Linux 4.11-rc5
[linux/fpc-iii.git] / arch / x86 / xen / mmu.c
blob37cb5aad71de364fa50974e236e2d001f51ea687
1 /*
2 * Xen mmu operations
4 * This file contains the various mmu fetch and update operations.
5 * The most important job they must perform is the mapping between the
6 * domain's pfn and the overall machine mfns.
8 * Xen allows guests to directly update the pagetable, in a controlled
9 * fashion. In other words, the guest modifies the same pagetable
10 * that the CPU actually uses, which eliminates the overhead of having
11 * a separate shadow pagetable.
13 * In order to allow this, it falls on the guest domain to map its
14 * notion of a "physical" pfn - which is just a domain-local linear
15 * address - into a real "machine address" which the CPU's MMU can
16 * use.
18 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
19 * inserted directly into the pagetable. When creating a new
20 * pte/pmd/pgd, it converts the passed pfn into an mfn. Conversely,
21 * when reading the content back with __(pgd|pmd|pte)_val, it converts
22 * the mfn back into a pfn.
24 * The other constraint is that all pages which make up a pagetable
25 * must be mapped read-only in the guest. This prevents uncontrolled
26 * guest updates to the pagetable. Xen strictly enforces this, and
27 * will disallow any pagetable update which will end up mapping a
28 * pagetable page RW, and will disallow using any writable page as a
29 * pagetable.
31 * Naively, when loading %cr3 with the base of a new pagetable, Xen
32 * would need to validate the whole pagetable before going on.
33 * Naturally, this is quite slow. The solution is to "pin" a
34 * pagetable, which enforces all the constraints on the pagetable even
35 * when it is not actively in use. This menas that Xen can be assured
36 * that it is still valid when you do load it into %cr3, and doesn't
37 * need to revalidate it.
39 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
41 #include <linux/sched/mm.h>
42 #include <linux/highmem.h>
43 #include <linux/debugfs.h>
44 #include <linux/bug.h>
45 #include <linux/vmalloc.h>
46 #include <linux/export.h>
47 #include <linux/init.h>
48 #include <linux/gfp.h>
49 #include <linux/memblock.h>
50 #include <linux/seq_file.h>
51 #include <linux/crash_dump.h>
53 #include <trace/events/xen.h>
55 #include <asm/pgtable.h>
56 #include <asm/tlbflush.h>
57 #include <asm/fixmap.h>
58 #include <asm/mmu_context.h>
59 #include <asm/setup.h>
60 #include <asm/paravirt.h>
61 #include <asm/e820.h>
62 #include <asm/linkage.h>
63 #include <asm/page.h>
64 #include <asm/init.h>
65 #include <asm/pat.h>
66 #include <asm/smp.h>
68 #include <asm/xen/hypercall.h>
69 #include <asm/xen/hypervisor.h>
71 #include <xen/xen.h>
72 #include <xen/page.h>
73 #include <xen/interface/xen.h>
74 #include <xen/interface/hvm/hvm_op.h>
75 #include <xen/interface/version.h>
76 #include <xen/interface/memory.h>
77 #include <xen/hvc-console.h>
79 #include "multicalls.h"
80 #include "mmu.h"
81 #include "debugfs.h"
84 * Protects atomic reservation decrease/increase against concurrent increases.
85 * Also protects non-atomic updates of current_pages and balloon lists.
87 DEFINE_SPINLOCK(xen_reservation_lock);
89 #ifdef CONFIG_X86_32
91 * Identity map, in addition to plain kernel map. This needs to be
92 * large enough to allocate page table pages to allocate the rest.
93 * Each page can map 2MB.
95 #define LEVEL1_IDENT_ENTRIES (PTRS_PER_PTE * 4)
96 static RESERVE_BRK_ARRAY(pte_t, level1_ident_pgt, LEVEL1_IDENT_ENTRIES);
97 #endif
98 #ifdef CONFIG_X86_64
99 /* l3 pud for userspace vsyscall mapping */
100 static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
101 #endif /* CONFIG_X86_64 */
104 * Note about cr3 (pagetable base) values:
106 * xen_cr3 contains the current logical cr3 value; it contains the
107 * last set cr3. This may not be the current effective cr3, because
108 * its update may be being lazily deferred. However, a vcpu looking
109 * at its own cr3 can use this value knowing that it everything will
110 * be self-consistent.
112 * xen_current_cr3 contains the actual vcpu cr3; it is set once the
113 * hypercall to set the vcpu cr3 is complete (so it may be a little
114 * out of date, but it will never be set early). If one vcpu is
115 * looking at another vcpu's cr3 value, it should use this variable.
117 DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */
118 DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */
120 static phys_addr_t xen_pt_base, xen_pt_size __initdata;
123 * Just beyond the highest usermode address. STACK_TOP_MAX has a
124 * redzone above it, so round it up to a PGD boundary.
126 #define USER_LIMIT ((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
128 unsigned long arbitrary_virt_to_mfn(void *vaddr)
130 xmaddr_t maddr = arbitrary_virt_to_machine(vaddr);
132 return PFN_DOWN(maddr.maddr);
135 xmaddr_t arbitrary_virt_to_machine(void *vaddr)
137 unsigned long address = (unsigned long)vaddr;
138 unsigned int level;
139 pte_t *pte;
140 unsigned offset;
143 * if the PFN is in the linear mapped vaddr range, we can just use
144 * the (quick) virt_to_machine() p2m lookup
146 if (virt_addr_valid(vaddr))
147 return virt_to_machine(vaddr);
149 /* otherwise we have to do a (slower) full page-table walk */
151 pte = lookup_address(address, &level);
152 BUG_ON(pte == NULL);
153 offset = address & ~PAGE_MASK;
154 return XMADDR(((phys_addr_t)pte_mfn(*pte) << PAGE_SHIFT) + offset);
156 EXPORT_SYMBOL_GPL(arbitrary_virt_to_machine);
158 void make_lowmem_page_readonly(void *vaddr)
160 pte_t *pte, ptev;
161 unsigned long address = (unsigned long)vaddr;
162 unsigned int level;
164 pte = lookup_address(address, &level);
165 if (pte == NULL)
166 return; /* vaddr missing */
168 ptev = pte_wrprotect(*pte);
170 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
171 BUG();
174 void make_lowmem_page_readwrite(void *vaddr)
176 pte_t *pte, ptev;
177 unsigned long address = (unsigned long)vaddr;
178 unsigned int level;
180 pte = lookup_address(address, &level);
181 if (pte == NULL)
182 return; /* vaddr missing */
184 ptev = pte_mkwrite(*pte);
186 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
187 BUG();
191 static bool xen_page_pinned(void *ptr)
193 struct page *page = virt_to_page(ptr);
195 return PagePinned(page);
198 void xen_set_domain_pte(pte_t *ptep, pte_t pteval, unsigned domid)
200 struct multicall_space mcs;
201 struct mmu_update *u;
203 trace_xen_mmu_set_domain_pte(ptep, pteval, domid);
205 mcs = xen_mc_entry(sizeof(*u));
206 u = mcs.args;
208 /* ptep might be kmapped when using 32-bit HIGHPTE */
209 u->ptr = virt_to_machine(ptep).maddr;
210 u->val = pte_val_ma(pteval);
212 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, domid);
214 xen_mc_issue(PARAVIRT_LAZY_MMU);
216 EXPORT_SYMBOL_GPL(xen_set_domain_pte);
218 static void xen_extend_mmu_update(const struct mmu_update *update)
220 struct multicall_space mcs;
221 struct mmu_update *u;
223 mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
225 if (mcs.mc != NULL) {
226 mcs.mc->args[1]++;
227 } else {
228 mcs = __xen_mc_entry(sizeof(*u));
229 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
232 u = mcs.args;
233 *u = *update;
236 static void xen_extend_mmuext_op(const struct mmuext_op *op)
238 struct multicall_space mcs;
239 struct mmuext_op *u;
241 mcs = xen_mc_extend_args(__HYPERVISOR_mmuext_op, sizeof(*u));
243 if (mcs.mc != NULL) {
244 mcs.mc->args[1]++;
245 } else {
246 mcs = __xen_mc_entry(sizeof(*u));
247 MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
250 u = mcs.args;
251 *u = *op;
254 static void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
256 struct mmu_update u;
258 preempt_disable();
260 xen_mc_batch();
262 /* ptr may be ioremapped for 64-bit pagetable setup */
263 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
264 u.val = pmd_val_ma(val);
265 xen_extend_mmu_update(&u);
267 xen_mc_issue(PARAVIRT_LAZY_MMU);
269 preempt_enable();
272 static void xen_set_pmd(pmd_t *ptr, pmd_t val)
274 trace_xen_mmu_set_pmd(ptr, val);
276 /* If page is not pinned, we can just update the entry
277 directly */
278 if (!xen_page_pinned(ptr)) {
279 *ptr = val;
280 return;
283 xen_set_pmd_hyper(ptr, val);
287 * Associate a virtual page frame with a given physical page frame
288 * and protection flags for that frame.
290 void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
292 set_pte_vaddr(vaddr, mfn_pte(mfn, flags));
295 static bool xen_batched_set_pte(pte_t *ptep, pte_t pteval)
297 struct mmu_update u;
299 if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU)
300 return false;
302 xen_mc_batch();
304 u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
305 u.val = pte_val_ma(pteval);
306 xen_extend_mmu_update(&u);
308 xen_mc_issue(PARAVIRT_LAZY_MMU);
310 return true;
313 static inline void __xen_set_pte(pte_t *ptep, pte_t pteval)
315 if (!xen_batched_set_pte(ptep, pteval)) {
317 * Could call native_set_pte() here and trap and
318 * emulate the PTE write but with 32-bit guests this
319 * needs two traps (one for each of the two 32-bit
320 * words in the PTE) so do one hypercall directly
321 * instead.
323 struct mmu_update u;
325 u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
326 u.val = pte_val_ma(pteval);
327 HYPERVISOR_mmu_update(&u, 1, NULL, DOMID_SELF);
331 static void xen_set_pte(pte_t *ptep, pte_t pteval)
333 trace_xen_mmu_set_pte(ptep, pteval);
334 __xen_set_pte(ptep, pteval);
337 static void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
338 pte_t *ptep, pte_t pteval)
340 trace_xen_mmu_set_pte_at(mm, addr, ptep, pteval);
341 __xen_set_pte(ptep, pteval);
344 pte_t xen_ptep_modify_prot_start(struct mm_struct *mm,
345 unsigned long addr, pte_t *ptep)
347 /* Just return the pte as-is. We preserve the bits on commit */
348 trace_xen_mmu_ptep_modify_prot_start(mm, addr, ptep, *ptep);
349 return *ptep;
352 void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
353 pte_t *ptep, pte_t pte)
355 struct mmu_update u;
357 trace_xen_mmu_ptep_modify_prot_commit(mm, addr, ptep, pte);
358 xen_mc_batch();
360 u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
361 u.val = pte_val_ma(pte);
362 xen_extend_mmu_update(&u);
364 xen_mc_issue(PARAVIRT_LAZY_MMU);
367 /* Assume pteval_t is equivalent to all the other *val_t types. */
368 static pteval_t pte_mfn_to_pfn(pteval_t val)
370 if (val & _PAGE_PRESENT) {
371 unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
372 unsigned long pfn = mfn_to_pfn(mfn);
374 pteval_t flags = val & PTE_FLAGS_MASK;
375 if (unlikely(pfn == ~0))
376 val = flags & ~_PAGE_PRESENT;
377 else
378 val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
381 return val;
384 static pteval_t pte_pfn_to_mfn(pteval_t val)
386 if (val & _PAGE_PRESENT) {
387 unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
388 pteval_t flags = val & PTE_FLAGS_MASK;
389 unsigned long mfn;
391 if (!xen_feature(XENFEAT_auto_translated_physmap))
392 mfn = __pfn_to_mfn(pfn);
393 else
394 mfn = pfn;
396 * If there's no mfn for the pfn, then just create an
397 * empty non-present pte. Unfortunately this loses
398 * information about the original pfn, so
399 * pte_mfn_to_pfn is asymmetric.
401 if (unlikely(mfn == INVALID_P2M_ENTRY)) {
402 mfn = 0;
403 flags = 0;
404 } else
405 mfn &= ~(FOREIGN_FRAME_BIT | IDENTITY_FRAME_BIT);
406 val = ((pteval_t)mfn << PAGE_SHIFT) | flags;
409 return val;
412 __visible pteval_t xen_pte_val(pte_t pte)
414 pteval_t pteval = pte.pte;
416 return pte_mfn_to_pfn(pteval);
418 PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val);
420 __visible pgdval_t xen_pgd_val(pgd_t pgd)
422 return pte_mfn_to_pfn(pgd.pgd);
424 PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val);
426 __visible pte_t xen_make_pte(pteval_t pte)
428 pte = pte_pfn_to_mfn(pte);
430 return native_make_pte(pte);
432 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte);
434 __visible pgd_t xen_make_pgd(pgdval_t pgd)
436 pgd = pte_pfn_to_mfn(pgd);
437 return native_make_pgd(pgd);
439 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd);
441 __visible pmdval_t xen_pmd_val(pmd_t pmd)
443 return pte_mfn_to_pfn(pmd.pmd);
445 PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val);
447 static void xen_set_pud_hyper(pud_t *ptr, pud_t val)
449 struct mmu_update u;
451 preempt_disable();
453 xen_mc_batch();
455 /* ptr may be ioremapped for 64-bit pagetable setup */
456 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
457 u.val = pud_val_ma(val);
458 xen_extend_mmu_update(&u);
460 xen_mc_issue(PARAVIRT_LAZY_MMU);
462 preempt_enable();
465 static void xen_set_pud(pud_t *ptr, pud_t val)
467 trace_xen_mmu_set_pud(ptr, val);
469 /* If page is not pinned, we can just update the entry
470 directly */
471 if (!xen_page_pinned(ptr)) {
472 *ptr = val;
473 return;
476 xen_set_pud_hyper(ptr, val);
479 #ifdef CONFIG_X86_PAE
480 static void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
482 trace_xen_mmu_set_pte_atomic(ptep, pte);
483 set_64bit((u64 *)ptep, native_pte_val(pte));
486 static void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
488 trace_xen_mmu_pte_clear(mm, addr, ptep);
489 if (!xen_batched_set_pte(ptep, native_make_pte(0)))
490 native_pte_clear(mm, addr, ptep);
493 static void xen_pmd_clear(pmd_t *pmdp)
495 trace_xen_mmu_pmd_clear(pmdp);
496 set_pmd(pmdp, __pmd(0));
498 #endif /* CONFIG_X86_PAE */
500 __visible pmd_t xen_make_pmd(pmdval_t pmd)
502 pmd = pte_pfn_to_mfn(pmd);
503 return native_make_pmd(pmd);
505 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd);
507 #if CONFIG_PGTABLE_LEVELS == 4
508 __visible pudval_t xen_pud_val(pud_t pud)
510 return pte_mfn_to_pfn(pud.pud);
512 PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val);
514 __visible pud_t xen_make_pud(pudval_t pud)
516 pud = pte_pfn_to_mfn(pud);
518 return native_make_pud(pud);
520 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud);
522 static pgd_t *xen_get_user_pgd(pgd_t *pgd)
524 pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
525 unsigned offset = pgd - pgd_page;
526 pgd_t *user_ptr = NULL;
528 if (offset < pgd_index(USER_LIMIT)) {
529 struct page *page = virt_to_page(pgd_page);
530 user_ptr = (pgd_t *)page->private;
531 if (user_ptr)
532 user_ptr += offset;
535 return user_ptr;
538 static void __xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
540 struct mmu_update u;
542 u.ptr = virt_to_machine(ptr).maddr;
543 u.val = pgd_val_ma(val);
544 xen_extend_mmu_update(&u);
548 * Raw hypercall-based set_pgd, intended for in early boot before
549 * there's a page structure. This implies:
550 * 1. The only existing pagetable is the kernel's
551 * 2. It is always pinned
552 * 3. It has no user pagetable attached to it
554 static void __init xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
556 preempt_disable();
558 xen_mc_batch();
560 __xen_set_pgd_hyper(ptr, val);
562 xen_mc_issue(PARAVIRT_LAZY_MMU);
564 preempt_enable();
567 static void xen_set_pgd(pgd_t *ptr, pgd_t val)
569 pgd_t *user_ptr = xen_get_user_pgd(ptr);
571 trace_xen_mmu_set_pgd(ptr, user_ptr, val);
573 /* If page is not pinned, we can just update the entry
574 directly */
575 if (!xen_page_pinned(ptr)) {
576 *ptr = val;
577 if (user_ptr) {
578 WARN_ON(xen_page_pinned(user_ptr));
579 *user_ptr = val;
581 return;
584 /* If it's pinned, then we can at least batch the kernel and
585 user updates together. */
586 xen_mc_batch();
588 __xen_set_pgd_hyper(ptr, val);
589 if (user_ptr)
590 __xen_set_pgd_hyper(user_ptr, val);
592 xen_mc_issue(PARAVIRT_LAZY_MMU);
594 #endif /* CONFIG_PGTABLE_LEVELS == 4 */
597 * (Yet another) pagetable walker. This one is intended for pinning a
598 * pagetable. This means that it walks a pagetable and calls the
599 * callback function on each page it finds making up the page table,
600 * at every level. It walks the entire pagetable, but it only bothers
601 * pinning pte pages which are below limit. In the normal case this
602 * will be STACK_TOP_MAX, but at boot we need to pin up to
603 * FIXADDR_TOP.
605 * For 32-bit the important bit is that we don't pin beyond there,
606 * because then we start getting into Xen's ptes.
608 * For 64-bit, we must skip the Xen hole in the middle of the address
609 * space, just after the big x86-64 virtual hole.
611 static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
612 int (*func)(struct mm_struct *mm, struct page *,
613 enum pt_level),
614 unsigned long limit)
616 int flush = 0;
617 unsigned hole_low, hole_high;
618 unsigned pgdidx_limit, pudidx_limit, pmdidx_limit;
619 unsigned pgdidx, pudidx, pmdidx;
621 /* The limit is the last byte to be touched */
622 limit--;
623 BUG_ON(limit >= FIXADDR_TOP);
625 if (xen_feature(XENFEAT_auto_translated_physmap))
626 return 0;
629 * 64-bit has a great big hole in the middle of the address
630 * space, which contains the Xen mappings. On 32-bit these
631 * will end up making a zero-sized hole and so is a no-op.
633 hole_low = pgd_index(USER_LIMIT);
634 hole_high = pgd_index(PAGE_OFFSET);
636 pgdidx_limit = pgd_index(limit);
637 #if PTRS_PER_PUD > 1
638 pudidx_limit = pud_index(limit);
639 #else
640 pudidx_limit = 0;
641 #endif
642 #if PTRS_PER_PMD > 1
643 pmdidx_limit = pmd_index(limit);
644 #else
645 pmdidx_limit = 0;
646 #endif
648 for (pgdidx = 0; pgdidx <= pgdidx_limit; pgdidx++) {
649 pud_t *pud;
651 if (pgdidx >= hole_low && pgdidx < hole_high)
652 continue;
654 if (!pgd_val(pgd[pgdidx]))
655 continue;
657 pud = pud_offset(&pgd[pgdidx], 0);
659 if (PTRS_PER_PUD > 1) /* not folded */
660 flush |= (*func)(mm, virt_to_page(pud), PT_PUD);
662 for (pudidx = 0; pudidx < PTRS_PER_PUD; pudidx++) {
663 pmd_t *pmd;
665 if (pgdidx == pgdidx_limit &&
666 pudidx > pudidx_limit)
667 goto out;
669 if (pud_none(pud[pudidx]))
670 continue;
672 pmd = pmd_offset(&pud[pudidx], 0);
674 if (PTRS_PER_PMD > 1) /* not folded */
675 flush |= (*func)(mm, virt_to_page(pmd), PT_PMD);
677 for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) {
678 struct page *pte;
680 if (pgdidx == pgdidx_limit &&
681 pudidx == pudidx_limit &&
682 pmdidx > pmdidx_limit)
683 goto out;
685 if (pmd_none(pmd[pmdidx]))
686 continue;
688 pte = pmd_page(pmd[pmdidx]);
689 flush |= (*func)(mm, pte, PT_PTE);
694 out:
695 /* Do the top level last, so that the callbacks can use it as
696 a cue to do final things like tlb flushes. */
697 flush |= (*func)(mm, virt_to_page(pgd), PT_PGD);
699 return flush;
702 static int xen_pgd_walk(struct mm_struct *mm,
703 int (*func)(struct mm_struct *mm, struct page *,
704 enum pt_level),
705 unsigned long limit)
707 return __xen_pgd_walk(mm, mm->pgd, func, limit);
710 /* If we're using split pte locks, then take the page's lock and
711 return a pointer to it. Otherwise return NULL. */
712 static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
714 spinlock_t *ptl = NULL;
716 #if USE_SPLIT_PTE_PTLOCKS
717 ptl = ptlock_ptr(page);
718 spin_lock_nest_lock(ptl, &mm->page_table_lock);
719 #endif
721 return ptl;
724 static void xen_pte_unlock(void *v)
726 spinlock_t *ptl = v;
727 spin_unlock(ptl);
730 static void xen_do_pin(unsigned level, unsigned long pfn)
732 struct mmuext_op op;
734 op.cmd = level;
735 op.arg1.mfn = pfn_to_mfn(pfn);
737 xen_extend_mmuext_op(&op);
740 static int xen_pin_page(struct mm_struct *mm, struct page *page,
741 enum pt_level level)
743 unsigned pgfl = TestSetPagePinned(page);
744 int flush;
746 if (pgfl)
747 flush = 0; /* already pinned */
748 else if (PageHighMem(page))
749 /* kmaps need flushing if we found an unpinned
750 highpage */
751 flush = 1;
752 else {
753 void *pt = lowmem_page_address(page);
754 unsigned long pfn = page_to_pfn(page);
755 struct multicall_space mcs = __xen_mc_entry(0);
756 spinlock_t *ptl;
758 flush = 0;
761 * We need to hold the pagetable lock between the time
762 * we make the pagetable RO and when we actually pin
763 * it. If we don't, then other users may come in and
764 * attempt to update the pagetable by writing it,
765 * which will fail because the memory is RO but not
766 * pinned, so Xen won't do the trap'n'emulate.
768 * If we're using split pte locks, we can't hold the
769 * entire pagetable's worth of locks during the
770 * traverse, because we may wrap the preempt count (8
771 * bits). The solution is to mark RO and pin each PTE
772 * page while holding the lock. This means the number
773 * of locks we end up holding is never more than a
774 * batch size (~32 entries, at present).
776 * If we're not using split pte locks, we needn't pin
777 * the PTE pages independently, because we're
778 * protected by the overall pagetable lock.
780 ptl = NULL;
781 if (level == PT_PTE)
782 ptl = xen_pte_lock(page, mm);
784 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
785 pfn_pte(pfn, PAGE_KERNEL_RO),
786 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
788 if (ptl) {
789 xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
791 /* Queue a deferred unlock for when this batch
792 is completed. */
793 xen_mc_callback(xen_pte_unlock, ptl);
797 return flush;
800 /* This is called just after a mm has been created, but it has not
801 been used yet. We need to make sure that its pagetable is all
802 read-only, and can be pinned. */
803 static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
805 trace_xen_mmu_pgd_pin(mm, pgd);
807 xen_mc_batch();
809 if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) {
810 /* re-enable interrupts for flushing */
811 xen_mc_issue(0);
813 kmap_flush_unused();
815 xen_mc_batch();
818 #ifdef CONFIG_X86_64
820 pgd_t *user_pgd = xen_get_user_pgd(pgd);
822 xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));
824 if (user_pgd) {
825 xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
826 xen_do_pin(MMUEXT_PIN_L4_TABLE,
827 PFN_DOWN(__pa(user_pgd)));
830 #else /* CONFIG_X86_32 */
831 #ifdef CONFIG_X86_PAE
832 /* Need to make sure unshared kernel PMD is pinnable */
833 xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
834 PT_PMD);
835 #endif
836 xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd)));
837 #endif /* CONFIG_X86_64 */
838 xen_mc_issue(0);
841 static void xen_pgd_pin(struct mm_struct *mm)
843 __xen_pgd_pin(mm, mm->pgd);
847 * On save, we need to pin all pagetables to make sure they get their
848 * mfns turned into pfns. Search the list for any unpinned pgds and pin
849 * them (unpinned pgds are not currently in use, probably because the
850 * process is under construction or destruction).
852 * Expected to be called in stop_machine() ("equivalent to taking
853 * every spinlock in the system"), so the locking doesn't really
854 * matter all that much.
856 void xen_mm_pin_all(void)
858 struct page *page;
860 spin_lock(&pgd_lock);
862 list_for_each_entry(page, &pgd_list, lru) {
863 if (!PagePinned(page)) {
864 __xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
865 SetPageSavePinned(page);
869 spin_unlock(&pgd_lock);
873 * The init_mm pagetable is really pinned as soon as its created, but
874 * that's before we have page structures to store the bits. So do all
875 * the book-keeping now.
877 static int __init xen_mark_pinned(struct mm_struct *mm, struct page *page,
878 enum pt_level level)
880 SetPagePinned(page);
881 return 0;
884 static void __init xen_mark_init_mm_pinned(void)
886 xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
889 static int xen_unpin_page(struct mm_struct *mm, struct page *page,
890 enum pt_level level)
892 unsigned pgfl = TestClearPagePinned(page);
894 if (pgfl && !PageHighMem(page)) {
895 void *pt = lowmem_page_address(page);
896 unsigned long pfn = page_to_pfn(page);
897 spinlock_t *ptl = NULL;
898 struct multicall_space mcs;
901 * Do the converse to pin_page. If we're using split
902 * pte locks, we must be holding the lock for while
903 * the pte page is unpinned but still RO to prevent
904 * concurrent updates from seeing it in this
905 * partially-pinned state.
907 if (level == PT_PTE) {
908 ptl = xen_pte_lock(page, mm);
910 if (ptl)
911 xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
914 mcs = __xen_mc_entry(0);
916 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
917 pfn_pte(pfn, PAGE_KERNEL),
918 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
920 if (ptl) {
921 /* unlock when batch completed */
922 xen_mc_callback(xen_pte_unlock, ptl);
926 return 0; /* never need to flush on unpin */
929 /* Release a pagetables pages back as normal RW */
930 static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
932 trace_xen_mmu_pgd_unpin(mm, pgd);
934 xen_mc_batch();
936 xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
938 #ifdef CONFIG_X86_64
940 pgd_t *user_pgd = xen_get_user_pgd(pgd);
942 if (user_pgd) {
943 xen_do_pin(MMUEXT_UNPIN_TABLE,
944 PFN_DOWN(__pa(user_pgd)));
945 xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
948 #endif
950 #ifdef CONFIG_X86_PAE
951 /* Need to make sure unshared kernel PMD is unpinned */
952 xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
953 PT_PMD);
954 #endif
956 __xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT);
958 xen_mc_issue(0);
961 static void xen_pgd_unpin(struct mm_struct *mm)
963 __xen_pgd_unpin(mm, mm->pgd);
967 * On resume, undo any pinning done at save, so that the rest of the
968 * kernel doesn't see any unexpected pinned pagetables.
970 void xen_mm_unpin_all(void)
972 struct page *page;
974 spin_lock(&pgd_lock);
976 list_for_each_entry(page, &pgd_list, lru) {
977 if (PageSavePinned(page)) {
978 BUG_ON(!PagePinned(page));
979 __xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
980 ClearPageSavePinned(page);
984 spin_unlock(&pgd_lock);
987 static void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
989 spin_lock(&next->page_table_lock);
990 xen_pgd_pin(next);
991 spin_unlock(&next->page_table_lock);
994 static void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
996 spin_lock(&mm->page_table_lock);
997 xen_pgd_pin(mm);
998 spin_unlock(&mm->page_table_lock);
1002 #ifdef CONFIG_SMP
1003 /* Another cpu may still have their %cr3 pointing at the pagetable, so
1004 we need to repoint it somewhere else before we can unpin it. */
1005 static void drop_other_mm_ref(void *info)
1007 struct mm_struct *mm = info;
1008 struct mm_struct *active_mm;
1010 active_mm = this_cpu_read(cpu_tlbstate.active_mm);
1012 if (active_mm == mm && this_cpu_read(cpu_tlbstate.state) != TLBSTATE_OK)
1013 leave_mm(smp_processor_id());
1015 /* If this cpu still has a stale cr3 reference, then make sure
1016 it has been flushed. */
1017 if (this_cpu_read(xen_current_cr3) == __pa(mm->pgd))
1018 load_cr3(swapper_pg_dir);
1021 static void xen_drop_mm_ref(struct mm_struct *mm)
1023 cpumask_var_t mask;
1024 unsigned cpu;
1026 if (current->active_mm == mm) {
1027 if (current->mm == mm)
1028 load_cr3(swapper_pg_dir);
1029 else
1030 leave_mm(smp_processor_id());
1033 /* Get the "official" set of cpus referring to our pagetable. */
1034 if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) {
1035 for_each_online_cpu(cpu) {
1036 if (!cpumask_test_cpu(cpu, mm_cpumask(mm))
1037 && per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd))
1038 continue;
1039 smp_call_function_single(cpu, drop_other_mm_ref, mm, 1);
1041 return;
1043 cpumask_copy(mask, mm_cpumask(mm));
1045 /* It's possible that a vcpu may have a stale reference to our
1046 cr3, because its in lazy mode, and it hasn't yet flushed
1047 its set of pending hypercalls yet. In this case, we can
1048 look at its actual current cr3 value, and force it to flush
1049 if needed. */
1050 for_each_online_cpu(cpu) {
1051 if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
1052 cpumask_set_cpu(cpu, mask);
1055 if (!cpumask_empty(mask))
1056 smp_call_function_many(mask, drop_other_mm_ref, mm, 1);
1057 free_cpumask_var(mask);
1059 #else
1060 static void xen_drop_mm_ref(struct mm_struct *mm)
1062 if (current->active_mm == mm)
1063 load_cr3(swapper_pg_dir);
1065 #endif
1068 * While a process runs, Xen pins its pagetables, which means that the
1069 * hypervisor forces it to be read-only, and it controls all updates
1070 * to it. This means that all pagetable updates have to go via the
1071 * hypervisor, which is moderately expensive.
1073 * Since we're pulling the pagetable down, we switch to use init_mm,
1074 * unpin old process pagetable and mark it all read-write, which
1075 * allows further operations on it to be simple memory accesses.
1077 * The only subtle point is that another CPU may be still using the
1078 * pagetable because of lazy tlb flushing. This means we need need to
1079 * switch all CPUs off this pagetable before we can unpin it.
1081 static void xen_exit_mmap(struct mm_struct *mm)
1083 get_cpu(); /* make sure we don't move around */
1084 xen_drop_mm_ref(mm);
1085 put_cpu();
1087 spin_lock(&mm->page_table_lock);
1089 /* pgd may not be pinned in the error exit path of execve */
1090 if (xen_page_pinned(mm->pgd))
1091 xen_pgd_unpin(mm);
1093 spin_unlock(&mm->page_table_lock);
1096 static void xen_post_allocator_init(void);
1098 static void __init pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1100 struct mmuext_op op;
1102 op.cmd = cmd;
1103 op.arg1.mfn = pfn_to_mfn(pfn);
1104 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
1105 BUG();
1108 #ifdef CONFIG_X86_64
1109 static void __init xen_cleanhighmap(unsigned long vaddr,
1110 unsigned long vaddr_end)
1112 unsigned long kernel_end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
1113 pmd_t *pmd = level2_kernel_pgt + pmd_index(vaddr);
1115 /* NOTE: The loop is more greedy than the cleanup_highmap variant.
1116 * We include the PMD passed in on _both_ boundaries. */
1117 for (; vaddr <= vaddr_end && (pmd < (level2_kernel_pgt + PTRS_PER_PMD));
1118 pmd++, vaddr += PMD_SIZE) {
1119 if (pmd_none(*pmd))
1120 continue;
1121 if (vaddr < (unsigned long) _text || vaddr > kernel_end)
1122 set_pmd(pmd, __pmd(0));
1124 /* In case we did something silly, we should crash in this function
1125 * instead of somewhere later and be confusing. */
1126 xen_mc_flush();
1130 * Make a page range writeable and free it.
1132 static void __init xen_free_ro_pages(unsigned long paddr, unsigned long size)
1134 void *vaddr = __va(paddr);
1135 void *vaddr_end = vaddr + size;
1137 for (; vaddr < vaddr_end; vaddr += PAGE_SIZE)
1138 make_lowmem_page_readwrite(vaddr);
1140 memblock_free(paddr, size);
1143 static void __init xen_cleanmfnmap_free_pgtbl(void *pgtbl, bool unpin)
1145 unsigned long pa = __pa(pgtbl) & PHYSICAL_PAGE_MASK;
1147 if (unpin)
1148 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(pa));
1149 ClearPagePinned(virt_to_page(__va(pa)));
1150 xen_free_ro_pages(pa, PAGE_SIZE);
1154 * Since it is well isolated we can (and since it is perhaps large we should)
1155 * also free the page tables mapping the initial P->M table.
1157 static void __init xen_cleanmfnmap(unsigned long vaddr)
1159 unsigned long va = vaddr & PMD_MASK;
1160 unsigned long pa;
1161 pgd_t *pgd = pgd_offset_k(va);
1162 pud_t *pud_page = pud_offset(pgd, 0);
1163 pud_t *pud;
1164 pmd_t *pmd;
1165 pte_t *pte;
1166 unsigned int i;
1167 bool unpin;
1169 unpin = (vaddr == 2 * PGDIR_SIZE);
1170 set_pgd(pgd, __pgd(0));
1171 do {
1172 pud = pud_page + pud_index(va);
1173 if (pud_none(*pud)) {
1174 va += PUD_SIZE;
1175 } else if (pud_large(*pud)) {
1176 pa = pud_val(*pud) & PHYSICAL_PAGE_MASK;
1177 xen_free_ro_pages(pa, PUD_SIZE);
1178 va += PUD_SIZE;
1179 } else {
1180 pmd = pmd_offset(pud, va);
1181 if (pmd_large(*pmd)) {
1182 pa = pmd_val(*pmd) & PHYSICAL_PAGE_MASK;
1183 xen_free_ro_pages(pa, PMD_SIZE);
1184 } else if (!pmd_none(*pmd)) {
1185 pte = pte_offset_kernel(pmd, va);
1186 set_pmd(pmd, __pmd(0));
1187 for (i = 0; i < PTRS_PER_PTE; ++i) {
1188 if (pte_none(pte[i]))
1189 break;
1190 pa = pte_pfn(pte[i]) << PAGE_SHIFT;
1191 xen_free_ro_pages(pa, PAGE_SIZE);
1193 xen_cleanmfnmap_free_pgtbl(pte, unpin);
1195 va += PMD_SIZE;
1196 if (pmd_index(va))
1197 continue;
1198 set_pud(pud, __pud(0));
1199 xen_cleanmfnmap_free_pgtbl(pmd, unpin);
1202 } while (pud_index(va) || pmd_index(va));
1203 xen_cleanmfnmap_free_pgtbl(pud_page, unpin);
1206 static void __init xen_pagetable_p2m_free(void)
1208 unsigned long size;
1209 unsigned long addr;
1211 size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
1213 /* No memory or already called. */
1214 if ((unsigned long)xen_p2m_addr == xen_start_info->mfn_list)
1215 return;
1217 /* using __ka address and sticking INVALID_P2M_ENTRY! */
1218 memset((void *)xen_start_info->mfn_list, 0xff, size);
1220 addr = xen_start_info->mfn_list;
1222 * We could be in __ka space.
1223 * We roundup to the PMD, which means that if anybody at this stage is
1224 * using the __ka address of xen_start_info or
1225 * xen_start_info->shared_info they are in going to crash. Fortunatly
1226 * we have already revectored in xen_setup_kernel_pagetable and in
1227 * xen_setup_shared_info.
1229 size = roundup(size, PMD_SIZE);
1231 if (addr >= __START_KERNEL_map) {
1232 xen_cleanhighmap(addr, addr + size);
1233 size = PAGE_ALIGN(xen_start_info->nr_pages *
1234 sizeof(unsigned long));
1235 memblock_free(__pa(addr), size);
1236 } else {
1237 xen_cleanmfnmap(addr);
1241 static void __init xen_pagetable_cleanhighmap(void)
1243 unsigned long size;
1244 unsigned long addr;
1246 /* At this stage, cleanup_highmap has already cleaned __ka space
1247 * from _brk_limit way up to the max_pfn_mapped (which is the end of
1248 * the ramdisk). We continue on, erasing PMD entries that point to page
1249 * tables - do note that they are accessible at this stage via __va.
1250 * For good measure we also round up to the PMD - which means that if
1251 * anybody is using __ka address to the initial boot-stack - and try
1252 * to use it - they are going to crash. The xen_start_info has been
1253 * taken care of already in xen_setup_kernel_pagetable. */
1254 addr = xen_start_info->pt_base;
1255 size = roundup(xen_start_info->nr_pt_frames * PAGE_SIZE, PMD_SIZE);
1257 xen_cleanhighmap(addr, addr + size);
1258 xen_start_info->pt_base = (unsigned long)__va(__pa(xen_start_info->pt_base));
1259 #ifdef DEBUG
1260 /* This is superfluous and is not necessary, but you know what
1261 * lets do it. The MODULES_VADDR -> MODULES_END should be clear of
1262 * anything at this stage. */
1263 xen_cleanhighmap(MODULES_VADDR, roundup(MODULES_VADDR, PUD_SIZE) - 1);
1264 #endif
1266 #endif
1268 static void __init xen_pagetable_p2m_setup(void)
1270 if (xen_feature(XENFEAT_auto_translated_physmap))
1271 return;
1273 xen_vmalloc_p2m_tree();
1275 #ifdef CONFIG_X86_64
1276 xen_pagetable_p2m_free();
1278 xen_pagetable_cleanhighmap();
1279 #endif
1280 /* And revector! Bye bye old array */
1281 xen_start_info->mfn_list = (unsigned long)xen_p2m_addr;
1284 static void __init xen_pagetable_init(void)
1286 paging_init();
1287 xen_post_allocator_init();
1289 xen_pagetable_p2m_setup();
1291 /* Allocate and initialize top and mid mfn levels for p2m structure */
1292 xen_build_mfn_list_list();
1294 /* Remap memory freed due to conflicts with E820 map */
1295 if (!xen_feature(XENFEAT_auto_translated_physmap))
1296 xen_remap_memory();
1298 xen_setup_shared_info();
1300 static void xen_write_cr2(unsigned long cr2)
1302 this_cpu_read(xen_vcpu)->arch.cr2 = cr2;
1305 static unsigned long xen_read_cr2(void)
1307 return this_cpu_read(xen_vcpu)->arch.cr2;
1310 unsigned long xen_read_cr2_direct(void)
1312 return this_cpu_read(xen_vcpu_info.arch.cr2);
1315 void xen_flush_tlb_all(void)
1317 struct mmuext_op *op;
1318 struct multicall_space mcs;
1320 trace_xen_mmu_flush_tlb_all(0);
1322 preempt_disable();
1324 mcs = xen_mc_entry(sizeof(*op));
1326 op = mcs.args;
1327 op->cmd = MMUEXT_TLB_FLUSH_ALL;
1328 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1330 xen_mc_issue(PARAVIRT_LAZY_MMU);
1332 preempt_enable();
1334 static void xen_flush_tlb(void)
1336 struct mmuext_op *op;
1337 struct multicall_space mcs;
1339 trace_xen_mmu_flush_tlb(0);
1341 preempt_disable();
1343 mcs = xen_mc_entry(sizeof(*op));
1345 op = mcs.args;
1346 op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
1347 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1349 xen_mc_issue(PARAVIRT_LAZY_MMU);
1351 preempt_enable();
1354 static void xen_flush_tlb_single(unsigned long addr)
1356 struct mmuext_op *op;
1357 struct multicall_space mcs;
1359 trace_xen_mmu_flush_tlb_single(addr);
1361 preempt_disable();
1363 mcs = xen_mc_entry(sizeof(*op));
1364 op = mcs.args;
1365 op->cmd = MMUEXT_INVLPG_LOCAL;
1366 op->arg1.linear_addr = addr & PAGE_MASK;
1367 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1369 xen_mc_issue(PARAVIRT_LAZY_MMU);
1371 preempt_enable();
1374 static void xen_flush_tlb_others(const struct cpumask *cpus,
1375 struct mm_struct *mm, unsigned long start,
1376 unsigned long end)
1378 struct {
1379 struct mmuext_op op;
1380 #ifdef CONFIG_SMP
1381 DECLARE_BITMAP(mask, num_processors);
1382 #else
1383 DECLARE_BITMAP(mask, NR_CPUS);
1384 #endif
1385 } *args;
1386 struct multicall_space mcs;
1388 trace_xen_mmu_flush_tlb_others(cpus, mm, start, end);
1390 if (cpumask_empty(cpus))
1391 return; /* nothing to do */
1393 mcs = xen_mc_entry(sizeof(*args));
1394 args = mcs.args;
1395 args->op.arg2.vcpumask = to_cpumask(args->mask);
1397 /* Remove us, and any offline CPUS. */
1398 cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask);
1399 cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask));
1401 args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
1402 if (end != TLB_FLUSH_ALL && (end - start) <= PAGE_SIZE) {
1403 args->op.cmd = MMUEXT_INVLPG_MULTI;
1404 args->op.arg1.linear_addr = start;
1407 MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
1409 xen_mc_issue(PARAVIRT_LAZY_MMU);
1412 static unsigned long xen_read_cr3(void)
1414 return this_cpu_read(xen_cr3);
1417 static void set_current_cr3(void *v)
1419 this_cpu_write(xen_current_cr3, (unsigned long)v);
1422 static void __xen_write_cr3(bool kernel, unsigned long cr3)
1424 struct mmuext_op op;
1425 unsigned long mfn;
1427 trace_xen_mmu_write_cr3(kernel, cr3);
1429 if (cr3)
1430 mfn = pfn_to_mfn(PFN_DOWN(cr3));
1431 else
1432 mfn = 0;
1434 WARN_ON(mfn == 0 && kernel);
1436 op.cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
1437 op.arg1.mfn = mfn;
1439 xen_extend_mmuext_op(&op);
1441 if (kernel) {
1442 this_cpu_write(xen_cr3, cr3);
1444 /* Update xen_current_cr3 once the batch has actually
1445 been submitted. */
1446 xen_mc_callback(set_current_cr3, (void *)cr3);
1449 static void xen_write_cr3(unsigned long cr3)
1451 BUG_ON(preemptible());
1453 xen_mc_batch(); /* disables interrupts */
1455 /* Update while interrupts are disabled, so its atomic with
1456 respect to ipis */
1457 this_cpu_write(xen_cr3, cr3);
1459 __xen_write_cr3(true, cr3);
1461 #ifdef CONFIG_X86_64
1463 pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
1464 if (user_pgd)
1465 __xen_write_cr3(false, __pa(user_pgd));
1466 else
1467 __xen_write_cr3(false, 0);
1469 #endif
1471 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */
1474 #ifdef CONFIG_X86_64
1476 * At the start of the day - when Xen launches a guest, it has already
1477 * built pagetables for the guest. We diligently look over them
1478 * in xen_setup_kernel_pagetable and graft as appropriate them in the
1479 * init_level4_pgt and its friends. Then when we are happy we load
1480 * the new init_level4_pgt - and continue on.
1482 * The generic code starts (start_kernel) and 'init_mem_mapping' sets
1483 * up the rest of the pagetables. When it has completed it loads the cr3.
1484 * N.B. that baremetal would start at 'start_kernel' (and the early
1485 * #PF handler would create bootstrap pagetables) - so we are running
1486 * with the same assumptions as what to do when write_cr3 is executed
1487 * at this point.
1489 * Since there are no user-page tables at all, we have two variants
1490 * of xen_write_cr3 - the early bootup (this one), and the late one
1491 * (xen_write_cr3). The reason we have to do that is that in 64-bit
1492 * the Linux kernel and user-space are both in ring 3 while the
1493 * hypervisor is in ring 0.
1495 static void __init xen_write_cr3_init(unsigned long cr3)
1497 BUG_ON(preemptible());
1499 xen_mc_batch(); /* disables interrupts */
1501 /* Update while interrupts are disabled, so its atomic with
1502 respect to ipis */
1503 this_cpu_write(xen_cr3, cr3);
1505 __xen_write_cr3(true, cr3);
1507 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */
1509 #endif
1511 static int xen_pgd_alloc(struct mm_struct *mm)
1513 pgd_t *pgd = mm->pgd;
1514 int ret = 0;
1516 BUG_ON(PagePinned(virt_to_page(pgd)));
1518 #ifdef CONFIG_X86_64
1520 struct page *page = virt_to_page(pgd);
1521 pgd_t *user_pgd;
1523 BUG_ON(page->private != 0);
1525 ret = -ENOMEM;
1527 user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1528 page->private = (unsigned long)user_pgd;
1530 if (user_pgd != NULL) {
1531 #ifdef CONFIG_X86_VSYSCALL_EMULATION
1532 user_pgd[pgd_index(VSYSCALL_ADDR)] =
1533 __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
1534 #endif
1535 ret = 0;
1538 BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
1540 #endif
1542 return ret;
1545 static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
1547 #ifdef CONFIG_X86_64
1548 pgd_t *user_pgd = xen_get_user_pgd(pgd);
1550 if (user_pgd)
1551 free_page((unsigned long)user_pgd);
1552 #endif
1556 * Init-time set_pte while constructing initial pagetables, which
1557 * doesn't allow RO page table pages to be remapped RW.
1559 * If there is no MFN for this PFN then this page is initially
1560 * ballooned out so clear the PTE (as in decrease_reservation() in
1561 * drivers/xen/balloon.c).
1563 * Many of these PTE updates are done on unpinned and writable pages
1564 * and doing a hypercall for these is unnecessary and expensive. At
1565 * this point it is not possible to tell if a page is pinned or not,
1566 * so always write the PTE directly and rely on Xen trapping and
1567 * emulating any updates as necessary.
1569 __visible pte_t xen_make_pte_init(pteval_t pte)
1571 #ifdef CONFIG_X86_64
1572 unsigned long pfn;
1575 * Pages belonging to the initial p2m list mapped outside the default
1576 * address range must be mapped read-only. This region contains the
1577 * page tables for mapping the p2m list, too, and page tables MUST be
1578 * mapped read-only.
1580 pfn = (pte & PTE_PFN_MASK) >> PAGE_SHIFT;
1581 if (xen_start_info->mfn_list < __START_KERNEL_map &&
1582 pfn >= xen_start_info->first_p2m_pfn &&
1583 pfn < xen_start_info->first_p2m_pfn + xen_start_info->nr_p2m_frames)
1584 pte &= ~_PAGE_RW;
1585 #endif
1586 pte = pte_pfn_to_mfn(pte);
1587 return native_make_pte(pte);
1589 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte_init);
1591 static void __init xen_set_pte_init(pte_t *ptep, pte_t pte)
1593 #ifdef CONFIG_X86_32
1594 /* If there's an existing pte, then don't allow _PAGE_RW to be set */
1595 if (pte_mfn(pte) != INVALID_P2M_ENTRY
1596 && pte_val_ma(*ptep) & _PAGE_PRESENT)
1597 pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
1598 pte_val_ma(pte));
1599 #endif
1600 native_set_pte(ptep, pte);
1603 /* Early in boot, while setting up the initial pagetable, assume
1604 everything is pinned. */
1605 static void __init xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
1607 #ifdef CONFIG_FLATMEM
1608 BUG_ON(mem_map); /* should only be used early */
1609 #endif
1610 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1611 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1614 /* Used for pmd and pud */
1615 static void __init xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn)
1617 #ifdef CONFIG_FLATMEM
1618 BUG_ON(mem_map); /* should only be used early */
1619 #endif
1620 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1623 /* Early release_pte assumes that all pts are pinned, since there's
1624 only init_mm and anything attached to that is pinned. */
1625 static void __init xen_release_pte_init(unsigned long pfn)
1627 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1628 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1631 static void __init xen_release_pmd_init(unsigned long pfn)
1633 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1636 static inline void __pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1638 struct multicall_space mcs;
1639 struct mmuext_op *op;
1641 mcs = __xen_mc_entry(sizeof(*op));
1642 op = mcs.args;
1643 op->cmd = cmd;
1644 op->arg1.mfn = pfn_to_mfn(pfn);
1646 MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
1649 static inline void __set_pfn_prot(unsigned long pfn, pgprot_t prot)
1651 struct multicall_space mcs;
1652 unsigned long addr = (unsigned long)__va(pfn << PAGE_SHIFT);
1654 mcs = __xen_mc_entry(0);
1655 MULTI_update_va_mapping(mcs.mc, (unsigned long)addr,
1656 pfn_pte(pfn, prot), 0);
1659 /* This needs to make sure the new pte page is pinned iff its being
1660 attached to a pinned pagetable. */
1661 static inline void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn,
1662 unsigned level)
1664 bool pinned = PagePinned(virt_to_page(mm->pgd));
1666 trace_xen_mmu_alloc_ptpage(mm, pfn, level, pinned);
1668 if (pinned) {
1669 struct page *page = pfn_to_page(pfn);
1671 SetPagePinned(page);
1673 if (!PageHighMem(page)) {
1674 xen_mc_batch();
1676 __set_pfn_prot(pfn, PAGE_KERNEL_RO);
1678 if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS)
1679 __pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1681 xen_mc_issue(PARAVIRT_LAZY_MMU);
1682 } else {
1683 /* make sure there are no stray mappings of
1684 this page */
1685 kmap_flush_unused();
1690 static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
1692 xen_alloc_ptpage(mm, pfn, PT_PTE);
1695 static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
1697 xen_alloc_ptpage(mm, pfn, PT_PMD);
1700 /* This should never happen until we're OK to use struct page */
1701 static inline void xen_release_ptpage(unsigned long pfn, unsigned level)
1703 struct page *page = pfn_to_page(pfn);
1704 bool pinned = PagePinned(page);
1706 trace_xen_mmu_release_ptpage(pfn, level, pinned);
1708 if (pinned) {
1709 if (!PageHighMem(page)) {
1710 xen_mc_batch();
1712 if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS)
1713 __pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1715 __set_pfn_prot(pfn, PAGE_KERNEL);
1717 xen_mc_issue(PARAVIRT_LAZY_MMU);
1719 ClearPagePinned(page);
1723 static void xen_release_pte(unsigned long pfn)
1725 xen_release_ptpage(pfn, PT_PTE);
1728 static void xen_release_pmd(unsigned long pfn)
1730 xen_release_ptpage(pfn, PT_PMD);
1733 #if CONFIG_PGTABLE_LEVELS == 4
1734 static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
1736 xen_alloc_ptpage(mm, pfn, PT_PUD);
1739 static void xen_release_pud(unsigned long pfn)
1741 xen_release_ptpage(pfn, PT_PUD);
1743 #endif
1745 void __init xen_reserve_top(void)
1747 #ifdef CONFIG_X86_32
1748 unsigned long top = HYPERVISOR_VIRT_START;
1749 struct xen_platform_parameters pp;
1751 if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1752 top = pp.virt_start;
1754 reserve_top_address(-top);
1755 #endif /* CONFIG_X86_32 */
1759 * Like __va(), but returns address in the kernel mapping (which is
1760 * all we have until the physical memory mapping has been set up.
1762 static void * __init __ka(phys_addr_t paddr)
1764 #ifdef CONFIG_X86_64
1765 return (void *)(paddr + __START_KERNEL_map);
1766 #else
1767 return __va(paddr);
1768 #endif
1771 /* Convert a machine address to physical address */
1772 static unsigned long __init m2p(phys_addr_t maddr)
1774 phys_addr_t paddr;
1776 maddr &= PTE_PFN_MASK;
1777 paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1779 return paddr;
1782 /* Convert a machine address to kernel virtual */
1783 static void * __init m2v(phys_addr_t maddr)
1785 return __ka(m2p(maddr));
1788 /* Set the page permissions on an identity-mapped pages */
1789 static void __init set_page_prot_flags(void *addr, pgprot_t prot,
1790 unsigned long flags)
1792 unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1793 pte_t pte = pfn_pte(pfn, prot);
1795 if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, flags))
1796 BUG();
1798 static void __init set_page_prot(void *addr, pgprot_t prot)
1800 return set_page_prot_flags(addr, prot, UVMF_NONE);
1802 #ifdef CONFIG_X86_32
1803 static void __init xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
1805 unsigned pmdidx, pteidx;
1806 unsigned ident_pte;
1807 unsigned long pfn;
1809 level1_ident_pgt = extend_brk(sizeof(pte_t) * LEVEL1_IDENT_ENTRIES,
1810 PAGE_SIZE);
1812 ident_pte = 0;
1813 pfn = 0;
1814 for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
1815 pte_t *pte_page;
1817 /* Reuse or allocate a page of ptes */
1818 if (pmd_present(pmd[pmdidx]))
1819 pte_page = m2v(pmd[pmdidx].pmd);
1820 else {
1821 /* Check for free pte pages */
1822 if (ident_pte == LEVEL1_IDENT_ENTRIES)
1823 break;
1825 pte_page = &level1_ident_pgt[ident_pte];
1826 ident_pte += PTRS_PER_PTE;
1828 pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
1831 /* Install mappings */
1832 for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
1833 pte_t pte;
1835 if (pfn > max_pfn_mapped)
1836 max_pfn_mapped = pfn;
1838 if (!pte_none(pte_page[pteidx]))
1839 continue;
1841 pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
1842 pte_page[pteidx] = pte;
1846 for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
1847 set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
1849 set_page_prot(pmd, PAGE_KERNEL_RO);
1851 #endif
1852 void __init xen_setup_machphys_mapping(void)
1854 struct xen_machphys_mapping mapping;
1856 if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) {
1857 machine_to_phys_mapping = (unsigned long *)mapping.v_start;
1858 machine_to_phys_nr = mapping.max_mfn + 1;
1859 } else {
1860 machine_to_phys_nr = MACH2PHYS_NR_ENTRIES;
1862 #ifdef CONFIG_X86_32
1863 WARN_ON((machine_to_phys_mapping + (machine_to_phys_nr - 1))
1864 < machine_to_phys_mapping);
1865 #endif
1868 #ifdef CONFIG_X86_64
1869 static void __init convert_pfn_mfn(void *v)
1871 pte_t *pte = v;
1872 int i;
1874 /* All levels are converted the same way, so just treat them
1875 as ptes. */
1876 for (i = 0; i < PTRS_PER_PTE; i++)
1877 pte[i] = xen_make_pte(pte[i].pte);
1879 static void __init check_pt_base(unsigned long *pt_base, unsigned long *pt_end,
1880 unsigned long addr)
1882 if (*pt_base == PFN_DOWN(__pa(addr))) {
1883 set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG);
1884 clear_page((void *)addr);
1885 (*pt_base)++;
1887 if (*pt_end == PFN_DOWN(__pa(addr))) {
1888 set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG);
1889 clear_page((void *)addr);
1890 (*pt_end)--;
1894 * Set up the initial kernel pagetable.
1896 * We can construct this by grafting the Xen provided pagetable into
1897 * head_64.S's preconstructed pagetables. We copy the Xen L2's into
1898 * level2_ident_pgt, and level2_kernel_pgt. This means that only the
1899 * kernel has a physical mapping to start with - but that's enough to
1900 * get __va working. We need to fill in the rest of the physical
1901 * mapping once some sort of allocator has been set up.
1903 void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1905 pud_t *l3;
1906 pmd_t *l2;
1907 unsigned long addr[3];
1908 unsigned long pt_base, pt_end;
1909 unsigned i;
1911 /* max_pfn_mapped is the last pfn mapped in the initial memory
1912 * mappings. Considering that on Xen after the kernel mappings we
1913 * have the mappings of some pages that don't exist in pfn space, we
1914 * set max_pfn_mapped to the last real pfn mapped. */
1915 if (xen_start_info->mfn_list < __START_KERNEL_map)
1916 max_pfn_mapped = xen_start_info->first_p2m_pfn;
1917 else
1918 max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list));
1920 pt_base = PFN_DOWN(__pa(xen_start_info->pt_base));
1921 pt_end = pt_base + xen_start_info->nr_pt_frames;
1923 /* Zap identity mapping */
1924 init_level4_pgt[0] = __pgd(0);
1926 if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1927 /* Pre-constructed entries are in pfn, so convert to mfn */
1928 /* L4[272] -> level3_ident_pgt
1929 * L4[511] -> level3_kernel_pgt */
1930 convert_pfn_mfn(init_level4_pgt);
1932 /* L3_i[0] -> level2_ident_pgt */
1933 convert_pfn_mfn(level3_ident_pgt);
1934 /* L3_k[510] -> level2_kernel_pgt
1935 * L3_k[511] -> level2_fixmap_pgt */
1936 convert_pfn_mfn(level3_kernel_pgt);
1938 /* L3_k[511][506] -> level1_fixmap_pgt */
1939 convert_pfn_mfn(level2_fixmap_pgt);
1941 /* We get [511][511] and have Xen's version of level2_kernel_pgt */
1942 l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1943 l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1945 addr[0] = (unsigned long)pgd;
1946 addr[1] = (unsigned long)l3;
1947 addr[2] = (unsigned long)l2;
1948 /* Graft it onto L4[272][0]. Note that we creating an aliasing problem:
1949 * Both L4[272][0] and L4[511][510] have entries that point to the same
1950 * L2 (PMD) tables. Meaning that if you modify it in __va space
1951 * it will be also modified in the __ka space! (But if you just
1952 * modify the PMD table to point to other PTE's or none, then you
1953 * are OK - which is what cleanup_highmap does) */
1954 copy_page(level2_ident_pgt, l2);
1955 /* Graft it onto L4[511][510] */
1956 copy_page(level2_kernel_pgt, l2);
1958 /* Copy the initial P->M table mappings if necessary. */
1959 i = pgd_index(xen_start_info->mfn_list);
1960 if (i && i < pgd_index(__START_KERNEL_map))
1961 init_level4_pgt[i] = ((pgd_t *)xen_start_info->pt_base)[i];
1963 if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1964 /* Make pagetable pieces RO */
1965 set_page_prot(init_level4_pgt, PAGE_KERNEL_RO);
1966 set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1967 set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1968 set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
1969 set_page_prot(level2_ident_pgt, PAGE_KERNEL_RO);
1970 set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1971 set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1972 set_page_prot(level1_fixmap_pgt, PAGE_KERNEL_RO);
1974 /* Pin down new L4 */
1975 pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1976 PFN_DOWN(__pa_symbol(init_level4_pgt)));
1978 /* Unpin Xen-provided one */
1979 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1982 * At this stage there can be no user pgd, and no page
1983 * structure to attach it to, so make sure we just set kernel
1984 * pgd.
1986 xen_mc_batch();
1987 __xen_write_cr3(true, __pa(init_level4_pgt));
1988 xen_mc_issue(PARAVIRT_LAZY_CPU);
1989 } else
1990 native_write_cr3(__pa(init_level4_pgt));
1992 /* We can't that easily rip out L3 and L2, as the Xen pagetables are
1993 * set out this way: [L4], [L1], [L2], [L3], [L1], [L1] ... for
1994 * the initial domain. For guests using the toolstack, they are in:
1995 * [L4], [L3], [L2], [L1], [L1], order .. So for dom0 we can only
1996 * rip out the [L4] (pgd), but for guests we shave off three pages.
1998 for (i = 0; i < ARRAY_SIZE(addr); i++)
1999 check_pt_base(&pt_base, &pt_end, addr[i]);
2001 /* Our (by three pages) smaller Xen pagetable that we are using */
2002 xen_pt_base = PFN_PHYS(pt_base);
2003 xen_pt_size = (pt_end - pt_base) * PAGE_SIZE;
2004 memblock_reserve(xen_pt_base, xen_pt_size);
2006 /* Revector the xen_start_info */
2007 xen_start_info = (struct start_info *)__va(__pa(xen_start_info));
2011 * Read a value from a physical address.
2013 static unsigned long __init xen_read_phys_ulong(phys_addr_t addr)
2015 unsigned long *vaddr;
2016 unsigned long val;
2018 vaddr = early_memremap_ro(addr, sizeof(val));
2019 val = *vaddr;
2020 early_memunmap(vaddr, sizeof(val));
2021 return val;
2025 * Translate a virtual address to a physical one without relying on mapped
2026 * page tables.
2028 static phys_addr_t __init xen_early_virt_to_phys(unsigned long vaddr)
2030 phys_addr_t pa;
2031 pgd_t pgd;
2032 pud_t pud;
2033 pmd_t pmd;
2034 pte_t pte;
2036 pa = read_cr3();
2037 pgd = native_make_pgd(xen_read_phys_ulong(pa + pgd_index(vaddr) *
2038 sizeof(pgd)));
2039 if (!pgd_present(pgd))
2040 return 0;
2042 pa = pgd_val(pgd) & PTE_PFN_MASK;
2043 pud = native_make_pud(xen_read_phys_ulong(pa + pud_index(vaddr) *
2044 sizeof(pud)));
2045 if (!pud_present(pud))
2046 return 0;
2047 pa = pud_pfn(pud) << PAGE_SHIFT;
2048 if (pud_large(pud))
2049 return pa + (vaddr & ~PUD_MASK);
2051 pmd = native_make_pmd(xen_read_phys_ulong(pa + pmd_index(vaddr) *
2052 sizeof(pmd)));
2053 if (!pmd_present(pmd))
2054 return 0;
2055 pa = pmd_pfn(pmd) << PAGE_SHIFT;
2056 if (pmd_large(pmd))
2057 return pa + (vaddr & ~PMD_MASK);
2059 pte = native_make_pte(xen_read_phys_ulong(pa + pte_index(vaddr) *
2060 sizeof(pte)));
2061 if (!pte_present(pte))
2062 return 0;
2063 pa = pte_pfn(pte) << PAGE_SHIFT;
2065 return pa | (vaddr & ~PAGE_MASK);
2069 * Find a new area for the hypervisor supplied p2m list and relocate the p2m to
2070 * this area.
2072 void __init xen_relocate_p2m(void)
2074 phys_addr_t size, new_area, pt_phys, pmd_phys, pud_phys;
2075 unsigned long p2m_pfn, p2m_pfn_end, n_frames, pfn, pfn_end;
2076 int n_pte, n_pt, n_pmd, n_pud, idx_pte, idx_pt, idx_pmd, idx_pud;
2077 pte_t *pt;
2078 pmd_t *pmd;
2079 pud_t *pud;
2080 pgd_t *pgd;
2081 unsigned long *new_p2m;
2083 size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
2084 n_pte = roundup(size, PAGE_SIZE) >> PAGE_SHIFT;
2085 n_pt = roundup(size, PMD_SIZE) >> PMD_SHIFT;
2086 n_pmd = roundup(size, PUD_SIZE) >> PUD_SHIFT;
2087 n_pud = roundup(size, PGDIR_SIZE) >> PGDIR_SHIFT;
2088 n_frames = n_pte + n_pt + n_pmd + n_pud;
2090 new_area = xen_find_free_area(PFN_PHYS(n_frames));
2091 if (!new_area) {
2092 xen_raw_console_write("Can't find new memory area for p2m needed due to E820 map conflict\n");
2093 BUG();
2097 * Setup the page tables for addressing the new p2m list.
2098 * We have asked the hypervisor to map the p2m list at the user address
2099 * PUD_SIZE. It may have done so, or it may have used a kernel space
2100 * address depending on the Xen version.
2101 * To avoid any possible virtual address collision, just use
2102 * 2 * PUD_SIZE for the new area.
2104 pud_phys = new_area;
2105 pmd_phys = pud_phys + PFN_PHYS(n_pud);
2106 pt_phys = pmd_phys + PFN_PHYS(n_pmd);
2107 p2m_pfn = PFN_DOWN(pt_phys) + n_pt;
2109 pgd = __va(read_cr3());
2110 new_p2m = (unsigned long *)(2 * PGDIR_SIZE);
2111 for (idx_pud = 0; idx_pud < n_pud; idx_pud++) {
2112 pud = early_memremap(pud_phys, PAGE_SIZE);
2113 clear_page(pud);
2114 for (idx_pmd = 0; idx_pmd < min(n_pmd, PTRS_PER_PUD);
2115 idx_pmd++) {
2116 pmd = early_memremap(pmd_phys, PAGE_SIZE);
2117 clear_page(pmd);
2118 for (idx_pt = 0; idx_pt < min(n_pt, PTRS_PER_PMD);
2119 idx_pt++) {
2120 pt = early_memremap(pt_phys, PAGE_SIZE);
2121 clear_page(pt);
2122 for (idx_pte = 0;
2123 idx_pte < min(n_pte, PTRS_PER_PTE);
2124 idx_pte++) {
2125 set_pte(pt + idx_pte,
2126 pfn_pte(p2m_pfn, PAGE_KERNEL));
2127 p2m_pfn++;
2129 n_pte -= PTRS_PER_PTE;
2130 early_memunmap(pt, PAGE_SIZE);
2131 make_lowmem_page_readonly(__va(pt_phys));
2132 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE,
2133 PFN_DOWN(pt_phys));
2134 set_pmd(pmd + idx_pt,
2135 __pmd(_PAGE_TABLE | pt_phys));
2136 pt_phys += PAGE_SIZE;
2138 n_pt -= PTRS_PER_PMD;
2139 early_memunmap(pmd, PAGE_SIZE);
2140 make_lowmem_page_readonly(__va(pmd_phys));
2141 pin_pagetable_pfn(MMUEXT_PIN_L2_TABLE,
2142 PFN_DOWN(pmd_phys));
2143 set_pud(pud + idx_pmd, __pud(_PAGE_TABLE | pmd_phys));
2144 pmd_phys += PAGE_SIZE;
2146 n_pmd -= PTRS_PER_PUD;
2147 early_memunmap(pud, PAGE_SIZE);
2148 make_lowmem_page_readonly(__va(pud_phys));
2149 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, PFN_DOWN(pud_phys));
2150 set_pgd(pgd + 2 + idx_pud, __pgd(_PAGE_TABLE | pud_phys));
2151 pud_phys += PAGE_SIZE;
2154 /* Now copy the old p2m info to the new area. */
2155 memcpy(new_p2m, xen_p2m_addr, size);
2156 xen_p2m_addr = new_p2m;
2158 /* Release the old p2m list and set new list info. */
2159 p2m_pfn = PFN_DOWN(xen_early_virt_to_phys(xen_start_info->mfn_list));
2160 BUG_ON(!p2m_pfn);
2161 p2m_pfn_end = p2m_pfn + PFN_DOWN(size);
2163 if (xen_start_info->mfn_list < __START_KERNEL_map) {
2164 pfn = xen_start_info->first_p2m_pfn;
2165 pfn_end = xen_start_info->first_p2m_pfn +
2166 xen_start_info->nr_p2m_frames;
2167 set_pgd(pgd + 1, __pgd(0));
2168 } else {
2169 pfn = p2m_pfn;
2170 pfn_end = p2m_pfn_end;
2173 memblock_free(PFN_PHYS(pfn), PAGE_SIZE * (pfn_end - pfn));
2174 while (pfn < pfn_end) {
2175 if (pfn == p2m_pfn) {
2176 pfn = p2m_pfn_end;
2177 continue;
2179 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
2180 pfn++;
2183 xen_start_info->mfn_list = (unsigned long)xen_p2m_addr;
2184 xen_start_info->first_p2m_pfn = PFN_DOWN(new_area);
2185 xen_start_info->nr_p2m_frames = n_frames;
2188 #else /* !CONFIG_X86_64 */
2189 static RESERVE_BRK_ARRAY(pmd_t, initial_kernel_pmd, PTRS_PER_PMD);
2190 static RESERVE_BRK_ARRAY(pmd_t, swapper_kernel_pmd, PTRS_PER_PMD);
2192 static void __init xen_write_cr3_init(unsigned long cr3)
2194 unsigned long pfn = PFN_DOWN(__pa(swapper_pg_dir));
2196 BUG_ON(read_cr3() != __pa(initial_page_table));
2197 BUG_ON(cr3 != __pa(swapper_pg_dir));
2200 * We are switching to swapper_pg_dir for the first time (from
2201 * initial_page_table) and therefore need to mark that page
2202 * read-only and then pin it.
2204 * Xen disallows sharing of kernel PMDs for PAE
2205 * guests. Therefore we must copy the kernel PMD from
2206 * initial_page_table into a new kernel PMD to be used in
2207 * swapper_pg_dir.
2209 swapper_kernel_pmd =
2210 extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
2211 copy_page(swapper_kernel_pmd, initial_kernel_pmd);
2212 swapper_pg_dir[KERNEL_PGD_BOUNDARY] =
2213 __pgd(__pa(swapper_kernel_pmd) | _PAGE_PRESENT);
2214 set_page_prot(swapper_kernel_pmd, PAGE_KERNEL_RO);
2216 set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
2217 xen_write_cr3(cr3);
2218 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, pfn);
2220 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE,
2221 PFN_DOWN(__pa(initial_page_table)));
2222 set_page_prot(initial_page_table, PAGE_KERNEL);
2223 set_page_prot(initial_kernel_pmd, PAGE_KERNEL);
2225 pv_mmu_ops.write_cr3 = &xen_write_cr3;
2229 * For 32 bit domains xen_start_info->pt_base is the pgd address which might be
2230 * not the first page table in the page table pool.
2231 * Iterate through the initial page tables to find the real page table base.
2233 static phys_addr_t xen_find_pt_base(pmd_t *pmd)
2235 phys_addr_t pt_base, paddr;
2236 unsigned pmdidx;
2238 pt_base = min(__pa(xen_start_info->pt_base), __pa(pmd));
2240 for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++)
2241 if (pmd_present(pmd[pmdidx]) && !pmd_large(pmd[pmdidx])) {
2242 paddr = m2p(pmd[pmdidx].pmd);
2243 pt_base = min(pt_base, paddr);
2246 return pt_base;
2249 void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
2251 pmd_t *kernel_pmd;
2253 kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
2255 xen_pt_base = xen_find_pt_base(kernel_pmd);
2256 xen_pt_size = xen_start_info->nr_pt_frames * PAGE_SIZE;
2258 initial_kernel_pmd =
2259 extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
2261 max_pfn_mapped = PFN_DOWN(xen_pt_base + xen_pt_size + 512 * 1024);
2263 copy_page(initial_kernel_pmd, kernel_pmd);
2265 xen_map_identity_early(initial_kernel_pmd, max_pfn);
2267 copy_page(initial_page_table, pgd);
2268 initial_page_table[KERNEL_PGD_BOUNDARY] =
2269 __pgd(__pa(initial_kernel_pmd) | _PAGE_PRESENT);
2271 set_page_prot(initial_kernel_pmd, PAGE_KERNEL_RO);
2272 set_page_prot(initial_page_table, PAGE_KERNEL_RO);
2273 set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
2275 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
2277 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE,
2278 PFN_DOWN(__pa(initial_page_table)));
2279 xen_write_cr3(__pa(initial_page_table));
2281 memblock_reserve(xen_pt_base, xen_pt_size);
2283 #endif /* CONFIG_X86_64 */
2285 void __init xen_reserve_special_pages(void)
2287 phys_addr_t paddr;
2289 memblock_reserve(__pa(xen_start_info), PAGE_SIZE);
2290 if (xen_start_info->store_mfn) {
2291 paddr = PFN_PHYS(mfn_to_pfn(xen_start_info->store_mfn));
2292 memblock_reserve(paddr, PAGE_SIZE);
2294 if (!xen_initial_domain()) {
2295 paddr = PFN_PHYS(mfn_to_pfn(xen_start_info->console.domU.mfn));
2296 memblock_reserve(paddr, PAGE_SIZE);
2300 void __init xen_pt_check_e820(void)
2302 if (xen_is_e820_reserved(xen_pt_base, xen_pt_size)) {
2303 xen_raw_console_write("Xen hypervisor allocated page table memory conflicts with E820 map\n");
2304 BUG();
2308 static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss;
2310 static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot)
2312 pte_t pte;
2314 phys >>= PAGE_SHIFT;
2316 switch (idx) {
2317 case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
2318 case FIX_RO_IDT:
2319 #ifdef CONFIG_X86_32
2320 case FIX_WP_TEST:
2321 # ifdef CONFIG_HIGHMEM
2322 case FIX_KMAP_BEGIN ... FIX_KMAP_END:
2323 # endif
2324 #elif defined(CONFIG_X86_VSYSCALL_EMULATION)
2325 case VSYSCALL_PAGE:
2326 #endif
2327 case FIX_TEXT_POKE0:
2328 case FIX_TEXT_POKE1:
2329 /* All local page mappings */
2330 pte = pfn_pte(phys, prot);
2331 break;
2333 #ifdef CONFIG_X86_LOCAL_APIC
2334 case FIX_APIC_BASE: /* maps dummy local APIC */
2335 pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2336 break;
2337 #endif
2339 #ifdef CONFIG_X86_IO_APIC
2340 case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END:
2342 * We just don't map the IO APIC - all access is via
2343 * hypercalls. Keep the address in the pte for reference.
2345 pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2346 break;
2347 #endif
2349 case FIX_PARAVIRT_BOOTMAP:
2350 /* This is an MFN, but it isn't an IO mapping from the
2351 IO domain */
2352 pte = mfn_pte(phys, prot);
2353 break;
2355 default:
2356 /* By default, set_fixmap is used for hardware mappings */
2357 pte = mfn_pte(phys, prot);
2358 break;
2361 __native_set_fixmap(idx, pte);
2363 #ifdef CONFIG_X86_VSYSCALL_EMULATION
2364 /* Replicate changes to map the vsyscall page into the user
2365 pagetable vsyscall mapping. */
2366 if (idx == VSYSCALL_PAGE) {
2367 unsigned long vaddr = __fix_to_virt(idx);
2368 set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
2370 #endif
2373 static void __init xen_post_allocator_init(void)
2375 if (xen_feature(XENFEAT_auto_translated_physmap))
2376 return;
2378 pv_mmu_ops.set_pte = xen_set_pte;
2379 pv_mmu_ops.set_pmd = xen_set_pmd;
2380 pv_mmu_ops.set_pud = xen_set_pud;
2381 #if CONFIG_PGTABLE_LEVELS == 4
2382 pv_mmu_ops.set_pgd = xen_set_pgd;
2383 #endif
2385 /* This will work as long as patching hasn't happened yet
2386 (which it hasn't) */
2387 pv_mmu_ops.alloc_pte = xen_alloc_pte;
2388 pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
2389 pv_mmu_ops.release_pte = xen_release_pte;
2390 pv_mmu_ops.release_pmd = xen_release_pmd;
2391 #if CONFIG_PGTABLE_LEVELS == 4
2392 pv_mmu_ops.alloc_pud = xen_alloc_pud;
2393 pv_mmu_ops.release_pud = xen_release_pud;
2394 #endif
2395 pv_mmu_ops.make_pte = PV_CALLEE_SAVE(xen_make_pte);
2397 #ifdef CONFIG_X86_64
2398 pv_mmu_ops.write_cr3 = &xen_write_cr3;
2399 SetPagePinned(virt_to_page(level3_user_vsyscall));
2400 #endif
2401 xen_mark_init_mm_pinned();
2404 static void xen_leave_lazy_mmu(void)
2406 preempt_disable();
2407 xen_mc_flush();
2408 paravirt_leave_lazy_mmu();
2409 preempt_enable();
2412 static const struct pv_mmu_ops xen_mmu_ops __initconst = {
2413 .read_cr2 = xen_read_cr2,
2414 .write_cr2 = xen_write_cr2,
2416 .read_cr3 = xen_read_cr3,
2417 .write_cr3 = xen_write_cr3_init,
2419 .flush_tlb_user = xen_flush_tlb,
2420 .flush_tlb_kernel = xen_flush_tlb,
2421 .flush_tlb_single = xen_flush_tlb_single,
2422 .flush_tlb_others = xen_flush_tlb_others,
2424 .pte_update = paravirt_nop,
2426 .pgd_alloc = xen_pgd_alloc,
2427 .pgd_free = xen_pgd_free,
2429 .alloc_pte = xen_alloc_pte_init,
2430 .release_pte = xen_release_pte_init,
2431 .alloc_pmd = xen_alloc_pmd_init,
2432 .release_pmd = xen_release_pmd_init,
2434 .set_pte = xen_set_pte_init,
2435 .set_pte_at = xen_set_pte_at,
2436 .set_pmd = xen_set_pmd_hyper,
2438 .ptep_modify_prot_start = __ptep_modify_prot_start,
2439 .ptep_modify_prot_commit = __ptep_modify_prot_commit,
2441 .pte_val = PV_CALLEE_SAVE(xen_pte_val),
2442 .pgd_val = PV_CALLEE_SAVE(xen_pgd_val),
2444 .make_pte = PV_CALLEE_SAVE(xen_make_pte_init),
2445 .make_pgd = PV_CALLEE_SAVE(xen_make_pgd),
2447 #ifdef CONFIG_X86_PAE
2448 .set_pte_atomic = xen_set_pte_atomic,
2449 .pte_clear = xen_pte_clear,
2450 .pmd_clear = xen_pmd_clear,
2451 #endif /* CONFIG_X86_PAE */
2452 .set_pud = xen_set_pud_hyper,
2454 .make_pmd = PV_CALLEE_SAVE(xen_make_pmd),
2455 .pmd_val = PV_CALLEE_SAVE(xen_pmd_val),
2457 #if CONFIG_PGTABLE_LEVELS == 4
2458 .pud_val = PV_CALLEE_SAVE(xen_pud_val),
2459 .make_pud = PV_CALLEE_SAVE(xen_make_pud),
2460 .set_pgd = xen_set_pgd_hyper,
2462 .alloc_pud = xen_alloc_pmd_init,
2463 .release_pud = xen_release_pmd_init,
2464 #endif /* CONFIG_PGTABLE_LEVELS == 4 */
2466 .activate_mm = xen_activate_mm,
2467 .dup_mmap = xen_dup_mmap,
2468 .exit_mmap = xen_exit_mmap,
2470 .lazy_mode = {
2471 .enter = paravirt_enter_lazy_mmu,
2472 .leave = xen_leave_lazy_mmu,
2473 .flush = paravirt_flush_lazy_mmu,
2476 .set_fixmap = xen_set_fixmap,
2479 void __init xen_init_mmu_ops(void)
2481 x86_init.paging.pagetable_init = xen_pagetable_init;
2483 if (xen_feature(XENFEAT_auto_translated_physmap))
2484 return;
2486 pv_mmu_ops = xen_mmu_ops;
2488 memset(dummy_mapping, 0xff, PAGE_SIZE);
2491 /* Protected by xen_reservation_lock. */
2492 #define MAX_CONTIG_ORDER 9 /* 2MB */
2493 static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER];
2495 #define VOID_PTE (mfn_pte(0, __pgprot(0)))
2496 static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order,
2497 unsigned long *in_frames,
2498 unsigned long *out_frames)
2500 int i;
2501 struct multicall_space mcs;
2503 xen_mc_batch();
2504 for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) {
2505 mcs = __xen_mc_entry(0);
2507 if (in_frames)
2508 in_frames[i] = virt_to_mfn(vaddr);
2510 MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0);
2511 __set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY);
2513 if (out_frames)
2514 out_frames[i] = virt_to_pfn(vaddr);
2516 xen_mc_issue(0);
2520 * Update the pfn-to-mfn mappings for a virtual address range, either to
2521 * point to an array of mfns, or contiguously from a single starting
2522 * mfn.
2524 static void xen_remap_exchanged_ptes(unsigned long vaddr, int order,
2525 unsigned long *mfns,
2526 unsigned long first_mfn)
2528 unsigned i, limit;
2529 unsigned long mfn;
2531 xen_mc_batch();
2533 limit = 1u << order;
2534 for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) {
2535 struct multicall_space mcs;
2536 unsigned flags;
2538 mcs = __xen_mc_entry(0);
2539 if (mfns)
2540 mfn = mfns[i];
2541 else
2542 mfn = first_mfn + i;
2544 if (i < (limit - 1))
2545 flags = 0;
2546 else {
2547 if (order == 0)
2548 flags = UVMF_INVLPG | UVMF_ALL;
2549 else
2550 flags = UVMF_TLB_FLUSH | UVMF_ALL;
2553 MULTI_update_va_mapping(mcs.mc, vaddr,
2554 mfn_pte(mfn, PAGE_KERNEL), flags);
2556 set_phys_to_machine(virt_to_pfn(vaddr), mfn);
2559 xen_mc_issue(0);
2563 * Perform the hypercall to exchange a region of our pfns to point to
2564 * memory with the required contiguous alignment. Takes the pfns as
2565 * input, and populates mfns as output.
2567 * Returns a success code indicating whether the hypervisor was able to
2568 * satisfy the request or not.
2570 static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in,
2571 unsigned long *pfns_in,
2572 unsigned long extents_out,
2573 unsigned int order_out,
2574 unsigned long *mfns_out,
2575 unsigned int address_bits)
2577 long rc;
2578 int success;
2580 struct xen_memory_exchange exchange = {
2581 .in = {
2582 .nr_extents = extents_in,
2583 .extent_order = order_in,
2584 .extent_start = pfns_in,
2585 .domid = DOMID_SELF
2587 .out = {
2588 .nr_extents = extents_out,
2589 .extent_order = order_out,
2590 .extent_start = mfns_out,
2591 .address_bits = address_bits,
2592 .domid = DOMID_SELF
2596 BUG_ON(extents_in << order_in != extents_out << order_out);
2598 rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange);
2599 success = (exchange.nr_exchanged == extents_in);
2601 BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0)));
2602 BUG_ON(success && (rc != 0));
2604 return success;
2607 int xen_create_contiguous_region(phys_addr_t pstart, unsigned int order,
2608 unsigned int address_bits,
2609 dma_addr_t *dma_handle)
2611 unsigned long *in_frames = discontig_frames, out_frame;
2612 unsigned long flags;
2613 int success;
2614 unsigned long vstart = (unsigned long)phys_to_virt(pstart);
2617 * Currently an auto-translated guest will not perform I/O, nor will
2618 * it require PAE page directories below 4GB. Therefore any calls to
2619 * this function are redundant and can be ignored.
2622 if (xen_feature(XENFEAT_auto_translated_physmap))
2623 return 0;
2625 if (unlikely(order > MAX_CONTIG_ORDER))
2626 return -ENOMEM;
2628 memset((void *) vstart, 0, PAGE_SIZE << order);
2630 spin_lock_irqsave(&xen_reservation_lock, flags);
2632 /* 1. Zap current PTEs, remembering MFNs. */
2633 xen_zap_pfn_range(vstart, order, in_frames, NULL);
2635 /* 2. Get a new contiguous memory extent. */
2636 out_frame = virt_to_pfn(vstart);
2637 success = xen_exchange_memory(1UL << order, 0, in_frames,
2638 1, order, &out_frame,
2639 address_bits);
2641 /* 3. Map the new extent in place of old pages. */
2642 if (success)
2643 xen_remap_exchanged_ptes(vstart, order, NULL, out_frame);
2644 else
2645 xen_remap_exchanged_ptes(vstart, order, in_frames, 0);
2647 spin_unlock_irqrestore(&xen_reservation_lock, flags);
2649 *dma_handle = virt_to_machine(vstart).maddr;
2650 return success ? 0 : -ENOMEM;
2652 EXPORT_SYMBOL_GPL(xen_create_contiguous_region);
2654 void xen_destroy_contiguous_region(phys_addr_t pstart, unsigned int order)
2656 unsigned long *out_frames = discontig_frames, in_frame;
2657 unsigned long flags;
2658 int success;
2659 unsigned long vstart;
2661 if (xen_feature(XENFEAT_auto_translated_physmap))
2662 return;
2664 if (unlikely(order > MAX_CONTIG_ORDER))
2665 return;
2667 vstart = (unsigned long)phys_to_virt(pstart);
2668 memset((void *) vstart, 0, PAGE_SIZE << order);
2670 spin_lock_irqsave(&xen_reservation_lock, flags);
2672 /* 1. Find start MFN of contiguous extent. */
2673 in_frame = virt_to_mfn(vstart);
2675 /* 2. Zap current PTEs. */
2676 xen_zap_pfn_range(vstart, order, NULL, out_frames);
2678 /* 3. Do the exchange for non-contiguous MFNs. */
2679 success = xen_exchange_memory(1, order, &in_frame, 1UL << order,
2680 0, out_frames, 0);
2682 /* 4. Map new pages in place of old pages. */
2683 if (success)
2684 xen_remap_exchanged_ptes(vstart, order, out_frames, 0);
2685 else
2686 xen_remap_exchanged_ptes(vstart, order, NULL, in_frame);
2688 spin_unlock_irqrestore(&xen_reservation_lock, flags);
2690 EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region);
2692 #ifdef CONFIG_XEN_PVHVM
2693 #ifdef CONFIG_PROC_VMCORE
2695 * This function is used in two contexts:
2696 * - the kdump kernel has to check whether a pfn of the crashed kernel
2697 * was a ballooned page. vmcore is using this function to decide
2698 * whether to access a pfn of the crashed kernel.
2699 * - the kexec kernel has to check whether a pfn was ballooned by the
2700 * previous kernel. If the pfn is ballooned, handle it properly.
2701 * Returns 0 if the pfn is not backed by a RAM page, the caller may
2702 * handle the pfn special in this case.
2704 static int xen_oldmem_pfn_is_ram(unsigned long pfn)
2706 struct xen_hvm_get_mem_type a = {
2707 .domid = DOMID_SELF,
2708 .pfn = pfn,
2710 int ram;
2712 if (HYPERVISOR_hvm_op(HVMOP_get_mem_type, &a))
2713 return -ENXIO;
2715 switch (a.mem_type) {
2716 case HVMMEM_mmio_dm:
2717 ram = 0;
2718 break;
2719 case HVMMEM_ram_rw:
2720 case HVMMEM_ram_ro:
2721 default:
2722 ram = 1;
2723 break;
2726 return ram;
2728 #endif
2730 static void xen_hvm_exit_mmap(struct mm_struct *mm)
2732 struct xen_hvm_pagetable_dying a;
2733 int rc;
2735 a.domid = DOMID_SELF;
2736 a.gpa = __pa(mm->pgd);
2737 rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2738 WARN_ON_ONCE(rc < 0);
2741 static int is_pagetable_dying_supported(void)
2743 struct xen_hvm_pagetable_dying a;
2744 int rc = 0;
2746 a.domid = DOMID_SELF;
2747 a.gpa = 0x00;
2748 rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2749 if (rc < 0) {
2750 printk(KERN_DEBUG "HVMOP_pagetable_dying not supported\n");
2751 return 0;
2753 return 1;
2756 void __init xen_hvm_init_mmu_ops(void)
2758 if (is_pagetable_dying_supported())
2759 pv_mmu_ops.exit_mmap = xen_hvm_exit_mmap;
2760 #ifdef CONFIG_PROC_VMCORE
2761 register_oldmem_pfn_is_ram(&xen_oldmem_pfn_is_ram);
2762 #endif
2764 #endif
2766 #define REMAP_BATCH_SIZE 16
2768 struct remap_data {
2769 xen_pfn_t *mfn;
2770 bool contiguous;
2771 pgprot_t prot;
2772 struct mmu_update *mmu_update;
2775 static int remap_area_mfn_pte_fn(pte_t *ptep, pgtable_t token,
2776 unsigned long addr, void *data)
2778 struct remap_data *rmd = data;
2779 pte_t pte = pte_mkspecial(mfn_pte(*rmd->mfn, rmd->prot));
2781 /* If we have a contiguous range, just update the mfn itself,
2782 else update pointer to be "next mfn". */
2783 if (rmd->contiguous)
2784 (*rmd->mfn)++;
2785 else
2786 rmd->mfn++;
2788 rmd->mmu_update->ptr = virt_to_machine(ptep).maddr;
2789 rmd->mmu_update->val = pte_val_ma(pte);
2790 rmd->mmu_update++;
2792 return 0;
2795 static int do_remap_gfn(struct vm_area_struct *vma,
2796 unsigned long addr,
2797 xen_pfn_t *gfn, int nr,
2798 int *err_ptr, pgprot_t prot,
2799 unsigned domid,
2800 struct page **pages)
2802 int err = 0;
2803 struct remap_data rmd;
2804 struct mmu_update mmu_update[REMAP_BATCH_SIZE];
2805 unsigned long range;
2806 int mapped = 0;
2808 BUG_ON(!((vma->vm_flags & (VM_PFNMAP | VM_IO)) == (VM_PFNMAP | VM_IO)));
2810 rmd.mfn = gfn;
2811 rmd.prot = prot;
2812 /* We use the err_ptr to indicate if there we are doing a contiguous
2813 * mapping or a discontigious mapping. */
2814 rmd.contiguous = !err_ptr;
2816 while (nr) {
2817 int index = 0;
2818 int done = 0;
2819 int batch = min(REMAP_BATCH_SIZE, nr);
2820 int batch_left = batch;
2821 range = (unsigned long)batch << PAGE_SHIFT;
2823 rmd.mmu_update = mmu_update;
2824 err = apply_to_page_range(vma->vm_mm, addr, range,
2825 remap_area_mfn_pte_fn, &rmd);
2826 if (err)
2827 goto out;
2829 /* We record the error for each page that gives an error, but
2830 * continue mapping until the whole set is done */
2831 do {
2832 int i;
2834 err = HYPERVISOR_mmu_update(&mmu_update[index],
2835 batch_left, &done, domid);
2838 * @err_ptr may be the same buffer as @gfn, so
2839 * only clear it after each chunk of @gfn is
2840 * used.
2842 if (err_ptr) {
2843 for (i = index; i < index + done; i++)
2844 err_ptr[i] = 0;
2846 if (err < 0) {
2847 if (!err_ptr)
2848 goto out;
2849 err_ptr[i] = err;
2850 done++; /* Skip failed frame. */
2851 } else
2852 mapped += done;
2853 batch_left -= done;
2854 index += done;
2855 } while (batch_left);
2857 nr -= batch;
2858 addr += range;
2859 if (err_ptr)
2860 err_ptr += batch;
2861 cond_resched();
2863 out:
2865 xen_flush_tlb_all();
2867 return err < 0 ? err : mapped;
2870 int xen_remap_domain_gfn_range(struct vm_area_struct *vma,
2871 unsigned long addr,
2872 xen_pfn_t gfn, int nr,
2873 pgprot_t prot, unsigned domid,
2874 struct page **pages)
2876 return do_remap_gfn(vma, addr, &gfn, nr, NULL, prot, domid, pages);
2878 EXPORT_SYMBOL_GPL(xen_remap_domain_gfn_range);
2880 int xen_remap_domain_gfn_array(struct vm_area_struct *vma,
2881 unsigned long addr,
2882 xen_pfn_t *gfn, int nr,
2883 int *err_ptr, pgprot_t prot,
2884 unsigned domid, struct page **pages)
2886 /* We BUG_ON because it's a programmer error to pass a NULL err_ptr,
2887 * and the consequences later is quite hard to detect what the actual
2888 * cause of "wrong memory was mapped in".
2890 BUG_ON(err_ptr == NULL);
2891 return do_remap_gfn(vma, addr, gfn, nr, err_ptr, prot, domid, pages);
2893 EXPORT_SYMBOL_GPL(xen_remap_domain_gfn_array);
2896 /* Returns: 0 success */
2897 int xen_unmap_domain_gfn_range(struct vm_area_struct *vma,
2898 int numpgs, struct page **pages)
2900 if (!pages || !xen_feature(XENFEAT_auto_translated_physmap))
2901 return 0;
2903 return -EINVAL;
2905 EXPORT_SYMBOL_GPL(xen_unmap_domain_gfn_range);