2 * Copyright (C) 1995 Linus Torvalds
3 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
4 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
6 #include <linux/sched.h> /* test_thread_flag(), ... */
7 #include <linux/sched/task_stack.h> /* task_stack_*(), ... */
8 #include <linux/kdebug.h> /* oops_begin/end, ... */
9 #include <linux/extable.h> /* search_exception_tables */
10 #include <linux/bootmem.h> /* max_low_pfn */
11 #include <linux/kprobes.h> /* NOKPROBE_SYMBOL, ... */
12 #include <linux/mmiotrace.h> /* kmmio_handler, ... */
13 #include <linux/perf_event.h> /* perf_sw_event */
14 #include <linux/hugetlb.h> /* hstate_index_to_shift */
15 #include <linux/prefetch.h> /* prefetchw */
16 #include <linux/context_tracking.h> /* exception_enter(), ... */
17 #include <linux/uaccess.h> /* faulthandler_disabled() */
19 #include <asm/cpufeature.h> /* boot_cpu_has, ... */
20 #include <asm/traps.h> /* dotraplinkage, ... */
21 #include <asm/pgalloc.h> /* pgd_*(), ... */
22 #include <asm/kmemcheck.h> /* kmemcheck_*(), ... */
23 #include <asm/fixmap.h> /* VSYSCALL_ADDR */
24 #include <asm/vsyscall.h> /* emulate_vsyscall */
25 #include <asm/vm86.h> /* struct vm86 */
26 #include <asm/mmu_context.h> /* vma_pkey() */
28 #define CREATE_TRACE_POINTS
29 #include <asm/trace/exceptions.h>
32 * Page fault error code bits:
34 * bit 0 == 0: no page found 1: protection fault
35 * bit 1 == 0: read access 1: write access
36 * bit 2 == 0: kernel-mode access 1: user-mode access
37 * bit 3 == 1: use of reserved bit detected
38 * bit 4 == 1: fault was an instruction fetch
39 * bit 5 == 1: protection keys block access
41 enum x86_pf_error_code
{
52 * Returns 0 if mmiotrace is disabled, or if the fault is not
53 * handled by mmiotrace:
55 static nokprobe_inline
int
56 kmmio_fault(struct pt_regs
*regs
, unsigned long addr
)
58 if (unlikely(is_kmmio_active()))
59 if (kmmio_handler(regs
, addr
) == 1)
64 static nokprobe_inline
int kprobes_fault(struct pt_regs
*regs
)
68 /* kprobe_running() needs smp_processor_id() */
69 if (kprobes_built_in() && !user_mode(regs
)) {
71 if (kprobe_running() && kprobe_fault_handler(regs
, 14))
84 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
85 * Check that here and ignore it.
89 * Sometimes the CPU reports invalid exceptions on prefetch.
90 * Check that here and ignore it.
92 * Opcode checker based on code by Richard Brunner.
95 check_prefetch_opcode(struct pt_regs
*regs
, unsigned char *instr
,
96 unsigned char opcode
, int *prefetch
)
98 unsigned char instr_hi
= opcode
& 0xf0;
99 unsigned char instr_lo
= opcode
& 0x0f;
105 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
106 * In X86_64 long mode, the CPU will signal invalid
107 * opcode if some of these prefixes are present so
108 * X86_64 will never get here anyway
110 return ((instr_lo
& 7) == 0x6);
114 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
115 * Need to figure out under what instruction mode the
116 * instruction was issued. Could check the LDT for lm,
117 * but for now it's good enough to assume that long
118 * mode only uses well known segments or kernel.
120 return (!user_mode(regs
) || user_64bit_mode(regs
));
123 /* 0x64 thru 0x67 are valid prefixes in all modes. */
124 return (instr_lo
& 0xC) == 0x4;
126 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
127 return !instr_lo
|| (instr_lo
>>1) == 1;
129 /* Prefetch instruction is 0x0F0D or 0x0F18 */
130 if (probe_kernel_address(instr
, opcode
))
133 *prefetch
= (instr_lo
== 0xF) &&
134 (opcode
== 0x0D || opcode
== 0x18);
142 is_prefetch(struct pt_regs
*regs
, unsigned long error_code
, unsigned long addr
)
144 unsigned char *max_instr
;
145 unsigned char *instr
;
149 * If it was a exec (instruction fetch) fault on NX page, then
150 * do not ignore the fault:
152 if (error_code
& PF_INSTR
)
155 instr
= (void *)convert_ip_to_linear(current
, regs
);
156 max_instr
= instr
+ 15;
158 if (user_mode(regs
) && instr
>= (unsigned char *)TASK_SIZE_MAX
)
161 while (instr
< max_instr
) {
162 unsigned char opcode
;
164 if (probe_kernel_address(instr
, opcode
))
169 if (!check_prefetch_opcode(regs
, instr
, opcode
, &prefetch
))
176 * A protection key fault means that the PKRU value did not allow
177 * access to some PTE. Userspace can figure out what PKRU was
178 * from the XSAVE state, and this function fills out a field in
179 * siginfo so userspace can discover which protection key was set
182 * If we get here, we know that the hardware signaled a PF_PK
183 * fault and that there was a VMA once we got in the fault
184 * handler. It does *not* guarantee that the VMA we find here
185 * was the one that we faulted on.
187 * 1. T1 : mprotect_key(foo, PAGE_SIZE, pkey=4);
188 * 2. T1 : set PKRU to deny access to pkey=4, touches page
190 * 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
191 * 5. T1 : enters fault handler, takes mmap_sem, etc...
192 * 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really
193 * faulted on a pte with its pkey=4.
195 static void fill_sig_info_pkey(int si_code
, siginfo_t
*info
,
196 struct vm_area_struct
*vma
)
198 /* This is effectively an #ifdef */
199 if (!boot_cpu_has(X86_FEATURE_OSPKE
))
202 /* Fault not from Protection Keys: nothing to do */
203 if (si_code
!= SEGV_PKUERR
)
206 * force_sig_info_fault() is called from a number of
207 * contexts, some of which have a VMA and some of which
208 * do not. The PF_PK handing happens after we have a
209 * valid VMA, so we should never reach this without a
213 WARN_ONCE(1, "PKU fault with no VMA passed in");
218 * si_pkey should be thought of as a strong hint, but not
219 * absolutely guranteed to be 100% accurate because of
220 * the race explained above.
222 info
->si_pkey
= vma_pkey(vma
);
226 force_sig_info_fault(int si_signo
, int si_code
, unsigned long address
,
227 struct task_struct
*tsk
, struct vm_area_struct
*vma
,
233 info
.si_signo
= si_signo
;
235 info
.si_code
= si_code
;
236 info
.si_addr
= (void __user
*)address
;
237 if (fault
& VM_FAULT_HWPOISON_LARGE
)
238 lsb
= hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault
));
239 if (fault
& VM_FAULT_HWPOISON
)
241 info
.si_addr_lsb
= lsb
;
243 fill_sig_info_pkey(si_code
, &info
, vma
);
245 force_sig_info(si_signo
, &info
, tsk
);
248 DEFINE_SPINLOCK(pgd_lock
);
252 static inline pmd_t
*vmalloc_sync_one(pgd_t
*pgd
, unsigned long address
)
254 unsigned index
= pgd_index(address
);
260 pgd_k
= init_mm
.pgd
+ index
;
262 if (!pgd_present(*pgd_k
))
266 * set_pgd(pgd, *pgd_k); here would be useless on PAE
267 * and redundant with the set_pmd() on non-PAE. As would
270 pud
= pud_offset(pgd
, address
);
271 pud_k
= pud_offset(pgd_k
, address
);
272 if (!pud_present(*pud_k
))
275 pmd
= pmd_offset(pud
, address
);
276 pmd_k
= pmd_offset(pud_k
, address
);
277 if (!pmd_present(*pmd_k
))
280 if (!pmd_present(*pmd
))
281 set_pmd(pmd
, *pmd_k
);
283 BUG_ON(pmd_page(*pmd
) != pmd_page(*pmd_k
));
288 void vmalloc_sync_all(void)
290 unsigned long address
;
292 if (SHARED_KERNEL_PMD
)
295 for (address
= VMALLOC_START
& PMD_MASK
;
296 address
>= TASK_SIZE_MAX
&& address
< FIXADDR_TOP
;
297 address
+= PMD_SIZE
) {
300 spin_lock(&pgd_lock
);
301 list_for_each_entry(page
, &pgd_list
, lru
) {
302 spinlock_t
*pgt_lock
;
305 /* the pgt_lock only for Xen */
306 pgt_lock
= &pgd_page_get_mm(page
)->page_table_lock
;
309 ret
= vmalloc_sync_one(page_address(page
), address
);
310 spin_unlock(pgt_lock
);
315 spin_unlock(&pgd_lock
);
322 * Handle a fault on the vmalloc or module mapping area
324 static noinline
int vmalloc_fault(unsigned long address
)
326 unsigned long pgd_paddr
;
330 /* Make sure we are in vmalloc area: */
331 if (!(address
>= VMALLOC_START
&& address
< VMALLOC_END
))
334 WARN_ON_ONCE(in_nmi());
337 * Synchronize this task's top level page-table
338 * with the 'reference' page table.
340 * Do _not_ use "current" here. We might be inside
341 * an interrupt in the middle of a task switch..
343 pgd_paddr
= read_cr3();
344 pmd_k
= vmalloc_sync_one(__va(pgd_paddr
), address
);
348 if (pmd_huge(*pmd_k
))
351 pte_k
= pte_offset_kernel(pmd_k
, address
);
352 if (!pte_present(*pte_k
))
357 NOKPROBE_SYMBOL(vmalloc_fault
);
360 * Did it hit the DOS screen memory VA from vm86 mode?
363 check_v8086_mode(struct pt_regs
*regs
, unsigned long address
,
364 struct task_struct
*tsk
)
369 if (!v8086_mode(regs
) || !tsk
->thread
.vm86
)
372 bit
= (address
- 0xA0000) >> PAGE_SHIFT
;
374 tsk
->thread
.vm86
->screen_bitmap
|= 1 << bit
;
378 static bool low_pfn(unsigned long pfn
)
380 return pfn
< max_low_pfn
;
383 static void dump_pagetable(unsigned long address
)
385 pgd_t
*base
= __va(read_cr3());
386 pgd_t
*pgd
= &base
[pgd_index(address
)];
390 #ifdef CONFIG_X86_PAE
391 printk("*pdpt = %016Lx ", pgd_val(*pgd
));
392 if (!low_pfn(pgd_val(*pgd
) >> PAGE_SHIFT
) || !pgd_present(*pgd
))
395 pmd
= pmd_offset(pud_offset(pgd
, address
), address
);
396 printk(KERN_CONT
"*pde = %0*Lx ", sizeof(*pmd
) * 2, (u64
)pmd_val(*pmd
));
399 * We must not directly access the pte in the highpte
400 * case if the page table is located in highmem.
401 * And let's rather not kmap-atomic the pte, just in case
402 * it's allocated already:
404 if (!low_pfn(pmd_pfn(*pmd
)) || !pmd_present(*pmd
) || pmd_large(*pmd
))
407 pte
= pte_offset_kernel(pmd
, address
);
408 printk("*pte = %0*Lx ", sizeof(*pte
) * 2, (u64
)pte_val(*pte
));
413 #else /* CONFIG_X86_64: */
415 void vmalloc_sync_all(void)
417 sync_global_pgds(VMALLOC_START
& PGDIR_MASK
, VMALLOC_END
);
423 * Handle a fault on the vmalloc area
425 static noinline
int vmalloc_fault(unsigned long address
)
427 pgd_t
*pgd
, *pgd_ref
;
428 pud_t
*pud
, *pud_ref
;
429 pmd_t
*pmd
, *pmd_ref
;
430 pte_t
*pte
, *pte_ref
;
432 /* Make sure we are in vmalloc area: */
433 if (!(address
>= VMALLOC_START
&& address
< VMALLOC_END
))
436 WARN_ON_ONCE(in_nmi());
439 * Copy kernel mappings over when needed. This can also
440 * happen within a race in page table update. In the later
443 pgd
= (pgd_t
*)__va(read_cr3()) + pgd_index(address
);
444 pgd_ref
= pgd_offset_k(address
);
445 if (pgd_none(*pgd_ref
))
448 if (pgd_none(*pgd
)) {
449 set_pgd(pgd
, *pgd_ref
);
450 arch_flush_lazy_mmu_mode();
452 BUG_ON(pgd_page_vaddr(*pgd
) != pgd_page_vaddr(*pgd_ref
));
456 * Below here mismatches are bugs because these lower tables
460 pud
= pud_offset(pgd
, address
);
461 pud_ref
= pud_offset(pgd_ref
, address
);
462 if (pud_none(*pud_ref
))
465 if (pud_none(*pud
) || pud_pfn(*pud
) != pud_pfn(*pud_ref
))
471 pmd
= pmd_offset(pud
, address
);
472 pmd_ref
= pmd_offset(pud_ref
, address
);
473 if (pmd_none(*pmd_ref
))
476 if (pmd_none(*pmd
) || pmd_pfn(*pmd
) != pmd_pfn(*pmd_ref
))
482 pte_ref
= pte_offset_kernel(pmd_ref
, address
);
483 if (!pte_present(*pte_ref
))
486 pte
= pte_offset_kernel(pmd
, address
);
489 * Don't use pte_page here, because the mappings can point
490 * outside mem_map, and the NUMA hash lookup cannot handle
493 if (!pte_present(*pte
) || pte_pfn(*pte
) != pte_pfn(*pte_ref
))
498 NOKPROBE_SYMBOL(vmalloc_fault
);
500 #ifdef CONFIG_CPU_SUP_AMD
501 static const char errata93_warning
[] =
503 "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
504 "******* Working around it, but it may cause SEGVs or burn power.\n"
505 "******* Please consider a BIOS update.\n"
506 "******* Disabling USB legacy in the BIOS may also help.\n";
510 * No vm86 mode in 64-bit mode:
513 check_v8086_mode(struct pt_regs
*regs
, unsigned long address
,
514 struct task_struct
*tsk
)
518 static int bad_address(void *p
)
522 return probe_kernel_address((unsigned long *)p
, dummy
);
525 static void dump_pagetable(unsigned long address
)
527 pgd_t
*base
= __va(read_cr3() & PHYSICAL_PAGE_MASK
);
528 pgd_t
*pgd
= base
+ pgd_index(address
);
533 if (bad_address(pgd
))
536 printk("PGD %lx ", pgd_val(*pgd
));
538 if (!pgd_present(*pgd
))
541 pud
= pud_offset(pgd
, address
);
542 if (bad_address(pud
))
545 printk("PUD %lx ", pud_val(*pud
));
546 if (!pud_present(*pud
) || pud_large(*pud
))
549 pmd
= pmd_offset(pud
, address
);
550 if (bad_address(pmd
))
553 printk("PMD %lx ", pmd_val(*pmd
));
554 if (!pmd_present(*pmd
) || pmd_large(*pmd
))
557 pte
= pte_offset_kernel(pmd
, address
);
558 if (bad_address(pte
))
561 printk("PTE %lx", pte_val(*pte
));
569 #endif /* CONFIG_X86_64 */
572 * Workaround for K8 erratum #93 & buggy BIOS.
574 * BIOS SMM functions are required to use a specific workaround
575 * to avoid corruption of the 64bit RIP register on C stepping K8.
577 * A lot of BIOS that didn't get tested properly miss this.
579 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
580 * Try to work around it here.
582 * Note we only handle faults in kernel here.
583 * Does nothing on 32-bit.
585 static int is_errata93(struct pt_regs
*regs
, unsigned long address
)
587 #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
588 if (boot_cpu_data
.x86_vendor
!= X86_VENDOR_AMD
589 || boot_cpu_data
.x86
!= 0xf)
592 if (address
!= regs
->ip
)
595 if ((address
>> 32) != 0)
598 address
|= 0xffffffffUL
<< 32;
599 if ((address
>= (u64
)_stext
&& address
<= (u64
)_etext
) ||
600 (address
>= MODULES_VADDR
&& address
<= MODULES_END
)) {
601 printk_once(errata93_warning
);
610 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
611 * to illegal addresses >4GB.
613 * We catch this in the page fault handler because these addresses
614 * are not reachable. Just detect this case and return. Any code
615 * segment in LDT is compatibility mode.
617 static int is_errata100(struct pt_regs
*regs
, unsigned long address
)
620 if ((regs
->cs
== __USER32_CS
|| (regs
->cs
& (1<<2))) && (address
>> 32))
626 static int is_f00f_bug(struct pt_regs
*regs
, unsigned long address
)
628 #ifdef CONFIG_X86_F00F_BUG
632 * Pentium F0 0F C7 C8 bug workaround:
634 if (boot_cpu_has_bug(X86_BUG_F00F
)) {
635 nr
= (address
- idt_descr
.address
) >> 3;
638 do_invalid_op(regs
, 0);
646 static const char nx_warning
[] = KERN_CRIT
647 "kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
648 static const char smep_warning
[] = KERN_CRIT
649 "unable to execute userspace code (SMEP?) (uid: %d)\n";
652 show_fault_oops(struct pt_regs
*regs
, unsigned long error_code
,
653 unsigned long address
)
655 if (!oops_may_print())
658 if (error_code
& PF_INSTR
) {
663 pgd
= __va(read_cr3() & PHYSICAL_PAGE_MASK
);
664 pgd
+= pgd_index(address
);
666 pte
= lookup_address_in_pgd(pgd
, address
, &level
);
668 if (pte
&& pte_present(*pte
) && !pte_exec(*pte
))
669 printk(nx_warning
, from_kuid(&init_user_ns
, current_uid()));
670 if (pte
&& pte_present(*pte
) && pte_exec(*pte
) &&
671 (pgd_flags(*pgd
) & _PAGE_USER
) &&
672 (__read_cr4() & X86_CR4_SMEP
))
673 printk(smep_warning
, from_kuid(&init_user_ns
, current_uid()));
676 printk(KERN_ALERT
"BUG: unable to handle kernel ");
677 if (address
< PAGE_SIZE
)
678 printk(KERN_CONT
"NULL pointer dereference");
680 printk(KERN_CONT
"paging request");
682 printk(KERN_CONT
" at %p\n", (void *) address
);
683 printk(KERN_ALERT
"IP: %pS\n", (void *)regs
->ip
);
685 dump_pagetable(address
);
689 pgtable_bad(struct pt_regs
*regs
, unsigned long error_code
,
690 unsigned long address
)
692 struct task_struct
*tsk
;
696 flags
= oops_begin();
700 printk(KERN_ALERT
"%s: Corrupted page table at address %lx\n",
702 dump_pagetable(address
);
704 tsk
->thread
.cr2
= address
;
705 tsk
->thread
.trap_nr
= X86_TRAP_PF
;
706 tsk
->thread
.error_code
= error_code
;
708 if (__die("Bad pagetable", regs
, error_code
))
711 oops_end(flags
, regs
, sig
);
715 no_context(struct pt_regs
*regs
, unsigned long error_code
,
716 unsigned long address
, int signal
, int si_code
)
718 struct task_struct
*tsk
= current
;
721 /* No context means no VMA to pass down */
722 struct vm_area_struct
*vma
= NULL
;
724 /* Are we prepared to handle this kernel fault? */
725 if (fixup_exception(regs
, X86_TRAP_PF
)) {
727 * Any interrupt that takes a fault gets the fixup. This makes
728 * the below recursive fault logic only apply to a faults from
735 * Per the above we're !in_interrupt(), aka. task context.
737 * In this case we need to make sure we're not recursively
738 * faulting through the emulate_vsyscall() logic.
740 if (current
->thread
.sig_on_uaccess_err
&& signal
) {
741 tsk
->thread
.trap_nr
= X86_TRAP_PF
;
742 tsk
->thread
.error_code
= error_code
| PF_USER
;
743 tsk
->thread
.cr2
= address
;
745 /* XXX: hwpoison faults will set the wrong code. */
746 force_sig_info_fault(signal
, si_code
, address
,
751 * Barring that, we can do the fixup and be happy.
756 #ifdef CONFIG_VMAP_STACK
758 * Stack overflow? During boot, we can fault near the initial
759 * stack in the direct map, but that's not an overflow -- check
760 * that we're in vmalloc space to avoid this.
762 if (is_vmalloc_addr((void *)address
) &&
763 (((unsigned long)tsk
->stack
- 1 - address
< PAGE_SIZE
) ||
764 address
- ((unsigned long)tsk
->stack
+ THREAD_SIZE
) < PAGE_SIZE
)) {
765 register void *__sp
asm("rsp");
766 unsigned long stack
= this_cpu_read(orig_ist
.ist
[DOUBLEFAULT_STACK
]) - sizeof(void *);
768 * We're likely to be running with very little stack space
769 * left. It's plausible that we'd hit this condition but
770 * double-fault even before we get this far, in which case
771 * we're fine: the double-fault handler will deal with it.
773 * We don't want to make it all the way into the oops code
774 * and then double-fault, though, because we're likely to
775 * break the console driver and lose most of the stack dump.
777 asm volatile ("movq %[stack], %%rsp\n\t"
778 "call handle_stack_overflow\n\t"
781 : "D" ("kernel stack overflow (page fault)"),
782 "S" (regs
), "d" (address
),
783 [stack
] "rm" (stack
));
791 * Valid to do another page fault here, because if this fault
792 * had been triggered by is_prefetch fixup_exception would have
797 * Hall of shame of CPU/BIOS bugs.
799 if (is_prefetch(regs
, error_code
, address
))
802 if (is_errata93(regs
, address
))
806 * Oops. The kernel tried to access some bad page. We'll have to
807 * terminate things with extreme prejudice:
809 flags
= oops_begin();
811 show_fault_oops(regs
, error_code
, address
);
813 if (task_stack_end_corrupted(tsk
))
814 printk(KERN_EMERG
"Thread overran stack, or stack corrupted\n");
816 tsk
->thread
.cr2
= address
;
817 tsk
->thread
.trap_nr
= X86_TRAP_PF
;
818 tsk
->thread
.error_code
= error_code
;
821 if (__die("Oops", regs
, error_code
))
824 /* Executive summary in case the body of the oops scrolled away */
825 printk(KERN_DEFAULT
"CR2: %016lx\n", address
);
827 oops_end(flags
, regs
, sig
);
831 * Print out info about fatal segfaults, if the show_unhandled_signals
835 show_signal_msg(struct pt_regs
*regs
, unsigned long error_code
,
836 unsigned long address
, struct task_struct
*tsk
)
838 if (!unhandled_signal(tsk
, SIGSEGV
))
841 if (!printk_ratelimit())
844 printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
845 task_pid_nr(tsk
) > 1 ? KERN_INFO
: KERN_EMERG
,
846 tsk
->comm
, task_pid_nr(tsk
), address
,
847 (void *)regs
->ip
, (void *)regs
->sp
, error_code
);
849 print_vma_addr(KERN_CONT
" in ", regs
->ip
);
851 printk(KERN_CONT
"\n");
855 __bad_area_nosemaphore(struct pt_regs
*regs
, unsigned long error_code
,
856 unsigned long address
, struct vm_area_struct
*vma
,
859 struct task_struct
*tsk
= current
;
861 /* User mode accesses just cause a SIGSEGV */
862 if (error_code
& PF_USER
) {
864 * It's possible to have interrupts off here:
869 * Valid to do another page fault here because this one came
872 if (is_prefetch(regs
, error_code
, address
))
875 if (is_errata100(regs
, address
))
880 * Instruction fetch faults in the vsyscall page might need
883 if (unlikely((error_code
& PF_INSTR
) &&
884 ((address
& ~0xfff) == VSYSCALL_ADDR
))) {
885 if (emulate_vsyscall(regs
, address
))
891 * To avoid leaking information about the kernel page table
892 * layout, pretend that user-mode accesses to kernel addresses
893 * are always protection faults.
895 if (address
>= TASK_SIZE_MAX
)
896 error_code
|= PF_PROT
;
898 if (likely(show_unhandled_signals
))
899 show_signal_msg(regs
, error_code
, address
, tsk
);
901 tsk
->thread
.cr2
= address
;
902 tsk
->thread
.error_code
= error_code
;
903 tsk
->thread
.trap_nr
= X86_TRAP_PF
;
905 force_sig_info_fault(SIGSEGV
, si_code
, address
, tsk
, vma
, 0);
910 if (is_f00f_bug(regs
, address
))
913 no_context(regs
, error_code
, address
, SIGSEGV
, si_code
);
917 bad_area_nosemaphore(struct pt_regs
*regs
, unsigned long error_code
,
918 unsigned long address
, struct vm_area_struct
*vma
)
920 __bad_area_nosemaphore(regs
, error_code
, address
, vma
, SEGV_MAPERR
);
924 __bad_area(struct pt_regs
*regs
, unsigned long error_code
,
925 unsigned long address
, struct vm_area_struct
*vma
, int si_code
)
927 struct mm_struct
*mm
= current
->mm
;
930 * Something tried to access memory that isn't in our memory map..
931 * Fix it, but check if it's kernel or user first..
933 up_read(&mm
->mmap_sem
);
935 __bad_area_nosemaphore(regs
, error_code
, address
, vma
, si_code
);
939 bad_area(struct pt_regs
*regs
, unsigned long error_code
, unsigned long address
)
941 __bad_area(regs
, error_code
, address
, NULL
, SEGV_MAPERR
);
944 static inline bool bad_area_access_from_pkeys(unsigned long error_code
,
945 struct vm_area_struct
*vma
)
947 /* This code is always called on the current mm */
948 bool foreign
= false;
950 if (!boot_cpu_has(X86_FEATURE_OSPKE
))
952 if (error_code
& PF_PK
)
954 /* this checks permission keys on the VMA: */
955 if (!arch_vma_access_permitted(vma
, (error_code
& PF_WRITE
),
956 (error_code
& PF_INSTR
), foreign
))
962 bad_area_access_error(struct pt_regs
*regs
, unsigned long error_code
,
963 unsigned long address
, struct vm_area_struct
*vma
)
966 * This OSPKE check is not strictly necessary at runtime.
967 * But, doing it this way allows compiler optimizations
968 * if pkeys are compiled out.
970 if (bad_area_access_from_pkeys(error_code
, vma
))
971 __bad_area(regs
, error_code
, address
, vma
, SEGV_PKUERR
);
973 __bad_area(regs
, error_code
, address
, vma
, SEGV_ACCERR
);
977 do_sigbus(struct pt_regs
*regs
, unsigned long error_code
, unsigned long address
,
978 struct vm_area_struct
*vma
, unsigned int fault
)
980 struct task_struct
*tsk
= current
;
981 int code
= BUS_ADRERR
;
983 /* Kernel mode? Handle exceptions or die: */
984 if (!(error_code
& PF_USER
)) {
985 no_context(regs
, error_code
, address
, SIGBUS
, BUS_ADRERR
);
989 /* User-space => ok to do another page fault: */
990 if (is_prefetch(regs
, error_code
, address
))
993 tsk
->thread
.cr2
= address
;
994 tsk
->thread
.error_code
= error_code
;
995 tsk
->thread
.trap_nr
= X86_TRAP_PF
;
997 #ifdef CONFIG_MEMORY_FAILURE
998 if (fault
& (VM_FAULT_HWPOISON
|VM_FAULT_HWPOISON_LARGE
)) {
1000 "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
1001 tsk
->comm
, tsk
->pid
, address
);
1002 code
= BUS_MCEERR_AR
;
1005 force_sig_info_fault(SIGBUS
, code
, address
, tsk
, vma
, fault
);
1008 static noinline
void
1009 mm_fault_error(struct pt_regs
*regs
, unsigned long error_code
,
1010 unsigned long address
, struct vm_area_struct
*vma
,
1013 if (fatal_signal_pending(current
) && !(error_code
& PF_USER
)) {
1014 no_context(regs
, error_code
, address
, 0, 0);
1018 if (fault
& VM_FAULT_OOM
) {
1019 /* Kernel mode? Handle exceptions or die: */
1020 if (!(error_code
& PF_USER
)) {
1021 no_context(regs
, error_code
, address
,
1022 SIGSEGV
, SEGV_MAPERR
);
1027 * We ran out of memory, call the OOM killer, and return the
1028 * userspace (which will retry the fault, or kill us if we got
1031 pagefault_out_of_memory();
1033 if (fault
& (VM_FAULT_SIGBUS
|VM_FAULT_HWPOISON
|
1034 VM_FAULT_HWPOISON_LARGE
))
1035 do_sigbus(regs
, error_code
, address
, vma
, fault
);
1036 else if (fault
& VM_FAULT_SIGSEGV
)
1037 bad_area_nosemaphore(regs
, error_code
, address
, vma
);
1043 static int spurious_fault_check(unsigned long error_code
, pte_t
*pte
)
1045 if ((error_code
& PF_WRITE
) && !pte_write(*pte
))
1048 if ((error_code
& PF_INSTR
) && !pte_exec(*pte
))
1051 * Note: We do not do lazy flushing on protection key
1052 * changes, so no spurious fault will ever set PF_PK.
1054 if ((error_code
& PF_PK
))
1061 * Handle a spurious fault caused by a stale TLB entry.
1063 * This allows us to lazily refresh the TLB when increasing the
1064 * permissions of a kernel page (RO -> RW or NX -> X). Doing it
1065 * eagerly is very expensive since that implies doing a full
1066 * cross-processor TLB flush, even if no stale TLB entries exist
1067 * on other processors.
1069 * Spurious faults may only occur if the TLB contains an entry with
1070 * fewer permission than the page table entry. Non-present (P = 0)
1071 * and reserved bit (R = 1) faults are never spurious.
1073 * There are no security implications to leaving a stale TLB when
1074 * increasing the permissions on a page.
1076 * Returns non-zero if a spurious fault was handled, zero otherwise.
1078 * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
1079 * (Optional Invalidation).
1082 spurious_fault(unsigned long error_code
, unsigned long address
)
1091 * Only writes to RO or instruction fetches from NX may cause
1094 * These could be from user or supervisor accesses but the TLB
1095 * is only lazily flushed after a kernel mapping protection
1096 * change, so user accesses are not expected to cause spurious
1099 if (error_code
!= (PF_WRITE
| PF_PROT
)
1100 && error_code
!= (PF_INSTR
| PF_PROT
))
1103 pgd
= init_mm
.pgd
+ pgd_index(address
);
1104 if (!pgd_present(*pgd
))
1107 pud
= pud_offset(pgd
, address
);
1108 if (!pud_present(*pud
))
1111 if (pud_large(*pud
))
1112 return spurious_fault_check(error_code
, (pte_t
*) pud
);
1114 pmd
= pmd_offset(pud
, address
);
1115 if (!pmd_present(*pmd
))
1118 if (pmd_large(*pmd
))
1119 return spurious_fault_check(error_code
, (pte_t
*) pmd
);
1121 pte
= pte_offset_kernel(pmd
, address
);
1122 if (!pte_present(*pte
))
1125 ret
= spurious_fault_check(error_code
, pte
);
1130 * Make sure we have permissions in PMD.
1131 * If not, then there's a bug in the page tables:
1133 ret
= spurious_fault_check(error_code
, (pte_t
*) pmd
);
1134 WARN_ONCE(!ret
, "PMD has incorrect permission bits\n");
1138 NOKPROBE_SYMBOL(spurious_fault
);
1140 int show_unhandled_signals
= 1;
1143 access_error(unsigned long error_code
, struct vm_area_struct
*vma
)
1145 /* This is only called for the current mm, so: */
1146 bool foreign
= false;
1149 * Read or write was blocked by protection keys. This is
1150 * always an unconditional error and can never result in
1151 * a follow-up action to resolve the fault, like a COW.
1153 if (error_code
& PF_PK
)
1157 * Make sure to check the VMA so that we do not perform
1158 * faults just to hit a PF_PK as soon as we fill in a
1161 if (!arch_vma_access_permitted(vma
, (error_code
& PF_WRITE
),
1162 (error_code
& PF_INSTR
), foreign
))
1165 if (error_code
& PF_WRITE
) {
1166 /* write, present and write, not present: */
1167 if (unlikely(!(vma
->vm_flags
& VM_WRITE
)))
1172 /* read, present: */
1173 if (unlikely(error_code
& PF_PROT
))
1176 /* read, not present: */
1177 if (unlikely(!(vma
->vm_flags
& (VM_READ
| VM_EXEC
| VM_WRITE
))))
1183 static int fault_in_kernel_space(unsigned long address
)
1185 return address
>= TASK_SIZE_MAX
;
1188 static inline bool smap_violation(int error_code
, struct pt_regs
*regs
)
1190 if (!IS_ENABLED(CONFIG_X86_SMAP
))
1193 if (!static_cpu_has(X86_FEATURE_SMAP
))
1196 if (error_code
& PF_USER
)
1199 if (!user_mode(regs
) && (regs
->flags
& X86_EFLAGS_AC
))
1206 * This routine handles page faults. It determines the address,
1207 * and the problem, and then passes it off to one of the appropriate
1210 * This function must have noinline because both callers
1211 * {,trace_}do_page_fault() have notrace on. Having this an actual function
1212 * guarantees there's a function trace entry.
1214 static noinline
void
1215 __do_page_fault(struct pt_regs
*regs
, unsigned long error_code
,
1216 unsigned long address
)
1218 struct vm_area_struct
*vma
;
1219 struct task_struct
*tsk
;
1220 struct mm_struct
*mm
;
1221 int fault
, major
= 0;
1222 unsigned int flags
= FAULT_FLAG_ALLOW_RETRY
| FAULT_FLAG_KILLABLE
;
1228 * Detect and handle instructions that would cause a page fault for
1229 * both a tracked kernel page and a userspace page.
1231 if (kmemcheck_active(regs
))
1232 kmemcheck_hide(regs
);
1233 prefetchw(&mm
->mmap_sem
);
1235 if (unlikely(kmmio_fault(regs
, address
)))
1239 * We fault-in kernel-space virtual memory on-demand. The
1240 * 'reference' page table is init_mm.pgd.
1242 * NOTE! We MUST NOT take any locks for this case. We may
1243 * be in an interrupt or a critical region, and should
1244 * only copy the information from the master page table,
1247 * This verifies that the fault happens in kernel space
1248 * (error_code & 4) == 0, and that the fault was not a
1249 * protection error (error_code & 9) == 0.
1251 if (unlikely(fault_in_kernel_space(address
))) {
1252 if (!(error_code
& (PF_RSVD
| PF_USER
| PF_PROT
))) {
1253 if (vmalloc_fault(address
) >= 0)
1256 if (kmemcheck_fault(regs
, address
, error_code
))
1260 /* Can handle a stale RO->RW TLB: */
1261 if (spurious_fault(error_code
, address
))
1264 /* kprobes don't want to hook the spurious faults: */
1265 if (kprobes_fault(regs
))
1268 * Don't take the mm semaphore here. If we fixup a prefetch
1269 * fault we could otherwise deadlock:
1271 bad_area_nosemaphore(regs
, error_code
, address
, NULL
);
1276 /* kprobes don't want to hook the spurious faults: */
1277 if (unlikely(kprobes_fault(regs
)))
1280 if (unlikely(error_code
& PF_RSVD
))
1281 pgtable_bad(regs
, error_code
, address
);
1283 if (unlikely(smap_violation(error_code
, regs
))) {
1284 bad_area_nosemaphore(regs
, error_code
, address
, NULL
);
1289 * If we're in an interrupt, have no user context or are running
1290 * in a region with pagefaults disabled then we must not take the fault
1292 if (unlikely(faulthandler_disabled() || !mm
)) {
1293 bad_area_nosemaphore(regs
, error_code
, address
, NULL
);
1298 * It's safe to allow irq's after cr2 has been saved and the
1299 * vmalloc fault has been handled.
1301 * User-mode registers count as a user access even for any
1302 * potential system fault or CPU buglet:
1304 if (user_mode(regs
)) {
1306 error_code
|= PF_USER
;
1307 flags
|= FAULT_FLAG_USER
;
1309 if (regs
->flags
& X86_EFLAGS_IF
)
1313 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS
, 1, regs
, address
);
1315 if (error_code
& PF_WRITE
)
1316 flags
|= FAULT_FLAG_WRITE
;
1317 if (error_code
& PF_INSTR
)
1318 flags
|= FAULT_FLAG_INSTRUCTION
;
1321 * When running in the kernel we expect faults to occur only to
1322 * addresses in user space. All other faults represent errors in
1323 * the kernel and should generate an OOPS. Unfortunately, in the
1324 * case of an erroneous fault occurring in a code path which already
1325 * holds mmap_sem we will deadlock attempting to validate the fault
1326 * against the address space. Luckily the kernel only validly
1327 * references user space from well defined areas of code, which are
1328 * listed in the exceptions table.
1330 * As the vast majority of faults will be valid we will only perform
1331 * the source reference check when there is a possibility of a
1332 * deadlock. Attempt to lock the address space, if we cannot we then
1333 * validate the source. If this is invalid we can skip the address
1334 * space check, thus avoiding the deadlock:
1336 if (unlikely(!down_read_trylock(&mm
->mmap_sem
))) {
1337 if ((error_code
& PF_USER
) == 0 &&
1338 !search_exception_tables(regs
->ip
)) {
1339 bad_area_nosemaphore(regs
, error_code
, address
, NULL
);
1343 down_read(&mm
->mmap_sem
);
1346 * The above down_read_trylock() might have succeeded in
1347 * which case we'll have missed the might_sleep() from
1353 vma
= find_vma(mm
, address
);
1354 if (unlikely(!vma
)) {
1355 bad_area(regs
, error_code
, address
);
1358 if (likely(vma
->vm_start
<= address
))
1360 if (unlikely(!(vma
->vm_flags
& VM_GROWSDOWN
))) {
1361 bad_area(regs
, error_code
, address
);
1364 if (error_code
& PF_USER
) {
1366 * Accessing the stack below %sp is always a bug.
1367 * The large cushion allows instructions like enter
1368 * and pusha to work. ("enter $65535, $31" pushes
1369 * 32 pointers and then decrements %sp by 65535.)
1371 if (unlikely(address
+ 65536 + 32 * sizeof(unsigned long) < regs
->sp
)) {
1372 bad_area(regs
, error_code
, address
);
1376 if (unlikely(expand_stack(vma
, address
))) {
1377 bad_area(regs
, error_code
, address
);
1382 * Ok, we have a good vm_area for this memory access, so
1383 * we can handle it..
1386 if (unlikely(access_error(error_code
, vma
))) {
1387 bad_area_access_error(regs
, error_code
, address
, vma
);
1392 * If for any reason at all we couldn't handle the fault,
1393 * make sure we exit gracefully rather than endlessly redo
1394 * the fault. Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1395 * we get VM_FAULT_RETRY back, the mmap_sem has been unlocked.
1397 fault
= handle_mm_fault(vma
, address
, flags
);
1398 major
|= fault
& VM_FAULT_MAJOR
;
1401 * If we need to retry the mmap_sem has already been released,
1402 * and if there is a fatal signal pending there is no guarantee
1403 * that we made any progress. Handle this case first.
1405 if (unlikely(fault
& VM_FAULT_RETRY
)) {
1406 /* Retry at most once */
1407 if (flags
& FAULT_FLAG_ALLOW_RETRY
) {
1408 flags
&= ~FAULT_FLAG_ALLOW_RETRY
;
1409 flags
|= FAULT_FLAG_TRIED
;
1410 if (!fatal_signal_pending(tsk
))
1414 /* User mode? Just return to handle the fatal exception */
1415 if (flags
& FAULT_FLAG_USER
)
1418 /* Not returning to user mode? Handle exceptions or die: */
1419 no_context(regs
, error_code
, address
, SIGBUS
, BUS_ADRERR
);
1423 up_read(&mm
->mmap_sem
);
1424 if (unlikely(fault
& VM_FAULT_ERROR
)) {
1425 mm_fault_error(regs
, error_code
, address
, vma
, fault
);
1430 * Major/minor page fault accounting. If any of the events
1431 * returned VM_FAULT_MAJOR, we account it as a major fault.
1435 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ
, 1, regs
, address
);
1438 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN
, 1, regs
, address
);
1441 check_v8086_mode(regs
, address
, tsk
);
1443 NOKPROBE_SYMBOL(__do_page_fault
);
1445 dotraplinkage
void notrace
1446 do_page_fault(struct pt_regs
*regs
, unsigned long error_code
)
1448 unsigned long address
= read_cr2(); /* Get the faulting address */
1449 enum ctx_state prev_state
;
1452 * We must have this function tagged with __kprobes, notrace and call
1453 * read_cr2() before calling anything else. To avoid calling any kind
1454 * of tracing machinery before we've observed the CR2 value.
1456 * exception_{enter,exit}() contain all sorts of tracepoints.
1459 prev_state
= exception_enter();
1460 __do_page_fault(regs
, error_code
, address
);
1461 exception_exit(prev_state
);
1463 NOKPROBE_SYMBOL(do_page_fault
);
1465 #ifdef CONFIG_TRACING
1466 static nokprobe_inline
void
1467 trace_page_fault_entries(unsigned long address
, struct pt_regs
*regs
,
1468 unsigned long error_code
)
1470 if (user_mode(regs
))
1471 trace_page_fault_user(address
, regs
, error_code
);
1473 trace_page_fault_kernel(address
, regs
, error_code
);
1476 dotraplinkage
void notrace
1477 trace_do_page_fault(struct pt_regs
*regs
, unsigned long error_code
)
1480 * The exception_enter and tracepoint processing could
1481 * trigger another page faults (user space callchain
1482 * reading) and destroy the original cr2 value, so read
1483 * the faulting address now.
1485 unsigned long address
= read_cr2();
1486 enum ctx_state prev_state
;
1488 prev_state
= exception_enter();
1489 trace_page_fault_entries(address
, regs
, error_code
);
1490 __do_page_fault(regs
, error_code
, address
);
1491 exception_exit(prev_state
);
1493 NOKPROBE_SYMBOL(trace_do_page_fault
);
1494 #endif /* CONFIG_TRACING */