1 #define pr_fmt(fmt) "efi: " fmt
3 #include <linux/init.h>
4 #include <linux/kernel.h>
5 #include <linux/string.h>
6 #include <linux/time.h>
7 #include <linux/types.h>
9 #include <linux/slab.h>
10 #include <linux/memblock.h>
11 #include <linux/bootmem.h>
12 #include <linux/acpi.h>
13 #include <linux/dmi.h>
15 #include <asm/uv/uv.h>
17 #define EFI_MIN_RESERVE 5120
19 #define EFI_DUMMY_GUID \
20 EFI_GUID(0x4424ac57, 0xbe4b, 0x47dd, 0x9e, 0x97, 0xed, 0x50, 0xf0, 0x9f, 0x92, 0xa9)
22 static efi_char16_t efi_dummy_name
[6] = { 'D', 'U', 'M', 'M', 'Y', 0 };
24 static bool efi_no_storage_paranoia
;
27 * Some firmware implementations refuse to boot if there's insufficient
28 * space in the variable store. The implementation of garbage collection
29 * in some FW versions causes stale (deleted) variables to take up space
30 * longer than intended and space is only freed once the store becomes
31 * almost completely full.
33 * Enabling this option disables the space checks in
34 * efi_query_variable_store() and forces garbage collection.
36 * Only enable this option if deleting EFI variables does not free up
37 * space in your variable store, e.g. if despite deleting variables
38 * you're unable to create new ones.
40 static int __init
setup_storage_paranoia(char *arg
)
42 efi_no_storage_paranoia
= true;
45 early_param("efi_no_storage_paranoia", setup_storage_paranoia
);
48 * Deleting the dummy variable which kicks off garbage collection
50 void efi_delete_dummy_variable(void)
52 efi
.set_variable(efi_dummy_name
, &EFI_DUMMY_GUID
,
53 EFI_VARIABLE_NON_VOLATILE
|
54 EFI_VARIABLE_BOOTSERVICE_ACCESS
|
55 EFI_VARIABLE_RUNTIME_ACCESS
,
60 * In the nonblocking case we do not attempt to perform garbage
61 * collection if we do not have enough free space. Rather, we do the
62 * bare minimum check and give up immediately if the available space
63 * is below EFI_MIN_RESERVE.
65 * This function is intended to be small and simple because it is
66 * invoked from crash handler paths.
69 query_variable_store_nonblocking(u32 attributes
, unsigned long size
)
72 u64 storage_size
, remaining_size
, max_size
;
74 status
= efi
.query_variable_info_nonblocking(attributes
, &storage_size
,
77 if (status
!= EFI_SUCCESS
)
80 if (remaining_size
- size
< EFI_MIN_RESERVE
)
81 return EFI_OUT_OF_RESOURCES
;
87 * Some firmware implementations refuse to boot if there's insufficient space
88 * in the variable store. Ensure that we never use more than a safe limit.
90 * Return EFI_SUCCESS if it is safe to write 'size' bytes to the variable
93 efi_status_t
efi_query_variable_store(u32 attributes
, unsigned long size
,
97 u64 storage_size
, remaining_size
, max_size
;
99 if (!(attributes
& EFI_VARIABLE_NON_VOLATILE
))
103 return query_variable_store_nonblocking(attributes
, size
);
105 status
= efi
.query_variable_info(attributes
, &storage_size
,
106 &remaining_size
, &max_size
);
107 if (status
!= EFI_SUCCESS
)
111 * We account for that by refusing the write if permitting it would
112 * reduce the available space to under 5KB. This figure was provided by
113 * Samsung, so should be safe.
115 if ((remaining_size
- size
< EFI_MIN_RESERVE
) &&
116 !efi_no_storage_paranoia
) {
119 * Triggering garbage collection may require that the firmware
120 * generate a real EFI_OUT_OF_RESOURCES error. We can force
121 * that by attempting to use more space than is available.
123 unsigned long dummy_size
= remaining_size
+ 1024;
124 void *dummy
= kzalloc(dummy_size
, GFP_ATOMIC
);
127 return EFI_OUT_OF_RESOURCES
;
129 status
= efi
.set_variable(efi_dummy_name
, &EFI_DUMMY_GUID
,
130 EFI_VARIABLE_NON_VOLATILE
|
131 EFI_VARIABLE_BOOTSERVICE_ACCESS
|
132 EFI_VARIABLE_RUNTIME_ACCESS
,
135 if (status
== EFI_SUCCESS
) {
137 * This should have failed, so if it didn't make sure
138 * that we delete it...
140 efi_delete_dummy_variable();
146 * The runtime code may now have triggered a garbage collection
147 * run, so check the variable info again
149 status
= efi
.query_variable_info(attributes
, &storage_size
,
150 &remaining_size
, &max_size
);
152 if (status
!= EFI_SUCCESS
)
156 * There still isn't enough room, so return an error
158 if (remaining_size
- size
< EFI_MIN_RESERVE
)
159 return EFI_OUT_OF_RESOURCES
;
164 EXPORT_SYMBOL_GPL(efi_query_variable_store
);
167 * The UEFI specification makes it clear that the operating system is
168 * free to do whatever it wants with boot services code after
169 * ExitBootServices() has been called. Ignoring this recommendation a
170 * significant bunch of EFI implementations continue calling into boot
171 * services code (SetVirtualAddressMap). In order to work around such
172 * buggy implementations we reserve boot services region during EFI
173 * init and make sure it stays executable. Then, after
174 * SetVirtualAddressMap(), it is discarded.
176 * However, some boot services regions contain data that is required
177 * by drivers, so we need to track which memory ranges can never be
178 * freed. This is done by tagging those regions with the
179 * EFI_MEMORY_RUNTIME attribute.
181 * Any driver that wants to mark a region as reserved must use
182 * efi_mem_reserve() which will insert a new EFI memory descriptor
183 * into efi.memmap (splitting existing regions if necessary) and tag
184 * it with EFI_MEMORY_RUNTIME.
186 void __init
efi_arch_mem_reserve(phys_addr_t addr
, u64 size
)
188 phys_addr_t new_phys
, new_size
;
189 struct efi_mem_range mr
;
190 efi_memory_desc_t md
;
194 if (efi_mem_desc_lookup(addr
, &md
)) {
195 pr_err("Failed to lookup EFI memory descriptor for %pa\n", &addr
);
199 if (addr
+ size
> md
.phys_addr
+ (md
.num_pages
<< EFI_PAGE_SHIFT
)) {
200 pr_err("Region spans EFI memory descriptors, %pa\n", &addr
);
204 size
+= addr
% EFI_PAGE_SIZE
;
205 size
= round_up(size
, EFI_PAGE_SIZE
);
206 addr
= round_down(addr
, EFI_PAGE_SIZE
);
208 mr
.range
.start
= addr
;
209 mr
.range
.end
= addr
+ size
- 1;
210 mr
.attribute
= md
.attribute
| EFI_MEMORY_RUNTIME
;
212 num_entries
= efi_memmap_split_count(&md
, &mr
.range
);
213 num_entries
+= efi
.memmap
.nr_map
;
215 new_size
= efi
.memmap
.desc_size
* num_entries
;
217 new_phys
= efi_memmap_alloc(num_entries
);
219 pr_err("Could not allocate boot services memmap\n");
223 new = early_memremap(new_phys
, new_size
);
225 pr_err("Failed to map new boot services memmap\n");
229 efi_memmap_insert(&efi
.memmap
, new, &mr
);
230 early_memunmap(new, new_size
);
232 efi_memmap_install(new_phys
, num_entries
);
236 * Helper function for efi_reserve_boot_services() to figure out if we
237 * can free regions in efi_free_boot_services().
239 * Use this function to ensure we do not free regions owned by somebody
240 * else. We must only reserve (and then free) regions:
242 * - Not within any part of the kernel
243 * - Not the BIOS reserved area (E820_RESERVED, E820_NVS, etc)
245 static bool can_free_region(u64 start
, u64 size
)
247 if (start
+ size
> __pa_symbol(_text
) && start
<= __pa_symbol(_end
))
250 if (!e820_all_mapped(start
, start
+size
, E820_RAM
))
256 void __init
efi_reserve_boot_services(void)
258 efi_memory_desc_t
*md
;
260 for_each_efi_memory_desc(md
) {
261 u64 start
= md
->phys_addr
;
262 u64 size
= md
->num_pages
<< EFI_PAGE_SHIFT
;
263 bool already_reserved
;
265 if (md
->type
!= EFI_BOOT_SERVICES_CODE
&&
266 md
->type
!= EFI_BOOT_SERVICES_DATA
)
269 already_reserved
= memblock_is_region_reserved(start
, size
);
272 * Because the following memblock_reserve() is paired
273 * with free_bootmem_late() for this region in
274 * efi_free_boot_services(), we must be extremely
275 * careful not to reserve, and subsequently free,
276 * critical regions of memory (like the kernel image) or
277 * those regions that somebody else has already
280 * A good example of a critical region that must not be
281 * freed is page zero (first 4Kb of memory), which may
282 * contain boot services code/data but is marked
283 * E820_RESERVED by trim_bios_range().
285 if (!already_reserved
) {
286 memblock_reserve(start
, size
);
289 * If we are the first to reserve the region, no
290 * one else cares about it. We own it and can
293 if (can_free_region(start
, size
))
298 * We don't own the region. We must not free it.
300 * Setting this bit for a boot services region really
301 * doesn't make sense as far as the firmware is
302 * concerned, but it does provide us with a way to tag
303 * those regions that must not be paired with
304 * free_bootmem_late().
306 md
->attribute
|= EFI_MEMORY_RUNTIME
;
310 void __init
efi_free_boot_services(void)
312 phys_addr_t new_phys
, new_size
;
313 efi_memory_desc_t
*md
;
317 for_each_efi_memory_desc(md
) {
318 unsigned long long start
= md
->phys_addr
;
319 unsigned long long size
= md
->num_pages
<< EFI_PAGE_SHIFT
;
322 if (md
->type
!= EFI_BOOT_SERVICES_CODE
&&
323 md
->type
!= EFI_BOOT_SERVICES_DATA
) {
328 /* Do not free, someone else owns it: */
329 if (md
->attribute
& EFI_MEMORY_RUNTIME
) {
335 * Nasty quirk: if all sub-1MB memory is used for boot
336 * services, we can get here without having allocated the
337 * real mode trampoline. It's too late to hand boot services
338 * memory back to the memblock allocator, so instead
339 * try to manually allocate the trampoline if needed.
341 * I've seen this on a Dell XPS 13 9350 with firmware
342 * 1.4.4 with SGX enabled booting Linux via Fedora 24's
343 * grub2-efi on a hard disk. (And no, I don't know why
344 * this happened, but Linux should still try to boot rather
347 rm_size
= real_mode_size_needed();
348 if (rm_size
&& (start
+ rm_size
) < (1<<20) && size
>= rm_size
) {
349 set_real_mode_mem(start
, rm_size
);
354 free_bootmem_late(start
, size
);
357 new_size
= efi
.memmap
.desc_size
* num_entries
;
358 new_phys
= efi_memmap_alloc(num_entries
);
360 pr_err("Failed to allocate new EFI memmap\n");
364 new = memremap(new_phys
, new_size
, MEMREMAP_WB
);
366 pr_err("Failed to map new EFI memmap\n");
371 * Build a new EFI memmap that excludes any boot services
372 * regions that are not tagged EFI_MEMORY_RUNTIME, since those
373 * regions have now been freed.
376 for_each_efi_memory_desc(md
) {
377 if (!(md
->attribute
& EFI_MEMORY_RUNTIME
) &&
378 (md
->type
== EFI_BOOT_SERVICES_CODE
||
379 md
->type
== EFI_BOOT_SERVICES_DATA
))
382 memcpy(new_md
, md
, efi
.memmap
.desc_size
);
383 new_md
+= efi
.memmap
.desc_size
;
388 if (efi_memmap_install(new_phys
, num_entries
)) {
389 pr_err("Could not install new EFI memmap\n");
395 * A number of config table entries get remapped to virtual addresses
396 * after entering EFI virtual mode. However, the kexec kernel requires
397 * their physical addresses therefore we pass them via setup_data and
398 * correct those entries to their respective physical addresses here.
400 * Currently only handles smbios which is necessary for some firmware
403 int __init
efi_reuse_config(u64 tables
, int nr_tables
)
407 struct efi_setup_data
*data
;
412 if (!efi_enabled(EFI_64BIT
))
415 data
= early_memremap(efi_setup
, sizeof(*data
));
424 sz
= sizeof(efi_config_table_64_t
);
426 p
= tablep
= early_memremap(tables
, nr_tables
* sz
);
428 pr_err("Could not map Configuration table!\n");
433 for (i
= 0; i
< efi
.systab
->nr_tables
; i
++) {
436 guid
= ((efi_config_table_64_t
*)p
)->guid
;
438 if (!efi_guidcmp(guid
, SMBIOS_TABLE_GUID
))
439 ((efi_config_table_64_t
*)p
)->table
= data
->smbios
;
442 early_memunmap(tablep
, nr_tables
* sz
);
445 early_memunmap(data
, sizeof(*data
));
450 static const struct dmi_system_id sgi_uv1_dmi
[] = {
452 { DMI_MATCH(DMI_PRODUCT_NAME
, "Stoutland Platform"),
453 DMI_MATCH(DMI_PRODUCT_VERSION
, "1.0"),
454 DMI_MATCH(DMI_BIOS_VENDOR
, "SGI.COM"),
457 { } /* NULL entry stops DMI scanning */
460 void __init
efi_apply_memmap_quirks(void)
463 * Once setup is done earlier, unmap the EFI memory map on mismatched
464 * firmware/kernel architectures since there is no support for runtime
467 if (!efi_runtime_supported()) {
468 pr_info("Setup done, disabling due to 32/64-bit mismatch\n");
472 /* UV2+ BIOS has a fix for this issue. UV1 still needs the quirk. */
473 if (dmi_check_system(sgi_uv1_dmi
))
474 set_bit(EFI_OLD_MEMMAP
, &efi
.flags
);
478 * For most modern platforms the preferred method of powering off is via
479 * ACPI. However, there are some that are known to require the use of
480 * EFI runtime services and for which ACPI does not work at all.
482 * Using EFI is a last resort, to be used only if no other option
485 bool efi_reboot_required(void)
487 if (!acpi_gbl_reduced_hardware
)
490 efi_reboot_quirk_mode
= EFI_RESET_WARM
;
494 bool efi_poweroff_required(void)
496 return acpi_gbl_reduced_hardware
|| acpi_no_s5
;