ARM: mm: Recreate kernel mappings in early_paging_init()
[linux/fpc-iii.git] / drivers / net / wireless / ath / ath5k / qcu.c
blob0583c69d26dbb4a95b99fa82704e8af14f27b9b8
1 /*
2 * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
3 * Copyright (c) 2006-2008 Nick Kossifidis <mickflemm@gmail.com>
5 * Permission to use, copy, modify, and distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 /********************************************\
20 Queue Control Unit, DCF Control Unit Functions
21 \********************************************/
23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25 #include "ath5k.h"
26 #include "reg.h"
27 #include "debug.h"
28 #include <linux/log2.h>
30 /**
31 * DOC: Queue Control Unit (QCU)/DCF Control Unit (DCU) functions
33 * Here we setup parameters for the 12 available TX queues. Note that
34 * on the various registers we can usually only map the first 10 of them so
35 * basically we have 10 queues to play with. Each queue has a matching
36 * QCU that controls when the queue will get triggered and multiple QCUs
37 * can be mapped to a single DCU that controls the various DFS parameters
38 * for the various queues. In our setup we have a 1:1 mapping between QCUs
39 * and DCUs allowing us to have different DFS settings for each queue.
41 * When a frame goes into a TX queue, QCU decides when it'll trigger a
42 * transmission based on various criteria (such as how many data we have inside
43 * it's buffer or -if it's a beacon queue- if it's time to fire up the queue
44 * based on TSF etc), DCU adds backoff, IFSes etc and then a scheduler
45 * (arbitrator) decides the priority of each QCU based on it's configuration
46 * (e.g. beacons are always transmitted when they leave DCU bypassing all other
47 * frames from other queues waiting to be transmitted). After a frame leaves
48 * the DCU it goes to PCU for further processing and then to PHY for
49 * the actual transmission.
53 /******************\
54 * Helper functions *
55 \******************/
57 /**
58 * ath5k_hw_num_tx_pending() - Get number of pending frames for a given queue
59 * @ah: The &struct ath5k_hw
60 * @queue: One of enum ath5k_tx_queue_id
62 u32
63 ath5k_hw_num_tx_pending(struct ath5k_hw *ah, unsigned int queue)
65 u32 pending;
66 AR5K_ASSERT_ENTRY(queue, ah->ah_capabilities.cap_queues.q_tx_num);
68 /* Return if queue is declared inactive */
69 if (ah->ah_txq[queue].tqi_type == AR5K_TX_QUEUE_INACTIVE)
70 return false;
72 /* XXX: How about AR5K_CFG_TXCNT ? */
73 if (ah->ah_version == AR5K_AR5210)
74 return false;
76 pending = ath5k_hw_reg_read(ah, AR5K_QUEUE_STATUS(queue));
77 pending &= AR5K_QCU_STS_FRMPENDCNT;
79 /* It's possible to have no frames pending even if TXE
80 * is set. To indicate that q has not stopped return
81 * true */
82 if (!pending && AR5K_REG_READ_Q(ah, AR5K_QCU_TXE, queue))
83 return true;
85 return pending;
88 /**
89 * ath5k_hw_release_tx_queue() - Set a transmit queue inactive
90 * @ah: The &struct ath5k_hw
91 * @queue: One of enum ath5k_tx_queue_id
93 void
94 ath5k_hw_release_tx_queue(struct ath5k_hw *ah, unsigned int queue)
96 if (WARN_ON(queue >= ah->ah_capabilities.cap_queues.q_tx_num))
97 return;
99 /* This queue will be skipped in further operations */
100 ah->ah_txq[queue].tqi_type = AR5K_TX_QUEUE_INACTIVE;
101 /*For SIMR setup*/
102 AR5K_Q_DISABLE_BITS(ah->ah_txq_status, queue);
106 * ath5k_cw_validate() - Make sure the given cw is valid
107 * @cw_req: The contention window value to check
109 * Make sure cw is a power of 2 minus 1 and smaller than 1024
111 static u16
112 ath5k_cw_validate(u16 cw_req)
114 cw_req = min(cw_req, (u16)1023);
116 /* Check if cw_req + 1 a power of 2 */
117 if (is_power_of_2(cw_req + 1))
118 return cw_req;
120 /* Check if cw_req is a power of 2 */
121 if (is_power_of_2(cw_req))
122 return cw_req - 1;
124 /* If none of the above is correct
125 * find the closest power of 2 */
126 cw_req = (u16) roundup_pow_of_two(cw_req) - 1;
128 return cw_req;
132 * ath5k_hw_get_tx_queueprops() - Get properties for a transmit queue
133 * @ah: The &struct ath5k_hw
134 * @queue: One of enum ath5k_tx_queue_id
135 * @queue_info: The &struct ath5k_txq_info to fill
138 ath5k_hw_get_tx_queueprops(struct ath5k_hw *ah, int queue,
139 struct ath5k_txq_info *queue_info)
141 memcpy(queue_info, &ah->ah_txq[queue], sizeof(struct ath5k_txq_info));
142 return 0;
146 * ath5k_hw_set_tx_queueprops() - Set properties for a transmit queue
147 * @ah: The &struct ath5k_hw
148 * @queue: One of enum ath5k_tx_queue_id
149 * @qinfo: The &struct ath5k_txq_info to use
151 * Returns 0 on success or -EIO if queue is inactive
154 ath5k_hw_set_tx_queueprops(struct ath5k_hw *ah, int queue,
155 const struct ath5k_txq_info *qinfo)
157 struct ath5k_txq_info *qi;
159 AR5K_ASSERT_ENTRY(queue, ah->ah_capabilities.cap_queues.q_tx_num);
161 qi = &ah->ah_txq[queue];
163 if (qi->tqi_type == AR5K_TX_QUEUE_INACTIVE)
164 return -EIO;
166 /* copy and validate values */
167 qi->tqi_type = qinfo->tqi_type;
168 qi->tqi_subtype = qinfo->tqi_subtype;
169 qi->tqi_flags = qinfo->tqi_flags;
171 * According to the docs: Although the AIFS field is 8 bit wide,
172 * the maximum supported value is 0xFC. Setting it higher than that
173 * will cause the DCU to hang.
175 qi->tqi_aifs = min(qinfo->tqi_aifs, (u8)0xFC);
176 qi->tqi_cw_min = ath5k_cw_validate(qinfo->tqi_cw_min);
177 qi->tqi_cw_max = ath5k_cw_validate(qinfo->tqi_cw_max);
178 qi->tqi_cbr_period = qinfo->tqi_cbr_period;
179 qi->tqi_cbr_overflow_limit = qinfo->tqi_cbr_overflow_limit;
180 qi->tqi_burst_time = qinfo->tqi_burst_time;
181 qi->tqi_ready_time = qinfo->tqi_ready_time;
183 /*XXX: Is this supported on 5210 ?*/
184 /*XXX: Is this correct for AR5K_WME_AC_VI,VO ???*/
185 if ((qinfo->tqi_type == AR5K_TX_QUEUE_DATA &&
186 ((qinfo->tqi_subtype == AR5K_WME_AC_VI) ||
187 (qinfo->tqi_subtype == AR5K_WME_AC_VO))) ||
188 qinfo->tqi_type == AR5K_TX_QUEUE_UAPSD)
189 qi->tqi_flags |= AR5K_TXQ_FLAG_POST_FR_BKOFF_DIS;
191 return 0;
195 * ath5k_hw_setup_tx_queue() - Initialize a transmit queue
196 * @ah: The &struct ath5k_hw
197 * @queue_type: One of enum ath5k_tx_queue
198 * @queue_info: The &struct ath5k_txq_info to use
200 * Returns 0 on success, -EINVAL on invalid arguments
203 ath5k_hw_setup_tx_queue(struct ath5k_hw *ah, enum ath5k_tx_queue queue_type,
204 struct ath5k_txq_info *queue_info)
206 unsigned int queue;
207 int ret;
210 * Get queue by type
212 /* 5210 only has 2 queues */
213 if (ah->ah_capabilities.cap_queues.q_tx_num == 2) {
214 switch (queue_type) {
215 case AR5K_TX_QUEUE_DATA:
216 queue = AR5K_TX_QUEUE_ID_NOQCU_DATA;
217 break;
218 case AR5K_TX_QUEUE_BEACON:
219 case AR5K_TX_QUEUE_CAB:
220 queue = AR5K_TX_QUEUE_ID_NOQCU_BEACON;
221 break;
222 default:
223 return -EINVAL;
225 } else {
226 switch (queue_type) {
227 case AR5K_TX_QUEUE_DATA:
228 for (queue = AR5K_TX_QUEUE_ID_DATA_MIN;
229 ah->ah_txq[queue].tqi_type !=
230 AR5K_TX_QUEUE_INACTIVE; queue++) {
232 if (queue > AR5K_TX_QUEUE_ID_DATA_MAX)
233 return -EINVAL;
235 break;
236 case AR5K_TX_QUEUE_UAPSD:
237 queue = AR5K_TX_QUEUE_ID_UAPSD;
238 break;
239 case AR5K_TX_QUEUE_BEACON:
240 queue = AR5K_TX_QUEUE_ID_BEACON;
241 break;
242 case AR5K_TX_QUEUE_CAB:
243 queue = AR5K_TX_QUEUE_ID_CAB;
244 break;
245 default:
246 return -EINVAL;
251 * Setup internal queue structure
253 memset(&ah->ah_txq[queue], 0, sizeof(struct ath5k_txq_info));
254 ah->ah_txq[queue].tqi_type = queue_type;
256 if (queue_info != NULL) {
257 queue_info->tqi_type = queue_type;
258 ret = ath5k_hw_set_tx_queueprops(ah, queue, queue_info);
259 if (ret)
260 return ret;
264 * We use ah_txq_status to hold a temp value for
265 * the Secondary interrupt mask registers on 5211+
266 * check out ath5k_hw_reset_tx_queue
268 AR5K_Q_ENABLE_BITS(ah->ah_txq_status, queue);
270 return queue;
274 /*******************************\
275 * Single QCU/DCU initialization *
276 \*******************************/
279 * ath5k_hw_set_tx_retry_limits() - Set tx retry limits on DCU
280 * @ah: The &struct ath5k_hw
281 * @queue: One of enum ath5k_tx_queue_id
283 * This function is used when initializing a queue, to set
284 * retry limits based on ah->ah_retry_* and the chipset used.
286 void
287 ath5k_hw_set_tx_retry_limits(struct ath5k_hw *ah,
288 unsigned int queue)
290 /* Single data queue on AR5210 */
291 if (ah->ah_version == AR5K_AR5210) {
292 struct ath5k_txq_info *tq = &ah->ah_txq[queue];
294 if (queue > 0)
295 return;
297 ath5k_hw_reg_write(ah,
298 (tq->tqi_cw_min << AR5K_NODCU_RETRY_LMT_CW_MIN_S)
299 | AR5K_REG_SM(ah->ah_retry_long,
300 AR5K_NODCU_RETRY_LMT_SLG_RETRY)
301 | AR5K_REG_SM(ah->ah_retry_short,
302 AR5K_NODCU_RETRY_LMT_SSH_RETRY)
303 | AR5K_REG_SM(ah->ah_retry_long,
304 AR5K_NODCU_RETRY_LMT_LG_RETRY)
305 | AR5K_REG_SM(ah->ah_retry_short,
306 AR5K_NODCU_RETRY_LMT_SH_RETRY),
307 AR5K_NODCU_RETRY_LMT);
308 /* DCU on AR5211+ */
309 } else {
310 ath5k_hw_reg_write(ah,
311 AR5K_REG_SM(ah->ah_retry_long,
312 AR5K_DCU_RETRY_LMT_RTS)
313 | AR5K_REG_SM(ah->ah_retry_long,
314 AR5K_DCU_RETRY_LMT_STA_RTS)
315 | AR5K_REG_SM(max(ah->ah_retry_long, ah->ah_retry_short),
316 AR5K_DCU_RETRY_LMT_STA_DATA),
317 AR5K_QUEUE_DFS_RETRY_LIMIT(queue));
322 * ath5k_hw_reset_tx_queue() - Initialize a single hw queue
323 * @ah: The &struct ath5k_hw
324 * @queue: One of enum ath5k_tx_queue_id
326 * Set DCF properties for the given transmit queue on DCU
327 * and configures all queue-specific parameters.
330 ath5k_hw_reset_tx_queue(struct ath5k_hw *ah, unsigned int queue)
332 struct ath5k_txq_info *tq = &ah->ah_txq[queue];
334 AR5K_ASSERT_ENTRY(queue, ah->ah_capabilities.cap_queues.q_tx_num);
336 tq = &ah->ah_txq[queue];
338 /* Skip if queue inactive or if we are on AR5210
339 * that doesn't have QCU/DCU */
340 if ((ah->ah_version == AR5K_AR5210) ||
341 (tq->tqi_type == AR5K_TX_QUEUE_INACTIVE))
342 return 0;
345 * Set contention window (cw_min/cw_max)
346 * and arbitrated interframe space (aifs)...
348 ath5k_hw_reg_write(ah,
349 AR5K_REG_SM(tq->tqi_cw_min, AR5K_DCU_LCL_IFS_CW_MIN) |
350 AR5K_REG_SM(tq->tqi_cw_max, AR5K_DCU_LCL_IFS_CW_MAX) |
351 AR5K_REG_SM(tq->tqi_aifs, AR5K_DCU_LCL_IFS_AIFS),
352 AR5K_QUEUE_DFS_LOCAL_IFS(queue));
355 * Set tx retry limits for this queue
357 ath5k_hw_set_tx_retry_limits(ah, queue);
361 * Set misc registers
364 /* Enable DCU to wait for next fragment from QCU */
365 AR5K_REG_ENABLE_BITS(ah, AR5K_QUEUE_DFS_MISC(queue),
366 AR5K_DCU_MISC_FRAG_WAIT);
368 /* On Maui and Spirit use the global seqnum on DCU */
369 if (ah->ah_mac_version < AR5K_SREV_AR5211)
370 AR5K_REG_ENABLE_BITS(ah, AR5K_QUEUE_DFS_MISC(queue),
371 AR5K_DCU_MISC_SEQNUM_CTL);
373 /* Constant bit rate period */
374 if (tq->tqi_cbr_period) {
375 ath5k_hw_reg_write(ah, AR5K_REG_SM(tq->tqi_cbr_period,
376 AR5K_QCU_CBRCFG_INTVAL) |
377 AR5K_REG_SM(tq->tqi_cbr_overflow_limit,
378 AR5K_QCU_CBRCFG_ORN_THRES),
379 AR5K_QUEUE_CBRCFG(queue));
381 AR5K_REG_ENABLE_BITS(ah, AR5K_QUEUE_MISC(queue),
382 AR5K_QCU_MISC_FRSHED_CBR);
384 if (tq->tqi_cbr_overflow_limit)
385 AR5K_REG_ENABLE_BITS(ah, AR5K_QUEUE_MISC(queue),
386 AR5K_QCU_MISC_CBR_THRES_ENABLE);
389 /* Ready time interval */
390 if (tq->tqi_ready_time && (tq->tqi_type != AR5K_TX_QUEUE_CAB))
391 ath5k_hw_reg_write(ah, AR5K_REG_SM(tq->tqi_ready_time,
392 AR5K_QCU_RDYTIMECFG_INTVAL) |
393 AR5K_QCU_RDYTIMECFG_ENABLE,
394 AR5K_QUEUE_RDYTIMECFG(queue));
396 if (tq->tqi_burst_time) {
397 ath5k_hw_reg_write(ah, AR5K_REG_SM(tq->tqi_burst_time,
398 AR5K_DCU_CHAN_TIME_DUR) |
399 AR5K_DCU_CHAN_TIME_ENABLE,
400 AR5K_QUEUE_DFS_CHANNEL_TIME(queue));
402 if (tq->tqi_flags & AR5K_TXQ_FLAG_RDYTIME_EXP_POLICY_ENABLE)
403 AR5K_REG_ENABLE_BITS(ah, AR5K_QUEUE_MISC(queue),
404 AR5K_QCU_MISC_RDY_VEOL_POLICY);
407 /* Enable/disable Post frame backoff */
408 if (tq->tqi_flags & AR5K_TXQ_FLAG_BACKOFF_DISABLE)
409 ath5k_hw_reg_write(ah, AR5K_DCU_MISC_POST_FR_BKOFF_DIS,
410 AR5K_QUEUE_DFS_MISC(queue));
412 /* Enable/disable fragmentation burst backoff */
413 if (tq->tqi_flags & AR5K_TXQ_FLAG_FRAG_BURST_BACKOFF_ENABLE)
414 ath5k_hw_reg_write(ah, AR5K_DCU_MISC_BACKOFF_FRAG,
415 AR5K_QUEUE_DFS_MISC(queue));
418 * Set registers by queue type
420 switch (tq->tqi_type) {
421 case AR5K_TX_QUEUE_BEACON:
422 AR5K_REG_ENABLE_BITS(ah, AR5K_QUEUE_MISC(queue),
423 AR5K_QCU_MISC_FRSHED_DBA_GT |
424 AR5K_QCU_MISC_CBREXP_BCN_DIS |
425 AR5K_QCU_MISC_BCN_ENABLE);
427 AR5K_REG_ENABLE_BITS(ah, AR5K_QUEUE_DFS_MISC(queue),
428 (AR5K_DCU_MISC_ARBLOCK_CTL_GLOBAL <<
429 AR5K_DCU_MISC_ARBLOCK_CTL_S) |
430 AR5K_DCU_MISC_ARBLOCK_IGNORE |
431 AR5K_DCU_MISC_POST_FR_BKOFF_DIS |
432 AR5K_DCU_MISC_BCN_ENABLE);
433 break;
435 case AR5K_TX_QUEUE_CAB:
436 /* XXX: use BCN_SENT_GT, if we can figure out how */
437 AR5K_REG_ENABLE_BITS(ah, AR5K_QUEUE_MISC(queue),
438 AR5K_QCU_MISC_FRSHED_DBA_GT |
439 AR5K_QCU_MISC_CBREXP_DIS |
440 AR5K_QCU_MISC_CBREXP_BCN_DIS);
442 ath5k_hw_reg_write(ah, ((tq->tqi_ready_time -
443 (AR5K_TUNE_SW_BEACON_RESP -
444 AR5K_TUNE_DMA_BEACON_RESP) -
445 AR5K_TUNE_ADDITIONAL_SWBA_BACKOFF) * 1024) |
446 AR5K_QCU_RDYTIMECFG_ENABLE,
447 AR5K_QUEUE_RDYTIMECFG(queue));
449 AR5K_REG_ENABLE_BITS(ah, AR5K_QUEUE_DFS_MISC(queue),
450 (AR5K_DCU_MISC_ARBLOCK_CTL_GLOBAL <<
451 AR5K_DCU_MISC_ARBLOCK_CTL_S));
452 break;
454 case AR5K_TX_QUEUE_UAPSD:
455 AR5K_REG_ENABLE_BITS(ah, AR5K_QUEUE_MISC(queue),
456 AR5K_QCU_MISC_CBREXP_DIS);
457 break;
459 case AR5K_TX_QUEUE_DATA:
460 default:
461 break;
464 /* TODO: Handle frame compression */
467 * Enable interrupts for this tx queue
468 * in the secondary interrupt mask registers
470 if (tq->tqi_flags & AR5K_TXQ_FLAG_TXOKINT_ENABLE)
471 AR5K_Q_ENABLE_BITS(ah->ah_txq_imr_txok, queue);
473 if (tq->tqi_flags & AR5K_TXQ_FLAG_TXERRINT_ENABLE)
474 AR5K_Q_ENABLE_BITS(ah->ah_txq_imr_txerr, queue);
476 if (tq->tqi_flags & AR5K_TXQ_FLAG_TXURNINT_ENABLE)
477 AR5K_Q_ENABLE_BITS(ah->ah_txq_imr_txurn, queue);
479 if (tq->tqi_flags & AR5K_TXQ_FLAG_TXDESCINT_ENABLE)
480 AR5K_Q_ENABLE_BITS(ah->ah_txq_imr_txdesc, queue);
482 if (tq->tqi_flags & AR5K_TXQ_FLAG_TXEOLINT_ENABLE)
483 AR5K_Q_ENABLE_BITS(ah->ah_txq_imr_txeol, queue);
485 if (tq->tqi_flags & AR5K_TXQ_FLAG_CBRORNINT_ENABLE)
486 AR5K_Q_ENABLE_BITS(ah->ah_txq_imr_cbrorn, queue);
488 if (tq->tqi_flags & AR5K_TXQ_FLAG_CBRURNINT_ENABLE)
489 AR5K_Q_ENABLE_BITS(ah->ah_txq_imr_cbrurn, queue);
491 if (tq->tqi_flags & AR5K_TXQ_FLAG_QTRIGINT_ENABLE)
492 AR5K_Q_ENABLE_BITS(ah->ah_txq_imr_qtrig, queue);
494 if (tq->tqi_flags & AR5K_TXQ_FLAG_TXNOFRMINT_ENABLE)
495 AR5K_Q_ENABLE_BITS(ah->ah_txq_imr_nofrm, queue);
497 /* Update secondary interrupt mask registers */
499 /* Filter out inactive queues */
500 ah->ah_txq_imr_txok &= ah->ah_txq_status;
501 ah->ah_txq_imr_txerr &= ah->ah_txq_status;
502 ah->ah_txq_imr_txurn &= ah->ah_txq_status;
503 ah->ah_txq_imr_txdesc &= ah->ah_txq_status;
504 ah->ah_txq_imr_txeol &= ah->ah_txq_status;
505 ah->ah_txq_imr_cbrorn &= ah->ah_txq_status;
506 ah->ah_txq_imr_cbrurn &= ah->ah_txq_status;
507 ah->ah_txq_imr_qtrig &= ah->ah_txq_status;
508 ah->ah_txq_imr_nofrm &= ah->ah_txq_status;
510 ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txq_imr_txok,
511 AR5K_SIMR0_QCU_TXOK) |
512 AR5K_REG_SM(ah->ah_txq_imr_txdesc,
513 AR5K_SIMR0_QCU_TXDESC),
514 AR5K_SIMR0);
516 ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txq_imr_txerr,
517 AR5K_SIMR1_QCU_TXERR) |
518 AR5K_REG_SM(ah->ah_txq_imr_txeol,
519 AR5K_SIMR1_QCU_TXEOL),
520 AR5K_SIMR1);
522 /* Update SIMR2 but don't overwrite rest simr2 settings */
523 AR5K_REG_DISABLE_BITS(ah, AR5K_SIMR2, AR5K_SIMR2_QCU_TXURN);
524 AR5K_REG_ENABLE_BITS(ah, AR5K_SIMR2,
525 AR5K_REG_SM(ah->ah_txq_imr_txurn,
526 AR5K_SIMR2_QCU_TXURN));
528 ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txq_imr_cbrorn,
529 AR5K_SIMR3_QCBRORN) |
530 AR5K_REG_SM(ah->ah_txq_imr_cbrurn,
531 AR5K_SIMR3_QCBRURN),
532 AR5K_SIMR3);
534 ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txq_imr_qtrig,
535 AR5K_SIMR4_QTRIG), AR5K_SIMR4);
537 /* Set TXNOFRM_QCU for the queues with TXNOFRM enabled */
538 ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txq_imr_nofrm,
539 AR5K_TXNOFRM_QCU), AR5K_TXNOFRM);
541 /* No queue has TXNOFRM enabled, disable the interrupt
542 * by setting AR5K_TXNOFRM to zero */
543 if (ah->ah_txq_imr_nofrm == 0)
544 ath5k_hw_reg_write(ah, 0, AR5K_TXNOFRM);
546 /* Set QCU mask for this DCU to save power */
547 AR5K_REG_WRITE_Q(ah, AR5K_QUEUE_QCUMASK(queue), queue);
549 return 0;
553 /**************************\
554 * Global QCU/DCU functions *
555 \**************************/
558 * ath5k_hw_set_ifs_intervals() - Set global inter-frame spaces on DCU
559 * @ah: The &struct ath5k_hw
560 * @slot_time: Slot time in us
562 * Sets the global IFS intervals on DCU (also works on AR5210) for
563 * the given slot time and the current bwmode.
565 int ath5k_hw_set_ifs_intervals(struct ath5k_hw *ah, unsigned int slot_time)
567 struct ieee80211_channel *channel = ah->ah_current_channel;
568 enum ieee80211_band band;
569 struct ieee80211_supported_band *sband;
570 struct ieee80211_rate *rate;
571 u32 ack_tx_time, eifs, eifs_clock, sifs, sifs_clock;
572 u32 slot_time_clock = ath5k_hw_htoclock(ah, slot_time);
573 u32 rate_flags, i;
575 if (slot_time < 6 || slot_time_clock > AR5K_SLOT_TIME_MAX)
576 return -EINVAL;
578 sifs = ath5k_hw_get_default_sifs(ah);
579 sifs_clock = ath5k_hw_htoclock(ah, sifs - 2);
581 /* EIFS
582 * Txtime of ack at lowest rate + SIFS + DIFS
583 * (DIFS = SIFS + 2 * Slot time)
585 * Note: HAL has some predefined values for EIFS
586 * Turbo: (37 + 2 * 6)
587 * Default: (74 + 2 * 9)
588 * Half: (149 + 2 * 13)
589 * Quarter: (298 + 2 * 21)
591 * (74 + 2 * 6) for AR5210 default and turbo !
593 * According to the formula we have
594 * ack_tx_time = 25 for turbo and
595 * ack_tx_time = 42.5 * clock multiplier
596 * for default/half/quarter.
598 * This can't be right, 42 is what we would get
599 * from ath5k_hw_get_frame_dur_for_bwmode or
600 * ieee80211_generic_frame_duration for zero frame
601 * length and without SIFS !
603 * Also we have different lowest rate for 802.11a
605 if (channel->band == IEEE80211_BAND_5GHZ)
606 band = IEEE80211_BAND_5GHZ;
607 else
608 band = IEEE80211_BAND_2GHZ;
610 switch (ah->ah_bwmode) {
611 case AR5K_BWMODE_5MHZ:
612 rate_flags = IEEE80211_RATE_SUPPORTS_5MHZ;
613 break;
614 case AR5K_BWMODE_10MHZ:
615 rate_flags = IEEE80211_RATE_SUPPORTS_10MHZ;
616 break;
617 default:
618 rate_flags = 0;
619 break;
621 sband = &ah->sbands[band];
622 rate = NULL;
623 for (i = 0; i < sband->n_bitrates; i++) {
624 if ((rate_flags & sband->bitrates[i].flags) != rate_flags)
625 continue;
626 rate = &sband->bitrates[i];
627 break;
629 if (WARN_ON(!rate))
630 return -EINVAL;
632 ack_tx_time = ath5k_hw_get_frame_duration(ah, band, 10, rate, false);
634 /* ack_tx_time includes an SIFS already */
635 eifs = ack_tx_time + sifs + 2 * slot_time;
636 eifs_clock = ath5k_hw_htoclock(ah, eifs);
638 /* Set IFS settings on AR5210 */
639 if (ah->ah_version == AR5K_AR5210) {
640 u32 pifs, pifs_clock, difs, difs_clock;
642 /* Set slot time */
643 ath5k_hw_reg_write(ah, slot_time_clock, AR5K_SLOT_TIME);
645 /* Set EIFS */
646 eifs_clock = AR5K_REG_SM(eifs_clock, AR5K_IFS1_EIFS);
648 /* PIFS = Slot time + SIFS */
649 pifs = slot_time + sifs;
650 pifs_clock = ath5k_hw_htoclock(ah, pifs);
651 pifs_clock = AR5K_REG_SM(pifs_clock, AR5K_IFS1_PIFS);
653 /* DIFS = SIFS + 2 * Slot time */
654 difs = sifs + 2 * slot_time;
655 difs_clock = ath5k_hw_htoclock(ah, difs);
657 /* Set SIFS/DIFS */
658 ath5k_hw_reg_write(ah, (difs_clock <<
659 AR5K_IFS0_DIFS_S) | sifs_clock,
660 AR5K_IFS0);
662 /* Set PIFS/EIFS and preserve AR5K_INIT_CARR_SENSE_EN */
663 ath5k_hw_reg_write(ah, pifs_clock | eifs_clock |
664 (AR5K_INIT_CARR_SENSE_EN << AR5K_IFS1_CS_EN_S),
665 AR5K_IFS1);
667 return 0;
670 /* Set IFS slot time */
671 ath5k_hw_reg_write(ah, slot_time_clock, AR5K_DCU_GBL_IFS_SLOT);
673 /* Set EIFS interval */
674 ath5k_hw_reg_write(ah, eifs_clock, AR5K_DCU_GBL_IFS_EIFS);
676 /* Set SIFS interval in usecs */
677 AR5K_REG_WRITE_BITS(ah, AR5K_DCU_GBL_IFS_MISC,
678 AR5K_DCU_GBL_IFS_MISC_SIFS_DUR_USEC,
679 sifs);
681 /* Set SIFS interval in clock cycles */
682 ath5k_hw_reg_write(ah, sifs_clock, AR5K_DCU_GBL_IFS_SIFS);
684 return 0;
689 * ath5k_hw_init_queues() - Initialize tx queues
690 * @ah: The &struct ath5k_hw
692 * Initializes all tx queues based on information on
693 * ah->ah_txq* set by the driver
696 ath5k_hw_init_queues(struct ath5k_hw *ah)
698 int i, ret;
700 /* TODO: HW Compression support for data queues */
701 /* TODO: Burst prefetch for data queues */
704 * Reset queues and start beacon timers at the end of the reset routine
705 * This also sets QCU mask on each DCU for 1:1 qcu to dcu mapping
706 * Note: If we want we can assign multiple qcus on one dcu.
708 if (ah->ah_version != AR5K_AR5210)
709 for (i = 0; i < ah->ah_capabilities.cap_queues.q_tx_num; i++) {
710 ret = ath5k_hw_reset_tx_queue(ah, i);
711 if (ret) {
712 ATH5K_ERR(ah,
713 "failed to reset TX queue #%d\n", i);
714 return ret;
717 else
718 /* No QCU/DCU on AR5210, just set tx
719 * retry limits. We set IFS parameters
720 * on ath5k_hw_set_ifs_intervals */
721 ath5k_hw_set_tx_retry_limits(ah, 0);
723 /* Set the turbo flag when operating on 40MHz */
724 if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
725 AR5K_REG_ENABLE_BITS(ah, AR5K_DCU_GBL_IFS_MISC,
726 AR5K_DCU_GBL_IFS_MISC_TURBO_MODE);
728 /* If we didn't set IFS timings through
729 * ath5k_hw_set_coverage_class make sure
730 * we set them here */
731 if (!ah->ah_coverage_class) {
732 unsigned int slot_time = ath5k_hw_get_default_slottime(ah);
733 ath5k_hw_set_ifs_intervals(ah, slot_time);
736 return 0;