode: set up pt_regs
1142 * as if we faulted immediately after IRET and clear EBX so that
1143 * error_exit knows that we will be returning to user mode.
1149 jmp .Lerror_entry_from_usermode_after_swapgs
1154 * On entry, EBX is a "return to kernel mode" flag:
1155 * 1: already in kernel mode, don't need SWAPGS
1156 * 0: user gsbase is loaded, we need SWAPGS and standard preparation for return to usermode
1160 DISABLE_INTERRUPTS(CLBR_NONE)
1167 /* Runs on exception stack */
1170 * Fix up the exception frame if we're on Xen.
1171 * PARAVIRT_ADJUST_EXCEPTION_FRAME is guaranteed to push at most
1172 * one value to the stack on native, so it may clobber the rdx
1173 * scratch slot, but it won't clobber any of the important
1176 * Xen is a different story, because the Xen frame itself overlaps
1177 * the "NMI executing" variable.
1179 PARAVIRT_ADJUST_EXCEPTION_FRAME
1182 * We allow breakpoints in NMIs. If a breakpoint occurs, then
1183 * the iretq it performs will take us out of NMI context.
1184 * This means that we can have nested NMIs where the next
1185 * NMI is using the top of the stack of the previous NMI. We
1186 * can't let it execute because the nested NMI will corrupt the
1187 * stack of the previous NMI. NMI handlers are not re-entrant
1190 * To handle this case we do the following:
1191 * Check the a special location on the stack that contains
1192 * a variable that is set when NMIs are executing.
1193 * The interrupted task's stack is also checked to see if it
1195 * If the variable is not set and the stack is not the NMI
1197 * o Set the special variable on the stack
1198 * o Copy the interrupt frame into an "outermost" location on the
1200 * o Copy the interrupt frame into an "iret" location on the stack
1201 * o Continue processing the NMI
1202 * If the variable is set or the previous stack is the NMI stack:
1203 * o Modify the "iret" location to jump to the repeat_nmi
1204 * o return back to the first NMI
1206 * Now on exit of the first NMI, we first clear the stack variable
1207 * The NMI stack will tell any nested NMIs at that point that it is
1208 * nested. Then we pop the stack normally with iret, and if there was
1209 * a nested NMI that updated the copy interrupt stack frame, a
1210 * jump will be made to the repeat_nmi code that will handle the second
1213 * However, espfix prevents us from directly returning to userspace
1214 * with a single IRET instruction. Similarly, IRET to user mode
1215 * can fault. We therefore handle NMIs from user space like
1216 * other IST entries.
1219 /* Use %rdx as our temp variable throughout */
1222 testb $3, CS-RIP+8(%rsp)
1223 jz .Lnmi_from_kernel
1226 * NMI from user mode. We need to run on the thread stack, but we
1227 * can't go through the normal entry paths: NMIs are masked, and
1228 * we don't want to enable interrupts, because then we'll end
1229 * up in an awkward situation in which IRQs are on but NMIs
1232 * We also must not push anything to the stack before switching
1233 * stacks lest we corrupt the "NMI executing" variable.
1239 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
1240 pushq 5*8(%rdx) /* pt_regs->ss */
1241 pushq 4*8(%rdx) /* pt_regs->rsp */
1242 pushq 3*8(%rdx) /* pt_regs->flags */
1243 pushq 2*8(%rdx) /* pt_regs->cs */
1244 pushq 1*8(%rdx) /* pt_regs->rip */
1245 pushq $-1 /* pt_regs->orig_ax */
1246 pushq %rdi /* pt_regs->di */
1247 pushq %rsi /* pt_regs->si */
1248 pushq (%rdx) /* pt_regs->dx */
1249 pushq %rcx /* pt_regs->cx */
1250 pushq %rax /* pt_regs->ax */
1251 pushq %r8 /* pt_regs->r8 */
1252 pushq %r9 /* pt_regs->r9 */
1253 pushq %r10 /* pt_regs->r10 */
1254 pushq %r11 /* pt_regs->r11 */
1255 pushq %rbx /* pt_regs->rbx */
1256 pushq %rbp /* pt_regs->rbp */
1257 pushq %r12 /* pt_regs->r12 */
1258 pushq %r13 /* pt_regs->r13 */
1259 pushq %r14 /* pt_regs->r14 */
1260 pushq %r15 /* pt_regs->r15 */
1261 ENCODE_FRAME_POINTER
1264 * At this point we no longer need to worry about stack damage
1265 * due to nesting -- we're on the normal thread stack and we're
1266 * done with the NMI stack.
1274 * Return back to user mode. We must *not* do the normal exit
1275 * work, because we don't want to enable interrupts.
1278 jmp restore_regs_and_iret
1282 * Here's what our stack frame will look like:
1283 * +---------------------------------------------------------+
1285 * | original Return RSP |
1286 * | original RFLAGS |
1289 * +---------------------------------------------------------+
1290 * | temp storage for rdx |
1291 * +---------------------------------------------------------+
1292 * | "NMI executing" variable |
1293 * +---------------------------------------------------------+
1294 * | iret SS } Copied from "outermost" frame |
1295 * | iret Return RSP } on each loop iteration; overwritten |
1296 * | iret RFLAGS } by a nested NMI to force another |
1297 * | iret CS } iteration if needed. |
1299 * +---------------------------------------------------------+
1300 * | outermost SS } initialized in first_nmi; |
1301 * | outermost Return RSP } will not be changed before |
1302 * | outermost RFLAGS } NMI processing is done. |
1303 * | outermost CS } Copied to "iret" frame on each |
1304 * | outermost RIP } iteration. |
1305 * +---------------------------------------------------------+
1307 * +---------------------------------------------------------+
1309 * The "original" frame is used by hardware. Before re-enabling
1310 * NMIs, we need to be done with it, and we need to leave enough
1311 * space for the asm code here.
1313 * We return by executing IRET while RSP points to the "iret" frame.
1314 * That will either return for real or it will loop back into NMI
1317 * The "outermost" frame is copied to the "iret" frame on each
1318 * iteration of the loop, so each iteration starts with the "iret"
1319 * frame pointing to the final return target.
1323 * Determine whether we're a nested NMI.
1325 * If we interrupted kernel code between repeat_nmi and
1326 * end_repeat_nmi, then we are a nested NMI. We must not
1327 * modify the "iret" frame because it's being written by
1328 * the outer NMI. That's okay; the outer NMI handler is
1329 * about to about to call do_nmi anyway, so we can just
1330 * resume the outer NMI.
1333 movq $repeat_nmi, %rdx
1336 movq $end_repeat_nmi, %rdx
1342 * Now check "NMI executing". If it's set, then we're nested.
1343 * This will not detect if we interrupted an outer NMI just
1350 * Now test if the previous stack was an NMI stack. This covers
1351 * the case where we interrupt an outer NMI after it clears
1352 * "NMI executing" but before IRET. We need to be careful, though:
1353 * there is one case in which RSP could point to the NMI stack
1354 * despite there being no NMI active: naughty userspace controls
1355 * RSP at the very beginning of the SYSCALL targets. We can
1356 * pull a fast one on naughty userspace, though: we program
1357 * SYSCALL to mask DF, so userspace cannot cause DF to be set
1358 * if it controls the kernel's RSP. We set DF before we clear
1362 /* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
1363 cmpq %rdx, 4*8(%rsp)
1364 /* If the stack pointer is above the NMI stack, this is a normal NMI */
1367 subq $EXCEPTION_STKSZ, %rdx
1368 cmpq %rdx, 4*8(%rsp)
1369 /* If it is below the NMI stack, it is a normal NMI */
1372 /* Ah, it is within the NMI stack. */
1374 testb $(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
1375 jz first_nmi /* RSP was user controlled. */
1377 /* This is a nested NMI. */
1381 * Modify the "iret" frame to point to repeat_nmi, forcing another
1382 * iteration of NMI handling.
1385 leaq -10*8(%rsp), %rdx
1392 /* Put stack back */
1398 /* We are returning to kernel mode, so this cannot result in a fault. */
1405 /* Make room for "NMI executing". */
1408 /* Leave room for the "iret" frame */
1411 /* Copy the "original" frame to the "outermost" frame */
1416 /* Everything up to here is safe from nested NMIs */
1418 #ifdef CONFIG_DEBUG_ENTRY
1420 * For ease of testing, unmask NMIs right away. Disabled by
1421 * default because IRET is very expensive.
1424 pushq %rsp /* RSP (minus 8 because of the previous push) */
1425 addq $8, (%rsp) /* Fix up RSP */
1427 pushq $__KERNEL_CS /* CS */
1429 INTERRUPT_RETURN /* continues at repeat_nmi below */
1435 * If there was a nested NMI, the first NMI's iret will return
1436 * here. But NMIs are still enabled and we can take another
1437 * nested NMI. The nested NMI checks the interrupted RIP to see
1438 * if it is between repeat_nmi and end_repeat_nmi, and if so
1439 * it will just return, as we are about to repeat an NMI anyway.
1440 * This makes it safe to copy to the stack frame that a nested
1443 * RSP is pointing to "outermost RIP". gsbase is unknown, but, if
1444 * we're repeating an NMI, gsbase has the same value that it had on
1445 * the first iteration. paranoid_entry will load the kernel
1446 * gsbase if needed before we call do_nmi. "NMI executing"
1449 movq $1, 10*8(%rsp) /* Set "NMI executing". */
1452 * Copy the "outermost" frame to the "iret" frame. NMIs that nest
1453 * here must not modify the "iret" frame while we're writing to
1454 * it or it will end up containing garbage.
1464 * Everything below this point can be preempted by a nested NMI.
1465 * If this happens, then the inner NMI will change the "iret"
1466 * frame to point back to repeat_nmi.
1468 pushq $-1 /* ORIG_RAX: no syscall to restart */
1469 ALLOC_PT_GPREGS_ON_STACK
1472 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1473 * as we should not be calling schedule in NMI context.
1474 * Even with normal interrupts enabled. An NMI should not be
1475 * setting NEED_RESCHED or anything that normal interrupts and
1476 * exceptions might do.
1480 /* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
1485 testl %ebx, %ebx /* swapgs needed? */
1493 /* Point RSP at the "iret" frame. */
1494 REMOVE_PT_GPREGS_FROM_STACK 6*8
1497 * Clear "NMI executing". Set DF first so that we can easily
1498 * distinguish the remaining code between here and IRET from
1499 * the SYSCALL entry and exit paths. On a native kernel, we
1500 * could just inspect RIP, but, on paravirt kernels,
1501 * INTERRUPT_RETURN can translate into a jump into a
1505 movq $0, 5*8(%rsp) /* clear "NMI executing" */
1508 * INTERRUPT_RETURN reads the "iret" frame and exits the NMI
1509 * stack in a single instruction. We are returning to kernel
1510 * mode, so this cannot result in a fault.
1515 ENTRY(ignore_sysret)
1520 ENTRY(rewind_stack_do_exit)
1521 /* Prevent any naive code from trying to unwind to our caller. */
1524 movq PER_CPU_VAR(cpu_current_top_of_stack), %rax
1525 leaq -TOP_OF_KERNEL_STACK_PADDING-PTREGS_SIZE(%rax), %rsp
1529 END(rewind_stack_do_exit)