Linux 4.11-rc5
[linux/fpc-iii.git] / arch / x86 / platform / efi / quirks.c
blob30031d5293c483202c526d5045cda23be6617359
1 #define pr_fmt(fmt) "efi: " fmt
3 #include <linux/init.h>
4 #include <linux/kernel.h>
5 #include <linux/string.h>
6 #include <linux/time.h>
7 #include <linux/types.h>
8 #include <linux/efi.h>
9 #include <linux/slab.h>
10 #include <linux/memblock.h>
11 #include <linux/bootmem.h>
12 #include <linux/acpi.h>
13 #include <linux/dmi.h>
14 #include <asm/efi.h>
15 #include <asm/uv/uv.h>
17 #define EFI_MIN_RESERVE 5120
19 #define EFI_DUMMY_GUID \
20 EFI_GUID(0x4424ac57, 0xbe4b, 0x47dd, 0x9e, 0x97, 0xed, 0x50, 0xf0, 0x9f, 0x92, 0xa9)
22 static efi_char16_t efi_dummy_name[6] = { 'D', 'U', 'M', 'M', 'Y', 0 };
24 static bool efi_no_storage_paranoia;
27 * Some firmware implementations refuse to boot if there's insufficient
28 * space in the variable store. The implementation of garbage collection
29 * in some FW versions causes stale (deleted) variables to take up space
30 * longer than intended and space is only freed once the store becomes
31 * almost completely full.
33 * Enabling this option disables the space checks in
34 * efi_query_variable_store() and forces garbage collection.
36 * Only enable this option if deleting EFI variables does not free up
37 * space in your variable store, e.g. if despite deleting variables
38 * you're unable to create new ones.
40 static int __init setup_storage_paranoia(char *arg)
42 efi_no_storage_paranoia = true;
43 return 0;
45 early_param("efi_no_storage_paranoia", setup_storage_paranoia);
48 * Deleting the dummy variable which kicks off garbage collection
50 void efi_delete_dummy_variable(void)
52 efi.set_variable(efi_dummy_name, &EFI_DUMMY_GUID,
53 EFI_VARIABLE_NON_VOLATILE |
54 EFI_VARIABLE_BOOTSERVICE_ACCESS |
55 EFI_VARIABLE_RUNTIME_ACCESS,
56 0, NULL);
60 * In the nonblocking case we do not attempt to perform garbage
61 * collection if we do not have enough free space. Rather, we do the
62 * bare minimum check and give up immediately if the available space
63 * is below EFI_MIN_RESERVE.
65 * This function is intended to be small and simple because it is
66 * invoked from crash handler paths.
68 static efi_status_t
69 query_variable_store_nonblocking(u32 attributes, unsigned long size)
71 efi_status_t status;
72 u64 storage_size, remaining_size, max_size;
74 status = efi.query_variable_info_nonblocking(attributes, &storage_size,
75 &remaining_size,
76 &max_size);
77 if (status != EFI_SUCCESS)
78 return status;
80 if (remaining_size - size < EFI_MIN_RESERVE)
81 return EFI_OUT_OF_RESOURCES;
83 return EFI_SUCCESS;
87 * Some firmware implementations refuse to boot if there's insufficient space
88 * in the variable store. Ensure that we never use more than a safe limit.
90 * Return EFI_SUCCESS if it is safe to write 'size' bytes to the variable
91 * store.
93 efi_status_t efi_query_variable_store(u32 attributes, unsigned long size,
94 bool nonblocking)
96 efi_status_t status;
97 u64 storage_size, remaining_size, max_size;
99 if (!(attributes & EFI_VARIABLE_NON_VOLATILE))
100 return 0;
102 if (nonblocking)
103 return query_variable_store_nonblocking(attributes, size);
105 status = efi.query_variable_info(attributes, &storage_size,
106 &remaining_size, &max_size);
107 if (status != EFI_SUCCESS)
108 return status;
111 * We account for that by refusing the write if permitting it would
112 * reduce the available space to under 5KB. This figure was provided by
113 * Samsung, so should be safe.
115 if ((remaining_size - size < EFI_MIN_RESERVE) &&
116 !efi_no_storage_paranoia) {
119 * Triggering garbage collection may require that the firmware
120 * generate a real EFI_OUT_OF_RESOURCES error. We can force
121 * that by attempting to use more space than is available.
123 unsigned long dummy_size = remaining_size + 1024;
124 void *dummy = kzalloc(dummy_size, GFP_ATOMIC);
126 if (!dummy)
127 return EFI_OUT_OF_RESOURCES;
129 status = efi.set_variable(efi_dummy_name, &EFI_DUMMY_GUID,
130 EFI_VARIABLE_NON_VOLATILE |
131 EFI_VARIABLE_BOOTSERVICE_ACCESS |
132 EFI_VARIABLE_RUNTIME_ACCESS,
133 dummy_size, dummy);
135 if (status == EFI_SUCCESS) {
137 * This should have failed, so if it didn't make sure
138 * that we delete it...
140 efi_delete_dummy_variable();
143 kfree(dummy);
146 * The runtime code may now have triggered a garbage collection
147 * run, so check the variable info again
149 status = efi.query_variable_info(attributes, &storage_size,
150 &remaining_size, &max_size);
152 if (status != EFI_SUCCESS)
153 return status;
156 * There still isn't enough room, so return an error
158 if (remaining_size - size < EFI_MIN_RESERVE)
159 return EFI_OUT_OF_RESOURCES;
162 return EFI_SUCCESS;
164 EXPORT_SYMBOL_GPL(efi_query_variable_store);
167 * The UEFI specification makes it clear that the operating system is
168 * free to do whatever it wants with boot services code after
169 * ExitBootServices() has been called. Ignoring this recommendation a
170 * significant bunch of EFI implementations continue calling into boot
171 * services code (SetVirtualAddressMap). In order to work around such
172 * buggy implementations we reserve boot services region during EFI
173 * init and make sure it stays executable. Then, after
174 * SetVirtualAddressMap(), it is discarded.
176 * However, some boot services regions contain data that is required
177 * by drivers, so we need to track which memory ranges can never be
178 * freed. This is done by tagging those regions with the
179 * EFI_MEMORY_RUNTIME attribute.
181 * Any driver that wants to mark a region as reserved must use
182 * efi_mem_reserve() which will insert a new EFI memory descriptor
183 * into efi.memmap (splitting existing regions if necessary) and tag
184 * it with EFI_MEMORY_RUNTIME.
186 void __init efi_arch_mem_reserve(phys_addr_t addr, u64 size)
188 phys_addr_t new_phys, new_size;
189 struct efi_mem_range mr;
190 efi_memory_desc_t md;
191 int num_entries;
192 void *new;
194 if (efi_mem_desc_lookup(addr, &md)) {
195 pr_err("Failed to lookup EFI memory descriptor for %pa\n", &addr);
196 return;
199 if (addr + size > md.phys_addr + (md.num_pages << EFI_PAGE_SHIFT)) {
200 pr_err("Region spans EFI memory descriptors, %pa\n", &addr);
201 return;
204 size += addr % EFI_PAGE_SIZE;
205 size = round_up(size, EFI_PAGE_SIZE);
206 addr = round_down(addr, EFI_PAGE_SIZE);
208 mr.range.start = addr;
209 mr.range.end = addr + size - 1;
210 mr.attribute = md.attribute | EFI_MEMORY_RUNTIME;
212 num_entries = efi_memmap_split_count(&md, &mr.range);
213 num_entries += efi.memmap.nr_map;
215 new_size = efi.memmap.desc_size * num_entries;
217 new_phys = efi_memmap_alloc(num_entries);
218 if (!new_phys) {
219 pr_err("Could not allocate boot services memmap\n");
220 return;
223 new = early_memremap(new_phys, new_size);
224 if (!new) {
225 pr_err("Failed to map new boot services memmap\n");
226 return;
229 efi_memmap_insert(&efi.memmap, new, &mr);
230 early_memunmap(new, new_size);
232 efi_memmap_install(new_phys, num_entries);
236 * Helper function for efi_reserve_boot_services() to figure out if we
237 * can free regions in efi_free_boot_services().
239 * Use this function to ensure we do not free regions owned by somebody
240 * else. We must only reserve (and then free) regions:
242 * - Not within any part of the kernel
243 * - Not the BIOS reserved area (E820_RESERVED, E820_NVS, etc)
245 static bool can_free_region(u64 start, u64 size)
247 if (start + size > __pa_symbol(_text) && start <= __pa_symbol(_end))
248 return false;
250 if (!e820_all_mapped(start, start+size, E820_RAM))
251 return false;
253 return true;
256 void __init efi_reserve_boot_services(void)
258 efi_memory_desc_t *md;
260 for_each_efi_memory_desc(md) {
261 u64 start = md->phys_addr;
262 u64 size = md->num_pages << EFI_PAGE_SHIFT;
263 bool already_reserved;
265 if (md->type != EFI_BOOT_SERVICES_CODE &&
266 md->type != EFI_BOOT_SERVICES_DATA)
267 continue;
269 already_reserved = memblock_is_region_reserved(start, size);
272 * Because the following memblock_reserve() is paired
273 * with free_bootmem_late() for this region in
274 * efi_free_boot_services(), we must be extremely
275 * careful not to reserve, and subsequently free,
276 * critical regions of memory (like the kernel image) or
277 * those regions that somebody else has already
278 * reserved.
280 * A good example of a critical region that must not be
281 * freed is page zero (first 4Kb of memory), which may
282 * contain boot services code/data but is marked
283 * E820_RESERVED by trim_bios_range().
285 if (!already_reserved) {
286 memblock_reserve(start, size);
289 * If we are the first to reserve the region, no
290 * one else cares about it. We own it and can
291 * free it later.
293 if (can_free_region(start, size))
294 continue;
298 * We don't own the region. We must not free it.
300 * Setting this bit for a boot services region really
301 * doesn't make sense as far as the firmware is
302 * concerned, but it does provide us with a way to tag
303 * those regions that must not be paired with
304 * free_bootmem_late().
306 md->attribute |= EFI_MEMORY_RUNTIME;
310 void __init efi_free_boot_services(void)
312 phys_addr_t new_phys, new_size;
313 efi_memory_desc_t *md;
314 int num_entries = 0;
315 void *new, *new_md;
317 for_each_efi_memory_desc(md) {
318 unsigned long long start = md->phys_addr;
319 unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
320 size_t rm_size;
322 if (md->type != EFI_BOOT_SERVICES_CODE &&
323 md->type != EFI_BOOT_SERVICES_DATA) {
324 num_entries++;
325 continue;
328 /* Do not free, someone else owns it: */
329 if (md->attribute & EFI_MEMORY_RUNTIME) {
330 num_entries++;
331 continue;
335 * Nasty quirk: if all sub-1MB memory is used for boot
336 * services, we can get here without having allocated the
337 * real mode trampoline. It's too late to hand boot services
338 * memory back to the memblock allocator, so instead
339 * try to manually allocate the trampoline if needed.
341 * I've seen this on a Dell XPS 13 9350 with firmware
342 * 1.4.4 with SGX enabled booting Linux via Fedora 24's
343 * grub2-efi on a hard disk. (And no, I don't know why
344 * this happened, but Linux should still try to boot rather
345 * panicing early.)
347 rm_size = real_mode_size_needed();
348 if (rm_size && (start + rm_size) < (1<<20) && size >= rm_size) {
349 set_real_mode_mem(start, rm_size);
350 start += rm_size;
351 size -= rm_size;
354 free_bootmem_late(start, size);
357 new_size = efi.memmap.desc_size * num_entries;
358 new_phys = efi_memmap_alloc(num_entries);
359 if (!new_phys) {
360 pr_err("Failed to allocate new EFI memmap\n");
361 return;
364 new = memremap(new_phys, new_size, MEMREMAP_WB);
365 if (!new) {
366 pr_err("Failed to map new EFI memmap\n");
367 return;
371 * Build a new EFI memmap that excludes any boot services
372 * regions that are not tagged EFI_MEMORY_RUNTIME, since those
373 * regions have now been freed.
375 new_md = new;
376 for_each_efi_memory_desc(md) {
377 if (!(md->attribute & EFI_MEMORY_RUNTIME) &&
378 (md->type == EFI_BOOT_SERVICES_CODE ||
379 md->type == EFI_BOOT_SERVICES_DATA))
380 continue;
382 memcpy(new_md, md, efi.memmap.desc_size);
383 new_md += efi.memmap.desc_size;
386 memunmap(new);
388 if (efi_memmap_install(new_phys, num_entries)) {
389 pr_err("Could not install new EFI memmap\n");
390 return;
395 * A number of config table entries get remapped to virtual addresses
396 * after entering EFI virtual mode. However, the kexec kernel requires
397 * their physical addresses therefore we pass them via setup_data and
398 * correct those entries to their respective physical addresses here.
400 * Currently only handles smbios which is necessary for some firmware
401 * implementation.
403 int __init efi_reuse_config(u64 tables, int nr_tables)
405 int i, sz, ret = 0;
406 void *p, *tablep;
407 struct efi_setup_data *data;
409 if (!efi_setup)
410 return 0;
412 if (!efi_enabled(EFI_64BIT))
413 return 0;
415 data = early_memremap(efi_setup, sizeof(*data));
416 if (!data) {
417 ret = -ENOMEM;
418 goto out;
421 if (!data->smbios)
422 goto out_memremap;
424 sz = sizeof(efi_config_table_64_t);
426 p = tablep = early_memremap(tables, nr_tables * sz);
427 if (!p) {
428 pr_err("Could not map Configuration table!\n");
429 ret = -ENOMEM;
430 goto out_memremap;
433 for (i = 0; i < efi.systab->nr_tables; i++) {
434 efi_guid_t guid;
436 guid = ((efi_config_table_64_t *)p)->guid;
438 if (!efi_guidcmp(guid, SMBIOS_TABLE_GUID))
439 ((efi_config_table_64_t *)p)->table = data->smbios;
440 p += sz;
442 early_memunmap(tablep, nr_tables * sz);
444 out_memremap:
445 early_memunmap(data, sizeof(*data));
446 out:
447 return ret;
450 static const struct dmi_system_id sgi_uv1_dmi[] = {
451 { NULL, "SGI UV1",
452 { DMI_MATCH(DMI_PRODUCT_NAME, "Stoutland Platform"),
453 DMI_MATCH(DMI_PRODUCT_VERSION, "1.0"),
454 DMI_MATCH(DMI_BIOS_VENDOR, "SGI.COM"),
457 { } /* NULL entry stops DMI scanning */
460 void __init efi_apply_memmap_quirks(void)
463 * Once setup is done earlier, unmap the EFI memory map on mismatched
464 * firmware/kernel architectures since there is no support for runtime
465 * services.
467 if (!efi_runtime_supported()) {
468 pr_info("Setup done, disabling due to 32/64-bit mismatch\n");
469 efi_memmap_unmap();
472 /* UV2+ BIOS has a fix for this issue. UV1 still needs the quirk. */
473 if (dmi_check_system(sgi_uv1_dmi))
474 set_bit(EFI_OLD_MEMMAP, &efi.flags);
478 * For most modern platforms the preferred method of powering off is via
479 * ACPI. However, there are some that are known to require the use of
480 * EFI runtime services and for which ACPI does not work at all.
482 * Using EFI is a last resort, to be used only if no other option
483 * exists.
485 bool efi_reboot_required(void)
487 if (!acpi_gbl_reduced_hardware)
488 return false;
490 efi_reboot_quirk_mode = EFI_RESET_WARM;
491 return true;
494 bool efi_poweroff_required(void)
496 return acpi_gbl_reduced_hardware || acpi_no_s5;