Linux 4.11-rc5
[linux/fpc-iii.git] / arch / x86 / events / core.c
blob580b60f5ac83cea46a75a11185c8ef0a8c2da516
1 /*
2 * Performance events x86 architecture code
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2009 Jaswinder Singh Rajput
7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10 * Copyright (C) 2009 Google, Inc., Stephane Eranian
12 * For licencing details see kernel-base/COPYING
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/export.h>
21 #include <linux/init.h>
22 #include <linux/kdebug.h>
23 #include <linux/sched/mm.h>
24 #include <linux/sched/clock.h>
25 #include <linux/uaccess.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/bitops.h>
29 #include <linux/device.h>
31 #include <asm/apic.h>
32 #include <asm/stacktrace.h>
33 #include <asm/nmi.h>
34 #include <asm/smp.h>
35 #include <asm/alternative.h>
36 #include <asm/mmu_context.h>
37 #include <asm/tlbflush.h>
38 #include <asm/timer.h>
39 #include <asm/desc.h>
40 #include <asm/ldt.h>
41 #include <asm/unwind.h>
43 #include "perf_event.h"
45 struct x86_pmu x86_pmu __read_mostly;
47 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
48 .enabled = 1,
51 struct static_key rdpmc_always_available = STATIC_KEY_INIT_FALSE;
53 u64 __read_mostly hw_cache_event_ids
54 [PERF_COUNT_HW_CACHE_MAX]
55 [PERF_COUNT_HW_CACHE_OP_MAX]
56 [PERF_COUNT_HW_CACHE_RESULT_MAX];
57 u64 __read_mostly hw_cache_extra_regs
58 [PERF_COUNT_HW_CACHE_MAX]
59 [PERF_COUNT_HW_CACHE_OP_MAX]
60 [PERF_COUNT_HW_CACHE_RESULT_MAX];
63 * Propagate event elapsed time into the generic event.
64 * Can only be executed on the CPU where the event is active.
65 * Returns the delta events processed.
67 u64 x86_perf_event_update(struct perf_event *event)
69 struct hw_perf_event *hwc = &event->hw;
70 int shift = 64 - x86_pmu.cntval_bits;
71 u64 prev_raw_count, new_raw_count;
72 int idx = hwc->idx;
73 u64 delta;
75 if (idx == INTEL_PMC_IDX_FIXED_BTS)
76 return 0;
79 * Careful: an NMI might modify the previous event value.
81 * Our tactic to handle this is to first atomically read and
82 * exchange a new raw count - then add that new-prev delta
83 * count to the generic event atomically:
85 again:
86 prev_raw_count = local64_read(&hwc->prev_count);
87 rdpmcl(hwc->event_base_rdpmc, new_raw_count);
89 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
90 new_raw_count) != prev_raw_count)
91 goto again;
94 * Now we have the new raw value and have updated the prev
95 * timestamp already. We can now calculate the elapsed delta
96 * (event-)time and add that to the generic event.
98 * Careful, not all hw sign-extends above the physical width
99 * of the count.
101 delta = (new_raw_count << shift) - (prev_raw_count << shift);
102 delta >>= shift;
104 local64_add(delta, &event->count);
105 local64_sub(delta, &hwc->period_left);
107 return new_raw_count;
111 * Find and validate any extra registers to set up.
113 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
115 struct hw_perf_event_extra *reg;
116 struct extra_reg *er;
118 reg = &event->hw.extra_reg;
120 if (!x86_pmu.extra_regs)
121 return 0;
123 for (er = x86_pmu.extra_regs; er->msr; er++) {
124 if (er->event != (config & er->config_mask))
125 continue;
126 if (event->attr.config1 & ~er->valid_mask)
127 return -EINVAL;
128 /* Check if the extra msrs can be safely accessed*/
129 if (!er->extra_msr_access)
130 return -ENXIO;
132 reg->idx = er->idx;
133 reg->config = event->attr.config1;
134 reg->reg = er->msr;
135 break;
137 return 0;
140 static atomic_t active_events;
141 static atomic_t pmc_refcount;
142 static DEFINE_MUTEX(pmc_reserve_mutex);
144 #ifdef CONFIG_X86_LOCAL_APIC
146 static bool reserve_pmc_hardware(void)
148 int i;
150 for (i = 0; i < x86_pmu.num_counters; i++) {
151 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
152 goto perfctr_fail;
155 for (i = 0; i < x86_pmu.num_counters; i++) {
156 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
157 goto eventsel_fail;
160 return true;
162 eventsel_fail:
163 for (i--; i >= 0; i--)
164 release_evntsel_nmi(x86_pmu_config_addr(i));
166 i = x86_pmu.num_counters;
168 perfctr_fail:
169 for (i--; i >= 0; i--)
170 release_perfctr_nmi(x86_pmu_event_addr(i));
172 return false;
175 static void release_pmc_hardware(void)
177 int i;
179 for (i = 0; i < x86_pmu.num_counters; i++) {
180 release_perfctr_nmi(x86_pmu_event_addr(i));
181 release_evntsel_nmi(x86_pmu_config_addr(i));
185 #else
187 static bool reserve_pmc_hardware(void) { return true; }
188 static void release_pmc_hardware(void) {}
190 #endif
192 static bool check_hw_exists(void)
194 u64 val, val_fail, val_new= ~0;
195 int i, reg, reg_fail, ret = 0;
196 int bios_fail = 0;
197 int reg_safe = -1;
200 * Check to see if the BIOS enabled any of the counters, if so
201 * complain and bail.
203 for (i = 0; i < x86_pmu.num_counters; i++) {
204 reg = x86_pmu_config_addr(i);
205 ret = rdmsrl_safe(reg, &val);
206 if (ret)
207 goto msr_fail;
208 if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
209 bios_fail = 1;
210 val_fail = val;
211 reg_fail = reg;
212 } else {
213 reg_safe = i;
217 if (x86_pmu.num_counters_fixed) {
218 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
219 ret = rdmsrl_safe(reg, &val);
220 if (ret)
221 goto msr_fail;
222 for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
223 if (val & (0x03 << i*4)) {
224 bios_fail = 1;
225 val_fail = val;
226 reg_fail = reg;
232 * If all the counters are enabled, the below test will always
233 * fail. The tools will also become useless in this scenario.
234 * Just fail and disable the hardware counters.
237 if (reg_safe == -1) {
238 reg = reg_safe;
239 goto msr_fail;
243 * Read the current value, change it and read it back to see if it
244 * matches, this is needed to detect certain hardware emulators
245 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
247 reg = x86_pmu_event_addr(reg_safe);
248 if (rdmsrl_safe(reg, &val))
249 goto msr_fail;
250 val ^= 0xffffUL;
251 ret = wrmsrl_safe(reg, val);
252 ret |= rdmsrl_safe(reg, &val_new);
253 if (ret || val != val_new)
254 goto msr_fail;
257 * We still allow the PMU driver to operate:
259 if (bios_fail) {
260 pr_cont("Broken BIOS detected, complain to your hardware vendor.\n");
261 pr_err(FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n",
262 reg_fail, val_fail);
265 return true;
267 msr_fail:
268 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
269 pr_cont("PMU not available due to virtualization, using software events only.\n");
270 } else {
271 pr_cont("Broken PMU hardware detected, using software events only.\n");
272 pr_err("Failed to access perfctr msr (MSR %x is %Lx)\n",
273 reg, val_new);
276 return false;
279 static void hw_perf_event_destroy(struct perf_event *event)
281 x86_release_hardware();
282 atomic_dec(&active_events);
285 void hw_perf_lbr_event_destroy(struct perf_event *event)
287 hw_perf_event_destroy(event);
289 /* undo the lbr/bts event accounting */
290 x86_del_exclusive(x86_lbr_exclusive_lbr);
293 static inline int x86_pmu_initialized(void)
295 return x86_pmu.handle_irq != NULL;
298 static inline int
299 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
301 struct perf_event_attr *attr = &event->attr;
302 unsigned int cache_type, cache_op, cache_result;
303 u64 config, val;
305 config = attr->config;
307 cache_type = (config >> 0) & 0xff;
308 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
309 return -EINVAL;
311 cache_op = (config >> 8) & 0xff;
312 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
313 return -EINVAL;
315 cache_result = (config >> 16) & 0xff;
316 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
317 return -EINVAL;
319 val = hw_cache_event_ids[cache_type][cache_op][cache_result];
321 if (val == 0)
322 return -ENOENT;
324 if (val == -1)
325 return -EINVAL;
327 hwc->config |= val;
328 attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
329 return x86_pmu_extra_regs(val, event);
332 int x86_reserve_hardware(void)
334 int err = 0;
336 if (!atomic_inc_not_zero(&pmc_refcount)) {
337 mutex_lock(&pmc_reserve_mutex);
338 if (atomic_read(&pmc_refcount) == 0) {
339 if (!reserve_pmc_hardware())
340 err = -EBUSY;
341 else
342 reserve_ds_buffers();
344 if (!err)
345 atomic_inc(&pmc_refcount);
346 mutex_unlock(&pmc_reserve_mutex);
349 return err;
352 void x86_release_hardware(void)
354 if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) {
355 release_pmc_hardware();
356 release_ds_buffers();
357 mutex_unlock(&pmc_reserve_mutex);
362 * Check if we can create event of a certain type (that no conflicting events
363 * are present).
365 int x86_add_exclusive(unsigned int what)
367 int i;
370 * When lbr_pt_coexist we allow PT to coexist with either LBR or BTS.
371 * LBR and BTS are still mutually exclusive.
373 if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
374 return 0;
376 if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) {
377 mutex_lock(&pmc_reserve_mutex);
378 for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) {
379 if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
380 goto fail_unlock;
382 atomic_inc(&x86_pmu.lbr_exclusive[what]);
383 mutex_unlock(&pmc_reserve_mutex);
386 atomic_inc(&active_events);
387 return 0;
389 fail_unlock:
390 mutex_unlock(&pmc_reserve_mutex);
391 return -EBUSY;
394 void x86_del_exclusive(unsigned int what)
396 if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
397 return;
399 atomic_dec(&x86_pmu.lbr_exclusive[what]);
400 atomic_dec(&active_events);
403 int x86_setup_perfctr(struct perf_event *event)
405 struct perf_event_attr *attr = &event->attr;
406 struct hw_perf_event *hwc = &event->hw;
407 u64 config;
409 if (!is_sampling_event(event)) {
410 hwc->sample_period = x86_pmu.max_period;
411 hwc->last_period = hwc->sample_period;
412 local64_set(&hwc->period_left, hwc->sample_period);
415 if (attr->type == PERF_TYPE_RAW)
416 return x86_pmu_extra_regs(event->attr.config, event);
418 if (attr->type == PERF_TYPE_HW_CACHE)
419 return set_ext_hw_attr(hwc, event);
421 if (attr->config >= x86_pmu.max_events)
422 return -EINVAL;
425 * The generic map:
427 config = x86_pmu.event_map(attr->config);
429 if (config == 0)
430 return -ENOENT;
432 if (config == -1LL)
433 return -EINVAL;
436 * Branch tracing:
438 if (attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS &&
439 !attr->freq && hwc->sample_period == 1) {
440 /* BTS is not supported by this architecture. */
441 if (!x86_pmu.bts_active)
442 return -EOPNOTSUPP;
444 /* BTS is currently only allowed for user-mode. */
445 if (!attr->exclude_kernel)
446 return -EOPNOTSUPP;
448 /* disallow bts if conflicting events are present */
449 if (x86_add_exclusive(x86_lbr_exclusive_lbr))
450 return -EBUSY;
452 event->destroy = hw_perf_lbr_event_destroy;
455 hwc->config |= config;
457 return 0;
461 * check that branch_sample_type is compatible with
462 * settings needed for precise_ip > 1 which implies
463 * using the LBR to capture ALL taken branches at the
464 * priv levels of the measurement
466 static inline int precise_br_compat(struct perf_event *event)
468 u64 m = event->attr.branch_sample_type;
469 u64 b = 0;
471 /* must capture all branches */
472 if (!(m & PERF_SAMPLE_BRANCH_ANY))
473 return 0;
475 m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
477 if (!event->attr.exclude_user)
478 b |= PERF_SAMPLE_BRANCH_USER;
480 if (!event->attr.exclude_kernel)
481 b |= PERF_SAMPLE_BRANCH_KERNEL;
484 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
487 return m == b;
490 int x86_pmu_hw_config(struct perf_event *event)
492 if (event->attr.precise_ip) {
493 int precise = 0;
495 /* Support for constant skid */
496 if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
497 precise++;
499 /* Support for IP fixup */
500 if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
501 precise++;
503 if (x86_pmu.pebs_prec_dist)
504 precise++;
507 if (event->attr.precise_ip > precise)
508 return -EOPNOTSUPP;
510 /* There's no sense in having PEBS for non sampling events: */
511 if (!is_sampling_event(event))
512 return -EINVAL;
515 * check that PEBS LBR correction does not conflict with
516 * whatever the user is asking with attr->branch_sample_type
518 if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
519 u64 *br_type = &event->attr.branch_sample_type;
521 if (has_branch_stack(event)) {
522 if (!precise_br_compat(event))
523 return -EOPNOTSUPP;
525 /* branch_sample_type is compatible */
527 } else {
529 * user did not specify branch_sample_type
531 * For PEBS fixups, we capture all
532 * the branches at the priv level of the
533 * event.
535 *br_type = PERF_SAMPLE_BRANCH_ANY;
537 if (!event->attr.exclude_user)
538 *br_type |= PERF_SAMPLE_BRANCH_USER;
540 if (!event->attr.exclude_kernel)
541 *br_type |= PERF_SAMPLE_BRANCH_KERNEL;
545 if (event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK)
546 event->attach_state |= PERF_ATTACH_TASK_DATA;
549 * Generate PMC IRQs:
550 * (keep 'enabled' bit clear for now)
552 event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
555 * Count user and OS events unless requested not to
557 if (!event->attr.exclude_user)
558 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
559 if (!event->attr.exclude_kernel)
560 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
562 if (event->attr.type == PERF_TYPE_RAW)
563 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
565 if (event->attr.sample_period && x86_pmu.limit_period) {
566 if (x86_pmu.limit_period(event, event->attr.sample_period) >
567 event->attr.sample_period)
568 return -EINVAL;
571 return x86_setup_perfctr(event);
575 * Setup the hardware configuration for a given attr_type
577 static int __x86_pmu_event_init(struct perf_event *event)
579 int err;
581 if (!x86_pmu_initialized())
582 return -ENODEV;
584 err = x86_reserve_hardware();
585 if (err)
586 return err;
588 atomic_inc(&active_events);
589 event->destroy = hw_perf_event_destroy;
591 event->hw.idx = -1;
592 event->hw.last_cpu = -1;
593 event->hw.last_tag = ~0ULL;
595 /* mark unused */
596 event->hw.extra_reg.idx = EXTRA_REG_NONE;
597 event->hw.branch_reg.idx = EXTRA_REG_NONE;
599 return x86_pmu.hw_config(event);
602 void x86_pmu_disable_all(void)
604 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
605 int idx;
607 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
608 u64 val;
610 if (!test_bit(idx, cpuc->active_mask))
611 continue;
612 rdmsrl(x86_pmu_config_addr(idx), val);
613 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
614 continue;
615 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
616 wrmsrl(x86_pmu_config_addr(idx), val);
621 * There may be PMI landing after enabled=0. The PMI hitting could be before or
622 * after disable_all.
624 * If PMI hits before disable_all, the PMU will be disabled in the NMI handler.
625 * It will not be re-enabled in the NMI handler again, because enabled=0. After
626 * handling the NMI, disable_all will be called, which will not change the
627 * state either. If PMI hits after disable_all, the PMU is already disabled
628 * before entering NMI handler. The NMI handler will not change the state
629 * either.
631 * So either situation is harmless.
633 static void x86_pmu_disable(struct pmu *pmu)
635 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
637 if (!x86_pmu_initialized())
638 return;
640 if (!cpuc->enabled)
641 return;
643 cpuc->n_added = 0;
644 cpuc->enabled = 0;
645 barrier();
647 x86_pmu.disable_all();
650 void x86_pmu_enable_all(int added)
652 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
653 int idx;
655 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
656 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
658 if (!test_bit(idx, cpuc->active_mask))
659 continue;
661 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
665 static struct pmu pmu;
667 static inline int is_x86_event(struct perf_event *event)
669 return event->pmu == &pmu;
673 * Event scheduler state:
675 * Assign events iterating over all events and counters, beginning
676 * with events with least weights first. Keep the current iterator
677 * state in struct sched_state.
679 struct sched_state {
680 int weight;
681 int event; /* event index */
682 int counter; /* counter index */
683 int unassigned; /* number of events to be assigned left */
684 int nr_gp; /* number of GP counters used */
685 unsigned long used[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
688 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
689 #define SCHED_STATES_MAX 2
691 struct perf_sched {
692 int max_weight;
693 int max_events;
694 int max_gp;
695 int saved_states;
696 struct event_constraint **constraints;
697 struct sched_state state;
698 struct sched_state saved[SCHED_STATES_MAX];
702 * Initialize interator that runs through all events and counters.
704 static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints,
705 int num, int wmin, int wmax, int gpmax)
707 int idx;
709 memset(sched, 0, sizeof(*sched));
710 sched->max_events = num;
711 sched->max_weight = wmax;
712 sched->max_gp = gpmax;
713 sched->constraints = constraints;
715 for (idx = 0; idx < num; idx++) {
716 if (constraints[idx]->weight == wmin)
717 break;
720 sched->state.event = idx; /* start with min weight */
721 sched->state.weight = wmin;
722 sched->state.unassigned = num;
725 static void perf_sched_save_state(struct perf_sched *sched)
727 if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
728 return;
730 sched->saved[sched->saved_states] = sched->state;
731 sched->saved_states++;
734 static bool perf_sched_restore_state(struct perf_sched *sched)
736 if (!sched->saved_states)
737 return false;
739 sched->saved_states--;
740 sched->state = sched->saved[sched->saved_states];
742 /* continue with next counter: */
743 clear_bit(sched->state.counter++, sched->state.used);
745 return true;
749 * Select a counter for the current event to schedule. Return true on
750 * success.
752 static bool __perf_sched_find_counter(struct perf_sched *sched)
754 struct event_constraint *c;
755 int idx;
757 if (!sched->state.unassigned)
758 return false;
760 if (sched->state.event >= sched->max_events)
761 return false;
763 c = sched->constraints[sched->state.event];
764 /* Prefer fixed purpose counters */
765 if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
766 idx = INTEL_PMC_IDX_FIXED;
767 for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
768 if (!__test_and_set_bit(idx, sched->state.used))
769 goto done;
773 /* Grab the first unused counter starting with idx */
774 idx = sched->state.counter;
775 for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
776 if (!__test_and_set_bit(idx, sched->state.used)) {
777 if (sched->state.nr_gp++ >= sched->max_gp)
778 return false;
780 goto done;
784 return false;
786 done:
787 sched->state.counter = idx;
789 if (c->overlap)
790 perf_sched_save_state(sched);
792 return true;
795 static bool perf_sched_find_counter(struct perf_sched *sched)
797 while (!__perf_sched_find_counter(sched)) {
798 if (!perf_sched_restore_state(sched))
799 return false;
802 return true;
806 * Go through all unassigned events and find the next one to schedule.
807 * Take events with the least weight first. Return true on success.
809 static bool perf_sched_next_event(struct perf_sched *sched)
811 struct event_constraint *c;
813 if (!sched->state.unassigned || !--sched->state.unassigned)
814 return false;
816 do {
817 /* next event */
818 sched->state.event++;
819 if (sched->state.event >= sched->max_events) {
820 /* next weight */
821 sched->state.event = 0;
822 sched->state.weight++;
823 if (sched->state.weight > sched->max_weight)
824 return false;
826 c = sched->constraints[sched->state.event];
827 } while (c->weight != sched->state.weight);
829 sched->state.counter = 0; /* start with first counter */
831 return true;
835 * Assign a counter for each event.
837 int perf_assign_events(struct event_constraint **constraints, int n,
838 int wmin, int wmax, int gpmax, int *assign)
840 struct perf_sched sched;
842 perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax);
844 do {
845 if (!perf_sched_find_counter(&sched))
846 break; /* failed */
847 if (assign)
848 assign[sched.state.event] = sched.state.counter;
849 } while (perf_sched_next_event(&sched));
851 return sched.state.unassigned;
853 EXPORT_SYMBOL_GPL(perf_assign_events);
855 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
857 struct event_constraint *c;
858 unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
859 struct perf_event *e;
860 int i, wmin, wmax, unsched = 0;
861 struct hw_perf_event *hwc;
863 bitmap_zero(used_mask, X86_PMC_IDX_MAX);
865 if (x86_pmu.start_scheduling)
866 x86_pmu.start_scheduling(cpuc);
868 for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
869 cpuc->event_constraint[i] = NULL;
870 c = x86_pmu.get_event_constraints(cpuc, i, cpuc->event_list[i]);
871 cpuc->event_constraint[i] = c;
873 wmin = min(wmin, c->weight);
874 wmax = max(wmax, c->weight);
878 * fastpath, try to reuse previous register
880 for (i = 0; i < n; i++) {
881 hwc = &cpuc->event_list[i]->hw;
882 c = cpuc->event_constraint[i];
884 /* never assigned */
885 if (hwc->idx == -1)
886 break;
888 /* constraint still honored */
889 if (!test_bit(hwc->idx, c->idxmsk))
890 break;
892 /* not already used */
893 if (test_bit(hwc->idx, used_mask))
894 break;
896 __set_bit(hwc->idx, used_mask);
897 if (assign)
898 assign[i] = hwc->idx;
901 /* slow path */
902 if (i != n) {
903 int gpmax = x86_pmu.num_counters;
906 * Do not allow scheduling of more than half the available
907 * generic counters.
909 * This helps avoid counter starvation of sibling thread by
910 * ensuring at most half the counters cannot be in exclusive
911 * mode. There is no designated counters for the limits. Any
912 * N/2 counters can be used. This helps with events with
913 * specific counter constraints.
915 if (is_ht_workaround_enabled() && !cpuc->is_fake &&
916 READ_ONCE(cpuc->excl_cntrs->exclusive_present))
917 gpmax /= 2;
919 unsched = perf_assign_events(cpuc->event_constraint, n, wmin,
920 wmax, gpmax, assign);
924 * In case of success (unsched = 0), mark events as committed,
925 * so we do not put_constraint() in case new events are added
926 * and fail to be scheduled
928 * We invoke the lower level commit callback to lock the resource
930 * We do not need to do all of this in case we are called to
931 * validate an event group (assign == NULL)
933 if (!unsched && assign) {
934 for (i = 0; i < n; i++) {
935 e = cpuc->event_list[i];
936 e->hw.flags |= PERF_X86_EVENT_COMMITTED;
937 if (x86_pmu.commit_scheduling)
938 x86_pmu.commit_scheduling(cpuc, i, assign[i]);
940 } else {
941 for (i = 0; i < n; i++) {
942 e = cpuc->event_list[i];
944 * do not put_constraint() on comitted events,
945 * because they are good to go
947 if ((e->hw.flags & PERF_X86_EVENT_COMMITTED))
948 continue;
951 * release events that failed scheduling
953 if (x86_pmu.put_event_constraints)
954 x86_pmu.put_event_constraints(cpuc, e);
958 if (x86_pmu.stop_scheduling)
959 x86_pmu.stop_scheduling(cpuc);
961 return unsched ? -EINVAL : 0;
965 * dogrp: true if must collect siblings events (group)
966 * returns total number of events and error code
968 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
970 struct perf_event *event;
971 int n, max_count;
973 max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
975 /* current number of events already accepted */
976 n = cpuc->n_events;
978 if (is_x86_event(leader)) {
979 if (n >= max_count)
980 return -EINVAL;
981 cpuc->event_list[n] = leader;
982 n++;
984 if (!dogrp)
985 return n;
987 list_for_each_entry(event, &leader->sibling_list, group_entry) {
988 if (!is_x86_event(event) ||
989 event->state <= PERF_EVENT_STATE_OFF)
990 continue;
992 if (n >= max_count)
993 return -EINVAL;
995 cpuc->event_list[n] = event;
996 n++;
998 return n;
1001 static inline void x86_assign_hw_event(struct perf_event *event,
1002 struct cpu_hw_events *cpuc, int i)
1004 struct hw_perf_event *hwc = &event->hw;
1006 hwc->idx = cpuc->assign[i];
1007 hwc->last_cpu = smp_processor_id();
1008 hwc->last_tag = ++cpuc->tags[i];
1010 if (hwc->idx == INTEL_PMC_IDX_FIXED_BTS) {
1011 hwc->config_base = 0;
1012 hwc->event_base = 0;
1013 } else if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
1014 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
1015 hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - INTEL_PMC_IDX_FIXED);
1016 hwc->event_base_rdpmc = (hwc->idx - INTEL_PMC_IDX_FIXED) | 1<<30;
1017 } else {
1018 hwc->config_base = x86_pmu_config_addr(hwc->idx);
1019 hwc->event_base = x86_pmu_event_addr(hwc->idx);
1020 hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
1024 static inline int match_prev_assignment(struct hw_perf_event *hwc,
1025 struct cpu_hw_events *cpuc,
1026 int i)
1028 return hwc->idx == cpuc->assign[i] &&
1029 hwc->last_cpu == smp_processor_id() &&
1030 hwc->last_tag == cpuc->tags[i];
1033 static void x86_pmu_start(struct perf_event *event, int flags);
1035 static void x86_pmu_enable(struct pmu *pmu)
1037 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1038 struct perf_event *event;
1039 struct hw_perf_event *hwc;
1040 int i, added = cpuc->n_added;
1042 if (!x86_pmu_initialized())
1043 return;
1045 if (cpuc->enabled)
1046 return;
1048 if (cpuc->n_added) {
1049 int n_running = cpuc->n_events - cpuc->n_added;
1051 * apply assignment obtained either from
1052 * hw_perf_group_sched_in() or x86_pmu_enable()
1054 * step1: save events moving to new counters
1056 for (i = 0; i < n_running; i++) {
1057 event = cpuc->event_list[i];
1058 hwc = &event->hw;
1061 * we can avoid reprogramming counter if:
1062 * - assigned same counter as last time
1063 * - running on same CPU as last time
1064 * - no other event has used the counter since
1066 if (hwc->idx == -1 ||
1067 match_prev_assignment(hwc, cpuc, i))
1068 continue;
1071 * Ensure we don't accidentally enable a stopped
1072 * counter simply because we rescheduled.
1074 if (hwc->state & PERF_HES_STOPPED)
1075 hwc->state |= PERF_HES_ARCH;
1077 x86_pmu_stop(event, PERF_EF_UPDATE);
1081 * step2: reprogram moved events into new counters
1083 for (i = 0; i < cpuc->n_events; i++) {
1084 event = cpuc->event_list[i];
1085 hwc = &event->hw;
1087 if (!match_prev_assignment(hwc, cpuc, i))
1088 x86_assign_hw_event(event, cpuc, i);
1089 else if (i < n_running)
1090 continue;
1092 if (hwc->state & PERF_HES_ARCH)
1093 continue;
1095 x86_pmu_start(event, PERF_EF_RELOAD);
1097 cpuc->n_added = 0;
1098 perf_events_lapic_init();
1101 cpuc->enabled = 1;
1102 barrier();
1104 x86_pmu.enable_all(added);
1107 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
1110 * Set the next IRQ period, based on the hwc->period_left value.
1111 * To be called with the event disabled in hw:
1113 int x86_perf_event_set_period(struct perf_event *event)
1115 struct hw_perf_event *hwc = &event->hw;
1116 s64 left = local64_read(&hwc->period_left);
1117 s64 period = hwc->sample_period;
1118 int ret = 0, idx = hwc->idx;
1120 if (idx == INTEL_PMC_IDX_FIXED_BTS)
1121 return 0;
1124 * If we are way outside a reasonable range then just skip forward:
1126 if (unlikely(left <= -period)) {
1127 left = period;
1128 local64_set(&hwc->period_left, left);
1129 hwc->last_period = period;
1130 ret = 1;
1133 if (unlikely(left <= 0)) {
1134 left += period;
1135 local64_set(&hwc->period_left, left);
1136 hwc->last_period = period;
1137 ret = 1;
1140 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1142 if (unlikely(left < 2))
1143 left = 2;
1145 if (left > x86_pmu.max_period)
1146 left = x86_pmu.max_period;
1148 if (x86_pmu.limit_period)
1149 left = x86_pmu.limit_period(event, left);
1151 per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
1153 if (!(hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) ||
1154 local64_read(&hwc->prev_count) != (u64)-left) {
1156 * The hw event starts counting from this event offset,
1157 * mark it to be able to extra future deltas:
1159 local64_set(&hwc->prev_count, (u64)-left);
1161 wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1165 * Due to erratum on certan cpu we need
1166 * a second write to be sure the register
1167 * is updated properly
1169 if (x86_pmu.perfctr_second_write) {
1170 wrmsrl(hwc->event_base,
1171 (u64)(-left) & x86_pmu.cntval_mask);
1174 perf_event_update_userpage(event);
1176 return ret;
1179 void x86_pmu_enable_event(struct perf_event *event)
1181 if (__this_cpu_read(cpu_hw_events.enabled))
1182 __x86_pmu_enable_event(&event->hw,
1183 ARCH_PERFMON_EVENTSEL_ENABLE);
1187 * Add a single event to the PMU.
1189 * The event is added to the group of enabled events
1190 * but only if it can be scehduled with existing events.
1192 static int x86_pmu_add(struct perf_event *event, int flags)
1194 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1195 struct hw_perf_event *hwc;
1196 int assign[X86_PMC_IDX_MAX];
1197 int n, n0, ret;
1199 hwc = &event->hw;
1201 n0 = cpuc->n_events;
1202 ret = n = collect_events(cpuc, event, false);
1203 if (ret < 0)
1204 goto out;
1206 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1207 if (!(flags & PERF_EF_START))
1208 hwc->state |= PERF_HES_ARCH;
1211 * If group events scheduling transaction was started,
1212 * skip the schedulability test here, it will be performed
1213 * at commit time (->commit_txn) as a whole.
1215 * If commit fails, we'll call ->del() on all events
1216 * for which ->add() was called.
1218 if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1219 goto done_collect;
1221 ret = x86_pmu.schedule_events(cpuc, n, assign);
1222 if (ret)
1223 goto out;
1225 * copy new assignment, now we know it is possible
1226 * will be used by hw_perf_enable()
1228 memcpy(cpuc->assign, assign, n*sizeof(int));
1230 done_collect:
1232 * Commit the collect_events() state. See x86_pmu_del() and
1233 * x86_pmu_*_txn().
1235 cpuc->n_events = n;
1236 cpuc->n_added += n - n0;
1237 cpuc->n_txn += n - n0;
1239 if (x86_pmu.add) {
1241 * This is before x86_pmu_enable() will call x86_pmu_start(),
1242 * so we enable LBRs before an event needs them etc..
1244 x86_pmu.add(event);
1247 ret = 0;
1248 out:
1249 return ret;
1252 static void x86_pmu_start(struct perf_event *event, int flags)
1254 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1255 int idx = event->hw.idx;
1257 if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1258 return;
1260 if (WARN_ON_ONCE(idx == -1))
1261 return;
1263 if (flags & PERF_EF_RELOAD) {
1264 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1265 x86_perf_event_set_period(event);
1268 event->hw.state = 0;
1270 cpuc->events[idx] = event;
1271 __set_bit(idx, cpuc->active_mask);
1272 __set_bit(idx, cpuc->running);
1273 x86_pmu.enable(event);
1274 perf_event_update_userpage(event);
1277 void perf_event_print_debug(void)
1279 u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1280 u64 pebs, debugctl;
1281 struct cpu_hw_events *cpuc;
1282 unsigned long flags;
1283 int cpu, idx;
1285 if (!x86_pmu.num_counters)
1286 return;
1288 local_irq_save(flags);
1290 cpu = smp_processor_id();
1291 cpuc = &per_cpu(cpu_hw_events, cpu);
1293 if (x86_pmu.version >= 2) {
1294 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1295 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1296 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1297 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1299 pr_info("\n");
1300 pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
1301 pr_info("CPU#%d: status: %016llx\n", cpu, status);
1302 pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
1303 pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
1304 if (x86_pmu.pebs_constraints) {
1305 rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1306 pr_info("CPU#%d: pebs: %016llx\n", cpu, pebs);
1308 if (x86_pmu.lbr_nr) {
1309 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1310 pr_info("CPU#%d: debugctl: %016llx\n", cpu, debugctl);
1313 pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1315 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1316 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1317 rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1319 prev_left = per_cpu(pmc_prev_left[idx], cpu);
1321 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
1322 cpu, idx, pmc_ctrl);
1323 pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
1324 cpu, idx, pmc_count);
1325 pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
1326 cpu, idx, prev_left);
1328 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1329 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1331 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1332 cpu, idx, pmc_count);
1334 local_irq_restore(flags);
1337 void x86_pmu_stop(struct perf_event *event, int flags)
1339 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1340 struct hw_perf_event *hwc = &event->hw;
1342 if (__test_and_clear_bit(hwc->idx, cpuc->active_mask)) {
1343 x86_pmu.disable(event);
1344 cpuc->events[hwc->idx] = NULL;
1345 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1346 hwc->state |= PERF_HES_STOPPED;
1349 if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1351 * Drain the remaining delta count out of a event
1352 * that we are disabling:
1354 x86_perf_event_update(event);
1355 hwc->state |= PERF_HES_UPTODATE;
1359 static void x86_pmu_del(struct perf_event *event, int flags)
1361 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1362 int i;
1365 * event is descheduled
1367 event->hw.flags &= ~PERF_X86_EVENT_COMMITTED;
1370 * If we're called during a txn, we only need to undo x86_pmu.add.
1371 * The events never got scheduled and ->cancel_txn will truncate
1372 * the event_list.
1374 * XXX assumes any ->del() called during a TXN will only be on
1375 * an event added during that same TXN.
1377 if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1378 goto do_del;
1381 * Not a TXN, therefore cleanup properly.
1383 x86_pmu_stop(event, PERF_EF_UPDATE);
1385 for (i = 0; i < cpuc->n_events; i++) {
1386 if (event == cpuc->event_list[i])
1387 break;
1390 if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1391 return;
1393 /* If we have a newly added event; make sure to decrease n_added. */
1394 if (i >= cpuc->n_events - cpuc->n_added)
1395 --cpuc->n_added;
1397 if (x86_pmu.put_event_constraints)
1398 x86_pmu.put_event_constraints(cpuc, event);
1400 /* Delete the array entry. */
1401 while (++i < cpuc->n_events) {
1402 cpuc->event_list[i-1] = cpuc->event_list[i];
1403 cpuc->event_constraint[i-1] = cpuc->event_constraint[i];
1405 --cpuc->n_events;
1407 perf_event_update_userpage(event);
1409 do_del:
1410 if (x86_pmu.del) {
1412 * This is after x86_pmu_stop(); so we disable LBRs after any
1413 * event can need them etc..
1415 x86_pmu.del(event);
1419 int x86_pmu_handle_irq(struct pt_regs *regs)
1421 struct perf_sample_data data;
1422 struct cpu_hw_events *cpuc;
1423 struct perf_event *event;
1424 int idx, handled = 0;
1425 u64 val;
1427 cpuc = this_cpu_ptr(&cpu_hw_events);
1430 * Some chipsets need to unmask the LVTPC in a particular spot
1431 * inside the nmi handler. As a result, the unmasking was pushed
1432 * into all the nmi handlers.
1434 * This generic handler doesn't seem to have any issues where the
1435 * unmasking occurs so it was left at the top.
1437 apic_write(APIC_LVTPC, APIC_DM_NMI);
1439 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1440 if (!test_bit(idx, cpuc->active_mask)) {
1442 * Though we deactivated the counter some cpus
1443 * might still deliver spurious interrupts still
1444 * in flight. Catch them:
1446 if (__test_and_clear_bit(idx, cpuc->running))
1447 handled++;
1448 continue;
1451 event = cpuc->events[idx];
1453 val = x86_perf_event_update(event);
1454 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1455 continue;
1458 * event overflow
1460 handled++;
1461 perf_sample_data_init(&data, 0, event->hw.last_period);
1463 if (!x86_perf_event_set_period(event))
1464 continue;
1466 if (perf_event_overflow(event, &data, regs))
1467 x86_pmu_stop(event, 0);
1470 if (handled)
1471 inc_irq_stat(apic_perf_irqs);
1473 return handled;
1476 void perf_events_lapic_init(void)
1478 if (!x86_pmu.apic || !x86_pmu_initialized())
1479 return;
1482 * Always use NMI for PMU
1484 apic_write(APIC_LVTPC, APIC_DM_NMI);
1487 static int
1488 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1490 u64 start_clock;
1491 u64 finish_clock;
1492 int ret;
1495 * All PMUs/events that share this PMI handler should make sure to
1496 * increment active_events for their events.
1498 if (!atomic_read(&active_events))
1499 return NMI_DONE;
1501 start_clock = sched_clock();
1502 ret = x86_pmu.handle_irq(regs);
1503 finish_clock = sched_clock();
1505 perf_sample_event_took(finish_clock - start_clock);
1507 return ret;
1509 NOKPROBE_SYMBOL(perf_event_nmi_handler);
1511 struct event_constraint emptyconstraint;
1512 struct event_constraint unconstrained;
1514 static int x86_pmu_prepare_cpu(unsigned int cpu)
1516 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1517 int i;
1519 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
1520 cpuc->kfree_on_online[i] = NULL;
1521 if (x86_pmu.cpu_prepare)
1522 return x86_pmu.cpu_prepare(cpu);
1523 return 0;
1526 static int x86_pmu_dead_cpu(unsigned int cpu)
1528 if (x86_pmu.cpu_dead)
1529 x86_pmu.cpu_dead(cpu);
1530 return 0;
1533 static int x86_pmu_online_cpu(unsigned int cpu)
1535 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1536 int i;
1538 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
1539 kfree(cpuc->kfree_on_online[i]);
1540 cpuc->kfree_on_online[i] = NULL;
1542 return 0;
1545 static int x86_pmu_starting_cpu(unsigned int cpu)
1547 if (x86_pmu.cpu_starting)
1548 x86_pmu.cpu_starting(cpu);
1549 return 0;
1552 static int x86_pmu_dying_cpu(unsigned int cpu)
1554 if (x86_pmu.cpu_dying)
1555 x86_pmu.cpu_dying(cpu);
1556 return 0;
1559 static void __init pmu_check_apic(void)
1561 if (boot_cpu_has(X86_FEATURE_APIC))
1562 return;
1564 x86_pmu.apic = 0;
1565 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1566 pr_info("no hardware sampling interrupt available.\n");
1569 * If we have a PMU initialized but no APIC
1570 * interrupts, we cannot sample hardware
1571 * events (user-space has to fall back and
1572 * sample via a hrtimer based software event):
1574 pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1578 static struct attribute_group x86_pmu_format_group = {
1579 .name = "format",
1580 .attrs = NULL,
1584 * Remove all undefined events (x86_pmu.event_map(id) == 0)
1585 * out of events_attr attributes.
1587 static void __init filter_events(struct attribute **attrs)
1589 struct device_attribute *d;
1590 struct perf_pmu_events_attr *pmu_attr;
1591 int offset = 0;
1592 int i, j;
1594 for (i = 0; attrs[i]; i++) {
1595 d = (struct device_attribute *)attrs[i];
1596 pmu_attr = container_of(d, struct perf_pmu_events_attr, attr);
1597 /* str trumps id */
1598 if (pmu_attr->event_str)
1599 continue;
1600 if (x86_pmu.event_map(i + offset))
1601 continue;
1603 for (j = i; attrs[j]; j++)
1604 attrs[j] = attrs[j + 1];
1606 /* Check the shifted attr. */
1607 i--;
1610 * event_map() is index based, the attrs array is organized
1611 * by increasing event index. If we shift the events, then
1612 * we need to compensate for the event_map(), otherwise
1613 * we are looking up the wrong event in the map
1615 offset++;
1619 /* Merge two pointer arrays */
1620 __init struct attribute **merge_attr(struct attribute **a, struct attribute **b)
1622 struct attribute **new;
1623 int j, i;
1625 for (j = 0; a[j]; j++)
1627 for (i = 0; b[i]; i++)
1628 j++;
1629 j++;
1631 new = kmalloc(sizeof(struct attribute *) * j, GFP_KERNEL);
1632 if (!new)
1633 return NULL;
1635 j = 0;
1636 for (i = 0; a[i]; i++)
1637 new[j++] = a[i];
1638 for (i = 0; b[i]; i++)
1639 new[j++] = b[i];
1640 new[j] = NULL;
1642 return new;
1645 ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr, char *page)
1647 struct perf_pmu_events_attr *pmu_attr = \
1648 container_of(attr, struct perf_pmu_events_attr, attr);
1649 u64 config = x86_pmu.event_map(pmu_attr->id);
1651 /* string trumps id */
1652 if (pmu_attr->event_str)
1653 return sprintf(page, "%s", pmu_attr->event_str);
1655 return x86_pmu.events_sysfs_show(page, config);
1657 EXPORT_SYMBOL_GPL(events_sysfs_show);
1659 ssize_t events_ht_sysfs_show(struct device *dev, struct device_attribute *attr,
1660 char *page)
1662 struct perf_pmu_events_ht_attr *pmu_attr =
1663 container_of(attr, struct perf_pmu_events_ht_attr, attr);
1666 * Report conditional events depending on Hyper-Threading.
1668 * This is overly conservative as usually the HT special
1669 * handling is not needed if the other CPU thread is idle.
1671 * Note this does not (and cannot) handle the case when thread
1672 * siblings are invisible, for example with virtualization
1673 * if they are owned by some other guest. The user tool
1674 * has to re-read when a thread sibling gets onlined later.
1676 return sprintf(page, "%s",
1677 topology_max_smt_threads() > 1 ?
1678 pmu_attr->event_str_ht :
1679 pmu_attr->event_str_noht);
1682 EVENT_ATTR(cpu-cycles, CPU_CYCLES );
1683 EVENT_ATTR(instructions, INSTRUCTIONS );
1684 EVENT_ATTR(cache-references, CACHE_REFERENCES );
1685 EVENT_ATTR(cache-misses, CACHE_MISSES );
1686 EVENT_ATTR(branch-instructions, BRANCH_INSTRUCTIONS );
1687 EVENT_ATTR(branch-misses, BRANCH_MISSES );
1688 EVENT_ATTR(bus-cycles, BUS_CYCLES );
1689 EVENT_ATTR(stalled-cycles-frontend, STALLED_CYCLES_FRONTEND );
1690 EVENT_ATTR(stalled-cycles-backend, STALLED_CYCLES_BACKEND );
1691 EVENT_ATTR(ref-cycles, REF_CPU_CYCLES );
1693 static struct attribute *empty_attrs;
1695 static struct attribute *events_attr[] = {
1696 EVENT_PTR(CPU_CYCLES),
1697 EVENT_PTR(INSTRUCTIONS),
1698 EVENT_PTR(CACHE_REFERENCES),
1699 EVENT_PTR(CACHE_MISSES),
1700 EVENT_PTR(BRANCH_INSTRUCTIONS),
1701 EVENT_PTR(BRANCH_MISSES),
1702 EVENT_PTR(BUS_CYCLES),
1703 EVENT_PTR(STALLED_CYCLES_FRONTEND),
1704 EVENT_PTR(STALLED_CYCLES_BACKEND),
1705 EVENT_PTR(REF_CPU_CYCLES),
1706 NULL,
1709 static struct attribute_group x86_pmu_events_group = {
1710 .name = "events",
1711 .attrs = events_attr,
1714 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
1716 u64 umask = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1717 u64 cmask = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1718 bool edge = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1719 bool pc = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1720 bool any = (config & ARCH_PERFMON_EVENTSEL_ANY);
1721 bool inv = (config & ARCH_PERFMON_EVENTSEL_INV);
1722 ssize_t ret;
1725 * We have whole page size to spend and just little data
1726 * to write, so we can safely use sprintf.
1728 ret = sprintf(page, "event=0x%02llx", event);
1730 if (umask)
1731 ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1733 if (edge)
1734 ret += sprintf(page + ret, ",edge");
1736 if (pc)
1737 ret += sprintf(page + ret, ",pc");
1739 if (any)
1740 ret += sprintf(page + ret, ",any");
1742 if (inv)
1743 ret += sprintf(page + ret, ",inv");
1745 if (cmask)
1746 ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1748 ret += sprintf(page + ret, "\n");
1750 return ret;
1753 static int __init init_hw_perf_events(void)
1755 struct x86_pmu_quirk *quirk;
1756 int err;
1758 pr_info("Performance Events: ");
1760 switch (boot_cpu_data.x86_vendor) {
1761 case X86_VENDOR_INTEL:
1762 err = intel_pmu_init();
1763 break;
1764 case X86_VENDOR_AMD:
1765 err = amd_pmu_init();
1766 break;
1767 default:
1768 err = -ENOTSUPP;
1770 if (err != 0) {
1771 pr_cont("no PMU driver, software events only.\n");
1772 return 0;
1775 pmu_check_apic();
1777 /* sanity check that the hardware exists or is emulated */
1778 if (!check_hw_exists())
1779 return 0;
1781 pr_cont("%s PMU driver.\n", x86_pmu.name);
1783 x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
1785 for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
1786 quirk->func();
1788 if (!x86_pmu.intel_ctrl)
1789 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1791 perf_events_lapic_init();
1792 register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
1794 unconstrained = (struct event_constraint)
1795 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1796 0, x86_pmu.num_counters, 0, 0);
1798 x86_pmu_format_group.attrs = x86_pmu.format_attrs;
1800 if (x86_pmu.event_attrs)
1801 x86_pmu_events_group.attrs = x86_pmu.event_attrs;
1803 if (!x86_pmu.events_sysfs_show)
1804 x86_pmu_events_group.attrs = &empty_attrs;
1805 else
1806 filter_events(x86_pmu_events_group.attrs);
1808 if (x86_pmu.cpu_events) {
1809 struct attribute **tmp;
1811 tmp = merge_attr(x86_pmu_events_group.attrs, x86_pmu.cpu_events);
1812 if (!WARN_ON(!tmp))
1813 x86_pmu_events_group.attrs = tmp;
1816 pr_info("... version: %d\n", x86_pmu.version);
1817 pr_info("... bit width: %d\n", x86_pmu.cntval_bits);
1818 pr_info("... generic registers: %d\n", x86_pmu.num_counters);
1819 pr_info("... value mask: %016Lx\n", x86_pmu.cntval_mask);
1820 pr_info("... max period: %016Lx\n", x86_pmu.max_period);
1821 pr_info("... fixed-purpose events: %d\n", x86_pmu.num_counters_fixed);
1822 pr_info("... event mask: %016Lx\n", x86_pmu.intel_ctrl);
1825 * Install callbacks. Core will call them for each online
1826 * cpu.
1828 err = cpuhp_setup_state(CPUHP_PERF_X86_PREPARE, "perf/x86:prepare",
1829 x86_pmu_prepare_cpu, x86_pmu_dead_cpu);
1830 if (err)
1831 return err;
1833 err = cpuhp_setup_state(CPUHP_AP_PERF_X86_STARTING,
1834 "perf/x86:starting", x86_pmu_starting_cpu,
1835 x86_pmu_dying_cpu);
1836 if (err)
1837 goto out;
1839 err = cpuhp_setup_state(CPUHP_AP_PERF_X86_ONLINE, "perf/x86:online",
1840 x86_pmu_online_cpu, NULL);
1841 if (err)
1842 goto out1;
1844 err = perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1845 if (err)
1846 goto out2;
1848 return 0;
1850 out2:
1851 cpuhp_remove_state(CPUHP_AP_PERF_X86_ONLINE);
1852 out1:
1853 cpuhp_remove_state(CPUHP_AP_PERF_X86_STARTING);
1854 out:
1855 cpuhp_remove_state(CPUHP_PERF_X86_PREPARE);
1856 return err;
1858 early_initcall(init_hw_perf_events);
1860 static inline void x86_pmu_read(struct perf_event *event)
1862 x86_perf_event_update(event);
1866 * Start group events scheduling transaction
1867 * Set the flag to make pmu::enable() not perform the
1868 * schedulability test, it will be performed at commit time
1870 * We only support PERF_PMU_TXN_ADD transactions. Save the
1871 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1872 * transactions.
1874 static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1876 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1878 WARN_ON_ONCE(cpuc->txn_flags); /* txn already in flight */
1880 cpuc->txn_flags = txn_flags;
1881 if (txn_flags & ~PERF_PMU_TXN_ADD)
1882 return;
1884 perf_pmu_disable(pmu);
1885 __this_cpu_write(cpu_hw_events.n_txn, 0);
1889 * Stop group events scheduling transaction
1890 * Clear the flag and pmu::enable() will perform the
1891 * schedulability test.
1893 static void x86_pmu_cancel_txn(struct pmu *pmu)
1895 unsigned int txn_flags;
1896 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1898 WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
1900 txn_flags = cpuc->txn_flags;
1901 cpuc->txn_flags = 0;
1902 if (txn_flags & ~PERF_PMU_TXN_ADD)
1903 return;
1906 * Truncate collected array by the number of events added in this
1907 * transaction. See x86_pmu_add() and x86_pmu_*_txn().
1909 __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1910 __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
1911 perf_pmu_enable(pmu);
1915 * Commit group events scheduling transaction
1916 * Perform the group schedulability test as a whole
1917 * Return 0 if success
1919 * Does not cancel the transaction on failure; expects the caller to do this.
1921 static int x86_pmu_commit_txn(struct pmu *pmu)
1923 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1924 int assign[X86_PMC_IDX_MAX];
1925 int n, ret;
1927 WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
1929 if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
1930 cpuc->txn_flags = 0;
1931 return 0;
1934 n = cpuc->n_events;
1936 if (!x86_pmu_initialized())
1937 return -EAGAIN;
1939 ret = x86_pmu.schedule_events(cpuc, n, assign);
1940 if (ret)
1941 return ret;
1944 * copy new assignment, now we know it is possible
1945 * will be used by hw_perf_enable()
1947 memcpy(cpuc->assign, assign, n*sizeof(int));
1949 cpuc->txn_flags = 0;
1950 perf_pmu_enable(pmu);
1951 return 0;
1954 * a fake_cpuc is used to validate event groups. Due to
1955 * the extra reg logic, we need to also allocate a fake
1956 * per_core and per_cpu structure. Otherwise, group events
1957 * using extra reg may conflict without the kernel being
1958 * able to catch this when the last event gets added to
1959 * the group.
1961 static void free_fake_cpuc(struct cpu_hw_events *cpuc)
1963 kfree(cpuc->shared_regs);
1964 kfree(cpuc);
1967 static struct cpu_hw_events *allocate_fake_cpuc(void)
1969 struct cpu_hw_events *cpuc;
1970 int cpu = raw_smp_processor_id();
1972 cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
1973 if (!cpuc)
1974 return ERR_PTR(-ENOMEM);
1976 /* only needed, if we have extra_regs */
1977 if (x86_pmu.extra_regs) {
1978 cpuc->shared_regs = allocate_shared_regs(cpu);
1979 if (!cpuc->shared_regs)
1980 goto error;
1982 cpuc->is_fake = 1;
1983 return cpuc;
1984 error:
1985 free_fake_cpuc(cpuc);
1986 return ERR_PTR(-ENOMEM);
1990 * validate that we can schedule this event
1992 static int validate_event(struct perf_event *event)
1994 struct cpu_hw_events *fake_cpuc;
1995 struct event_constraint *c;
1996 int ret = 0;
1998 fake_cpuc = allocate_fake_cpuc();
1999 if (IS_ERR(fake_cpuc))
2000 return PTR_ERR(fake_cpuc);
2002 c = x86_pmu.get_event_constraints(fake_cpuc, -1, event);
2004 if (!c || !c->weight)
2005 ret = -EINVAL;
2007 if (x86_pmu.put_event_constraints)
2008 x86_pmu.put_event_constraints(fake_cpuc, event);
2010 free_fake_cpuc(fake_cpuc);
2012 return ret;
2016 * validate a single event group
2018 * validation include:
2019 * - check events are compatible which each other
2020 * - events do not compete for the same counter
2021 * - number of events <= number of counters
2023 * validation ensures the group can be loaded onto the
2024 * PMU if it was the only group available.
2026 static int validate_group(struct perf_event *event)
2028 struct perf_event *leader = event->group_leader;
2029 struct cpu_hw_events *fake_cpuc;
2030 int ret = -EINVAL, n;
2032 fake_cpuc = allocate_fake_cpuc();
2033 if (IS_ERR(fake_cpuc))
2034 return PTR_ERR(fake_cpuc);
2036 * the event is not yet connected with its
2037 * siblings therefore we must first collect
2038 * existing siblings, then add the new event
2039 * before we can simulate the scheduling
2041 n = collect_events(fake_cpuc, leader, true);
2042 if (n < 0)
2043 goto out;
2045 fake_cpuc->n_events = n;
2046 n = collect_events(fake_cpuc, event, false);
2047 if (n < 0)
2048 goto out;
2050 fake_cpuc->n_events = n;
2052 ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
2054 out:
2055 free_fake_cpuc(fake_cpuc);
2056 return ret;
2059 static int x86_pmu_event_init(struct perf_event *event)
2061 struct pmu *tmp;
2062 int err;
2064 switch (event->attr.type) {
2065 case PERF_TYPE_RAW:
2066 case PERF_TYPE_HARDWARE:
2067 case PERF_TYPE_HW_CACHE:
2068 break;
2070 default:
2071 return -ENOENT;
2074 err = __x86_pmu_event_init(event);
2075 if (!err) {
2077 * we temporarily connect event to its pmu
2078 * such that validate_group() can classify
2079 * it as an x86 event using is_x86_event()
2081 tmp = event->pmu;
2082 event->pmu = &pmu;
2084 if (event->group_leader != event)
2085 err = validate_group(event);
2086 else
2087 err = validate_event(event);
2089 event->pmu = tmp;
2091 if (err) {
2092 if (event->destroy)
2093 event->destroy(event);
2096 if (ACCESS_ONCE(x86_pmu.attr_rdpmc))
2097 event->hw.flags |= PERF_X86_EVENT_RDPMC_ALLOWED;
2099 return err;
2102 static void refresh_pce(void *ignored)
2104 if (current->active_mm)
2105 load_mm_cr4(current->active_mm);
2108 static void x86_pmu_event_mapped(struct perf_event *event)
2110 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2111 return;
2114 * This function relies on not being called concurrently in two
2115 * tasks in the same mm. Otherwise one task could observe
2116 * perf_rdpmc_allowed > 1 and return all the way back to
2117 * userspace with CR4.PCE clear while another task is still
2118 * doing on_each_cpu_mask() to propagate CR4.PCE.
2120 * For now, this can't happen because all callers hold mmap_sem
2121 * for write. If this changes, we'll need a different solution.
2123 lockdep_assert_held_exclusive(&current->mm->mmap_sem);
2125 if (atomic_inc_return(&current->mm->context.perf_rdpmc_allowed) == 1)
2126 on_each_cpu_mask(mm_cpumask(current->mm), refresh_pce, NULL, 1);
2129 static void x86_pmu_event_unmapped(struct perf_event *event)
2131 if (!current->mm)
2132 return;
2134 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2135 return;
2137 if (atomic_dec_and_test(&current->mm->context.perf_rdpmc_allowed))
2138 on_each_cpu_mask(mm_cpumask(current->mm), refresh_pce, NULL, 1);
2141 static int x86_pmu_event_idx(struct perf_event *event)
2143 int idx = event->hw.idx;
2145 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2146 return 0;
2148 if (x86_pmu.num_counters_fixed && idx >= INTEL_PMC_IDX_FIXED) {
2149 idx -= INTEL_PMC_IDX_FIXED;
2150 idx |= 1 << 30;
2153 return idx + 1;
2156 static ssize_t get_attr_rdpmc(struct device *cdev,
2157 struct device_attribute *attr,
2158 char *buf)
2160 return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
2163 static ssize_t set_attr_rdpmc(struct device *cdev,
2164 struct device_attribute *attr,
2165 const char *buf, size_t count)
2167 unsigned long val;
2168 ssize_t ret;
2170 ret = kstrtoul(buf, 0, &val);
2171 if (ret)
2172 return ret;
2174 if (val > 2)
2175 return -EINVAL;
2177 if (x86_pmu.attr_rdpmc_broken)
2178 return -ENOTSUPP;
2180 if ((val == 2) != (x86_pmu.attr_rdpmc == 2)) {
2182 * Changing into or out of always available, aka
2183 * perf-event-bypassing mode. This path is extremely slow,
2184 * but only root can trigger it, so it's okay.
2186 if (val == 2)
2187 static_key_slow_inc(&rdpmc_always_available);
2188 else
2189 static_key_slow_dec(&rdpmc_always_available);
2190 on_each_cpu(refresh_pce, NULL, 1);
2193 x86_pmu.attr_rdpmc = val;
2195 return count;
2198 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
2200 static struct attribute *x86_pmu_attrs[] = {
2201 &dev_attr_rdpmc.attr,
2202 NULL,
2205 static struct attribute_group x86_pmu_attr_group = {
2206 .attrs = x86_pmu_attrs,
2209 static const struct attribute_group *x86_pmu_attr_groups[] = {
2210 &x86_pmu_attr_group,
2211 &x86_pmu_format_group,
2212 &x86_pmu_events_group,
2213 NULL,
2216 static void x86_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
2218 if (x86_pmu.sched_task)
2219 x86_pmu.sched_task(ctx, sched_in);
2222 void perf_check_microcode(void)
2224 if (x86_pmu.check_microcode)
2225 x86_pmu.check_microcode();
2227 EXPORT_SYMBOL_GPL(perf_check_microcode);
2229 static struct pmu pmu = {
2230 .pmu_enable = x86_pmu_enable,
2231 .pmu_disable = x86_pmu_disable,
2233 .attr_groups = x86_pmu_attr_groups,
2235 .event_init = x86_pmu_event_init,
2237 .event_mapped = x86_pmu_event_mapped,
2238 .event_unmapped = x86_pmu_event_unmapped,
2240 .add = x86_pmu_add,
2241 .del = x86_pmu_del,
2242 .start = x86_pmu_start,
2243 .stop = x86_pmu_stop,
2244 .read = x86_pmu_read,
2246 .start_txn = x86_pmu_start_txn,
2247 .cancel_txn = x86_pmu_cancel_txn,
2248 .commit_txn = x86_pmu_commit_txn,
2250 .event_idx = x86_pmu_event_idx,
2251 .sched_task = x86_pmu_sched_task,
2252 .task_ctx_size = sizeof(struct x86_perf_task_context),
2255 void arch_perf_update_userpage(struct perf_event *event,
2256 struct perf_event_mmap_page *userpg, u64 now)
2258 struct cyc2ns_data *data;
2259 u64 offset;
2261 userpg->cap_user_time = 0;
2262 userpg->cap_user_time_zero = 0;
2263 userpg->cap_user_rdpmc =
2264 !!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED);
2265 userpg->pmc_width = x86_pmu.cntval_bits;
2267 if (!using_native_sched_clock() || !sched_clock_stable())
2268 return;
2270 data = cyc2ns_read_begin();
2272 offset = data->cyc2ns_offset + __sched_clock_offset;
2275 * Internal timekeeping for enabled/running/stopped times
2276 * is always in the local_clock domain.
2278 userpg->cap_user_time = 1;
2279 userpg->time_mult = data->cyc2ns_mul;
2280 userpg->time_shift = data->cyc2ns_shift;
2281 userpg->time_offset = offset - now;
2284 * cap_user_time_zero doesn't make sense when we're using a different
2285 * time base for the records.
2287 if (!event->attr.use_clockid) {
2288 userpg->cap_user_time_zero = 1;
2289 userpg->time_zero = offset;
2292 cyc2ns_read_end(data);
2295 void
2296 perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2298 struct unwind_state state;
2299 unsigned long addr;
2301 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2302 /* TODO: We don't support guest os callchain now */
2303 return;
2306 if (perf_callchain_store(entry, regs->ip))
2307 return;
2309 for (unwind_start(&state, current, regs, NULL); !unwind_done(&state);
2310 unwind_next_frame(&state)) {
2311 addr = unwind_get_return_address(&state);
2312 if (!addr || perf_callchain_store(entry, addr))
2313 return;
2317 static inline int
2318 valid_user_frame(const void __user *fp, unsigned long size)
2320 return (__range_not_ok(fp, size, TASK_SIZE) == 0);
2323 static unsigned long get_segment_base(unsigned int segment)
2325 struct desc_struct *desc;
2326 unsigned int idx = segment >> 3;
2328 if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2329 #ifdef CONFIG_MODIFY_LDT_SYSCALL
2330 struct ldt_struct *ldt;
2332 if (idx > LDT_ENTRIES)
2333 return 0;
2335 /* IRQs are off, so this synchronizes with smp_store_release */
2336 ldt = lockless_dereference(current->active_mm->context.ldt);
2337 if (!ldt || idx > ldt->size)
2338 return 0;
2340 desc = &ldt->entries[idx];
2341 #else
2342 return 0;
2343 #endif
2344 } else {
2345 if (idx > GDT_ENTRIES)
2346 return 0;
2348 desc = raw_cpu_ptr(gdt_page.gdt) + idx;
2351 return get_desc_base(desc);
2354 #ifdef CONFIG_IA32_EMULATION
2356 #include <asm/compat.h>
2358 static inline int
2359 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2361 /* 32-bit process in 64-bit kernel. */
2362 unsigned long ss_base, cs_base;
2363 struct stack_frame_ia32 frame;
2364 const void __user *fp;
2366 if (!test_thread_flag(TIF_IA32))
2367 return 0;
2369 cs_base = get_segment_base(regs->cs);
2370 ss_base = get_segment_base(regs->ss);
2372 fp = compat_ptr(ss_base + regs->bp);
2373 pagefault_disable();
2374 while (entry->nr < entry->max_stack) {
2375 unsigned long bytes;
2376 frame.next_frame = 0;
2377 frame.return_address = 0;
2379 if (!valid_user_frame(fp, sizeof(frame)))
2380 break;
2382 bytes = __copy_from_user_nmi(&frame.next_frame, fp, 4);
2383 if (bytes != 0)
2384 break;
2385 bytes = __copy_from_user_nmi(&frame.return_address, fp+4, 4);
2386 if (bytes != 0)
2387 break;
2389 perf_callchain_store(entry, cs_base + frame.return_address);
2390 fp = compat_ptr(ss_base + frame.next_frame);
2392 pagefault_enable();
2393 return 1;
2395 #else
2396 static inline int
2397 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2399 return 0;
2401 #endif
2403 void
2404 perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2406 struct stack_frame frame;
2407 const unsigned long __user *fp;
2409 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2410 /* TODO: We don't support guest os callchain now */
2411 return;
2415 * We don't know what to do with VM86 stacks.. ignore them for now.
2417 if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2418 return;
2420 fp = (unsigned long __user *)regs->bp;
2422 perf_callchain_store(entry, regs->ip);
2424 if (!current->mm)
2425 return;
2427 if (perf_callchain_user32(regs, entry))
2428 return;
2430 pagefault_disable();
2431 while (entry->nr < entry->max_stack) {
2432 unsigned long bytes;
2434 frame.next_frame = NULL;
2435 frame.return_address = 0;
2437 if (!valid_user_frame(fp, sizeof(frame)))
2438 break;
2440 bytes = __copy_from_user_nmi(&frame.next_frame, fp, sizeof(*fp));
2441 if (bytes != 0)
2442 break;
2443 bytes = __copy_from_user_nmi(&frame.return_address, fp + 1, sizeof(*fp));
2444 if (bytes != 0)
2445 break;
2447 perf_callchain_store(entry, frame.return_address);
2448 fp = (void __user *)frame.next_frame;
2450 pagefault_enable();
2454 * Deal with code segment offsets for the various execution modes:
2456 * VM86 - the good olde 16 bit days, where the linear address is
2457 * 20 bits and we use regs->ip + 0x10 * regs->cs.
2459 * IA32 - Where we need to look at GDT/LDT segment descriptor tables
2460 * to figure out what the 32bit base address is.
2462 * X32 - has TIF_X32 set, but is running in x86_64
2464 * X86_64 - CS,DS,SS,ES are all zero based.
2466 static unsigned long code_segment_base(struct pt_regs *regs)
2469 * For IA32 we look at the GDT/LDT segment base to convert the
2470 * effective IP to a linear address.
2473 #ifdef CONFIG_X86_32
2475 * If we are in VM86 mode, add the segment offset to convert to a
2476 * linear address.
2478 if (regs->flags & X86_VM_MASK)
2479 return 0x10 * regs->cs;
2481 if (user_mode(regs) && regs->cs != __USER_CS)
2482 return get_segment_base(regs->cs);
2483 #else
2484 if (user_mode(regs) && !user_64bit_mode(regs) &&
2485 regs->cs != __USER32_CS)
2486 return get_segment_base(regs->cs);
2487 #endif
2488 return 0;
2491 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2493 if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
2494 return perf_guest_cbs->get_guest_ip();
2496 return regs->ip + code_segment_base(regs);
2499 unsigned long perf_misc_flags(struct pt_regs *regs)
2501 int misc = 0;
2503 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2504 if (perf_guest_cbs->is_user_mode())
2505 misc |= PERF_RECORD_MISC_GUEST_USER;
2506 else
2507 misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2508 } else {
2509 if (user_mode(regs))
2510 misc |= PERF_RECORD_MISC_USER;
2511 else
2512 misc |= PERF_RECORD_MISC_KERNEL;
2515 if (regs->flags & PERF_EFLAGS_EXACT)
2516 misc |= PERF_RECORD_MISC_EXACT_IP;
2518 return misc;
2521 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2523 cap->version = x86_pmu.version;
2524 cap->num_counters_gp = x86_pmu.num_counters;
2525 cap->num_counters_fixed = x86_pmu.num_counters_fixed;
2526 cap->bit_width_gp = x86_pmu.cntval_bits;
2527 cap->bit_width_fixed = x86_pmu.cntval_bits;
2528 cap->events_mask = (unsigned int)x86_pmu.events_maskl;
2529 cap->events_mask_len = x86_pmu.events_mask_len;
2531 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);