2 * linux/arch/x86_64/mm/init.c
4 * Copyright (C) 1995 Linus Torvalds
5 * Copyright (C) 2000 Pavel Machek <pavel@ucw.cz>
6 * Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
9 #include <linux/signal.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/ptrace.h>
16 #include <linux/mman.h>
18 #include <linux/swap.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/initrd.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/proc_fs.h>
26 #include <linux/pci.h>
27 #include <linux/pfn.h>
28 #include <linux/poison.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/memory.h>
31 #include <linux/memory_hotplug.h>
32 #include <linux/memremap.h>
33 #include <linux/nmi.h>
34 #include <linux/gfp.h>
35 #include <linux/kcore.h>
37 #include <asm/processor.h>
38 #include <asm/bios_ebda.h>
39 #include <linux/uaccess.h>
40 #include <asm/pgtable.h>
41 #include <asm/pgalloc.h>
43 #include <asm/fixmap.h>
47 #include <asm/mmu_context.h>
48 #include <asm/proto.h>
50 #include <asm/sections.h>
51 #include <asm/kdebug.h>
53 #include <asm/cacheflush.h>
55 #include <asm/uv/uv.h>
56 #include <asm/setup.h>
58 #include "mm_internal.h"
60 #include "ident_map.c"
63 * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
64 * physical space so we can cache the place of the first one and move
65 * around without checking the pgd every time.
68 pteval_t __supported_pte_mask __read_mostly
= ~0;
69 EXPORT_SYMBOL_GPL(__supported_pte_mask
);
71 int force_personality32
;
75 * Control non executable heap for 32bit processes.
76 * To control the stack too use noexec=off
78 * on PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
79 * off PROT_READ implies PROT_EXEC
81 static int __init
nonx32_setup(char *str
)
83 if (!strcmp(str
, "on"))
84 force_personality32
&= ~READ_IMPLIES_EXEC
;
85 else if (!strcmp(str
, "off"))
86 force_personality32
|= READ_IMPLIES_EXEC
;
89 __setup("noexec32=", nonx32_setup
);
92 * When memory was added make sure all the processes MM have
93 * suitable PGD entries in the local PGD level page.
95 void sync_global_pgds(unsigned long start
, unsigned long end
)
97 unsigned long address
;
99 for (address
= start
; address
<= end
; address
+= PGDIR_SIZE
) {
100 const pgd_t
*pgd_ref
= pgd_offset_k(address
);
103 if (pgd_none(*pgd_ref
))
106 spin_lock(&pgd_lock
);
107 list_for_each_entry(page
, &pgd_list
, lru
) {
109 spinlock_t
*pgt_lock
;
111 pgd
= (pgd_t
*)page_address(page
) + pgd_index(address
);
112 /* the pgt_lock only for Xen */
113 pgt_lock
= &pgd_page_get_mm(page
)->page_table_lock
;
116 if (!pgd_none(*pgd_ref
) && !pgd_none(*pgd
))
117 BUG_ON(pgd_page_vaddr(*pgd
)
118 != pgd_page_vaddr(*pgd_ref
));
121 set_pgd(pgd
, *pgd_ref
);
123 spin_unlock(pgt_lock
);
125 spin_unlock(&pgd_lock
);
130 * NOTE: This function is marked __ref because it calls __init function
131 * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
133 static __ref
void *spp_getpage(void)
138 ptr
= (void *) get_zeroed_page(GFP_ATOMIC
| __GFP_NOTRACK
);
140 ptr
= alloc_bootmem_pages(PAGE_SIZE
);
142 if (!ptr
|| ((unsigned long)ptr
& ~PAGE_MASK
)) {
143 panic("set_pte_phys: cannot allocate page data %s\n",
144 after_bootmem
? "after bootmem" : "");
147 pr_debug("spp_getpage %p\n", ptr
);
152 static pud_t
*fill_pud(pgd_t
*pgd
, unsigned long vaddr
)
154 if (pgd_none(*pgd
)) {
155 pud_t
*pud
= (pud_t
*)spp_getpage();
156 pgd_populate(&init_mm
, pgd
, pud
);
157 if (pud
!= pud_offset(pgd
, 0))
158 printk(KERN_ERR
"PAGETABLE BUG #00! %p <-> %p\n",
159 pud
, pud_offset(pgd
, 0));
161 return pud_offset(pgd
, vaddr
);
164 static pmd_t
*fill_pmd(pud_t
*pud
, unsigned long vaddr
)
166 if (pud_none(*pud
)) {
167 pmd_t
*pmd
= (pmd_t
*) spp_getpage();
168 pud_populate(&init_mm
, pud
, pmd
);
169 if (pmd
!= pmd_offset(pud
, 0))
170 printk(KERN_ERR
"PAGETABLE BUG #01! %p <-> %p\n",
171 pmd
, pmd_offset(pud
, 0));
173 return pmd_offset(pud
, vaddr
);
176 static pte_t
*fill_pte(pmd_t
*pmd
, unsigned long vaddr
)
178 if (pmd_none(*pmd
)) {
179 pte_t
*pte
= (pte_t
*) spp_getpage();
180 pmd_populate_kernel(&init_mm
, pmd
, pte
);
181 if (pte
!= pte_offset_kernel(pmd
, 0))
182 printk(KERN_ERR
"PAGETABLE BUG #02!\n");
184 return pte_offset_kernel(pmd
, vaddr
);
187 void set_pte_vaddr_pud(pud_t
*pud_page
, unsigned long vaddr
, pte_t new_pte
)
193 pud
= pud_page
+ pud_index(vaddr
);
194 pmd
= fill_pmd(pud
, vaddr
);
195 pte
= fill_pte(pmd
, vaddr
);
197 set_pte(pte
, new_pte
);
200 * It's enough to flush this one mapping.
201 * (PGE mappings get flushed as well)
203 __flush_tlb_one(vaddr
);
206 void set_pte_vaddr(unsigned long vaddr
, pte_t pteval
)
211 pr_debug("set_pte_vaddr %lx to %lx\n", vaddr
, native_pte_val(pteval
));
213 pgd
= pgd_offset_k(vaddr
);
214 if (pgd_none(*pgd
)) {
216 "PGD FIXMAP MISSING, it should be setup in head.S!\n");
219 pud_page
= (pud_t
*)pgd_page_vaddr(*pgd
);
220 set_pte_vaddr_pud(pud_page
, vaddr
, pteval
);
223 pmd_t
* __init
populate_extra_pmd(unsigned long vaddr
)
228 pgd
= pgd_offset_k(vaddr
);
229 pud
= fill_pud(pgd
, vaddr
);
230 return fill_pmd(pud
, vaddr
);
233 pte_t
* __init
populate_extra_pte(unsigned long vaddr
)
237 pmd
= populate_extra_pmd(vaddr
);
238 return fill_pte(pmd
, vaddr
);
242 * Create large page table mappings for a range of physical addresses.
244 static void __init
__init_extra_mapping(unsigned long phys
, unsigned long size
,
245 enum page_cache_mode cache
)
252 pgprot_val(prot
) = pgprot_val(PAGE_KERNEL_LARGE
) |
253 pgprot_val(pgprot_4k_2_large(cachemode2pgprot(cache
)));
254 BUG_ON((phys
& ~PMD_MASK
) || (size
& ~PMD_MASK
));
255 for (; size
; phys
+= PMD_SIZE
, size
-= PMD_SIZE
) {
256 pgd
= pgd_offset_k((unsigned long)__va(phys
));
257 if (pgd_none(*pgd
)) {
258 pud
= (pud_t
*) spp_getpage();
259 set_pgd(pgd
, __pgd(__pa(pud
) | _KERNPG_TABLE
|
262 pud
= pud_offset(pgd
, (unsigned long)__va(phys
));
263 if (pud_none(*pud
)) {
264 pmd
= (pmd_t
*) spp_getpage();
265 set_pud(pud
, __pud(__pa(pmd
) | _KERNPG_TABLE
|
268 pmd
= pmd_offset(pud
, phys
);
269 BUG_ON(!pmd_none(*pmd
));
270 set_pmd(pmd
, __pmd(phys
| pgprot_val(prot
)));
274 void __init
init_extra_mapping_wb(unsigned long phys
, unsigned long size
)
276 __init_extra_mapping(phys
, size
, _PAGE_CACHE_MODE_WB
);
279 void __init
init_extra_mapping_uc(unsigned long phys
, unsigned long size
)
281 __init_extra_mapping(phys
, size
, _PAGE_CACHE_MODE_UC
);
285 * The head.S code sets up the kernel high mapping:
287 * from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
289 * phys_base holds the negative offset to the kernel, which is added
290 * to the compile time generated pmds. This results in invalid pmds up
291 * to the point where we hit the physaddr 0 mapping.
293 * We limit the mappings to the region from _text to _brk_end. _brk_end
294 * is rounded up to the 2MB boundary. This catches the invalid pmds as
295 * well, as they are located before _text:
297 void __init
cleanup_highmap(void)
299 unsigned long vaddr
= __START_KERNEL_map
;
300 unsigned long vaddr_end
= __START_KERNEL_map
+ KERNEL_IMAGE_SIZE
;
301 unsigned long end
= roundup((unsigned long)_brk_end
, PMD_SIZE
) - 1;
302 pmd_t
*pmd
= level2_kernel_pgt
;
305 * Native path, max_pfn_mapped is not set yet.
306 * Xen has valid max_pfn_mapped set in
307 * arch/x86/xen/mmu.c:xen_setup_kernel_pagetable().
310 vaddr_end
= __START_KERNEL_map
+ (max_pfn_mapped
<< PAGE_SHIFT
);
312 for (; vaddr
+ PMD_SIZE
- 1 < vaddr_end
; pmd
++, vaddr
+= PMD_SIZE
) {
315 if (vaddr
< (unsigned long) _text
|| vaddr
> end
)
316 set_pmd(pmd
, __pmd(0));
321 * Create PTE level page table mapping for physical addresses.
322 * It returns the last physical address mapped.
324 static unsigned long __meminit
325 phys_pte_init(pte_t
*pte_page
, unsigned long paddr
, unsigned long paddr_end
,
328 unsigned long pages
= 0, paddr_next
;
329 unsigned long paddr_last
= paddr_end
;
333 pte
= pte_page
+ pte_index(paddr
);
334 i
= pte_index(paddr
);
336 for (; i
< PTRS_PER_PTE
; i
++, paddr
= paddr_next
, pte
++) {
337 paddr_next
= (paddr
& PAGE_MASK
) + PAGE_SIZE
;
338 if (paddr
>= paddr_end
) {
339 if (!after_bootmem
&&
340 !e820_any_mapped(paddr
& PAGE_MASK
, paddr_next
,
342 !e820_any_mapped(paddr
& PAGE_MASK
, paddr_next
,
344 set_pte(pte
, __pte(0));
349 * We will re-use the existing mapping.
350 * Xen for example has some special requirements, like mapping
351 * pagetable pages as RO. So assume someone who pre-setup
352 * these mappings are more intelligent.
354 if (!pte_none(*pte
)) {
361 pr_info(" pte=%p addr=%lx pte=%016lx\n", pte
, paddr
,
362 pfn_pte(paddr
>> PAGE_SHIFT
, PAGE_KERNEL
).pte
);
364 set_pte(pte
, pfn_pte(paddr
>> PAGE_SHIFT
, prot
));
365 paddr_last
= (paddr
& PAGE_MASK
) + PAGE_SIZE
;
368 update_page_count(PG_LEVEL_4K
, pages
);
374 * Create PMD level page table mapping for physical addresses. The virtual
375 * and physical address have to be aligned at this level.
376 * It returns the last physical address mapped.
378 static unsigned long __meminit
379 phys_pmd_init(pmd_t
*pmd_page
, unsigned long paddr
, unsigned long paddr_end
,
380 unsigned long page_size_mask
, pgprot_t prot
)
382 unsigned long pages
= 0, paddr_next
;
383 unsigned long paddr_last
= paddr_end
;
385 int i
= pmd_index(paddr
);
387 for (; i
< PTRS_PER_PMD
; i
++, paddr
= paddr_next
) {
388 pmd_t
*pmd
= pmd_page
+ pmd_index(paddr
);
390 pgprot_t new_prot
= prot
;
392 paddr_next
= (paddr
& PMD_MASK
) + PMD_SIZE
;
393 if (paddr
>= paddr_end
) {
394 if (!after_bootmem
&&
395 !e820_any_mapped(paddr
& PMD_MASK
, paddr_next
,
397 !e820_any_mapped(paddr
& PMD_MASK
, paddr_next
,
399 set_pmd(pmd
, __pmd(0));
403 if (!pmd_none(*pmd
)) {
404 if (!pmd_large(*pmd
)) {
405 spin_lock(&init_mm
.page_table_lock
);
406 pte
= (pte_t
*)pmd_page_vaddr(*pmd
);
407 paddr_last
= phys_pte_init(pte
, paddr
,
409 spin_unlock(&init_mm
.page_table_lock
);
413 * If we are ok with PG_LEVEL_2M mapping, then we will
414 * use the existing mapping,
416 * Otherwise, we will split the large page mapping but
417 * use the same existing protection bits except for
418 * large page, so that we don't violate Intel's TLB
419 * Application note (317080) which says, while changing
420 * the page sizes, new and old translations should
421 * not differ with respect to page frame and
424 if (page_size_mask
& (1 << PG_LEVEL_2M
)) {
427 paddr_last
= paddr_next
;
430 new_prot
= pte_pgprot(pte_clrhuge(*(pte_t
*)pmd
));
433 if (page_size_mask
& (1<<PG_LEVEL_2M
)) {
435 spin_lock(&init_mm
.page_table_lock
);
436 set_pte((pte_t
*)pmd
,
437 pfn_pte((paddr
& PMD_MASK
) >> PAGE_SHIFT
,
438 __pgprot(pgprot_val(prot
) | _PAGE_PSE
)));
439 spin_unlock(&init_mm
.page_table_lock
);
440 paddr_last
= paddr_next
;
444 pte
= alloc_low_page();
445 paddr_last
= phys_pte_init(pte
, paddr
, paddr_end
, new_prot
);
447 spin_lock(&init_mm
.page_table_lock
);
448 pmd_populate_kernel(&init_mm
, pmd
, pte
);
449 spin_unlock(&init_mm
.page_table_lock
);
451 update_page_count(PG_LEVEL_2M
, pages
);
456 * Create PUD level page table mapping for physical addresses. The virtual
457 * and physical address do not have to be aligned at this level. KASLR can
458 * randomize virtual addresses up to this level.
459 * It returns the last physical address mapped.
461 static unsigned long __meminit
462 phys_pud_init(pud_t
*pud_page
, unsigned long paddr
, unsigned long paddr_end
,
463 unsigned long page_size_mask
)
465 unsigned long pages
= 0, paddr_next
;
466 unsigned long paddr_last
= paddr_end
;
467 unsigned long vaddr
= (unsigned long)__va(paddr
);
468 int i
= pud_index(vaddr
);
470 for (; i
< PTRS_PER_PUD
; i
++, paddr
= paddr_next
) {
473 pgprot_t prot
= PAGE_KERNEL
;
475 vaddr
= (unsigned long)__va(paddr
);
476 pud
= pud_page
+ pud_index(vaddr
);
477 paddr_next
= (paddr
& PUD_MASK
) + PUD_SIZE
;
479 if (paddr
>= paddr_end
) {
480 if (!after_bootmem
&&
481 !e820_any_mapped(paddr
& PUD_MASK
, paddr_next
,
483 !e820_any_mapped(paddr
& PUD_MASK
, paddr_next
,
485 set_pud(pud
, __pud(0));
489 if (!pud_none(*pud
)) {
490 if (!pud_large(*pud
)) {
491 pmd
= pmd_offset(pud
, 0);
492 paddr_last
= phys_pmd_init(pmd
, paddr
,
500 * If we are ok with PG_LEVEL_1G mapping, then we will
501 * use the existing mapping.
503 * Otherwise, we will split the gbpage mapping but use
504 * the same existing protection bits except for large
505 * page, so that we don't violate Intel's TLB
506 * Application note (317080) which says, while changing
507 * the page sizes, new and old translations should
508 * not differ with respect to page frame and
511 if (page_size_mask
& (1 << PG_LEVEL_1G
)) {
514 paddr_last
= paddr_next
;
517 prot
= pte_pgprot(pte_clrhuge(*(pte_t
*)pud
));
520 if (page_size_mask
& (1<<PG_LEVEL_1G
)) {
522 spin_lock(&init_mm
.page_table_lock
);
523 set_pte((pte_t
*)pud
,
524 pfn_pte((paddr
& PUD_MASK
) >> PAGE_SHIFT
,
526 spin_unlock(&init_mm
.page_table_lock
);
527 paddr_last
= paddr_next
;
531 pmd
= alloc_low_page();
532 paddr_last
= phys_pmd_init(pmd
, paddr
, paddr_end
,
533 page_size_mask
, prot
);
535 spin_lock(&init_mm
.page_table_lock
);
536 pud_populate(&init_mm
, pud
, pmd
);
537 spin_unlock(&init_mm
.page_table_lock
);
541 update_page_count(PG_LEVEL_1G
, pages
);
547 * Create page table mapping for the physical memory for specific physical
548 * addresses. The virtual and physical addresses have to be aligned on PMD level
549 * down. It returns the last physical address mapped.
551 unsigned long __meminit
552 kernel_physical_mapping_init(unsigned long paddr_start
,
553 unsigned long paddr_end
,
554 unsigned long page_size_mask
)
556 bool pgd_changed
= false;
557 unsigned long vaddr
, vaddr_start
, vaddr_end
, vaddr_next
, paddr_last
;
559 paddr_last
= paddr_end
;
560 vaddr
= (unsigned long)__va(paddr_start
);
561 vaddr_end
= (unsigned long)__va(paddr_end
);
564 for (; vaddr
< vaddr_end
; vaddr
= vaddr_next
) {
565 pgd_t
*pgd
= pgd_offset_k(vaddr
);
568 vaddr_next
= (vaddr
& PGDIR_MASK
) + PGDIR_SIZE
;
571 pud
= (pud_t
*)pgd_page_vaddr(*pgd
);
572 paddr_last
= phys_pud_init(pud
, __pa(vaddr
),
578 pud
= alloc_low_page();
579 paddr_last
= phys_pud_init(pud
, __pa(vaddr
), __pa(vaddr_end
),
582 spin_lock(&init_mm
.page_table_lock
);
583 pgd_populate(&init_mm
, pgd
, pud
);
584 spin_unlock(&init_mm
.page_table_lock
);
589 sync_global_pgds(vaddr_start
, vaddr_end
- 1);
597 void __init
initmem_init(void)
599 memblock_set_node(0, (phys_addr_t
)ULLONG_MAX
, &memblock
.memory
, 0);
603 void __init
paging_init(void)
605 sparse_memory_present_with_active_regions(MAX_NUMNODES
);
609 * clear the default setting with node 0
610 * note: don't use nodes_clear here, that is really clearing when
611 * numa support is not compiled in, and later node_set_state
612 * will not set it back.
614 node_clear_state(0, N_MEMORY
);
615 if (N_MEMORY
!= N_NORMAL_MEMORY
)
616 node_clear_state(0, N_NORMAL_MEMORY
);
622 * Memory hotplug specific functions
624 #ifdef CONFIG_MEMORY_HOTPLUG
626 * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
629 static void update_end_of_memory_vars(u64 start
, u64 size
)
631 unsigned long end_pfn
= PFN_UP(start
+ size
);
633 if (end_pfn
> max_pfn
) {
635 max_low_pfn
= end_pfn
;
636 high_memory
= (void *)__va(max_pfn
* PAGE_SIZE
- 1) + 1;
641 * Memory is added always to NORMAL zone. This means you will never get
642 * additional DMA/DMA32 memory.
644 int arch_add_memory(int nid
, u64 start
, u64 size
, bool for_device
)
646 struct pglist_data
*pgdat
= NODE_DATA(nid
);
647 struct zone
*zone
= pgdat
->node_zones
+
648 zone_for_memory(nid
, start
, size
, ZONE_NORMAL
, for_device
);
649 unsigned long start_pfn
= start
>> PAGE_SHIFT
;
650 unsigned long nr_pages
= size
>> PAGE_SHIFT
;
653 init_memory_mapping(start
, start
+ size
);
655 ret
= __add_pages(nid
, zone
, start_pfn
, nr_pages
);
658 /* update max_pfn, max_low_pfn and high_memory */
659 update_end_of_memory_vars(start
, size
);
663 EXPORT_SYMBOL_GPL(arch_add_memory
);
665 #define PAGE_INUSE 0xFD
667 static void __meminit
free_pagetable(struct page
*page
, int order
)
670 unsigned int nr_pages
= 1 << order
;
671 struct vmem_altmap
*altmap
= to_vmem_altmap((unsigned long) page
);
674 vmem_altmap_free(altmap
, nr_pages
);
678 /* bootmem page has reserved flag */
679 if (PageReserved(page
)) {
680 __ClearPageReserved(page
);
682 magic
= (unsigned long)page
->freelist
;
683 if (magic
== SECTION_INFO
|| magic
== MIX_SECTION_INFO
) {
685 put_page_bootmem(page
++);
688 free_reserved_page(page
++);
690 free_pages((unsigned long)page_address(page
), order
);
693 static void __meminit
free_pte_table(pte_t
*pte_start
, pmd_t
*pmd
)
698 for (i
= 0; i
< PTRS_PER_PTE
; i
++) {
704 /* free a pte talbe */
705 free_pagetable(pmd_page(*pmd
), 0);
706 spin_lock(&init_mm
.page_table_lock
);
708 spin_unlock(&init_mm
.page_table_lock
);
711 static void __meminit
free_pmd_table(pmd_t
*pmd_start
, pud_t
*pud
)
716 for (i
= 0; i
< PTRS_PER_PMD
; i
++) {
722 /* free a pmd talbe */
723 free_pagetable(pud_page(*pud
), 0);
724 spin_lock(&init_mm
.page_table_lock
);
726 spin_unlock(&init_mm
.page_table_lock
);
729 static void __meminit
730 remove_pte_table(pte_t
*pte_start
, unsigned long addr
, unsigned long end
,
733 unsigned long next
, pages
= 0;
736 phys_addr_t phys_addr
;
738 pte
= pte_start
+ pte_index(addr
);
739 for (; addr
< end
; addr
= next
, pte
++) {
740 next
= (addr
+ PAGE_SIZE
) & PAGE_MASK
;
744 if (!pte_present(*pte
))
748 * We mapped [0,1G) memory as identity mapping when
749 * initializing, in arch/x86/kernel/head_64.S. These
750 * pagetables cannot be removed.
752 phys_addr
= pte_val(*pte
) + (addr
& PAGE_MASK
);
753 if (phys_addr
< (phys_addr_t
)0x40000000)
756 if (PAGE_ALIGNED(addr
) && PAGE_ALIGNED(next
)) {
758 * Do not free direct mapping pages since they were
759 * freed when offlining, or simplely not in use.
762 free_pagetable(pte_page(*pte
), 0);
764 spin_lock(&init_mm
.page_table_lock
);
765 pte_clear(&init_mm
, addr
, pte
);
766 spin_unlock(&init_mm
.page_table_lock
);
768 /* For non-direct mapping, pages means nothing. */
772 * If we are here, we are freeing vmemmap pages since
773 * direct mapped memory ranges to be freed are aligned.
775 * If we are not removing the whole page, it means
776 * other page structs in this page are being used and
777 * we canot remove them. So fill the unused page_structs
778 * with 0xFD, and remove the page when it is wholly
781 memset((void *)addr
, PAGE_INUSE
, next
- addr
);
783 page_addr
= page_address(pte_page(*pte
));
784 if (!memchr_inv(page_addr
, PAGE_INUSE
, PAGE_SIZE
)) {
785 free_pagetable(pte_page(*pte
), 0);
787 spin_lock(&init_mm
.page_table_lock
);
788 pte_clear(&init_mm
, addr
, pte
);
789 spin_unlock(&init_mm
.page_table_lock
);
794 /* Call free_pte_table() in remove_pmd_table(). */
797 update_page_count(PG_LEVEL_4K
, -pages
);
800 static void __meminit
801 remove_pmd_table(pmd_t
*pmd_start
, unsigned long addr
, unsigned long end
,
804 unsigned long next
, pages
= 0;
809 pmd
= pmd_start
+ pmd_index(addr
);
810 for (; addr
< end
; addr
= next
, pmd
++) {
811 next
= pmd_addr_end(addr
, end
);
813 if (!pmd_present(*pmd
))
816 if (pmd_large(*pmd
)) {
817 if (IS_ALIGNED(addr
, PMD_SIZE
) &&
818 IS_ALIGNED(next
, PMD_SIZE
)) {
820 free_pagetable(pmd_page(*pmd
),
821 get_order(PMD_SIZE
));
823 spin_lock(&init_mm
.page_table_lock
);
825 spin_unlock(&init_mm
.page_table_lock
);
828 /* If here, we are freeing vmemmap pages. */
829 memset((void *)addr
, PAGE_INUSE
, next
- addr
);
831 page_addr
= page_address(pmd_page(*pmd
));
832 if (!memchr_inv(page_addr
, PAGE_INUSE
,
834 free_pagetable(pmd_page(*pmd
),
835 get_order(PMD_SIZE
));
837 spin_lock(&init_mm
.page_table_lock
);
839 spin_unlock(&init_mm
.page_table_lock
);
846 pte_base
= (pte_t
*)pmd_page_vaddr(*pmd
);
847 remove_pte_table(pte_base
, addr
, next
, direct
);
848 free_pte_table(pte_base
, pmd
);
851 /* Call free_pmd_table() in remove_pud_table(). */
853 update_page_count(PG_LEVEL_2M
, -pages
);
856 static void __meminit
857 remove_pud_table(pud_t
*pud_start
, unsigned long addr
, unsigned long end
,
860 unsigned long next
, pages
= 0;
865 pud
= pud_start
+ pud_index(addr
);
866 for (; addr
< end
; addr
= next
, pud
++) {
867 next
= pud_addr_end(addr
, end
);
869 if (!pud_present(*pud
))
872 if (pud_large(*pud
)) {
873 if (IS_ALIGNED(addr
, PUD_SIZE
) &&
874 IS_ALIGNED(next
, PUD_SIZE
)) {
876 free_pagetable(pud_page(*pud
),
877 get_order(PUD_SIZE
));
879 spin_lock(&init_mm
.page_table_lock
);
881 spin_unlock(&init_mm
.page_table_lock
);
884 /* If here, we are freeing vmemmap pages. */
885 memset((void *)addr
, PAGE_INUSE
, next
- addr
);
887 page_addr
= page_address(pud_page(*pud
));
888 if (!memchr_inv(page_addr
, PAGE_INUSE
,
890 free_pagetable(pud_page(*pud
),
891 get_order(PUD_SIZE
));
893 spin_lock(&init_mm
.page_table_lock
);
895 spin_unlock(&init_mm
.page_table_lock
);
902 pmd_base
= (pmd_t
*)pud_page_vaddr(*pud
);
903 remove_pmd_table(pmd_base
, addr
, next
, direct
);
904 free_pmd_table(pmd_base
, pud
);
908 update_page_count(PG_LEVEL_1G
, -pages
);
911 /* start and end are both virtual address. */
912 static void __meminit
913 remove_pagetable(unsigned long start
, unsigned long end
, bool direct
)
920 for (addr
= start
; addr
< end
; addr
= next
) {
921 next
= pgd_addr_end(addr
, end
);
923 pgd
= pgd_offset_k(addr
);
924 if (!pgd_present(*pgd
))
927 pud
= (pud_t
*)pgd_page_vaddr(*pgd
);
928 remove_pud_table(pud
, addr
, next
, direct
);
934 void __ref
vmemmap_free(unsigned long start
, unsigned long end
)
936 remove_pagetable(start
, end
, false);
939 #ifdef CONFIG_MEMORY_HOTREMOVE
940 static void __meminit
941 kernel_physical_mapping_remove(unsigned long start
, unsigned long end
)
943 start
= (unsigned long)__va(start
);
944 end
= (unsigned long)__va(end
);
946 remove_pagetable(start
, end
, true);
949 int __ref
arch_remove_memory(u64 start
, u64 size
)
951 unsigned long start_pfn
= start
>> PAGE_SHIFT
;
952 unsigned long nr_pages
= size
>> PAGE_SHIFT
;
953 struct page
*page
= pfn_to_page(start_pfn
);
954 struct vmem_altmap
*altmap
;
958 /* With altmap the first mapped page is offset from @start */
959 altmap
= to_vmem_altmap((unsigned long) page
);
961 page
+= vmem_altmap_offset(altmap
);
962 zone
= page_zone(page
);
963 ret
= __remove_pages(zone
, start_pfn
, nr_pages
);
965 kernel_physical_mapping_remove(start
, start
+ size
);
970 #endif /* CONFIG_MEMORY_HOTPLUG */
972 static struct kcore_list kcore_vsyscall
;
974 static void __init
register_page_bootmem_info(void)
979 for_each_online_node(i
)
980 register_page_bootmem_info_node(NODE_DATA(i
));
984 void __init
mem_init(void)
988 /* clear_bss() already clear the empty_zero_page */
990 register_page_bootmem_info();
992 /* this will put all memory onto the freelists */
996 /* Register memory areas for /proc/kcore */
997 kclist_add(&kcore_vsyscall
, (void *)VSYSCALL_ADDR
,
998 PAGE_SIZE
, KCORE_OTHER
);
1000 mem_init_print_info(NULL
);
1003 int kernel_set_to_readonly
;
1005 void set_kernel_text_rw(void)
1007 unsigned long start
= PFN_ALIGN(_text
);
1008 unsigned long end
= PFN_ALIGN(__stop___ex_table
);
1010 if (!kernel_set_to_readonly
)
1013 pr_debug("Set kernel text: %lx - %lx for read write\n",
1017 * Make the kernel identity mapping for text RW. Kernel text
1018 * mapping will always be RO. Refer to the comment in
1019 * static_protections() in pageattr.c
1021 set_memory_rw(start
, (end
- start
) >> PAGE_SHIFT
);
1024 void set_kernel_text_ro(void)
1026 unsigned long start
= PFN_ALIGN(_text
);
1027 unsigned long end
= PFN_ALIGN(__stop___ex_table
);
1029 if (!kernel_set_to_readonly
)
1032 pr_debug("Set kernel text: %lx - %lx for read only\n",
1036 * Set the kernel identity mapping for text RO.
1038 set_memory_ro(start
, (end
- start
) >> PAGE_SHIFT
);
1041 void mark_rodata_ro(void)
1043 unsigned long start
= PFN_ALIGN(_text
);
1044 unsigned long rodata_start
= PFN_ALIGN(__start_rodata
);
1045 unsigned long end
= (unsigned long) &__end_rodata_hpage_align
;
1046 unsigned long text_end
= PFN_ALIGN(&__stop___ex_table
);
1047 unsigned long rodata_end
= PFN_ALIGN(&__end_rodata
);
1048 unsigned long all_end
;
1050 printk(KERN_INFO
"Write protecting the kernel read-only data: %luk\n",
1051 (end
- start
) >> 10);
1052 set_memory_ro(start
, (end
- start
) >> PAGE_SHIFT
);
1054 kernel_set_to_readonly
= 1;
1057 * The rodata/data/bss/brk section (but not the kernel text!)
1058 * should also be not-executable.
1060 * We align all_end to PMD_SIZE because the existing mapping
1061 * is a full PMD. If we would align _brk_end to PAGE_SIZE we
1062 * split the PMD and the reminder between _brk_end and the end
1063 * of the PMD will remain mapped executable.
1065 * Any PMD which was setup after the one which covers _brk_end
1066 * has been zapped already via cleanup_highmem().
1068 all_end
= roundup((unsigned long)_brk_end
, PMD_SIZE
);
1069 set_memory_nx(text_end
, (all_end
- text_end
) >> PAGE_SHIFT
);
1071 #ifdef CONFIG_CPA_DEBUG
1072 printk(KERN_INFO
"Testing CPA: undo %lx-%lx\n", start
, end
);
1073 set_memory_rw(start
, (end
-start
) >> PAGE_SHIFT
);
1075 printk(KERN_INFO
"Testing CPA: again\n");
1076 set_memory_ro(start
, (end
-start
) >> PAGE_SHIFT
);
1079 free_init_pages("unused kernel",
1080 (unsigned long) __va(__pa_symbol(text_end
)),
1081 (unsigned long) __va(__pa_symbol(rodata_start
)));
1082 free_init_pages("unused kernel",
1083 (unsigned long) __va(__pa_symbol(rodata_end
)),
1084 (unsigned long) __va(__pa_symbol(_sdata
)));
1089 int kern_addr_valid(unsigned long addr
)
1091 unsigned long above
= ((long)addr
) >> __VIRTUAL_MASK_SHIFT
;
1097 if (above
!= 0 && above
!= -1UL)
1100 pgd
= pgd_offset_k(addr
);
1104 pud
= pud_offset(pgd
, addr
);
1108 if (pud_large(*pud
))
1109 return pfn_valid(pud_pfn(*pud
));
1111 pmd
= pmd_offset(pud
, addr
);
1115 if (pmd_large(*pmd
))
1116 return pfn_valid(pmd_pfn(*pmd
));
1118 pte
= pte_offset_kernel(pmd
, addr
);
1122 return pfn_valid(pte_pfn(*pte
));
1125 static unsigned long probe_memory_block_size(void)
1127 unsigned long bz
= MIN_MEMORY_BLOCK_SIZE
;
1129 /* if system is UV or has 64GB of RAM or more, use large blocks */
1130 if (is_uv_system() || ((max_pfn
<< PAGE_SHIFT
) >= (64UL << 30)))
1131 bz
= 2UL << 30; /* 2GB */
1133 pr_info("x86/mm: Memory block size: %ldMB\n", bz
>> 20);
1138 static unsigned long memory_block_size_probed
;
1139 unsigned long memory_block_size_bytes(void)
1141 if (!memory_block_size_probed
)
1142 memory_block_size_probed
= probe_memory_block_size();
1144 return memory_block_size_probed
;
1147 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1149 * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
1151 static long __meminitdata addr_start
, addr_end
;
1152 static void __meminitdata
*p_start
, *p_end
;
1153 static int __meminitdata node_start
;
1155 static int __meminit
vmemmap_populate_hugepages(unsigned long start
,
1156 unsigned long end
, int node
, struct vmem_altmap
*altmap
)
1164 for (addr
= start
; addr
< end
; addr
= next
) {
1165 next
= pmd_addr_end(addr
, end
);
1167 pgd
= vmemmap_pgd_populate(addr
, node
);
1171 pud
= vmemmap_pud_populate(pgd
, addr
, node
);
1175 pmd
= pmd_offset(pud
, addr
);
1176 if (pmd_none(*pmd
)) {
1179 p
= __vmemmap_alloc_block_buf(PMD_SIZE
, node
, altmap
);
1183 entry
= pfn_pte(__pa(p
) >> PAGE_SHIFT
,
1185 set_pmd(pmd
, __pmd(pte_val(entry
)));
1187 /* check to see if we have contiguous blocks */
1188 if (p_end
!= p
|| node_start
!= node
) {
1190 pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1191 addr_start
, addr_end
-1, p_start
, p_end
-1, node_start
);
1197 addr_end
= addr
+ PMD_SIZE
;
1198 p_end
= p
+ PMD_SIZE
;
1201 return -ENOMEM
; /* no fallback */
1202 } else if (pmd_large(*pmd
)) {
1203 vmemmap_verify((pte_t
*)pmd
, node
, addr
, next
);
1206 pr_warn_once("vmemmap: falling back to regular page backing\n");
1207 if (vmemmap_populate_basepages(addr
, next
, node
))
1213 int __meminit
vmemmap_populate(unsigned long start
, unsigned long end
, int node
)
1215 struct vmem_altmap
*altmap
= to_vmem_altmap(start
);
1218 if (boot_cpu_has(X86_FEATURE_PSE
))
1219 err
= vmemmap_populate_hugepages(start
, end
, node
, altmap
);
1221 pr_err_once("%s: no cpu support for altmap allocations\n",
1225 err
= vmemmap_populate_basepages(start
, end
, node
);
1227 sync_global_pgds(start
, end
- 1);
1231 #if defined(CONFIG_MEMORY_HOTPLUG_SPARSE) && defined(CONFIG_HAVE_BOOTMEM_INFO_NODE)
1232 void register_page_bootmem_memmap(unsigned long section_nr
,
1233 struct page
*start_page
, unsigned long size
)
1235 unsigned long addr
= (unsigned long)start_page
;
1236 unsigned long end
= (unsigned long)(start_page
+ size
);
1241 unsigned int nr_pages
;
1244 for (; addr
< end
; addr
= next
) {
1247 pgd
= pgd_offset_k(addr
);
1248 if (pgd_none(*pgd
)) {
1249 next
= (addr
+ PAGE_SIZE
) & PAGE_MASK
;
1252 get_page_bootmem(section_nr
, pgd_page(*pgd
), MIX_SECTION_INFO
);
1254 pud
= pud_offset(pgd
, addr
);
1255 if (pud_none(*pud
)) {
1256 next
= (addr
+ PAGE_SIZE
) & PAGE_MASK
;
1259 get_page_bootmem(section_nr
, pud_page(*pud
), MIX_SECTION_INFO
);
1261 if (!boot_cpu_has(X86_FEATURE_PSE
)) {
1262 next
= (addr
+ PAGE_SIZE
) & PAGE_MASK
;
1263 pmd
= pmd_offset(pud
, addr
);
1266 get_page_bootmem(section_nr
, pmd_page(*pmd
),
1269 pte
= pte_offset_kernel(pmd
, addr
);
1272 get_page_bootmem(section_nr
, pte_page(*pte
),
1275 next
= pmd_addr_end(addr
, end
);
1277 pmd
= pmd_offset(pud
, addr
);
1281 nr_pages
= 1 << (get_order(PMD_SIZE
));
1282 page
= pmd_page(*pmd
);
1284 get_page_bootmem(section_nr
, page
++,
1291 void __meminit
vmemmap_populate_print_last(void)
1294 pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1295 addr_start
, addr_end
-1, p_start
, p_end
-1, node_start
);