x86: Slightly tweak the access_ok() C variant for better code
[linux/fpc-iii.git] / block / blk-settings.c
blob05e826793e4e36b2e6c8de29802674767e3bd4d8
1 /*
2 * Functions related to setting various queue properties from drivers
3 */
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/init.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
10 #include <linux/gcd.h>
11 #include <linux/lcm.h>
12 #include <linux/jiffies.h>
13 #include <linux/gfp.h>
15 #include "blk.h"
17 unsigned long blk_max_low_pfn;
18 EXPORT_SYMBOL(blk_max_low_pfn);
20 unsigned long blk_max_pfn;
22 /**
23 * blk_queue_prep_rq - set a prepare_request function for queue
24 * @q: queue
25 * @pfn: prepare_request function
27 * It's possible for a queue to register a prepare_request callback which
28 * is invoked before the request is handed to the request_fn. The goal of
29 * the function is to prepare a request for I/O, it can be used to build a
30 * cdb from the request data for instance.
33 void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn)
35 q->prep_rq_fn = pfn;
37 EXPORT_SYMBOL(blk_queue_prep_rq);
39 /**
40 * blk_queue_unprep_rq - set an unprepare_request function for queue
41 * @q: queue
42 * @ufn: unprepare_request function
44 * It's possible for a queue to register an unprepare_request callback
45 * which is invoked before the request is finally completed. The goal
46 * of the function is to deallocate any data that was allocated in the
47 * prepare_request callback.
50 void blk_queue_unprep_rq(struct request_queue *q, unprep_rq_fn *ufn)
52 q->unprep_rq_fn = ufn;
54 EXPORT_SYMBOL(blk_queue_unprep_rq);
56 /**
57 * blk_queue_merge_bvec - set a merge_bvec function for queue
58 * @q: queue
59 * @mbfn: merge_bvec_fn
61 * Usually queues have static limitations on the max sectors or segments that
62 * we can put in a request. Stacking drivers may have some settings that
63 * are dynamic, and thus we have to query the queue whether it is ok to
64 * add a new bio_vec to a bio at a given offset or not. If the block device
65 * has such limitations, it needs to register a merge_bvec_fn to control
66 * the size of bio's sent to it. Note that a block device *must* allow a
67 * single page to be added to an empty bio. The block device driver may want
68 * to use the bio_split() function to deal with these bio's. By default
69 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
70 * honored.
72 void blk_queue_merge_bvec(struct request_queue *q, merge_bvec_fn *mbfn)
74 q->merge_bvec_fn = mbfn;
76 EXPORT_SYMBOL(blk_queue_merge_bvec);
78 void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn)
80 q->softirq_done_fn = fn;
82 EXPORT_SYMBOL(blk_queue_softirq_done);
84 void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
86 q->rq_timeout = timeout;
88 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
90 void blk_queue_rq_timed_out(struct request_queue *q, rq_timed_out_fn *fn)
92 q->rq_timed_out_fn = fn;
94 EXPORT_SYMBOL_GPL(blk_queue_rq_timed_out);
96 void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn)
98 q->lld_busy_fn = fn;
100 EXPORT_SYMBOL_GPL(blk_queue_lld_busy);
103 * blk_set_default_limits - reset limits to default values
104 * @lim: the queue_limits structure to reset
106 * Description:
107 * Returns a queue_limit struct to its default state.
109 void blk_set_default_limits(struct queue_limits *lim)
111 lim->max_segments = BLK_MAX_SEGMENTS;
112 lim->max_integrity_segments = 0;
113 lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
114 lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
115 lim->max_sectors = lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS;
116 lim->max_write_same_sectors = 0;
117 lim->max_discard_sectors = 0;
118 lim->discard_granularity = 0;
119 lim->discard_alignment = 0;
120 lim->discard_misaligned = 0;
121 lim->discard_zeroes_data = 0;
122 lim->logical_block_size = lim->physical_block_size = lim->io_min = 512;
123 lim->bounce_pfn = (unsigned long)(BLK_BOUNCE_ANY >> PAGE_SHIFT);
124 lim->alignment_offset = 0;
125 lim->io_opt = 0;
126 lim->misaligned = 0;
127 lim->cluster = 1;
129 EXPORT_SYMBOL(blk_set_default_limits);
132 * blk_set_stacking_limits - set default limits for stacking devices
133 * @lim: the queue_limits structure to reset
135 * Description:
136 * Returns a queue_limit struct to its default state. Should be used
137 * by stacking drivers like DM that have no internal limits.
139 void blk_set_stacking_limits(struct queue_limits *lim)
141 blk_set_default_limits(lim);
143 /* Inherit limits from component devices */
144 lim->discard_zeroes_data = 1;
145 lim->max_segments = USHRT_MAX;
146 lim->max_hw_sectors = UINT_MAX;
147 lim->max_segment_size = UINT_MAX;
148 lim->max_sectors = UINT_MAX;
149 lim->max_write_same_sectors = UINT_MAX;
151 EXPORT_SYMBOL(blk_set_stacking_limits);
154 * blk_queue_make_request - define an alternate make_request function for a device
155 * @q: the request queue for the device to be affected
156 * @mfn: the alternate make_request function
158 * Description:
159 * The normal way for &struct bios to be passed to a device
160 * driver is for them to be collected into requests on a request
161 * queue, and then to allow the device driver to select requests
162 * off that queue when it is ready. This works well for many block
163 * devices. However some block devices (typically virtual devices
164 * such as md or lvm) do not benefit from the processing on the
165 * request queue, and are served best by having the requests passed
166 * directly to them. This can be achieved by providing a function
167 * to blk_queue_make_request().
169 * Caveat:
170 * The driver that does this *must* be able to deal appropriately
171 * with buffers in "highmemory". This can be accomplished by either calling
172 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
173 * blk_queue_bounce() to create a buffer in normal memory.
175 void blk_queue_make_request(struct request_queue *q, make_request_fn *mfn)
178 * set defaults
180 q->nr_requests = BLKDEV_MAX_RQ;
182 q->make_request_fn = mfn;
183 blk_queue_dma_alignment(q, 511);
184 blk_queue_congestion_threshold(q);
185 q->nr_batching = BLK_BATCH_REQ;
187 blk_set_default_limits(&q->limits);
190 * by default assume old behaviour and bounce for any highmem page
192 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
194 EXPORT_SYMBOL(blk_queue_make_request);
197 * blk_queue_bounce_limit - set bounce buffer limit for queue
198 * @q: the request queue for the device
199 * @max_addr: the maximum address the device can handle
201 * Description:
202 * Different hardware can have different requirements as to what pages
203 * it can do I/O directly to. A low level driver can call
204 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
205 * buffers for doing I/O to pages residing above @max_addr.
207 void blk_queue_bounce_limit(struct request_queue *q, u64 max_addr)
209 unsigned long b_pfn = max_addr >> PAGE_SHIFT;
210 int dma = 0;
212 q->bounce_gfp = GFP_NOIO;
213 #if BITS_PER_LONG == 64
215 * Assume anything <= 4GB can be handled by IOMMU. Actually
216 * some IOMMUs can handle everything, but I don't know of a
217 * way to test this here.
219 if (b_pfn < (min_t(u64, 0xffffffffUL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
220 dma = 1;
221 q->limits.bounce_pfn = max(max_low_pfn, b_pfn);
222 #else
223 if (b_pfn < blk_max_low_pfn)
224 dma = 1;
225 q->limits.bounce_pfn = b_pfn;
226 #endif
227 if (dma) {
228 init_emergency_isa_pool();
229 q->bounce_gfp = GFP_NOIO | GFP_DMA;
230 q->limits.bounce_pfn = b_pfn;
233 EXPORT_SYMBOL(blk_queue_bounce_limit);
236 * blk_limits_max_hw_sectors - set hard and soft limit of max sectors for request
237 * @limits: the queue limits
238 * @max_hw_sectors: max hardware sectors in the usual 512b unit
240 * Description:
241 * Enables a low level driver to set a hard upper limit,
242 * max_hw_sectors, on the size of requests. max_hw_sectors is set by
243 * the device driver based upon the combined capabilities of I/O
244 * controller and storage device.
246 * max_sectors is a soft limit imposed by the block layer for
247 * filesystem type requests. This value can be overridden on a
248 * per-device basis in /sys/block/<device>/queue/max_sectors_kb.
249 * The soft limit can not exceed max_hw_sectors.
251 void blk_limits_max_hw_sectors(struct queue_limits *limits, unsigned int max_hw_sectors)
253 if ((max_hw_sectors << 9) < PAGE_CACHE_SIZE) {
254 max_hw_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
255 printk(KERN_INFO "%s: set to minimum %d\n",
256 __func__, max_hw_sectors);
259 limits->max_hw_sectors = max_hw_sectors;
260 limits->max_sectors = min_t(unsigned int, max_hw_sectors,
261 BLK_DEF_MAX_SECTORS);
263 EXPORT_SYMBOL(blk_limits_max_hw_sectors);
266 * blk_queue_max_hw_sectors - set max sectors for a request for this queue
267 * @q: the request queue for the device
268 * @max_hw_sectors: max hardware sectors in the usual 512b unit
270 * Description:
271 * See description for blk_limits_max_hw_sectors().
273 void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors)
275 blk_limits_max_hw_sectors(&q->limits, max_hw_sectors);
277 EXPORT_SYMBOL(blk_queue_max_hw_sectors);
280 * blk_queue_max_discard_sectors - set max sectors for a single discard
281 * @q: the request queue for the device
282 * @max_discard_sectors: maximum number of sectors to discard
284 void blk_queue_max_discard_sectors(struct request_queue *q,
285 unsigned int max_discard_sectors)
287 q->limits.max_discard_sectors = max_discard_sectors;
289 EXPORT_SYMBOL(blk_queue_max_discard_sectors);
292 * blk_queue_max_write_same_sectors - set max sectors for a single write same
293 * @q: the request queue for the device
294 * @max_write_same_sectors: maximum number of sectors to write per command
296 void blk_queue_max_write_same_sectors(struct request_queue *q,
297 unsigned int max_write_same_sectors)
299 q->limits.max_write_same_sectors = max_write_same_sectors;
301 EXPORT_SYMBOL(blk_queue_max_write_same_sectors);
304 * blk_queue_max_segments - set max hw segments for a request for this queue
305 * @q: the request queue for the device
306 * @max_segments: max number of segments
308 * Description:
309 * Enables a low level driver to set an upper limit on the number of
310 * hw data segments in a request.
312 void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments)
314 if (!max_segments) {
315 max_segments = 1;
316 printk(KERN_INFO "%s: set to minimum %d\n",
317 __func__, max_segments);
320 q->limits.max_segments = max_segments;
322 EXPORT_SYMBOL(blk_queue_max_segments);
325 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
326 * @q: the request queue for the device
327 * @max_size: max size of segment in bytes
329 * Description:
330 * Enables a low level driver to set an upper limit on the size of a
331 * coalesced segment
333 void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
335 if (max_size < PAGE_CACHE_SIZE) {
336 max_size = PAGE_CACHE_SIZE;
337 printk(KERN_INFO "%s: set to minimum %d\n",
338 __func__, max_size);
341 q->limits.max_segment_size = max_size;
343 EXPORT_SYMBOL(blk_queue_max_segment_size);
346 * blk_queue_logical_block_size - set logical block size for the queue
347 * @q: the request queue for the device
348 * @size: the logical block size, in bytes
350 * Description:
351 * This should be set to the lowest possible block size that the
352 * storage device can address. The default of 512 covers most
353 * hardware.
355 void blk_queue_logical_block_size(struct request_queue *q, unsigned short size)
357 q->limits.logical_block_size = size;
359 if (q->limits.physical_block_size < size)
360 q->limits.physical_block_size = size;
362 if (q->limits.io_min < q->limits.physical_block_size)
363 q->limits.io_min = q->limits.physical_block_size;
365 EXPORT_SYMBOL(blk_queue_logical_block_size);
368 * blk_queue_physical_block_size - set physical block size for the queue
369 * @q: the request queue for the device
370 * @size: the physical block size, in bytes
372 * Description:
373 * This should be set to the lowest possible sector size that the
374 * hardware can operate on without reverting to read-modify-write
375 * operations.
377 void blk_queue_physical_block_size(struct request_queue *q, unsigned int size)
379 q->limits.physical_block_size = size;
381 if (q->limits.physical_block_size < q->limits.logical_block_size)
382 q->limits.physical_block_size = q->limits.logical_block_size;
384 if (q->limits.io_min < q->limits.physical_block_size)
385 q->limits.io_min = q->limits.physical_block_size;
387 EXPORT_SYMBOL(blk_queue_physical_block_size);
390 * blk_queue_alignment_offset - set physical block alignment offset
391 * @q: the request queue for the device
392 * @offset: alignment offset in bytes
394 * Description:
395 * Some devices are naturally misaligned to compensate for things like
396 * the legacy DOS partition table 63-sector offset. Low-level drivers
397 * should call this function for devices whose first sector is not
398 * naturally aligned.
400 void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
402 q->limits.alignment_offset =
403 offset & (q->limits.physical_block_size - 1);
404 q->limits.misaligned = 0;
406 EXPORT_SYMBOL(blk_queue_alignment_offset);
409 * blk_limits_io_min - set minimum request size for a device
410 * @limits: the queue limits
411 * @min: smallest I/O size in bytes
413 * Description:
414 * Some devices have an internal block size bigger than the reported
415 * hardware sector size. This function can be used to signal the
416 * smallest I/O the device can perform without incurring a performance
417 * penalty.
419 void blk_limits_io_min(struct queue_limits *limits, unsigned int min)
421 limits->io_min = min;
423 if (limits->io_min < limits->logical_block_size)
424 limits->io_min = limits->logical_block_size;
426 if (limits->io_min < limits->physical_block_size)
427 limits->io_min = limits->physical_block_size;
429 EXPORT_SYMBOL(blk_limits_io_min);
432 * blk_queue_io_min - set minimum request size for the queue
433 * @q: the request queue for the device
434 * @min: smallest I/O size in bytes
436 * Description:
437 * Storage devices may report a granularity or preferred minimum I/O
438 * size which is the smallest request the device can perform without
439 * incurring a performance penalty. For disk drives this is often the
440 * physical block size. For RAID arrays it is often the stripe chunk
441 * size. A properly aligned multiple of minimum_io_size is the
442 * preferred request size for workloads where a high number of I/O
443 * operations is desired.
445 void blk_queue_io_min(struct request_queue *q, unsigned int min)
447 blk_limits_io_min(&q->limits, min);
449 EXPORT_SYMBOL(blk_queue_io_min);
452 * blk_limits_io_opt - set optimal request size for a device
453 * @limits: the queue limits
454 * @opt: smallest I/O size in bytes
456 * Description:
457 * Storage devices may report an optimal I/O size, which is the
458 * device's preferred unit for sustained I/O. This is rarely reported
459 * for disk drives. For RAID arrays it is usually the stripe width or
460 * the internal track size. A properly aligned multiple of
461 * optimal_io_size is the preferred request size for workloads where
462 * sustained throughput is desired.
464 void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt)
466 limits->io_opt = opt;
468 EXPORT_SYMBOL(blk_limits_io_opt);
471 * blk_queue_io_opt - set optimal request size for the queue
472 * @q: the request queue for the device
473 * @opt: optimal request size in bytes
475 * Description:
476 * Storage devices may report an optimal I/O size, which is the
477 * device's preferred unit for sustained I/O. This is rarely reported
478 * for disk drives. For RAID arrays it is usually the stripe width or
479 * the internal track size. A properly aligned multiple of
480 * optimal_io_size is the preferred request size for workloads where
481 * sustained throughput is desired.
483 void blk_queue_io_opt(struct request_queue *q, unsigned int opt)
485 blk_limits_io_opt(&q->limits, opt);
487 EXPORT_SYMBOL(blk_queue_io_opt);
490 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
491 * @t: the stacking driver (top)
492 * @b: the underlying device (bottom)
494 void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
496 blk_stack_limits(&t->limits, &b->limits, 0);
498 EXPORT_SYMBOL(blk_queue_stack_limits);
501 * blk_stack_limits - adjust queue_limits for stacked devices
502 * @t: the stacking driver limits (top device)
503 * @b: the underlying queue limits (bottom, component device)
504 * @start: first data sector within component device
506 * Description:
507 * This function is used by stacking drivers like MD and DM to ensure
508 * that all component devices have compatible block sizes and
509 * alignments. The stacking driver must provide a queue_limits
510 * struct (top) and then iteratively call the stacking function for
511 * all component (bottom) devices. The stacking function will
512 * attempt to combine the values and ensure proper alignment.
514 * Returns 0 if the top and bottom queue_limits are compatible. The
515 * top device's block sizes and alignment offsets may be adjusted to
516 * ensure alignment with the bottom device. If no compatible sizes
517 * and alignments exist, -1 is returned and the resulting top
518 * queue_limits will have the misaligned flag set to indicate that
519 * the alignment_offset is undefined.
521 int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
522 sector_t start)
524 unsigned int top, bottom, alignment, ret = 0;
526 t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
527 t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
528 t->max_write_same_sectors = min(t->max_write_same_sectors,
529 b->max_write_same_sectors);
530 t->bounce_pfn = min_not_zero(t->bounce_pfn, b->bounce_pfn);
532 t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
533 b->seg_boundary_mask);
535 t->max_segments = min_not_zero(t->max_segments, b->max_segments);
536 t->max_integrity_segments = min_not_zero(t->max_integrity_segments,
537 b->max_integrity_segments);
539 t->max_segment_size = min_not_zero(t->max_segment_size,
540 b->max_segment_size);
542 t->misaligned |= b->misaligned;
544 alignment = queue_limit_alignment_offset(b, start);
546 /* Bottom device has different alignment. Check that it is
547 * compatible with the current top alignment.
549 if (t->alignment_offset != alignment) {
551 top = max(t->physical_block_size, t->io_min)
552 + t->alignment_offset;
553 bottom = max(b->physical_block_size, b->io_min) + alignment;
555 /* Verify that top and bottom intervals line up */
556 if (max(top, bottom) & (min(top, bottom) - 1)) {
557 t->misaligned = 1;
558 ret = -1;
562 t->logical_block_size = max(t->logical_block_size,
563 b->logical_block_size);
565 t->physical_block_size = max(t->physical_block_size,
566 b->physical_block_size);
568 t->io_min = max(t->io_min, b->io_min);
569 t->io_opt = lcm(t->io_opt, b->io_opt);
571 t->cluster &= b->cluster;
572 t->discard_zeroes_data &= b->discard_zeroes_data;
574 /* Physical block size a multiple of the logical block size? */
575 if (t->physical_block_size & (t->logical_block_size - 1)) {
576 t->physical_block_size = t->logical_block_size;
577 t->misaligned = 1;
578 ret = -1;
581 /* Minimum I/O a multiple of the physical block size? */
582 if (t->io_min & (t->physical_block_size - 1)) {
583 t->io_min = t->physical_block_size;
584 t->misaligned = 1;
585 ret = -1;
588 /* Optimal I/O a multiple of the physical block size? */
589 if (t->io_opt & (t->physical_block_size - 1)) {
590 t->io_opt = 0;
591 t->misaligned = 1;
592 ret = -1;
595 /* Find lowest common alignment_offset */
596 t->alignment_offset = lcm(t->alignment_offset, alignment)
597 & (max(t->physical_block_size, t->io_min) - 1);
599 /* Verify that new alignment_offset is on a logical block boundary */
600 if (t->alignment_offset & (t->logical_block_size - 1)) {
601 t->misaligned = 1;
602 ret = -1;
605 /* Discard alignment and granularity */
606 if (b->discard_granularity) {
607 alignment = queue_limit_discard_alignment(b, start);
609 if (t->discard_granularity != 0 &&
610 t->discard_alignment != alignment) {
611 top = t->discard_granularity + t->discard_alignment;
612 bottom = b->discard_granularity + alignment;
614 /* Verify that top and bottom intervals line up */
615 if ((max(top, bottom) % min(top, bottom)) != 0)
616 t->discard_misaligned = 1;
619 t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
620 b->max_discard_sectors);
621 t->discard_granularity = max(t->discard_granularity,
622 b->discard_granularity);
623 t->discard_alignment = lcm(t->discard_alignment, alignment) %
624 t->discard_granularity;
627 return ret;
629 EXPORT_SYMBOL(blk_stack_limits);
632 * bdev_stack_limits - adjust queue limits for stacked drivers
633 * @t: the stacking driver limits (top device)
634 * @bdev: the component block_device (bottom)
635 * @start: first data sector within component device
637 * Description:
638 * Merges queue limits for a top device and a block_device. Returns
639 * 0 if alignment didn't change. Returns -1 if adding the bottom
640 * device caused misalignment.
642 int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev,
643 sector_t start)
645 struct request_queue *bq = bdev_get_queue(bdev);
647 start += get_start_sect(bdev);
649 return blk_stack_limits(t, &bq->limits, start);
651 EXPORT_SYMBOL(bdev_stack_limits);
654 * disk_stack_limits - adjust queue limits for stacked drivers
655 * @disk: MD/DM gendisk (top)
656 * @bdev: the underlying block device (bottom)
657 * @offset: offset to beginning of data within component device
659 * Description:
660 * Merges the limits for a top level gendisk and a bottom level
661 * block_device.
663 void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
664 sector_t offset)
666 struct request_queue *t = disk->queue;
668 if (bdev_stack_limits(&t->limits, bdev, offset >> 9) < 0) {
669 char top[BDEVNAME_SIZE], bottom[BDEVNAME_SIZE];
671 disk_name(disk, 0, top);
672 bdevname(bdev, bottom);
674 printk(KERN_NOTICE "%s: Warning: Device %s is misaligned\n",
675 top, bottom);
678 EXPORT_SYMBOL(disk_stack_limits);
681 * blk_queue_dma_pad - set pad mask
682 * @q: the request queue for the device
683 * @mask: pad mask
685 * Set dma pad mask.
687 * Appending pad buffer to a request modifies the last entry of a
688 * scatter list such that it includes the pad buffer.
690 void blk_queue_dma_pad(struct request_queue *q, unsigned int mask)
692 q->dma_pad_mask = mask;
694 EXPORT_SYMBOL(blk_queue_dma_pad);
697 * blk_queue_update_dma_pad - update pad mask
698 * @q: the request queue for the device
699 * @mask: pad mask
701 * Update dma pad mask.
703 * Appending pad buffer to a request modifies the last entry of a
704 * scatter list such that it includes the pad buffer.
706 void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
708 if (mask > q->dma_pad_mask)
709 q->dma_pad_mask = mask;
711 EXPORT_SYMBOL(blk_queue_update_dma_pad);
714 * blk_queue_dma_drain - Set up a drain buffer for excess dma.
715 * @q: the request queue for the device
716 * @dma_drain_needed: fn which returns non-zero if drain is necessary
717 * @buf: physically contiguous buffer
718 * @size: size of the buffer in bytes
720 * Some devices have excess DMA problems and can't simply discard (or
721 * zero fill) the unwanted piece of the transfer. They have to have a
722 * real area of memory to transfer it into. The use case for this is
723 * ATAPI devices in DMA mode. If the packet command causes a transfer
724 * bigger than the transfer size some HBAs will lock up if there
725 * aren't DMA elements to contain the excess transfer. What this API
726 * does is adjust the queue so that the buf is always appended
727 * silently to the scatterlist.
729 * Note: This routine adjusts max_hw_segments to make room for appending
730 * the drain buffer. If you call blk_queue_max_segments() after calling
731 * this routine, you must set the limit to one fewer than your device
732 * can support otherwise there won't be room for the drain buffer.
734 int blk_queue_dma_drain(struct request_queue *q,
735 dma_drain_needed_fn *dma_drain_needed,
736 void *buf, unsigned int size)
738 if (queue_max_segments(q) < 2)
739 return -EINVAL;
740 /* make room for appending the drain */
741 blk_queue_max_segments(q, queue_max_segments(q) - 1);
742 q->dma_drain_needed = dma_drain_needed;
743 q->dma_drain_buffer = buf;
744 q->dma_drain_size = size;
746 return 0;
748 EXPORT_SYMBOL_GPL(blk_queue_dma_drain);
751 * blk_queue_segment_boundary - set boundary rules for segment merging
752 * @q: the request queue for the device
753 * @mask: the memory boundary mask
755 void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
757 if (mask < PAGE_CACHE_SIZE - 1) {
758 mask = PAGE_CACHE_SIZE - 1;
759 printk(KERN_INFO "%s: set to minimum %lx\n",
760 __func__, mask);
763 q->limits.seg_boundary_mask = mask;
765 EXPORT_SYMBOL(blk_queue_segment_boundary);
768 * blk_queue_dma_alignment - set dma length and memory alignment
769 * @q: the request queue for the device
770 * @mask: alignment mask
772 * description:
773 * set required memory and length alignment for direct dma transactions.
774 * this is used when building direct io requests for the queue.
777 void blk_queue_dma_alignment(struct request_queue *q, int mask)
779 q->dma_alignment = mask;
781 EXPORT_SYMBOL(blk_queue_dma_alignment);
784 * blk_queue_update_dma_alignment - update dma length and memory alignment
785 * @q: the request queue for the device
786 * @mask: alignment mask
788 * description:
789 * update required memory and length alignment for direct dma transactions.
790 * If the requested alignment is larger than the current alignment, then
791 * the current queue alignment is updated to the new value, otherwise it
792 * is left alone. The design of this is to allow multiple objects
793 * (driver, device, transport etc) to set their respective
794 * alignments without having them interfere.
797 void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
799 BUG_ON(mask > PAGE_SIZE);
801 if (mask > q->dma_alignment)
802 q->dma_alignment = mask;
804 EXPORT_SYMBOL(blk_queue_update_dma_alignment);
807 * blk_queue_flush - configure queue's cache flush capability
808 * @q: the request queue for the device
809 * @flush: 0, REQ_FLUSH or REQ_FLUSH | REQ_FUA
811 * Tell block layer cache flush capability of @q. If it supports
812 * flushing, REQ_FLUSH should be set. If it supports bypassing
813 * write cache for individual writes, REQ_FUA should be set.
815 void blk_queue_flush(struct request_queue *q, unsigned int flush)
817 WARN_ON_ONCE(flush & ~(REQ_FLUSH | REQ_FUA));
819 if (WARN_ON_ONCE(!(flush & REQ_FLUSH) && (flush & REQ_FUA)))
820 flush &= ~REQ_FUA;
822 q->flush_flags = flush & (REQ_FLUSH | REQ_FUA);
824 EXPORT_SYMBOL_GPL(blk_queue_flush);
826 void blk_queue_flush_queueable(struct request_queue *q, bool queueable)
828 q->flush_not_queueable = !queueable;
830 EXPORT_SYMBOL_GPL(blk_queue_flush_queueable);
832 static int __init blk_settings_init(void)
834 blk_max_low_pfn = max_low_pfn - 1;
835 blk_max_pfn = max_pfn - 1;
836 return 0;
838 subsys_initcall(blk_settings_init);