4 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org>
5 * Copyright (C) 2008-2009 Red Hat, Inc.
6 * Copyright (C) 2015 Red Hat, Inc.
8 * This work is licensed under the terms of the GNU GPL, version 2. See
9 * the COPYING file in the top-level directory.
11 * Some part derived from fs/eventfd.c (anon inode setup) and
12 * mm/ksm.c (mm hashing).
15 #include <linux/list.h>
16 #include <linux/hashtable.h>
17 #include <linux/sched/signal.h>
18 #include <linux/sched/mm.h>
20 #include <linux/poll.h>
21 #include <linux/slab.h>
22 #include <linux/seq_file.h>
23 #include <linux/file.h>
24 #include <linux/bug.h>
25 #include <linux/anon_inodes.h>
26 #include <linux/syscalls.h>
27 #include <linux/userfaultfd_k.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ioctl.h>
30 #include <linux/security.h>
31 #include <linux/hugetlb.h>
33 static struct kmem_cache
*userfaultfd_ctx_cachep __read_mostly
;
35 enum userfaultfd_state
{
41 * Start with fault_pending_wqh and fault_wqh so they're more likely
42 * to be in the same cacheline.
44 struct userfaultfd_ctx
{
45 /* waitqueue head for the pending (i.e. not read) userfaults */
46 wait_queue_head_t fault_pending_wqh
;
47 /* waitqueue head for the userfaults */
48 wait_queue_head_t fault_wqh
;
49 /* waitqueue head for the pseudo fd to wakeup poll/read */
50 wait_queue_head_t fd_wqh
;
51 /* waitqueue head for events */
52 wait_queue_head_t event_wqh
;
53 /* a refile sequence protected by fault_pending_wqh lock */
54 struct seqcount refile_seq
;
55 /* pseudo fd refcounting */
57 /* userfaultfd syscall flags */
59 /* features requested from the userspace */
60 unsigned int features
;
62 enum userfaultfd_state state
;
65 /* mm with one ore more vmas attached to this userfaultfd_ctx */
69 struct userfaultfd_fork_ctx
{
70 struct userfaultfd_ctx
*orig
;
71 struct userfaultfd_ctx
*new;
72 struct list_head list
;
75 struct userfaultfd_unmap_ctx
{
76 struct userfaultfd_ctx
*ctx
;
79 struct list_head list
;
82 struct userfaultfd_wait_queue
{
85 struct userfaultfd_ctx
*ctx
;
89 struct userfaultfd_wake_range
{
94 static int userfaultfd_wake_function(wait_queue_t
*wq
, unsigned mode
,
95 int wake_flags
, void *key
)
97 struct userfaultfd_wake_range
*range
= key
;
99 struct userfaultfd_wait_queue
*uwq
;
100 unsigned long start
, len
;
102 uwq
= container_of(wq
, struct userfaultfd_wait_queue
, wq
);
104 /* len == 0 means wake all */
105 start
= range
->start
;
107 if (len
&& (start
> uwq
->msg
.arg
.pagefault
.address
||
108 start
+ len
<= uwq
->msg
.arg
.pagefault
.address
))
110 WRITE_ONCE(uwq
->waken
, true);
112 * The implicit smp_mb__before_spinlock in try_to_wake_up()
113 * renders uwq->waken visible to other CPUs before the task is
116 ret
= wake_up_state(wq
->private, mode
);
119 * Wake only once, autoremove behavior.
121 * After the effect of list_del_init is visible to the
122 * other CPUs, the waitqueue may disappear from under
123 * us, see the !list_empty_careful() in
124 * handle_userfault(). try_to_wake_up() has an
125 * implicit smp_mb__before_spinlock, and the
126 * wq->private is read before calling the extern
127 * function "wake_up_state" (which in turns calls
128 * try_to_wake_up). While the spin_lock;spin_unlock;
129 * wouldn't be enough, the smp_mb__before_spinlock is
130 * enough to avoid an explicit smp_mb() here.
132 list_del_init(&wq
->task_list
);
138 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
140 * @ctx: [in] Pointer to the userfaultfd context.
142 static void userfaultfd_ctx_get(struct userfaultfd_ctx
*ctx
)
144 if (!atomic_inc_not_zero(&ctx
->refcount
))
149 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
151 * @ctx: [in] Pointer to userfaultfd context.
153 * The userfaultfd context reference must have been previously acquired either
154 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
156 static void userfaultfd_ctx_put(struct userfaultfd_ctx
*ctx
)
158 if (atomic_dec_and_test(&ctx
->refcount
)) {
159 VM_BUG_ON(spin_is_locked(&ctx
->fault_pending_wqh
.lock
));
160 VM_BUG_ON(waitqueue_active(&ctx
->fault_pending_wqh
));
161 VM_BUG_ON(spin_is_locked(&ctx
->fault_wqh
.lock
));
162 VM_BUG_ON(waitqueue_active(&ctx
->fault_wqh
));
163 VM_BUG_ON(spin_is_locked(&ctx
->event_wqh
.lock
));
164 VM_BUG_ON(waitqueue_active(&ctx
->event_wqh
));
165 VM_BUG_ON(spin_is_locked(&ctx
->fd_wqh
.lock
));
166 VM_BUG_ON(waitqueue_active(&ctx
->fd_wqh
));
168 kmem_cache_free(userfaultfd_ctx_cachep
, ctx
);
172 static inline void msg_init(struct uffd_msg
*msg
)
174 BUILD_BUG_ON(sizeof(struct uffd_msg
) != 32);
176 * Must use memset to zero out the paddings or kernel data is
177 * leaked to userland.
179 memset(msg
, 0, sizeof(struct uffd_msg
));
182 static inline struct uffd_msg
userfault_msg(unsigned long address
,
184 unsigned long reason
)
188 msg
.event
= UFFD_EVENT_PAGEFAULT
;
189 msg
.arg
.pagefault
.address
= address
;
190 if (flags
& FAULT_FLAG_WRITE
)
192 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
193 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
194 * was not set in a UFFD_EVENT_PAGEFAULT, it means it
195 * was a read fault, otherwise if set it means it's
198 msg
.arg
.pagefault
.flags
|= UFFD_PAGEFAULT_FLAG_WRITE
;
199 if (reason
& VM_UFFD_WP
)
201 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
202 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
203 * not set in a UFFD_EVENT_PAGEFAULT, it means it was
204 * a missing fault, otherwise if set it means it's a
205 * write protect fault.
207 msg
.arg
.pagefault
.flags
|= UFFD_PAGEFAULT_FLAG_WP
;
211 #ifdef CONFIG_HUGETLB_PAGE
213 * Same functionality as userfaultfd_must_wait below with modifications for
216 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx
*ctx
,
217 unsigned long address
,
219 unsigned long reason
)
221 struct mm_struct
*mm
= ctx
->mm
;
225 VM_BUG_ON(!rwsem_is_locked(&mm
->mmap_sem
));
227 pte
= huge_pte_offset(mm
, address
);
234 * Lockless access: we're in a wait_event so it's ok if it
237 if (huge_pte_none(*pte
))
239 if (!huge_pte_write(*pte
) && (reason
& VM_UFFD_WP
))
245 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx
*ctx
,
246 unsigned long address
,
248 unsigned long reason
)
250 return false; /* should never get here */
252 #endif /* CONFIG_HUGETLB_PAGE */
255 * Verify the pagetables are still not ok after having reigstered into
256 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
257 * userfault that has already been resolved, if userfaultfd_read and
258 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
261 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx
*ctx
,
262 unsigned long address
,
264 unsigned long reason
)
266 struct mm_struct
*mm
= ctx
->mm
;
274 VM_BUG_ON(!rwsem_is_locked(&mm
->mmap_sem
));
276 pgd
= pgd_offset(mm
, address
);
277 if (!pgd_present(*pgd
))
279 p4d
= p4d_offset(pgd
, address
);
280 if (!p4d_present(*p4d
))
282 pud
= pud_offset(p4d
, address
);
283 if (!pud_present(*pud
))
285 pmd
= pmd_offset(pud
, address
);
287 * READ_ONCE must function as a barrier with narrower scope
288 * and it must be equivalent to:
289 * _pmd = *pmd; barrier();
291 * This is to deal with the instability (as in
292 * pmd_trans_unstable) of the pmd.
294 _pmd
= READ_ONCE(*pmd
);
295 if (!pmd_present(_pmd
))
299 if (pmd_trans_huge(_pmd
))
303 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
304 * and use the standard pte_offset_map() instead of parsing _pmd.
306 pte
= pte_offset_map(pmd
, address
);
308 * Lockless access: we're in a wait_event so it's ok if it
320 * The locking rules involved in returning VM_FAULT_RETRY depending on
321 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
322 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
323 * recommendation in __lock_page_or_retry is not an understatement.
325 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released
326 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
329 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
330 * set, VM_FAULT_RETRY can still be returned if and only if there are
331 * fatal_signal_pending()s, and the mmap_sem must be released before
334 int handle_userfault(struct vm_fault
*vmf
, unsigned long reason
)
336 struct mm_struct
*mm
= vmf
->vma
->vm_mm
;
337 struct userfaultfd_ctx
*ctx
;
338 struct userfaultfd_wait_queue uwq
;
340 bool must_wait
, return_to_userland
;
343 BUG_ON(!rwsem_is_locked(&mm
->mmap_sem
));
345 ret
= VM_FAULT_SIGBUS
;
346 ctx
= vmf
->vma
->vm_userfaultfd_ctx
.ctx
;
350 BUG_ON(ctx
->mm
!= mm
);
352 VM_BUG_ON(reason
& ~(VM_UFFD_MISSING
|VM_UFFD_WP
));
353 VM_BUG_ON(!(reason
& VM_UFFD_MISSING
) ^ !!(reason
& VM_UFFD_WP
));
356 * If it's already released don't get it. This avoids to loop
357 * in __get_user_pages if userfaultfd_release waits on the
358 * caller of handle_userfault to release the mmap_sem.
360 if (unlikely(ACCESS_ONCE(ctx
->released
)))
364 * We don't do userfault handling for the final child pid update.
366 if (current
->flags
& PF_EXITING
)
370 * Check that we can return VM_FAULT_RETRY.
372 * NOTE: it should become possible to return VM_FAULT_RETRY
373 * even if FAULT_FLAG_TRIED is set without leading to gup()
374 * -EBUSY failures, if the userfaultfd is to be extended for
375 * VM_UFFD_WP tracking and we intend to arm the userfault
376 * without first stopping userland access to the memory. For
377 * VM_UFFD_MISSING userfaults this is enough for now.
379 if (unlikely(!(vmf
->flags
& FAULT_FLAG_ALLOW_RETRY
))) {
381 * Validate the invariant that nowait must allow retry
382 * to be sure not to return SIGBUS erroneously on
383 * nowait invocations.
385 BUG_ON(vmf
->flags
& FAULT_FLAG_RETRY_NOWAIT
);
386 #ifdef CONFIG_DEBUG_VM
387 if (printk_ratelimit()) {
389 "FAULT_FLAG_ALLOW_RETRY missing %x\n",
398 * Handle nowait, not much to do other than tell it to retry
401 ret
= VM_FAULT_RETRY
;
402 if (vmf
->flags
& FAULT_FLAG_RETRY_NOWAIT
)
405 /* take the reference before dropping the mmap_sem */
406 userfaultfd_ctx_get(ctx
);
408 init_waitqueue_func_entry(&uwq
.wq
, userfaultfd_wake_function
);
409 uwq
.wq
.private = current
;
410 uwq
.msg
= userfault_msg(vmf
->address
, vmf
->flags
, reason
);
415 (vmf
->flags
& (FAULT_FLAG_USER
|FAULT_FLAG_KILLABLE
)) ==
416 (FAULT_FLAG_USER
|FAULT_FLAG_KILLABLE
);
417 blocking_state
= return_to_userland
? TASK_INTERRUPTIBLE
:
420 spin_lock(&ctx
->fault_pending_wqh
.lock
);
422 * After the __add_wait_queue the uwq is visible to userland
423 * through poll/read().
425 __add_wait_queue(&ctx
->fault_pending_wqh
, &uwq
.wq
);
427 * The smp_mb() after __set_current_state prevents the reads
428 * following the spin_unlock to happen before the list_add in
431 set_current_state(blocking_state
);
432 spin_unlock(&ctx
->fault_pending_wqh
.lock
);
434 if (!is_vm_hugetlb_page(vmf
->vma
))
435 must_wait
= userfaultfd_must_wait(ctx
, vmf
->address
, vmf
->flags
,
438 must_wait
= userfaultfd_huge_must_wait(ctx
, vmf
->address
,
440 up_read(&mm
->mmap_sem
);
442 if (likely(must_wait
&& !ACCESS_ONCE(ctx
->released
) &&
443 (return_to_userland
? !signal_pending(current
) :
444 !fatal_signal_pending(current
)))) {
445 wake_up_poll(&ctx
->fd_wqh
, POLLIN
);
447 ret
|= VM_FAULT_MAJOR
;
450 * False wakeups can orginate even from rwsem before
451 * up_read() however userfaults will wait either for a
452 * targeted wakeup on the specific uwq waitqueue from
453 * wake_userfault() or for signals or for uffd
456 while (!READ_ONCE(uwq
.waken
)) {
458 * This needs the full smp_store_mb()
459 * guarantee as the state write must be
460 * visible to other CPUs before reading
461 * uwq.waken from other CPUs.
463 set_current_state(blocking_state
);
464 if (READ_ONCE(uwq
.waken
) ||
465 READ_ONCE(ctx
->released
) ||
466 (return_to_userland
? signal_pending(current
) :
467 fatal_signal_pending(current
)))
473 __set_current_state(TASK_RUNNING
);
475 if (return_to_userland
) {
476 if (signal_pending(current
) &&
477 !fatal_signal_pending(current
)) {
479 * If we got a SIGSTOP or SIGCONT and this is
480 * a normal userland page fault, just let
481 * userland return so the signal will be
482 * handled and gdb debugging works. The page
483 * fault code immediately after we return from
484 * this function is going to release the
485 * mmap_sem and it's not depending on it
486 * (unlike gup would if we were not to return
489 * If a fatal signal is pending we still take
490 * the streamlined VM_FAULT_RETRY failure path
491 * and there's no need to retake the mmap_sem
494 down_read(&mm
->mmap_sem
);
495 ret
= VM_FAULT_NOPAGE
;
500 * Here we race with the list_del; list_add in
501 * userfaultfd_ctx_read(), however because we don't ever run
502 * list_del_init() to refile across the two lists, the prev
503 * and next pointers will never point to self. list_add also
504 * would never let any of the two pointers to point to
505 * self. So list_empty_careful won't risk to see both pointers
506 * pointing to self at any time during the list refile. The
507 * only case where list_del_init() is called is the full
508 * removal in the wake function and there we don't re-list_add
509 * and it's fine not to block on the spinlock. The uwq on this
510 * kernel stack can be released after the list_del_init.
512 if (!list_empty_careful(&uwq
.wq
.task_list
)) {
513 spin_lock(&ctx
->fault_pending_wqh
.lock
);
515 * No need of list_del_init(), the uwq on the stack
516 * will be freed shortly anyway.
518 list_del(&uwq
.wq
.task_list
);
519 spin_unlock(&ctx
->fault_pending_wqh
.lock
);
523 * ctx may go away after this if the userfault pseudo fd is
526 userfaultfd_ctx_put(ctx
);
532 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx
*ctx
,
533 struct userfaultfd_wait_queue
*ewq
)
535 if (WARN_ON_ONCE(current
->flags
& PF_EXITING
))
539 init_waitqueue_entry(&ewq
->wq
, current
);
541 spin_lock(&ctx
->event_wqh
.lock
);
543 * After the __add_wait_queue the uwq is visible to userland
544 * through poll/read().
546 __add_wait_queue(&ctx
->event_wqh
, &ewq
->wq
);
548 set_current_state(TASK_KILLABLE
);
549 if (ewq
->msg
.event
== 0)
551 if (ACCESS_ONCE(ctx
->released
) ||
552 fatal_signal_pending(current
)) {
553 __remove_wait_queue(&ctx
->event_wqh
, &ewq
->wq
);
554 if (ewq
->msg
.event
== UFFD_EVENT_FORK
) {
555 struct userfaultfd_ctx
*new;
557 new = (struct userfaultfd_ctx
*)
559 ewq
->msg
.arg
.reserved
.reserved1
;
561 userfaultfd_ctx_put(new);
566 spin_unlock(&ctx
->event_wqh
.lock
);
568 wake_up_poll(&ctx
->fd_wqh
, POLLIN
);
571 spin_lock(&ctx
->event_wqh
.lock
);
573 __set_current_state(TASK_RUNNING
);
574 spin_unlock(&ctx
->event_wqh
.lock
);
577 * ctx may go away after this if the userfault pseudo fd is
581 userfaultfd_ctx_put(ctx
);
584 static void userfaultfd_event_complete(struct userfaultfd_ctx
*ctx
,
585 struct userfaultfd_wait_queue
*ewq
)
588 wake_up_locked(&ctx
->event_wqh
);
589 __remove_wait_queue(&ctx
->event_wqh
, &ewq
->wq
);
592 int dup_userfaultfd(struct vm_area_struct
*vma
, struct list_head
*fcs
)
594 struct userfaultfd_ctx
*ctx
= NULL
, *octx
;
595 struct userfaultfd_fork_ctx
*fctx
;
597 octx
= vma
->vm_userfaultfd_ctx
.ctx
;
598 if (!octx
|| !(octx
->features
& UFFD_FEATURE_EVENT_FORK
)) {
599 vma
->vm_userfaultfd_ctx
= NULL_VM_UFFD_CTX
;
600 vma
->vm_flags
&= ~(VM_UFFD_WP
| VM_UFFD_MISSING
);
604 list_for_each_entry(fctx
, fcs
, list
)
605 if (fctx
->orig
== octx
) {
611 fctx
= kmalloc(sizeof(*fctx
), GFP_KERNEL
);
615 ctx
= kmem_cache_alloc(userfaultfd_ctx_cachep
, GFP_KERNEL
);
621 atomic_set(&ctx
->refcount
, 1);
622 ctx
->flags
= octx
->flags
;
623 ctx
->state
= UFFD_STATE_RUNNING
;
624 ctx
->features
= octx
->features
;
625 ctx
->released
= false;
626 ctx
->mm
= vma
->vm_mm
;
627 atomic_inc(&ctx
->mm
->mm_count
);
629 userfaultfd_ctx_get(octx
);
632 list_add_tail(&fctx
->list
, fcs
);
635 vma
->vm_userfaultfd_ctx
.ctx
= ctx
;
639 static void dup_fctx(struct userfaultfd_fork_ctx
*fctx
)
641 struct userfaultfd_ctx
*ctx
= fctx
->orig
;
642 struct userfaultfd_wait_queue ewq
;
646 ewq
.msg
.event
= UFFD_EVENT_FORK
;
647 ewq
.msg
.arg
.reserved
.reserved1
= (unsigned long)fctx
->new;
649 userfaultfd_event_wait_completion(ctx
, &ewq
);
652 void dup_userfaultfd_complete(struct list_head
*fcs
)
654 struct userfaultfd_fork_ctx
*fctx
, *n
;
656 list_for_each_entry_safe(fctx
, n
, fcs
, list
) {
658 list_del(&fctx
->list
);
663 void mremap_userfaultfd_prep(struct vm_area_struct
*vma
,
664 struct vm_userfaultfd_ctx
*vm_ctx
)
666 struct userfaultfd_ctx
*ctx
;
668 ctx
= vma
->vm_userfaultfd_ctx
.ctx
;
669 if (ctx
&& (ctx
->features
& UFFD_FEATURE_EVENT_REMAP
)) {
671 userfaultfd_ctx_get(ctx
);
675 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx
*vm_ctx
,
676 unsigned long from
, unsigned long to
,
679 struct userfaultfd_ctx
*ctx
= vm_ctx
->ctx
;
680 struct userfaultfd_wait_queue ewq
;
685 if (to
& ~PAGE_MASK
) {
686 userfaultfd_ctx_put(ctx
);
692 ewq
.msg
.event
= UFFD_EVENT_REMAP
;
693 ewq
.msg
.arg
.remap
.from
= from
;
694 ewq
.msg
.arg
.remap
.to
= to
;
695 ewq
.msg
.arg
.remap
.len
= len
;
697 userfaultfd_event_wait_completion(ctx
, &ewq
);
700 bool userfaultfd_remove(struct vm_area_struct
*vma
,
701 unsigned long start
, unsigned long end
)
703 struct mm_struct
*mm
= vma
->vm_mm
;
704 struct userfaultfd_ctx
*ctx
;
705 struct userfaultfd_wait_queue ewq
;
707 ctx
= vma
->vm_userfaultfd_ctx
.ctx
;
708 if (!ctx
|| !(ctx
->features
& UFFD_FEATURE_EVENT_REMOVE
))
711 userfaultfd_ctx_get(ctx
);
712 up_read(&mm
->mmap_sem
);
716 ewq
.msg
.event
= UFFD_EVENT_REMOVE
;
717 ewq
.msg
.arg
.remove
.start
= start
;
718 ewq
.msg
.arg
.remove
.end
= end
;
720 userfaultfd_event_wait_completion(ctx
, &ewq
);
725 static bool has_unmap_ctx(struct userfaultfd_ctx
*ctx
, struct list_head
*unmaps
,
726 unsigned long start
, unsigned long end
)
728 struct userfaultfd_unmap_ctx
*unmap_ctx
;
730 list_for_each_entry(unmap_ctx
, unmaps
, list
)
731 if (unmap_ctx
->ctx
== ctx
&& unmap_ctx
->start
== start
&&
732 unmap_ctx
->end
== end
)
738 int userfaultfd_unmap_prep(struct vm_area_struct
*vma
,
739 unsigned long start
, unsigned long end
,
740 struct list_head
*unmaps
)
742 for ( ; vma
&& vma
->vm_start
< end
; vma
= vma
->vm_next
) {
743 struct userfaultfd_unmap_ctx
*unmap_ctx
;
744 struct userfaultfd_ctx
*ctx
= vma
->vm_userfaultfd_ctx
.ctx
;
746 if (!ctx
|| !(ctx
->features
& UFFD_FEATURE_EVENT_UNMAP
) ||
747 has_unmap_ctx(ctx
, unmaps
, start
, end
))
750 unmap_ctx
= kzalloc(sizeof(*unmap_ctx
), GFP_KERNEL
);
754 userfaultfd_ctx_get(ctx
);
755 unmap_ctx
->ctx
= ctx
;
756 unmap_ctx
->start
= start
;
757 unmap_ctx
->end
= end
;
758 list_add_tail(&unmap_ctx
->list
, unmaps
);
764 void userfaultfd_unmap_complete(struct mm_struct
*mm
, struct list_head
*uf
)
766 struct userfaultfd_unmap_ctx
*ctx
, *n
;
767 struct userfaultfd_wait_queue ewq
;
769 list_for_each_entry_safe(ctx
, n
, uf
, list
) {
772 ewq
.msg
.event
= UFFD_EVENT_UNMAP
;
773 ewq
.msg
.arg
.remove
.start
= ctx
->start
;
774 ewq
.msg
.arg
.remove
.end
= ctx
->end
;
776 userfaultfd_event_wait_completion(ctx
->ctx
, &ewq
);
778 list_del(&ctx
->list
);
783 static int userfaultfd_release(struct inode
*inode
, struct file
*file
)
785 struct userfaultfd_ctx
*ctx
= file
->private_data
;
786 struct mm_struct
*mm
= ctx
->mm
;
787 struct vm_area_struct
*vma
, *prev
;
788 /* len == 0 means wake all */
789 struct userfaultfd_wake_range range
= { .len
= 0, };
790 unsigned long new_flags
;
792 ACCESS_ONCE(ctx
->released
) = true;
794 if (!mmget_not_zero(mm
))
798 * Flush page faults out of all CPUs. NOTE: all page faults
799 * must be retried without returning VM_FAULT_SIGBUS if
800 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
801 * changes while handle_userfault released the mmap_sem. So
802 * it's critical that released is set to true (above), before
803 * taking the mmap_sem for writing.
805 down_write(&mm
->mmap_sem
);
807 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
809 BUG_ON(!!vma
->vm_userfaultfd_ctx
.ctx
^
810 !!(vma
->vm_flags
& (VM_UFFD_MISSING
| VM_UFFD_WP
)));
811 if (vma
->vm_userfaultfd_ctx
.ctx
!= ctx
) {
815 new_flags
= vma
->vm_flags
& ~(VM_UFFD_MISSING
| VM_UFFD_WP
);
816 prev
= vma_merge(mm
, prev
, vma
->vm_start
, vma
->vm_end
,
817 new_flags
, vma
->anon_vma
,
818 vma
->vm_file
, vma
->vm_pgoff
,
825 vma
->vm_flags
= new_flags
;
826 vma
->vm_userfaultfd_ctx
= NULL_VM_UFFD_CTX
;
828 up_write(&mm
->mmap_sem
);
832 * After no new page faults can wait on this fault_*wqh, flush
833 * the last page faults that may have been already waiting on
836 spin_lock(&ctx
->fault_pending_wqh
.lock
);
837 __wake_up_locked_key(&ctx
->fault_pending_wqh
, TASK_NORMAL
, &range
);
838 __wake_up_locked_key(&ctx
->fault_wqh
, TASK_NORMAL
, &range
);
839 spin_unlock(&ctx
->fault_pending_wqh
.lock
);
841 wake_up_poll(&ctx
->fd_wqh
, POLLHUP
);
842 userfaultfd_ctx_put(ctx
);
846 /* fault_pending_wqh.lock must be hold by the caller */
847 static inline struct userfaultfd_wait_queue
*find_userfault_in(
848 wait_queue_head_t
*wqh
)
851 struct userfaultfd_wait_queue
*uwq
;
853 VM_BUG_ON(!spin_is_locked(&wqh
->lock
));
856 if (!waitqueue_active(wqh
))
858 /* walk in reverse to provide FIFO behavior to read userfaults */
859 wq
= list_last_entry(&wqh
->task_list
, typeof(*wq
), task_list
);
860 uwq
= container_of(wq
, struct userfaultfd_wait_queue
, wq
);
865 static inline struct userfaultfd_wait_queue
*find_userfault(
866 struct userfaultfd_ctx
*ctx
)
868 return find_userfault_in(&ctx
->fault_pending_wqh
);
871 static inline struct userfaultfd_wait_queue
*find_userfault_evt(
872 struct userfaultfd_ctx
*ctx
)
874 return find_userfault_in(&ctx
->event_wqh
);
877 static unsigned int userfaultfd_poll(struct file
*file
, poll_table
*wait
)
879 struct userfaultfd_ctx
*ctx
= file
->private_data
;
882 poll_wait(file
, &ctx
->fd_wqh
, wait
);
884 switch (ctx
->state
) {
885 case UFFD_STATE_WAIT_API
:
887 case UFFD_STATE_RUNNING
:
889 * poll() never guarantees that read won't block.
890 * userfaults can be waken before they're read().
892 if (unlikely(!(file
->f_flags
& O_NONBLOCK
)))
895 * lockless access to see if there are pending faults
896 * __pollwait last action is the add_wait_queue but
897 * the spin_unlock would allow the waitqueue_active to
898 * pass above the actual list_add inside
899 * add_wait_queue critical section. So use a full
900 * memory barrier to serialize the list_add write of
901 * add_wait_queue() with the waitqueue_active read
906 if (waitqueue_active(&ctx
->fault_pending_wqh
))
908 else if (waitqueue_active(&ctx
->event_wqh
))
918 static const struct file_operations userfaultfd_fops
;
920 static int resolve_userfault_fork(struct userfaultfd_ctx
*ctx
,
921 struct userfaultfd_ctx
*new,
922 struct uffd_msg
*msg
)
926 unsigned int flags
= new->flags
& UFFD_SHARED_FCNTL_FLAGS
;
928 fd
= get_unused_fd_flags(flags
);
932 file
= anon_inode_getfile("[userfaultfd]", &userfaultfd_fops
, new,
936 return PTR_ERR(file
);
939 fd_install(fd
, file
);
940 msg
->arg
.reserved
.reserved1
= 0;
941 msg
->arg
.fork
.ufd
= fd
;
946 static ssize_t
userfaultfd_ctx_read(struct userfaultfd_ctx
*ctx
, int no_wait
,
947 struct uffd_msg
*msg
)
950 DECLARE_WAITQUEUE(wait
, current
);
951 struct userfaultfd_wait_queue
*uwq
;
953 * Handling fork event requires sleeping operations, so
954 * we drop the event_wqh lock, then do these ops, then
955 * lock it back and wake up the waiter. While the lock is
956 * dropped the ewq may go away so we keep track of it
959 LIST_HEAD(fork_event
);
960 struct userfaultfd_ctx
*fork_nctx
= NULL
;
962 /* always take the fd_wqh lock before the fault_pending_wqh lock */
963 spin_lock(&ctx
->fd_wqh
.lock
);
964 __add_wait_queue(&ctx
->fd_wqh
, &wait
);
966 set_current_state(TASK_INTERRUPTIBLE
);
967 spin_lock(&ctx
->fault_pending_wqh
.lock
);
968 uwq
= find_userfault(ctx
);
971 * Use a seqcount to repeat the lockless check
972 * in wake_userfault() to avoid missing
973 * wakeups because during the refile both
974 * waitqueue could become empty if this is the
977 write_seqcount_begin(&ctx
->refile_seq
);
980 * The fault_pending_wqh.lock prevents the uwq
981 * to disappear from under us.
983 * Refile this userfault from
984 * fault_pending_wqh to fault_wqh, it's not
985 * pending anymore after we read it.
987 * Use list_del() by hand (as
988 * userfaultfd_wake_function also uses
989 * list_del_init() by hand) to be sure nobody
990 * changes __remove_wait_queue() to use
991 * list_del_init() in turn breaking the
992 * !list_empty_careful() check in
993 * handle_userfault(). The uwq->wq.task_list
994 * must never be empty at any time during the
995 * refile, or the waitqueue could disappear
996 * from under us. The "wait_queue_head_t"
997 * parameter of __remove_wait_queue() is unused
1000 list_del(&uwq
->wq
.task_list
);
1001 __add_wait_queue(&ctx
->fault_wqh
, &uwq
->wq
);
1003 write_seqcount_end(&ctx
->refile_seq
);
1005 /* careful to always initialize msg if ret == 0 */
1007 spin_unlock(&ctx
->fault_pending_wqh
.lock
);
1011 spin_unlock(&ctx
->fault_pending_wqh
.lock
);
1013 spin_lock(&ctx
->event_wqh
.lock
);
1014 uwq
= find_userfault_evt(ctx
);
1018 if (uwq
->msg
.event
== UFFD_EVENT_FORK
) {
1019 fork_nctx
= (struct userfaultfd_ctx
*)
1021 uwq
->msg
.arg
.reserved
.reserved1
;
1022 list_move(&uwq
->wq
.task_list
, &fork_event
);
1023 spin_unlock(&ctx
->event_wqh
.lock
);
1028 userfaultfd_event_complete(ctx
, uwq
);
1029 spin_unlock(&ctx
->event_wqh
.lock
);
1033 spin_unlock(&ctx
->event_wqh
.lock
);
1035 if (signal_pending(current
)) {
1043 spin_unlock(&ctx
->fd_wqh
.lock
);
1045 spin_lock(&ctx
->fd_wqh
.lock
);
1047 __remove_wait_queue(&ctx
->fd_wqh
, &wait
);
1048 __set_current_state(TASK_RUNNING
);
1049 spin_unlock(&ctx
->fd_wqh
.lock
);
1051 if (!ret
&& msg
->event
== UFFD_EVENT_FORK
) {
1052 ret
= resolve_userfault_fork(ctx
, fork_nctx
, msg
);
1055 spin_lock(&ctx
->event_wqh
.lock
);
1056 if (!list_empty(&fork_event
)) {
1057 uwq
= list_first_entry(&fork_event
,
1060 list_del(&uwq
->wq
.task_list
);
1061 __add_wait_queue(&ctx
->event_wqh
, &uwq
->wq
);
1062 userfaultfd_event_complete(ctx
, uwq
);
1064 spin_unlock(&ctx
->event_wqh
.lock
);
1071 static ssize_t
userfaultfd_read(struct file
*file
, char __user
*buf
,
1072 size_t count
, loff_t
*ppos
)
1074 struct userfaultfd_ctx
*ctx
= file
->private_data
;
1075 ssize_t _ret
, ret
= 0;
1076 struct uffd_msg msg
;
1077 int no_wait
= file
->f_flags
& O_NONBLOCK
;
1079 if (ctx
->state
== UFFD_STATE_WAIT_API
)
1083 if (count
< sizeof(msg
))
1084 return ret
? ret
: -EINVAL
;
1085 _ret
= userfaultfd_ctx_read(ctx
, no_wait
, &msg
);
1087 return ret
? ret
: _ret
;
1088 if (copy_to_user((__u64 __user
*) buf
, &msg
, sizeof(msg
)))
1089 return ret
? ret
: -EFAULT
;
1092 count
-= sizeof(msg
);
1094 * Allow to read more than one fault at time but only
1095 * block if waiting for the very first one.
1097 no_wait
= O_NONBLOCK
;
1101 static void __wake_userfault(struct userfaultfd_ctx
*ctx
,
1102 struct userfaultfd_wake_range
*range
)
1104 unsigned long start
, end
;
1106 start
= range
->start
;
1107 end
= range
->start
+ range
->len
;
1109 spin_lock(&ctx
->fault_pending_wqh
.lock
);
1110 /* wake all in the range and autoremove */
1111 if (waitqueue_active(&ctx
->fault_pending_wqh
))
1112 __wake_up_locked_key(&ctx
->fault_pending_wqh
, TASK_NORMAL
,
1114 if (waitqueue_active(&ctx
->fault_wqh
))
1115 __wake_up_locked_key(&ctx
->fault_wqh
, TASK_NORMAL
, range
);
1116 spin_unlock(&ctx
->fault_pending_wqh
.lock
);
1119 static __always_inline
void wake_userfault(struct userfaultfd_ctx
*ctx
,
1120 struct userfaultfd_wake_range
*range
)
1126 * To be sure waitqueue_active() is not reordered by the CPU
1127 * before the pagetable update, use an explicit SMP memory
1128 * barrier here. PT lock release or up_read(mmap_sem) still
1129 * have release semantics that can allow the
1130 * waitqueue_active() to be reordered before the pte update.
1135 * Use waitqueue_active because it's very frequent to
1136 * change the address space atomically even if there are no
1137 * userfaults yet. So we take the spinlock only when we're
1138 * sure we've userfaults to wake.
1141 seq
= read_seqcount_begin(&ctx
->refile_seq
);
1142 need_wakeup
= waitqueue_active(&ctx
->fault_pending_wqh
) ||
1143 waitqueue_active(&ctx
->fault_wqh
);
1145 } while (read_seqcount_retry(&ctx
->refile_seq
, seq
));
1147 __wake_userfault(ctx
, range
);
1150 static __always_inline
int validate_range(struct mm_struct
*mm
,
1151 __u64 start
, __u64 len
)
1153 __u64 task_size
= mm
->task_size
;
1155 if (start
& ~PAGE_MASK
)
1157 if (len
& ~PAGE_MASK
)
1161 if (start
< mmap_min_addr
)
1163 if (start
>= task_size
)
1165 if (len
> task_size
- start
)
1170 static inline bool vma_can_userfault(struct vm_area_struct
*vma
)
1172 return vma_is_anonymous(vma
) || is_vm_hugetlb_page(vma
) ||
1176 static int userfaultfd_register(struct userfaultfd_ctx
*ctx
,
1179 struct mm_struct
*mm
= ctx
->mm
;
1180 struct vm_area_struct
*vma
, *prev
, *cur
;
1182 struct uffdio_register uffdio_register
;
1183 struct uffdio_register __user
*user_uffdio_register
;
1184 unsigned long vm_flags
, new_flags
;
1186 bool non_anon_pages
;
1187 unsigned long start
, end
, vma_end
;
1189 user_uffdio_register
= (struct uffdio_register __user
*) arg
;
1192 if (copy_from_user(&uffdio_register
, user_uffdio_register
,
1193 sizeof(uffdio_register
)-sizeof(__u64
)))
1197 if (!uffdio_register
.mode
)
1199 if (uffdio_register
.mode
& ~(UFFDIO_REGISTER_MODE_MISSING
|
1200 UFFDIO_REGISTER_MODE_WP
))
1203 if (uffdio_register
.mode
& UFFDIO_REGISTER_MODE_MISSING
)
1204 vm_flags
|= VM_UFFD_MISSING
;
1205 if (uffdio_register
.mode
& UFFDIO_REGISTER_MODE_WP
) {
1206 vm_flags
|= VM_UFFD_WP
;
1208 * FIXME: remove the below error constraint by
1209 * implementing the wprotect tracking mode.
1215 ret
= validate_range(mm
, uffdio_register
.range
.start
,
1216 uffdio_register
.range
.len
);
1220 start
= uffdio_register
.range
.start
;
1221 end
= start
+ uffdio_register
.range
.len
;
1224 if (!mmget_not_zero(mm
))
1227 down_write(&mm
->mmap_sem
);
1228 vma
= find_vma_prev(mm
, start
, &prev
);
1232 /* check that there's at least one vma in the range */
1234 if (vma
->vm_start
>= end
)
1238 * If the first vma contains huge pages, make sure start address
1239 * is aligned to huge page size.
1241 if (is_vm_hugetlb_page(vma
)) {
1242 unsigned long vma_hpagesize
= vma_kernel_pagesize(vma
);
1244 if (start
& (vma_hpagesize
- 1))
1249 * Search for not compatible vmas.
1252 non_anon_pages
= false;
1253 for (cur
= vma
; cur
&& cur
->vm_start
< end
; cur
= cur
->vm_next
) {
1256 BUG_ON(!!cur
->vm_userfaultfd_ctx
.ctx
^
1257 !!(cur
->vm_flags
& (VM_UFFD_MISSING
| VM_UFFD_WP
)));
1259 /* check not compatible vmas */
1261 if (!vma_can_userfault(cur
))
1264 * If this vma contains ending address, and huge pages
1267 if (is_vm_hugetlb_page(cur
) && end
<= cur
->vm_end
&&
1268 end
> cur
->vm_start
) {
1269 unsigned long vma_hpagesize
= vma_kernel_pagesize(cur
);
1273 if (end
& (vma_hpagesize
- 1))
1278 * Check that this vma isn't already owned by a
1279 * different userfaultfd. We can't allow more than one
1280 * userfaultfd to own a single vma simultaneously or we
1281 * wouldn't know which one to deliver the userfaults to.
1284 if (cur
->vm_userfaultfd_ctx
.ctx
&&
1285 cur
->vm_userfaultfd_ctx
.ctx
!= ctx
)
1289 * Note vmas containing huge pages
1291 if (is_vm_hugetlb_page(cur
) || vma_is_shmem(cur
))
1292 non_anon_pages
= true;
1298 if (vma
->vm_start
< start
)
1305 BUG_ON(!vma_can_userfault(vma
));
1306 BUG_ON(vma
->vm_userfaultfd_ctx
.ctx
&&
1307 vma
->vm_userfaultfd_ctx
.ctx
!= ctx
);
1310 * Nothing to do: this vma is already registered into this
1311 * userfaultfd and with the right tracking mode too.
1313 if (vma
->vm_userfaultfd_ctx
.ctx
== ctx
&&
1314 (vma
->vm_flags
& vm_flags
) == vm_flags
)
1317 if (vma
->vm_start
> start
)
1318 start
= vma
->vm_start
;
1319 vma_end
= min(end
, vma
->vm_end
);
1321 new_flags
= (vma
->vm_flags
& ~vm_flags
) | vm_flags
;
1322 prev
= vma_merge(mm
, prev
, start
, vma_end
, new_flags
,
1323 vma
->anon_vma
, vma
->vm_file
, vma
->vm_pgoff
,
1325 ((struct vm_userfaultfd_ctx
){ ctx
}));
1330 if (vma
->vm_start
< start
) {
1331 ret
= split_vma(mm
, vma
, start
, 1);
1335 if (vma
->vm_end
> end
) {
1336 ret
= split_vma(mm
, vma
, end
, 0);
1342 * In the vma_merge() successful mprotect-like case 8:
1343 * the next vma was merged into the current one and
1344 * the current one has not been updated yet.
1346 vma
->vm_flags
= new_flags
;
1347 vma
->vm_userfaultfd_ctx
.ctx
= ctx
;
1351 start
= vma
->vm_end
;
1353 } while (vma
&& vma
->vm_start
< end
);
1355 up_write(&mm
->mmap_sem
);
1359 * Now that we scanned all vmas we can already tell
1360 * userland which ioctls methods are guaranteed to
1361 * succeed on this range.
1363 if (put_user(non_anon_pages
? UFFD_API_RANGE_IOCTLS_BASIC
:
1364 UFFD_API_RANGE_IOCTLS
,
1365 &user_uffdio_register
->ioctls
))
1372 static int userfaultfd_unregister(struct userfaultfd_ctx
*ctx
,
1375 struct mm_struct
*mm
= ctx
->mm
;
1376 struct vm_area_struct
*vma
, *prev
, *cur
;
1378 struct uffdio_range uffdio_unregister
;
1379 unsigned long new_flags
;
1381 unsigned long start
, end
, vma_end
;
1382 const void __user
*buf
= (void __user
*)arg
;
1385 if (copy_from_user(&uffdio_unregister
, buf
, sizeof(uffdio_unregister
)))
1388 ret
= validate_range(mm
, uffdio_unregister
.start
,
1389 uffdio_unregister
.len
);
1393 start
= uffdio_unregister
.start
;
1394 end
= start
+ uffdio_unregister
.len
;
1397 if (!mmget_not_zero(mm
))
1400 down_write(&mm
->mmap_sem
);
1401 vma
= find_vma_prev(mm
, start
, &prev
);
1405 /* check that there's at least one vma in the range */
1407 if (vma
->vm_start
>= end
)
1411 * If the first vma contains huge pages, make sure start address
1412 * is aligned to huge page size.
1414 if (is_vm_hugetlb_page(vma
)) {
1415 unsigned long vma_hpagesize
= vma_kernel_pagesize(vma
);
1417 if (start
& (vma_hpagesize
- 1))
1422 * Search for not compatible vmas.
1426 for (cur
= vma
; cur
&& cur
->vm_start
< end
; cur
= cur
->vm_next
) {
1429 BUG_ON(!!cur
->vm_userfaultfd_ctx
.ctx
^
1430 !!(cur
->vm_flags
& (VM_UFFD_MISSING
| VM_UFFD_WP
)));
1433 * Check not compatible vmas, not strictly required
1434 * here as not compatible vmas cannot have an
1435 * userfaultfd_ctx registered on them, but this
1436 * provides for more strict behavior to notice
1437 * unregistration errors.
1439 if (!vma_can_userfault(cur
))
1446 if (vma
->vm_start
< start
)
1453 BUG_ON(!vma_can_userfault(vma
));
1456 * Nothing to do: this vma is already registered into this
1457 * userfaultfd and with the right tracking mode too.
1459 if (!vma
->vm_userfaultfd_ctx
.ctx
)
1462 if (vma
->vm_start
> start
)
1463 start
= vma
->vm_start
;
1464 vma_end
= min(end
, vma
->vm_end
);
1466 if (userfaultfd_missing(vma
)) {
1468 * Wake any concurrent pending userfault while
1469 * we unregister, so they will not hang
1470 * permanently and it avoids userland to call
1471 * UFFDIO_WAKE explicitly.
1473 struct userfaultfd_wake_range range
;
1474 range
.start
= start
;
1475 range
.len
= vma_end
- start
;
1476 wake_userfault(vma
->vm_userfaultfd_ctx
.ctx
, &range
);
1479 new_flags
= vma
->vm_flags
& ~(VM_UFFD_MISSING
| VM_UFFD_WP
);
1480 prev
= vma_merge(mm
, prev
, start
, vma_end
, new_flags
,
1481 vma
->anon_vma
, vma
->vm_file
, vma
->vm_pgoff
,
1488 if (vma
->vm_start
< start
) {
1489 ret
= split_vma(mm
, vma
, start
, 1);
1493 if (vma
->vm_end
> end
) {
1494 ret
= split_vma(mm
, vma
, end
, 0);
1500 * In the vma_merge() successful mprotect-like case 8:
1501 * the next vma was merged into the current one and
1502 * the current one has not been updated yet.
1504 vma
->vm_flags
= new_flags
;
1505 vma
->vm_userfaultfd_ctx
= NULL_VM_UFFD_CTX
;
1509 start
= vma
->vm_end
;
1511 } while (vma
&& vma
->vm_start
< end
);
1513 up_write(&mm
->mmap_sem
);
1520 * userfaultfd_wake may be used in combination with the
1521 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1523 static int userfaultfd_wake(struct userfaultfd_ctx
*ctx
,
1527 struct uffdio_range uffdio_wake
;
1528 struct userfaultfd_wake_range range
;
1529 const void __user
*buf
= (void __user
*)arg
;
1532 if (copy_from_user(&uffdio_wake
, buf
, sizeof(uffdio_wake
)))
1535 ret
= validate_range(ctx
->mm
, uffdio_wake
.start
, uffdio_wake
.len
);
1539 range
.start
= uffdio_wake
.start
;
1540 range
.len
= uffdio_wake
.len
;
1543 * len == 0 means wake all and we don't want to wake all here,
1544 * so check it again to be sure.
1546 VM_BUG_ON(!range
.len
);
1548 wake_userfault(ctx
, &range
);
1555 static int userfaultfd_copy(struct userfaultfd_ctx
*ctx
,
1559 struct uffdio_copy uffdio_copy
;
1560 struct uffdio_copy __user
*user_uffdio_copy
;
1561 struct userfaultfd_wake_range range
;
1563 user_uffdio_copy
= (struct uffdio_copy __user
*) arg
;
1566 if (copy_from_user(&uffdio_copy
, user_uffdio_copy
,
1567 /* don't copy "copy" last field */
1568 sizeof(uffdio_copy
)-sizeof(__s64
)))
1571 ret
= validate_range(ctx
->mm
, uffdio_copy
.dst
, uffdio_copy
.len
);
1575 * double check for wraparound just in case. copy_from_user()
1576 * will later check uffdio_copy.src + uffdio_copy.len to fit
1577 * in the userland range.
1580 if (uffdio_copy
.src
+ uffdio_copy
.len
<= uffdio_copy
.src
)
1582 if (uffdio_copy
.mode
& ~UFFDIO_COPY_MODE_DONTWAKE
)
1584 if (mmget_not_zero(ctx
->mm
)) {
1585 ret
= mcopy_atomic(ctx
->mm
, uffdio_copy
.dst
, uffdio_copy
.src
,
1591 if (unlikely(put_user(ret
, &user_uffdio_copy
->copy
)))
1596 /* len == 0 would wake all */
1598 if (!(uffdio_copy
.mode
& UFFDIO_COPY_MODE_DONTWAKE
)) {
1599 range
.start
= uffdio_copy
.dst
;
1600 wake_userfault(ctx
, &range
);
1602 ret
= range
.len
== uffdio_copy
.len
? 0 : -EAGAIN
;
1607 static int userfaultfd_zeropage(struct userfaultfd_ctx
*ctx
,
1611 struct uffdio_zeropage uffdio_zeropage
;
1612 struct uffdio_zeropage __user
*user_uffdio_zeropage
;
1613 struct userfaultfd_wake_range range
;
1615 user_uffdio_zeropage
= (struct uffdio_zeropage __user
*) arg
;
1618 if (copy_from_user(&uffdio_zeropage
, user_uffdio_zeropage
,
1619 /* don't copy "zeropage" last field */
1620 sizeof(uffdio_zeropage
)-sizeof(__s64
)))
1623 ret
= validate_range(ctx
->mm
, uffdio_zeropage
.range
.start
,
1624 uffdio_zeropage
.range
.len
);
1628 if (uffdio_zeropage
.mode
& ~UFFDIO_ZEROPAGE_MODE_DONTWAKE
)
1631 if (mmget_not_zero(ctx
->mm
)) {
1632 ret
= mfill_zeropage(ctx
->mm
, uffdio_zeropage
.range
.start
,
1633 uffdio_zeropage
.range
.len
);
1636 if (unlikely(put_user(ret
, &user_uffdio_zeropage
->zeropage
)))
1640 /* len == 0 would wake all */
1643 if (!(uffdio_zeropage
.mode
& UFFDIO_ZEROPAGE_MODE_DONTWAKE
)) {
1644 range
.start
= uffdio_zeropage
.range
.start
;
1645 wake_userfault(ctx
, &range
);
1647 ret
= range
.len
== uffdio_zeropage
.range
.len
? 0 : -EAGAIN
;
1652 static inline unsigned int uffd_ctx_features(__u64 user_features
)
1655 * For the current set of features the bits just coincide
1657 return (unsigned int)user_features
;
1661 * userland asks for a certain API version and we return which bits
1662 * and ioctl commands are implemented in this kernel for such API
1663 * version or -EINVAL if unknown.
1665 static int userfaultfd_api(struct userfaultfd_ctx
*ctx
,
1668 struct uffdio_api uffdio_api
;
1669 void __user
*buf
= (void __user
*)arg
;
1674 if (ctx
->state
!= UFFD_STATE_WAIT_API
)
1677 if (copy_from_user(&uffdio_api
, buf
, sizeof(uffdio_api
)))
1679 features
= uffdio_api
.features
;
1680 if (uffdio_api
.api
!= UFFD_API
|| (features
& ~UFFD_API_FEATURES
)) {
1681 memset(&uffdio_api
, 0, sizeof(uffdio_api
));
1682 if (copy_to_user(buf
, &uffdio_api
, sizeof(uffdio_api
)))
1687 /* report all available features and ioctls to userland */
1688 uffdio_api
.features
= UFFD_API_FEATURES
;
1689 uffdio_api
.ioctls
= UFFD_API_IOCTLS
;
1691 if (copy_to_user(buf
, &uffdio_api
, sizeof(uffdio_api
)))
1693 ctx
->state
= UFFD_STATE_RUNNING
;
1694 /* only enable the requested features for this uffd context */
1695 ctx
->features
= uffd_ctx_features(features
);
1701 static long userfaultfd_ioctl(struct file
*file
, unsigned cmd
,
1705 struct userfaultfd_ctx
*ctx
= file
->private_data
;
1707 if (cmd
!= UFFDIO_API
&& ctx
->state
== UFFD_STATE_WAIT_API
)
1712 ret
= userfaultfd_api(ctx
, arg
);
1714 case UFFDIO_REGISTER
:
1715 ret
= userfaultfd_register(ctx
, arg
);
1717 case UFFDIO_UNREGISTER
:
1718 ret
= userfaultfd_unregister(ctx
, arg
);
1721 ret
= userfaultfd_wake(ctx
, arg
);
1724 ret
= userfaultfd_copy(ctx
, arg
);
1726 case UFFDIO_ZEROPAGE
:
1727 ret
= userfaultfd_zeropage(ctx
, arg
);
1733 #ifdef CONFIG_PROC_FS
1734 static void userfaultfd_show_fdinfo(struct seq_file
*m
, struct file
*f
)
1736 struct userfaultfd_ctx
*ctx
= f
->private_data
;
1738 struct userfaultfd_wait_queue
*uwq
;
1739 unsigned long pending
= 0, total
= 0;
1741 spin_lock(&ctx
->fault_pending_wqh
.lock
);
1742 list_for_each_entry(wq
, &ctx
->fault_pending_wqh
.task_list
, task_list
) {
1743 uwq
= container_of(wq
, struct userfaultfd_wait_queue
, wq
);
1747 list_for_each_entry(wq
, &ctx
->fault_wqh
.task_list
, task_list
) {
1748 uwq
= container_of(wq
, struct userfaultfd_wait_queue
, wq
);
1751 spin_unlock(&ctx
->fault_pending_wqh
.lock
);
1754 * If more protocols will be added, there will be all shown
1755 * separated by a space. Like this:
1756 * protocols: aa:... bb:...
1758 seq_printf(m
, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
1759 pending
, total
, UFFD_API
, ctx
->features
,
1760 UFFD_API_IOCTLS
|UFFD_API_RANGE_IOCTLS
);
1764 static const struct file_operations userfaultfd_fops
= {
1765 #ifdef CONFIG_PROC_FS
1766 .show_fdinfo
= userfaultfd_show_fdinfo
,
1768 .release
= userfaultfd_release
,
1769 .poll
= userfaultfd_poll
,
1770 .read
= userfaultfd_read
,
1771 .unlocked_ioctl
= userfaultfd_ioctl
,
1772 .compat_ioctl
= userfaultfd_ioctl
,
1773 .llseek
= noop_llseek
,
1776 static void init_once_userfaultfd_ctx(void *mem
)
1778 struct userfaultfd_ctx
*ctx
= (struct userfaultfd_ctx
*) mem
;
1780 init_waitqueue_head(&ctx
->fault_pending_wqh
);
1781 init_waitqueue_head(&ctx
->fault_wqh
);
1782 init_waitqueue_head(&ctx
->event_wqh
);
1783 init_waitqueue_head(&ctx
->fd_wqh
);
1784 seqcount_init(&ctx
->refile_seq
);
1788 * userfaultfd_file_create - Creates a userfaultfd file pointer.
1789 * @flags: Flags for the userfaultfd file.
1791 * This function creates a userfaultfd file pointer, w/out installing
1792 * it into the fd table. This is useful when the userfaultfd file is
1793 * used during the initialization of data structures that require
1794 * extra setup after the userfaultfd creation. So the userfaultfd
1795 * creation is split into the file pointer creation phase, and the
1796 * file descriptor installation phase. In this way races with
1797 * userspace closing the newly installed file descriptor can be
1798 * avoided. Returns a userfaultfd file pointer, or a proper error
1801 static struct file
*userfaultfd_file_create(int flags
)
1804 struct userfaultfd_ctx
*ctx
;
1806 BUG_ON(!current
->mm
);
1808 /* Check the UFFD_* constants for consistency. */
1809 BUILD_BUG_ON(UFFD_CLOEXEC
!= O_CLOEXEC
);
1810 BUILD_BUG_ON(UFFD_NONBLOCK
!= O_NONBLOCK
);
1812 file
= ERR_PTR(-EINVAL
);
1813 if (flags
& ~UFFD_SHARED_FCNTL_FLAGS
)
1816 file
= ERR_PTR(-ENOMEM
);
1817 ctx
= kmem_cache_alloc(userfaultfd_ctx_cachep
, GFP_KERNEL
);
1821 atomic_set(&ctx
->refcount
, 1);
1824 ctx
->state
= UFFD_STATE_WAIT_API
;
1825 ctx
->released
= false;
1826 ctx
->mm
= current
->mm
;
1827 /* prevent the mm struct to be freed */
1830 file
= anon_inode_getfile("[userfaultfd]", &userfaultfd_fops
, ctx
,
1831 O_RDWR
| (flags
& UFFD_SHARED_FCNTL_FLAGS
));
1834 kmem_cache_free(userfaultfd_ctx_cachep
, ctx
);
1840 SYSCALL_DEFINE1(userfaultfd
, int, flags
)
1845 error
= get_unused_fd_flags(flags
& UFFD_SHARED_FCNTL_FLAGS
);
1850 file
= userfaultfd_file_create(flags
);
1852 error
= PTR_ERR(file
);
1853 goto err_put_unused_fd
;
1855 fd_install(fd
, file
);
1865 static int __init
userfaultfd_init(void)
1867 userfaultfd_ctx_cachep
= kmem_cache_create("userfaultfd_ctx_cache",
1868 sizeof(struct userfaultfd_ctx
),
1870 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
,
1871 init_once_userfaultfd_ctx
);
1874 __initcall(userfaultfd_init
);