Linux 4.11-rc5
[linux/fpc-iii.git] / arch / x86 / mm / mpx.c
blobcd44ae727df7f48ceba7fad00591c48cec151896
1 /*
2 * mpx.c - Memory Protection eXtensions
4 * Copyright (c) 2014, Intel Corporation.
5 * Qiaowei Ren <qiaowei.ren@intel.com>
6 * Dave Hansen <dave.hansen@intel.com>
7 */
8 #include <linux/kernel.h>
9 #include <linux/slab.h>
10 #include <linux/mm_types.h>
11 #include <linux/syscalls.h>
12 #include <linux/sched/sysctl.h>
14 #include <asm/insn.h>
15 #include <asm/mman.h>
16 #include <asm/mmu_context.h>
17 #include <asm/mpx.h>
18 #include <asm/processor.h>
19 #include <asm/fpu/internal.h>
21 #define CREATE_TRACE_POINTS
22 #include <asm/trace/mpx.h>
24 static inline unsigned long mpx_bd_size_bytes(struct mm_struct *mm)
26 if (is_64bit_mm(mm))
27 return MPX_BD_SIZE_BYTES_64;
28 else
29 return MPX_BD_SIZE_BYTES_32;
32 static inline unsigned long mpx_bt_size_bytes(struct mm_struct *mm)
34 if (is_64bit_mm(mm))
35 return MPX_BT_SIZE_BYTES_64;
36 else
37 return MPX_BT_SIZE_BYTES_32;
41 * This is really a simplified "vm_mmap". it only handles MPX
42 * bounds tables (the bounds directory is user-allocated).
44 static unsigned long mpx_mmap(unsigned long len)
46 struct mm_struct *mm = current->mm;
47 unsigned long addr, populate;
49 /* Only bounds table can be allocated here */
50 if (len != mpx_bt_size_bytes(mm))
51 return -EINVAL;
53 down_write(&mm->mmap_sem);
54 addr = do_mmap(NULL, 0, len, PROT_READ | PROT_WRITE,
55 MAP_ANONYMOUS | MAP_PRIVATE, VM_MPX, 0, &populate, NULL);
56 up_write(&mm->mmap_sem);
57 if (populate)
58 mm_populate(addr, populate);
60 return addr;
63 enum reg_type {
64 REG_TYPE_RM = 0,
65 REG_TYPE_INDEX,
66 REG_TYPE_BASE,
69 static int get_reg_offset(struct insn *insn, struct pt_regs *regs,
70 enum reg_type type)
72 int regno = 0;
74 static const int regoff[] = {
75 offsetof(struct pt_regs, ax),
76 offsetof(struct pt_regs, cx),
77 offsetof(struct pt_regs, dx),
78 offsetof(struct pt_regs, bx),
79 offsetof(struct pt_regs, sp),
80 offsetof(struct pt_regs, bp),
81 offsetof(struct pt_regs, si),
82 offsetof(struct pt_regs, di),
83 #ifdef CONFIG_X86_64
84 offsetof(struct pt_regs, r8),
85 offsetof(struct pt_regs, r9),
86 offsetof(struct pt_regs, r10),
87 offsetof(struct pt_regs, r11),
88 offsetof(struct pt_regs, r12),
89 offsetof(struct pt_regs, r13),
90 offsetof(struct pt_regs, r14),
91 offsetof(struct pt_regs, r15),
92 #endif
94 int nr_registers = ARRAY_SIZE(regoff);
96 * Don't possibly decode a 32-bit instructions as
97 * reading a 64-bit-only register.
99 if (IS_ENABLED(CONFIG_X86_64) && !insn->x86_64)
100 nr_registers -= 8;
102 switch (type) {
103 case REG_TYPE_RM:
104 regno = X86_MODRM_RM(insn->modrm.value);
105 if (X86_REX_B(insn->rex_prefix.value))
106 regno += 8;
107 break;
109 case REG_TYPE_INDEX:
110 regno = X86_SIB_INDEX(insn->sib.value);
111 if (X86_REX_X(insn->rex_prefix.value))
112 regno += 8;
113 break;
115 case REG_TYPE_BASE:
116 regno = X86_SIB_BASE(insn->sib.value);
117 if (X86_REX_B(insn->rex_prefix.value))
118 regno += 8;
119 break;
121 default:
122 pr_err("invalid register type");
123 BUG();
124 break;
127 if (regno >= nr_registers) {
128 WARN_ONCE(1, "decoded an instruction with an invalid register");
129 return -EINVAL;
131 return regoff[regno];
135 * return the address being referenced be instruction
136 * for rm=3 returning the content of the rm reg
137 * for rm!=3 calculates the address using SIB and Disp
139 static void __user *mpx_get_addr_ref(struct insn *insn, struct pt_regs *regs)
141 unsigned long addr, base, indx;
142 int addr_offset, base_offset, indx_offset;
143 insn_byte_t sib;
145 insn_get_modrm(insn);
146 insn_get_sib(insn);
147 sib = insn->sib.value;
149 if (X86_MODRM_MOD(insn->modrm.value) == 3) {
150 addr_offset = get_reg_offset(insn, regs, REG_TYPE_RM);
151 if (addr_offset < 0)
152 goto out_err;
153 addr = regs_get_register(regs, addr_offset);
154 } else {
155 if (insn->sib.nbytes) {
156 base_offset = get_reg_offset(insn, regs, REG_TYPE_BASE);
157 if (base_offset < 0)
158 goto out_err;
160 indx_offset = get_reg_offset(insn, regs, REG_TYPE_INDEX);
161 if (indx_offset < 0)
162 goto out_err;
164 base = regs_get_register(regs, base_offset);
165 indx = regs_get_register(regs, indx_offset);
166 addr = base + indx * (1 << X86_SIB_SCALE(sib));
167 } else {
168 addr_offset = get_reg_offset(insn, regs, REG_TYPE_RM);
169 if (addr_offset < 0)
170 goto out_err;
171 addr = regs_get_register(regs, addr_offset);
173 addr += insn->displacement.value;
175 return (void __user *)addr;
176 out_err:
177 return (void __user *)-1;
180 static int mpx_insn_decode(struct insn *insn,
181 struct pt_regs *regs)
183 unsigned char buf[MAX_INSN_SIZE];
184 int x86_64 = !test_thread_flag(TIF_IA32);
185 int not_copied;
186 int nr_copied;
188 not_copied = copy_from_user(buf, (void __user *)regs->ip, sizeof(buf));
189 nr_copied = sizeof(buf) - not_copied;
191 * The decoder _should_ fail nicely if we pass it a short buffer.
192 * But, let's not depend on that implementation detail. If we
193 * did not get anything, just error out now.
195 if (!nr_copied)
196 return -EFAULT;
197 insn_init(insn, buf, nr_copied, x86_64);
198 insn_get_length(insn);
200 * copy_from_user() tries to get as many bytes as we could see in
201 * the largest possible instruction. If the instruction we are
202 * after is shorter than that _and_ we attempt to copy from
203 * something unreadable, we might get a short read. This is OK
204 * as long as the read did not stop in the middle of the
205 * instruction. Check to see if we got a partial instruction.
207 if (nr_copied < insn->length)
208 return -EFAULT;
210 insn_get_opcode(insn);
212 * We only _really_ need to decode bndcl/bndcn/bndcu
213 * Error out on anything else.
215 if (insn->opcode.bytes[0] != 0x0f)
216 goto bad_opcode;
217 if ((insn->opcode.bytes[1] != 0x1a) &&
218 (insn->opcode.bytes[1] != 0x1b))
219 goto bad_opcode;
221 return 0;
222 bad_opcode:
223 return -EINVAL;
227 * If a bounds overflow occurs then a #BR is generated. This
228 * function decodes MPX instructions to get violation address
229 * and set this address into extended struct siginfo.
231 * Note that this is not a super precise way of doing this.
232 * Userspace could have, by the time we get here, written
233 * anything it wants in to the instructions. We can not
234 * trust anything about it. They might not be valid
235 * instructions or might encode invalid registers, etc...
237 * The caller is expected to kfree() the returned siginfo_t.
239 siginfo_t *mpx_generate_siginfo(struct pt_regs *regs)
241 const struct mpx_bndreg_state *bndregs;
242 const struct mpx_bndreg *bndreg;
243 siginfo_t *info = NULL;
244 struct insn insn;
245 uint8_t bndregno;
246 int err;
248 err = mpx_insn_decode(&insn, regs);
249 if (err)
250 goto err_out;
253 * We know at this point that we are only dealing with
254 * MPX instructions.
256 insn_get_modrm(&insn);
257 bndregno = X86_MODRM_REG(insn.modrm.value);
258 if (bndregno > 3) {
259 err = -EINVAL;
260 goto err_out;
262 /* get bndregs field from current task's xsave area */
263 bndregs = get_xsave_field_ptr(XFEATURE_MASK_BNDREGS);
264 if (!bndregs) {
265 err = -EINVAL;
266 goto err_out;
268 /* now go select the individual register in the set of 4 */
269 bndreg = &bndregs->bndreg[bndregno];
271 info = kzalloc(sizeof(*info), GFP_KERNEL);
272 if (!info) {
273 err = -ENOMEM;
274 goto err_out;
277 * The registers are always 64-bit, but the upper 32
278 * bits are ignored in 32-bit mode. Also, note that the
279 * upper bounds are architecturally represented in 1's
280 * complement form.
282 * The 'unsigned long' cast is because the compiler
283 * complains when casting from integers to different-size
284 * pointers.
286 info->si_lower = (void __user *)(unsigned long)bndreg->lower_bound;
287 info->si_upper = (void __user *)(unsigned long)~bndreg->upper_bound;
288 info->si_addr_lsb = 0;
289 info->si_signo = SIGSEGV;
290 info->si_errno = 0;
291 info->si_code = SEGV_BNDERR;
292 info->si_addr = mpx_get_addr_ref(&insn, regs);
294 * We were not able to extract an address from the instruction,
295 * probably because there was something invalid in it.
297 if (info->si_addr == (void __user *)-1) {
298 err = -EINVAL;
299 goto err_out;
301 trace_mpx_bounds_register_exception(info->si_addr, bndreg);
302 return info;
303 err_out:
304 /* info might be NULL, but kfree() handles that */
305 kfree(info);
306 return ERR_PTR(err);
309 static __user void *mpx_get_bounds_dir(void)
311 const struct mpx_bndcsr *bndcsr;
313 if (!cpu_feature_enabled(X86_FEATURE_MPX))
314 return MPX_INVALID_BOUNDS_DIR;
317 * The bounds directory pointer is stored in a register
318 * only accessible if we first do an xsave.
320 bndcsr = get_xsave_field_ptr(XFEATURE_MASK_BNDCSR);
321 if (!bndcsr)
322 return MPX_INVALID_BOUNDS_DIR;
325 * Make sure the register looks valid by checking the
326 * enable bit.
328 if (!(bndcsr->bndcfgu & MPX_BNDCFG_ENABLE_FLAG))
329 return MPX_INVALID_BOUNDS_DIR;
332 * Lastly, mask off the low bits used for configuration
333 * flags, and return the address of the bounds table.
335 return (void __user *)(unsigned long)
336 (bndcsr->bndcfgu & MPX_BNDCFG_ADDR_MASK);
339 int mpx_enable_management(void)
341 void __user *bd_base = MPX_INVALID_BOUNDS_DIR;
342 struct mm_struct *mm = current->mm;
343 int ret = 0;
346 * runtime in the userspace will be responsible for allocation of
347 * the bounds directory. Then, it will save the base of the bounds
348 * directory into XSAVE/XRSTOR Save Area and enable MPX through
349 * XRSTOR instruction.
351 * The copy_xregs_to_kernel() beneath get_xsave_field_ptr() is
352 * expected to be relatively expensive. Storing the bounds
353 * directory here means that we do not have to do xsave in the
354 * unmap path; we can just use mm->context.bd_addr instead.
356 bd_base = mpx_get_bounds_dir();
357 down_write(&mm->mmap_sem);
358 mm->context.bd_addr = bd_base;
359 if (mm->context.bd_addr == MPX_INVALID_BOUNDS_DIR)
360 ret = -ENXIO;
362 up_write(&mm->mmap_sem);
363 return ret;
366 int mpx_disable_management(void)
368 struct mm_struct *mm = current->mm;
370 if (!cpu_feature_enabled(X86_FEATURE_MPX))
371 return -ENXIO;
373 down_write(&mm->mmap_sem);
374 mm->context.bd_addr = MPX_INVALID_BOUNDS_DIR;
375 up_write(&mm->mmap_sem);
376 return 0;
379 static int mpx_cmpxchg_bd_entry(struct mm_struct *mm,
380 unsigned long *curval,
381 unsigned long __user *addr,
382 unsigned long old_val, unsigned long new_val)
384 int ret;
386 * user_atomic_cmpxchg_inatomic() actually uses sizeof()
387 * the pointer that we pass to it to figure out how much
388 * data to cmpxchg. We have to be careful here not to
389 * pass a pointer to a 64-bit data type when we only want
390 * a 32-bit copy.
392 if (is_64bit_mm(mm)) {
393 ret = user_atomic_cmpxchg_inatomic(curval,
394 addr, old_val, new_val);
395 } else {
396 u32 uninitialized_var(curval_32);
397 u32 old_val_32 = old_val;
398 u32 new_val_32 = new_val;
399 u32 __user *addr_32 = (u32 __user *)addr;
401 ret = user_atomic_cmpxchg_inatomic(&curval_32,
402 addr_32, old_val_32, new_val_32);
403 *curval = curval_32;
405 return ret;
409 * With 32-bit mode, a bounds directory is 4MB, and the size of each
410 * bounds table is 16KB. With 64-bit mode, a bounds directory is 2GB,
411 * and the size of each bounds table is 4MB.
413 static int allocate_bt(struct mm_struct *mm, long __user *bd_entry)
415 unsigned long expected_old_val = 0;
416 unsigned long actual_old_val = 0;
417 unsigned long bt_addr;
418 unsigned long bd_new_entry;
419 int ret = 0;
422 * Carve the virtual space out of userspace for the new
423 * bounds table:
425 bt_addr = mpx_mmap(mpx_bt_size_bytes(mm));
426 if (IS_ERR((void *)bt_addr))
427 return PTR_ERR((void *)bt_addr);
429 * Set the valid flag (kinda like _PAGE_PRESENT in a pte)
431 bd_new_entry = bt_addr | MPX_BD_ENTRY_VALID_FLAG;
434 * Go poke the address of the new bounds table in to the
435 * bounds directory entry out in userspace memory. Note:
436 * we may race with another CPU instantiating the same table.
437 * In that case the cmpxchg will see an unexpected
438 * 'actual_old_val'.
440 * This can fault, but that's OK because we do not hold
441 * mmap_sem at this point, unlike some of the other part
442 * of the MPX code that have to pagefault_disable().
444 ret = mpx_cmpxchg_bd_entry(mm, &actual_old_val, bd_entry,
445 expected_old_val, bd_new_entry);
446 if (ret)
447 goto out_unmap;
450 * The user_atomic_cmpxchg_inatomic() will only return nonzero
451 * for faults, *not* if the cmpxchg itself fails. Now we must
452 * verify that the cmpxchg itself completed successfully.
455 * We expected an empty 'expected_old_val', but instead found
456 * an apparently valid entry. Assume we raced with another
457 * thread to instantiate this table and desclare succecss.
459 if (actual_old_val & MPX_BD_ENTRY_VALID_FLAG) {
460 ret = 0;
461 goto out_unmap;
464 * We found a non-empty bd_entry but it did not have the
465 * VALID_FLAG set. Return an error which will result in
466 * a SEGV since this probably means that somebody scribbled
467 * some invalid data in to a bounds table.
469 if (expected_old_val != actual_old_val) {
470 ret = -EINVAL;
471 goto out_unmap;
473 trace_mpx_new_bounds_table(bt_addr);
474 return 0;
475 out_unmap:
476 vm_munmap(bt_addr, mpx_bt_size_bytes(mm));
477 return ret;
481 * When a BNDSTX instruction attempts to save bounds to a bounds
482 * table, it will first attempt to look up the table in the
483 * first-level bounds directory. If it does not find a table in
484 * the directory, a #BR is generated and we get here in order to
485 * allocate a new table.
487 * With 32-bit mode, the size of BD is 4MB, and the size of each
488 * bound table is 16KB. With 64-bit mode, the size of BD is 2GB,
489 * and the size of each bound table is 4MB.
491 static int do_mpx_bt_fault(void)
493 unsigned long bd_entry, bd_base;
494 const struct mpx_bndcsr *bndcsr;
495 struct mm_struct *mm = current->mm;
497 bndcsr = get_xsave_field_ptr(XFEATURE_MASK_BNDCSR);
498 if (!bndcsr)
499 return -EINVAL;
501 * Mask off the preserve and enable bits
503 bd_base = bndcsr->bndcfgu & MPX_BNDCFG_ADDR_MASK;
505 * The hardware provides the address of the missing or invalid
506 * entry via BNDSTATUS, so we don't have to go look it up.
508 bd_entry = bndcsr->bndstatus & MPX_BNDSTA_ADDR_MASK;
510 * Make sure the directory entry is within where we think
511 * the directory is.
513 if ((bd_entry < bd_base) ||
514 (bd_entry >= bd_base + mpx_bd_size_bytes(mm)))
515 return -EINVAL;
517 return allocate_bt(mm, (long __user *)bd_entry);
520 int mpx_handle_bd_fault(void)
523 * Userspace never asked us to manage the bounds tables,
524 * so refuse to help.
526 if (!kernel_managing_mpx_tables(current->mm))
527 return -EINVAL;
529 if (do_mpx_bt_fault()) {
530 force_sig(SIGSEGV, current);
532 * The force_sig() is essentially "handling" this
533 * exception, so we do not pass up the error
534 * from do_mpx_bt_fault().
537 return 0;
541 * A thin wrapper around get_user_pages(). Returns 0 if the
542 * fault was resolved or -errno if not.
544 static int mpx_resolve_fault(long __user *addr, int write)
546 long gup_ret;
547 int nr_pages = 1;
549 gup_ret = get_user_pages((unsigned long)addr, nr_pages,
550 write ? FOLL_WRITE : 0, NULL, NULL);
552 * get_user_pages() returns number of pages gotten.
553 * 0 means we failed to fault in and get anything,
554 * probably because 'addr' is bad.
556 if (!gup_ret)
557 return -EFAULT;
558 /* Other error, return it */
559 if (gup_ret < 0)
560 return gup_ret;
561 /* must have gup'd a page and gup_ret>0, success */
562 return 0;
565 static unsigned long mpx_bd_entry_to_bt_addr(struct mm_struct *mm,
566 unsigned long bd_entry)
568 unsigned long bt_addr = bd_entry;
569 int align_to_bytes;
571 * Bit 0 in a bt_entry is always the valid bit.
573 bt_addr &= ~MPX_BD_ENTRY_VALID_FLAG;
575 * Tables are naturally aligned at 8-byte boundaries
576 * on 64-bit and 4-byte boundaries on 32-bit. The
577 * documentation makes it appear that the low bits
578 * are ignored by the hardware, so we do the same.
580 if (is_64bit_mm(mm))
581 align_to_bytes = 8;
582 else
583 align_to_bytes = 4;
584 bt_addr &= ~(align_to_bytes-1);
585 return bt_addr;
589 * We only want to do a 4-byte get_user() on 32-bit. Otherwise,
590 * we might run off the end of the bounds table if we are on
591 * a 64-bit kernel and try to get 8 bytes.
593 static int get_user_bd_entry(struct mm_struct *mm, unsigned long *bd_entry_ret,
594 long __user *bd_entry_ptr)
596 u32 bd_entry_32;
597 int ret;
599 if (is_64bit_mm(mm))
600 return get_user(*bd_entry_ret, bd_entry_ptr);
603 * Note that get_user() uses the type of the *pointer* to
604 * establish the size of the get, not the destination.
606 ret = get_user(bd_entry_32, (u32 __user *)bd_entry_ptr);
607 *bd_entry_ret = bd_entry_32;
608 return ret;
612 * Get the base of bounds tables pointed by specific bounds
613 * directory entry.
615 static int get_bt_addr(struct mm_struct *mm,
616 long __user *bd_entry_ptr,
617 unsigned long *bt_addr_result)
619 int ret;
620 int valid_bit;
621 unsigned long bd_entry;
622 unsigned long bt_addr;
624 if (!access_ok(VERIFY_READ, (bd_entry_ptr), sizeof(*bd_entry_ptr)))
625 return -EFAULT;
627 while (1) {
628 int need_write = 0;
630 pagefault_disable();
631 ret = get_user_bd_entry(mm, &bd_entry, bd_entry_ptr);
632 pagefault_enable();
633 if (!ret)
634 break;
635 if (ret == -EFAULT)
636 ret = mpx_resolve_fault(bd_entry_ptr, need_write);
638 * If we could not resolve the fault, consider it
639 * userspace's fault and error out.
641 if (ret)
642 return ret;
645 valid_bit = bd_entry & MPX_BD_ENTRY_VALID_FLAG;
646 bt_addr = mpx_bd_entry_to_bt_addr(mm, bd_entry);
649 * When the kernel is managing bounds tables, a bounds directory
650 * entry will either have a valid address (plus the valid bit)
651 * *OR* be completely empty. If we see a !valid entry *and* some
652 * data in the address field, we know something is wrong. This
653 * -EINVAL return will cause a SIGSEGV.
655 if (!valid_bit && bt_addr)
656 return -EINVAL;
658 * Do we have an completely zeroed bt entry? That is OK. It
659 * just means there was no bounds table for this memory. Make
660 * sure to distinguish this from -EINVAL, which will cause
661 * a SEGV.
663 if (!valid_bit)
664 return -ENOENT;
666 *bt_addr_result = bt_addr;
667 return 0;
670 static inline int bt_entry_size_bytes(struct mm_struct *mm)
672 if (is_64bit_mm(mm))
673 return MPX_BT_ENTRY_BYTES_64;
674 else
675 return MPX_BT_ENTRY_BYTES_32;
679 * Take a virtual address and turns it in to the offset in bytes
680 * inside of the bounds table where the bounds table entry
681 * controlling 'addr' can be found.
683 static unsigned long mpx_get_bt_entry_offset_bytes(struct mm_struct *mm,
684 unsigned long addr)
686 unsigned long bt_table_nr_entries;
687 unsigned long offset = addr;
689 if (is_64bit_mm(mm)) {
690 /* Bottom 3 bits are ignored on 64-bit */
691 offset >>= 3;
692 bt_table_nr_entries = MPX_BT_NR_ENTRIES_64;
693 } else {
694 /* Bottom 2 bits are ignored on 32-bit */
695 offset >>= 2;
696 bt_table_nr_entries = MPX_BT_NR_ENTRIES_32;
699 * We know the size of the table in to which we are
700 * indexing, and we have eliminated all the low bits
701 * which are ignored for indexing.
703 * Mask out all the high bits which we do not need
704 * to index in to the table. Note that the tables
705 * are always powers of two so this gives us a proper
706 * mask.
708 offset &= (bt_table_nr_entries-1);
710 * We now have an entry offset in terms of *entries* in
711 * the table. We need to scale it back up to bytes.
713 offset *= bt_entry_size_bytes(mm);
714 return offset;
718 * How much virtual address space does a single bounds
719 * directory entry cover?
721 * Note, we need a long long because 4GB doesn't fit in
722 * to a long on 32-bit.
724 static inline unsigned long bd_entry_virt_space(struct mm_struct *mm)
726 unsigned long long virt_space;
727 unsigned long long GB = (1ULL << 30);
730 * This covers 32-bit emulation as well as 32-bit kernels
731 * running on 64-bit hardware.
733 if (!is_64bit_mm(mm))
734 return (4ULL * GB) / MPX_BD_NR_ENTRIES_32;
737 * 'x86_virt_bits' returns what the hardware is capable
738 * of, and returns the full >32-bit address space when
739 * running 32-bit kernels on 64-bit hardware.
741 virt_space = (1ULL << boot_cpu_data.x86_virt_bits);
742 return virt_space / MPX_BD_NR_ENTRIES_64;
746 * Free the backing physical pages of bounds table 'bt_addr'.
747 * Assume start...end is within that bounds table.
749 static noinline int zap_bt_entries_mapping(struct mm_struct *mm,
750 unsigned long bt_addr,
751 unsigned long start_mapping, unsigned long end_mapping)
753 struct vm_area_struct *vma;
754 unsigned long addr, len;
755 unsigned long start;
756 unsigned long end;
759 * if we 'end' on a boundary, the offset will be 0 which
760 * is not what we want. Back it up a byte to get the
761 * last bt entry. Then once we have the entry itself,
762 * move 'end' back up by the table entry size.
764 start = bt_addr + mpx_get_bt_entry_offset_bytes(mm, start_mapping);
765 end = bt_addr + mpx_get_bt_entry_offset_bytes(mm, end_mapping - 1);
767 * Move end back up by one entry. Among other things
768 * this ensures that it remains page-aligned and does
769 * not screw up zap_page_range()
771 end += bt_entry_size_bytes(mm);
774 * Find the first overlapping vma. If vma->vm_start > start, there
775 * will be a hole in the bounds table. This -EINVAL return will
776 * cause a SIGSEGV.
778 vma = find_vma(mm, start);
779 if (!vma || vma->vm_start > start)
780 return -EINVAL;
783 * A NUMA policy on a VM_MPX VMA could cause this bounds table to
784 * be split. So we need to look across the entire 'start -> end'
785 * range of this bounds table, find all of the VM_MPX VMAs, and
786 * zap only those.
788 addr = start;
789 while (vma && vma->vm_start < end) {
791 * We followed a bounds directory entry down
792 * here. If we find a non-MPX VMA, that's bad,
793 * so stop immediately and return an error. This
794 * probably results in a SIGSEGV.
796 if (!(vma->vm_flags & VM_MPX))
797 return -EINVAL;
799 len = min(vma->vm_end, end) - addr;
800 zap_page_range(vma, addr, len);
801 trace_mpx_unmap_zap(addr, addr+len);
803 vma = vma->vm_next;
804 addr = vma->vm_start;
806 return 0;
809 static unsigned long mpx_get_bd_entry_offset(struct mm_struct *mm,
810 unsigned long addr)
813 * There are several ways to derive the bd offsets. We
814 * use the following approach here:
815 * 1. We know the size of the virtual address space
816 * 2. We know the number of entries in a bounds table
817 * 3. We know that each entry covers a fixed amount of
818 * virtual address space.
819 * So, we can just divide the virtual address by the
820 * virtual space used by one entry to determine which
821 * entry "controls" the given virtual address.
823 if (is_64bit_mm(mm)) {
824 int bd_entry_size = 8; /* 64-bit pointer */
826 * Take the 64-bit addressing hole in to account.
828 addr &= ((1UL << boot_cpu_data.x86_virt_bits) - 1);
829 return (addr / bd_entry_virt_space(mm)) * bd_entry_size;
830 } else {
831 int bd_entry_size = 4; /* 32-bit pointer */
833 * 32-bit has no hole so this case needs no mask
835 return (addr / bd_entry_virt_space(mm)) * bd_entry_size;
838 * The two return calls above are exact copies. If we
839 * pull out a single copy and put it in here, gcc won't
840 * realize that we're doing a power-of-2 divide and use
841 * shifts. It uses a real divide. If we put them up
842 * there, it manages to figure it out (gcc 4.8.3).
846 static int unmap_entire_bt(struct mm_struct *mm,
847 long __user *bd_entry, unsigned long bt_addr)
849 unsigned long expected_old_val = bt_addr | MPX_BD_ENTRY_VALID_FLAG;
850 unsigned long uninitialized_var(actual_old_val);
851 int ret;
853 while (1) {
854 int need_write = 1;
855 unsigned long cleared_bd_entry = 0;
857 pagefault_disable();
858 ret = mpx_cmpxchg_bd_entry(mm, &actual_old_val,
859 bd_entry, expected_old_val, cleared_bd_entry);
860 pagefault_enable();
861 if (!ret)
862 break;
863 if (ret == -EFAULT)
864 ret = mpx_resolve_fault(bd_entry, need_write);
866 * If we could not resolve the fault, consider it
867 * userspace's fault and error out.
869 if (ret)
870 return ret;
873 * The cmpxchg was performed, check the results.
875 if (actual_old_val != expected_old_val) {
877 * Someone else raced with us to unmap the table.
878 * That is OK, since we were both trying to do
879 * the same thing. Declare success.
881 if (!actual_old_val)
882 return 0;
884 * Something messed with the bounds directory
885 * entry. We hold mmap_sem for read or write
886 * here, so it could not be a _new_ bounds table
887 * that someone just allocated. Something is
888 * wrong, so pass up the error and SIGSEGV.
890 return -EINVAL;
893 * Note, we are likely being called under do_munmap() already. To
894 * avoid recursion, do_munmap() will check whether it comes
895 * from one bounds table through VM_MPX flag.
897 return do_munmap(mm, bt_addr, mpx_bt_size_bytes(mm), NULL);
900 static int try_unmap_single_bt(struct mm_struct *mm,
901 unsigned long start, unsigned long end)
903 struct vm_area_struct *next;
904 struct vm_area_struct *prev;
906 * "bta" == Bounds Table Area: the area controlled by the
907 * bounds table that we are unmapping.
909 unsigned long bta_start_vaddr = start & ~(bd_entry_virt_space(mm)-1);
910 unsigned long bta_end_vaddr = bta_start_vaddr + bd_entry_virt_space(mm);
911 unsigned long uninitialized_var(bt_addr);
912 void __user *bde_vaddr;
913 int ret;
915 * We already unlinked the VMAs from the mm's rbtree so 'start'
916 * is guaranteed to be in a hole. This gets us the first VMA
917 * before the hole in to 'prev' and the next VMA after the hole
918 * in to 'next'.
920 next = find_vma_prev(mm, start, &prev);
922 * Do not count other MPX bounds table VMAs as neighbors.
923 * Although theoretically possible, we do not allow bounds
924 * tables for bounds tables so our heads do not explode.
925 * If we count them as neighbors here, we may end up with
926 * lots of tables even though we have no actual table
927 * entries in use.
929 while (next && (next->vm_flags & VM_MPX))
930 next = next->vm_next;
931 while (prev && (prev->vm_flags & VM_MPX))
932 prev = prev->vm_prev;
934 * We know 'start' and 'end' lie within an area controlled
935 * by a single bounds table. See if there are any other
936 * VMAs controlled by that bounds table. If there are not
937 * then we can "expand" the are we are unmapping to possibly
938 * cover the entire table.
940 next = find_vma_prev(mm, start, &prev);
941 if ((!prev || prev->vm_end <= bta_start_vaddr) &&
942 (!next || next->vm_start >= bta_end_vaddr)) {
944 * No neighbor VMAs controlled by same bounds
945 * table. Try to unmap the whole thing
947 start = bta_start_vaddr;
948 end = bta_end_vaddr;
951 bde_vaddr = mm->context.bd_addr + mpx_get_bd_entry_offset(mm, start);
952 ret = get_bt_addr(mm, bde_vaddr, &bt_addr);
954 * No bounds table there, so nothing to unmap.
956 if (ret == -ENOENT) {
957 ret = 0;
958 return 0;
960 if (ret)
961 return ret;
963 * We are unmapping an entire table. Either because the
964 * unmap that started this whole process was large enough
965 * to cover an entire table, or that the unmap was small
966 * but was the area covered by a bounds table.
968 if ((start == bta_start_vaddr) &&
969 (end == bta_end_vaddr))
970 return unmap_entire_bt(mm, bde_vaddr, bt_addr);
971 return zap_bt_entries_mapping(mm, bt_addr, start, end);
974 static int mpx_unmap_tables(struct mm_struct *mm,
975 unsigned long start, unsigned long end)
977 unsigned long one_unmap_start;
978 trace_mpx_unmap_search(start, end);
980 one_unmap_start = start;
981 while (one_unmap_start < end) {
982 int ret;
983 unsigned long next_unmap_start = ALIGN(one_unmap_start+1,
984 bd_entry_virt_space(mm));
985 unsigned long one_unmap_end = end;
987 * if the end is beyond the current bounds table,
988 * move it back so we only deal with a single one
989 * at a time
991 if (one_unmap_end > next_unmap_start)
992 one_unmap_end = next_unmap_start;
993 ret = try_unmap_single_bt(mm, one_unmap_start, one_unmap_end);
994 if (ret)
995 return ret;
997 one_unmap_start = next_unmap_start;
999 return 0;
1003 * Free unused bounds tables covered in a virtual address region being
1004 * munmap()ed. Assume end > start.
1006 * This function will be called by do_munmap(), and the VMAs covering
1007 * the virtual address region start...end have already been split if
1008 * necessary, and the 'vma' is the first vma in this range (start -> end).
1010 void mpx_notify_unmap(struct mm_struct *mm, struct vm_area_struct *vma,
1011 unsigned long start, unsigned long end)
1013 int ret;
1016 * Refuse to do anything unless userspace has asked
1017 * the kernel to help manage the bounds tables,
1019 if (!kernel_managing_mpx_tables(current->mm))
1020 return;
1022 * This will look across the entire 'start -> end' range,
1023 * and find all of the non-VM_MPX VMAs.
1025 * To avoid recursion, if a VM_MPX vma is found in the range
1026 * (start->end), we will not continue follow-up work. This
1027 * recursion represents having bounds tables for bounds tables,
1028 * which should not occur normally. Being strict about it here
1029 * helps ensure that we do not have an exploitable stack overflow.
1031 do {
1032 if (vma->vm_flags & VM_MPX)
1033 return;
1034 vma = vma->vm_next;
1035 } while (vma && vma->vm_start < end);
1037 ret = mpx_unmap_tables(mm, start, end);
1038 if (ret)
1039 force_sig(SIGSEGV, current);