2 * Copyright (c) 2008-2011 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 #include <asm/unaligned.h>
19 #include "ar9002_phy.h"
21 static int ath9k_hw_4k_get_eeprom_ver(struct ath_hw
*ah
)
23 return ((ah
->eeprom
.map4k
.baseEepHeader
.version
>> 12) & 0xF);
26 static int ath9k_hw_4k_get_eeprom_rev(struct ath_hw
*ah
)
28 return ((ah
->eeprom
.map4k
.baseEepHeader
.version
) & 0xFFF);
31 #define SIZE_EEPROM_4K (sizeof(struct ar5416_eeprom_4k) / sizeof(u16))
33 static bool __ath9k_hw_4k_fill_eeprom(struct ath_hw
*ah
)
35 u16
*eep_data
= (u16
*)&ah
->eeprom
.map4k
;
36 int addr
, eep_start_loc
= 64;
38 for (addr
= 0; addr
< SIZE_EEPROM_4K
; addr
++) {
39 if (!ath9k_hw_nvram_read(ah
, addr
+ eep_start_loc
, eep_data
))
47 static bool __ath9k_hw_usb_4k_fill_eeprom(struct ath_hw
*ah
)
49 u16
*eep_data
= (u16
*)&ah
->eeprom
.map4k
;
51 ath9k_hw_usb_gen_fill_eeprom(ah
, eep_data
, 64, SIZE_EEPROM_4K
);
56 static bool ath9k_hw_4k_fill_eeprom(struct ath_hw
*ah
)
58 struct ath_common
*common
= ath9k_hw_common(ah
);
60 if (!ath9k_hw_use_flash(ah
)) {
61 ath_dbg(common
, EEPROM
, "Reading from EEPROM, not flash\n");
64 if (common
->bus_ops
->ath_bus_type
== ATH_USB
)
65 return __ath9k_hw_usb_4k_fill_eeprom(ah
);
67 return __ath9k_hw_4k_fill_eeprom(ah
);
70 #if defined(CONFIG_ATH9K_DEBUGFS) || defined(CONFIG_ATH9K_HTC_DEBUGFS)
71 static u32
ath9k_dump_4k_modal_eeprom(char *buf
, u32 len
, u32 size
,
72 struct modal_eep_4k_header
*modal_hdr
)
74 PR_EEP("Chain0 Ant. Control", modal_hdr
->antCtrlChain
[0]);
75 PR_EEP("Ant. Common Control", modal_hdr
->antCtrlCommon
);
76 PR_EEP("Chain0 Ant. Gain", modal_hdr
->antennaGainCh
[0]);
77 PR_EEP("Switch Settle", modal_hdr
->switchSettling
);
78 PR_EEP("Chain0 TxRxAtten", modal_hdr
->txRxAttenCh
[0]);
79 PR_EEP("Chain0 RxTxMargin", modal_hdr
->rxTxMarginCh
[0]);
80 PR_EEP("ADC Desired size", modal_hdr
->adcDesiredSize
);
81 PR_EEP("PGA Desired size", modal_hdr
->pgaDesiredSize
);
82 PR_EEP("Chain0 xlna Gain", modal_hdr
->xlnaGainCh
[0]);
83 PR_EEP("txEndToXpaOff", modal_hdr
->txEndToXpaOff
);
84 PR_EEP("txEndToRxOn", modal_hdr
->txEndToRxOn
);
85 PR_EEP("txFrameToXpaOn", modal_hdr
->txFrameToXpaOn
);
86 PR_EEP("CCA Threshold)", modal_hdr
->thresh62
);
87 PR_EEP("Chain0 NF Threshold", modal_hdr
->noiseFloorThreshCh
[0]);
88 PR_EEP("xpdGain", modal_hdr
->xpdGain
);
89 PR_EEP("External PD", modal_hdr
->xpd
);
90 PR_EEP("Chain0 I Coefficient", modal_hdr
->iqCalICh
[0]);
91 PR_EEP("Chain0 Q Coefficient", modal_hdr
->iqCalQCh
[0]);
92 PR_EEP("pdGainOverlap", modal_hdr
->pdGainOverlap
);
93 PR_EEP("O/D Bias Version", modal_hdr
->version
);
94 PR_EEP("CCK OutputBias", modal_hdr
->ob_0
);
95 PR_EEP("BPSK OutputBias", modal_hdr
->ob_1
);
96 PR_EEP("QPSK OutputBias", modal_hdr
->ob_2
);
97 PR_EEP("16QAM OutputBias", modal_hdr
->ob_3
);
98 PR_EEP("64QAM OutputBias", modal_hdr
->ob_4
);
99 PR_EEP("CCK Driver1_Bias", modal_hdr
->db1_0
);
100 PR_EEP("BPSK Driver1_Bias", modal_hdr
->db1_1
);
101 PR_EEP("QPSK Driver1_Bias", modal_hdr
->db1_2
);
102 PR_EEP("16QAM Driver1_Bias", modal_hdr
->db1_3
);
103 PR_EEP("64QAM Driver1_Bias", modal_hdr
->db1_4
);
104 PR_EEP("CCK Driver2_Bias", modal_hdr
->db2_0
);
105 PR_EEP("BPSK Driver2_Bias", modal_hdr
->db2_1
);
106 PR_EEP("QPSK Driver2_Bias", modal_hdr
->db2_2
);
107 PR_EEP("16QAM Driver2_Bias", modal_hdr
->db2_3
);
108 PR_EEP("64QAM Driver2_Bias", modal_hdr
->db2_4
);
109 PR_EEP("xPA Bias Level", modal_hdr
->xpaBiasLvl
);
110 PR_EEP("txFrameToDataStart", modal_hdr
->txFrameToDataStart
);
111 PR_EEP("txFrameToPaOn", modal_hdr
->txFrameToPaOn
);
112 PR_EEP("HT40 Power Inc.", modal_hdr
->ht40PowerIncForPdadc
);
113 PR_EEP("Chain0 bswAtten", modal_hdr
->bswAtten
[0]);
114 PR_EEP("Chain0 bswMargin", modal_hdr
->bswMargin
[0]);
115 PR_EEP("HT40 Switch Settle", modal_hdr
->swSettleHt40
);
116 PR_EEP("Chain0 xatten2Db", modal_hdr
->xatten2Db
[0]);
117 PR_EEP("Chain0 xatten2Margin", modal_hdr
->xatten2Margin
[0]);
118 PR_EEP("Ant. Diversity ctl1", modal_hdr
->antdiv_ctl1
);
119 PR_EEP("Ant. Diversity ctl2", modal_hdr
->antdiv_ctl2
);
120 PR_EEP("TX Diversity", modal_hdr
->tx_diversity
);
125 static u32
ath9k_hw_4k_dump_eeprom(struct ath_hw
*ah
, bool dump_base_hdr
,
126 u8
*buf
, u32 len
, u32 size
)
128 struct ar5416_eeprom_4k
*eep
= &ah
->eeprom
.map4k
;
129 struct base_eep_header_4k
*pBase
= &eep
->baseEepHeader
;
131 if (!dump_base_hdr
) {
132 len
+= snprintf(buf
+ len
, size
- len
,
133 "%20s :\n", "2GHz modal Header");
134 len
= ath9k_dump_4k_modal_eeprom(buf
, len
, size
,
139 PR_EEP("Major Version", pBase
->version
>> 12);
140 PR_EEP("Minor Version", pBase
->version
& 0xFFF);
141 PR_EEP("Checksum", pBase
->checksum
);
142 PR_EEP("Length", pBase
->length
);
143 PR_EEP("RegDomain1", pBase
->regDmn
[0]);
144 PR_EEP("RegDomain2", pBase
->regDmn
[1]);
145 PR_EEP("TX Mask", pBase
->txMask
);
146 PR_EEP("RX Mask", pBase
->rxMask
);
147 PR_EEP("Allow 5GHz", !!(pBase
->opCapFlags
& AR5416_OPFLAGS_11A
));
148 PR_EEP("Allow 2GHz", !!(pBase
->opCapFlags
& AR5416_OPFLAGS_11G
));
149 PR_EEP("Disable 2GHz HT20", !!(pBase
->opCapFlags
&
150 AR5416_OPFLAGS_N_2G_HT20
));
151 PR_EEP("Disable 2GHz HT40", !!(pBase
->opCapFlags
&
152 AR5416_OPFLAGS_N_2G_HT40
));
153 PR_EEP("Disable 5Ghz HT20", !!(pBase
->opCapFlags
&
154 AR5416_OPFLAGS_N_5G_HT20
));
155 PR_EEP("Disable 5Ghz HT40", !!(pBase
->opCapFlags
&
156 AR5416_OPFLAGS_N_5G_HT40
));
157 PR_EEP("Big Endian", !!(pBase
->eepMisc
& 0x01));
158 PR_EEP("Cal Bin Major Ver", (pBase
->binBuildNumber
>> 24) & 0xFF);
159 PR_EEP("Cal Bin Minor Ver", (pBase
->binBuildNumber
>> 16) & 0xFF);
160 PR_EEP("Cal Bin Build", (pBase
->binBuildNumber
>> 8) & 0xFF);
161 PR_EEP("TX Gain type", pBase
->txGainType
);
163 len
+= snprintf(buf
+ len
, size
- len
, "%20s : %pM\n", "MacAddress",
173 static u32
ath9k_hw_4k_dump_eeprom(struct ath_hw
*ah
, bool dump_base_hdr
,
174 u8
*buf
, u32 len
, u32 size
)
181 #undef SIZE_EEPROM_4K
183 static int ath9k_hw_4k_check_eeprom(struct ath_hw
*ah
)
185 #define EEPROM_4K_SIZE (sizeof(struct ar5416_eeprom_4k) / sizeof(u16))
186 struct ath_common
*common
= ath9k_hw_common(ah
);
187 struct ar5416_eeprom_4k
*eep
= &ah
->eeprom
.map4k
;
188 u16
*eepdata
, temp
, magic
, magic2
;
190 bool need_swap
= false;
194 if (!ath9k_hw_use_flash(ah
)) {
195 if (!ath9k_hw_nvram_read(ah
, AR5416_EEPROM_MAGIC_OFFSET
,
197 ath_err(common
, "Reading Magic # failed\n");
201 ath_dbg(common
, EEPROM
, "Read Magic = 0x%04X\n", magic
);
203 if (magic
!= AR5416_EEPROM_MAGIC
) {
204 magic2
= swab16(magic
);
206 if (magic2
== AR5416_EEPROM_MAGIC
) {
208 eepdata
= (u16
*) (&ah
->eeprom
);
210 for (addr
= 0; addr
< EEPROM_4K_SIZE
; addr
++) {
211 temp
= swab16(*eepdata
);
217 "Invalid EEPROM Magic. Endianness mismatch.\n");
223 ath_dbg(common
, EEPROM
, "need_swap = %s\n",
224 need_swap
? "True" : "False");
227 el
= swab16(ah
->eeprom
.map4k
.baseEepHeader
.length
);
229 el
= ah
->eeprom
.map4k
.baseEepHeader
.length
;
231 if (el
> sizeof(struct ar5416_eeprom_4k
))
232 el
= sizeof(struct ar5416_eeprom_4k
) / sizeof(u16
);
234 el
= el
/ sizeof(u16
);
236 eepdata
= (u16
*)(&ah
->eeprom
);
238 for (i
= 0; i
< el
; i
++)
245 ath_dbg(common
, EEPROM
,
246 "EEPROM Endianness is not native.. Changing\n");
248 word
= swab16(eep
->baseEepHeader
.length
);
249 eep
->baseEepHeader
.length
= word
;
251 word
= swab16(eep
->baseEepHeader
.checksum
);
252 eep
->baseEepHeader
.checksum
= word
;
254 word
= swab16(eep
->baseEepHeader
.version
);
255 eep
->baseEepHeader
.version
= word
;
257 word
= swab16(eep
->baseEepHeader
.regDmn
[0]);
258 eep
->baseEepHeader
.regDmn
[0] = word
;
260 word
= swab16(eep
->baseEepHeader
.regDmn
[1]);
261 eep
->baseEepHeader
.regDmn
[1] = word
;
263 word
= swab16(eep
->baseEepHeader
.rfSilent
);
264 eep
->baseEepHeader
.rfSilent
= word
;
266 word
= swab16(eep
->baseEepHeader
.blueToothOptions
);
267 eep
->baseEepHeader
.blueToothOptions
= word
;
269 word
= swab16(eep
->baseEepHeader
.deviceCap
);
270 eep
->baseEepHeader
.deviceCap
= word
;
272 integer
= swab32(eep
->modalHeader
.antCtrlCommon
);
273 eep
->modalHeader
.antCtrlCommon
= integer
;
275 for (i
= 0; i
< AR5416_EEP4K_MAX_CHAINS
; i
++) {
276 integer
= swab32(eep
->modalHeader
.antCtrlChain
[i
]);
277 eep
->modalHeader
.antCtrlChain
[i
] = integer
;
280 for (i
= 0; i
< AR_EEPROM_MODAL_SPURS
; i
++) {
281 word
= swab16(eep
->modalHeader
.spurChans
[i
].spurChan
);
282 eep
->modalHeader
.spurChans
[i
].spurChan
= word
;
286 if (sum
!= 0xffff || ah
->eep_ops
->get_eeprom_ver(ah
) != AR5416_EEP_VER
||
287 ah
->eep_ops
->get_eeprom_rev(ah
) < AR5416_EEP_NO_BACK_VER
) {
288 ath_err(common
, "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
289 sum
, ah
->eep_ops
->get_eeprom_ver(ah
));
294 #undef EEPROM_4K_SIZE
297 static u32
ath9k_hw_4k_get_eeprom(struct ath_hw
*ah
,
298 enum eeprom_param param
)
300 struct ar5416_eeprom_4k
*eep
= &ah
->eeprom
.map4k
;
301 struct modal_eep_4k_header
*pModal
= &eep
->modalHeader
;
302 struct base_eep_header_4k
*pBase
= &eep
->baseEepHeader
;
305 ver_minor
= pBase
->version
& AR5416_EEP_VER_MINOR_MASK
;
309 return pModal
->noiseFloorThreshCh
[0];
311 return get_unaligned_be16(pBase
->macAddr
);
313 return get_unaligned_be16(pBase
->macAddr
+ 2);
315 return get_unaligned_be16(pBase
->macAddr
+ 4);
317 return pBase
->regDmn
[0];
319 return pBase
->deviceCap
;
321 return pBase
->opCapFlags
;
323 return pBase
->rfSilent
;
327 return pModal
->db1_1
;
331 return pBase
->txMask
;
333 return pBase
->rxMask
;
336 case EEP_PWR_TABLE_OFFSET
:
337 return AR5416_PWR_TABLE_OFFSET_DB
;
339 return pModal
->version
;
340 case EEP_ANT_DIV_CTL1
:
341 return pModal
->antdiv_ctl1
;
342 case EEP_TXGAIN_TYPE
:
343 return pBase
->txGainType
;
344 case EEP_ANTENNA_GAIN_2G
:
345 return pModal
->antennaGainCh
[0];
351 static void ath9k_hw_set_4k_power_cal_table(struct ath_hw
*ah
,
352 struct ath9k_channel
*chan
)
354 struct ath_common
*common
= ath9k_hw_common(ah
);
355 struct ar5416_eeprom_4k
*pEepData
= &ah
->eeprom
.map4k
;
356 struct cal_data_per_freq_4k
*pRawDataset
;
357 u8
*pCalBChans
= NULL
;
358 u16 pdGainOverlap_t2
;
359 static u8 pdadcValues
[AR5416_NUM_PDADC_VALUES
];
360 u16 gainBoundaries
[AR5416_PD_GAINS_IN_MASK
];
362 u16 numXpdGain
, xpdMask
;
363 u16 xpdGainValues
[AR5416_EEP4K_NUM_PD_GAINS
] = { 0, 0 };
364 u32 reg32
, regOffset
, regChainOffset
;
366 xpdMask
= pEepData
->modalHeader
.xpdGain
;
368 if ((pEepData
->baseEepHeader
.version
& AR5416_EEP_VER_MINOR_MASK
) >=
369 AR5416_EEP_MINOR_VER_2
) {
371 pEepData
->modalHeader
.pdGainOverlap
;
373 pdGainOverlap_t2
= (u16
)(MS(REG_READ(ah
, AR_PHY_TPCRG5
),
374 AR_PHY_TPCRG5_PD_GAIN_OVERLAP
));
377 pCalBChans
= pEepData
->calFreqPier2G
;
378 numPiers
= AR5416_EEP4K_NUM_2G_CAL_PIERS
;
382 for (i
= 1; i
<= AR5416_PD_GAINS_IN_MASK
; i
++) {
383 if ((xpdMask
>> (AR5416_PD_GAINS_IN_MASK
- i
)) & 1) {
384 if (numXpdGain
>= AR5416_EEP4K_NUM_PD_GAINS
)
386 xpdGainValues
[numXpdGain
] =
387 (u16
)(AR5416_PD_GAINS_IN_MASK
- i
);
392 REG_RMW_FIELD(ah
, AR_PHY_TPCRG1
, AR_PHY_TPCRG1_NUM_PD_GAIN
,
393 (numXpdGain
- 1) & 0x3);
394 REG_RMW_FIELD(ah
, AR_PHY_TPCRG1
, AR_PHY_TPCRG1_PD_GAIN_1
,
396 REG_RMW_FIELD(ah
, AR_PHY_TPCRG1
, AR_PHY_TPCRG1_PD_GAIN_2
,
398 REG_RMW_FIELD(ah
, AR_PHY_TPCRG1
, AR_PHY_TPCRG1_PD_GAIN_3
, 0);
400 for (i
= 0; i
< AR5416_EEP4K_MAX_CHAINS
; i
++) {
401 regChainOffset
= i
* 0x1000;
403 if (pEepData
->baseEepHeader
.txMask
& (1 << i
)) {
404 pRawDataset
= pEepData
->calPierData2G
[i
];
406 ath9k_hw_get_gain_boundaries_pdadcs(ah
, chan
,
407 pRawDataset
, pCalBChans
,
408 numPiers
, pdGainOverlap_t2
,
410 pdadcValues
, numXpdGain
);
412 ENABLE_REGWRITE_BUFFER(ah
);
414 REG_WRITE(ah
, AR_PHY_TPCRG5
+ regChainOffset
,
416 AR_PHY_TPCRG5_PD_GAIN_OVERLAP
)
417 | SM(gainBoundaries
[0],
418 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1
)
419 | SM(gainBoundaries
[1],
420 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2
)
421 | SM(gainBoundaries
[2],
422 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3
)
423 | SM(gainBoundaries
[3],
424 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4
));
426 regOffset
= AR_PHY_BASE
+ (672 << 2) + regChainOffset
;
427 for (j
= 0; j
< 32; j
++) {
428 reg32
= get_unaligned_le32(&pdadcValues
[4 * j
]);
429 REG_WRITE(ah
, regOffset
, reg32
);
431 ath_dbg(common
, EEPROM
,
432 "PDADC (%d,%4x): %4.4x %8.8x\n",
433 i
, regChainOffset
, regOffset
,
435 ath_dbg(common
, EEPROM
,
437 "PDADC %3d Value %3d | "
438 "PDADC %3d Value %3d | "
439 "PDADC %3d Value %3d | "
440 "PDADC %3d Value %3d |\n",
441 i
, 4 * j
, pdadcValues
[4 * j
],
442 4 * j
+ 1, pdadcValues
[4 * j
+ 1],
443 4 * j
+ 2, pdadcValues
[4 * j
+ 2],
444 4 * j
+ 3, pdadcValues
[4 * j
+ 3]);
449 REGWRITE_BUFFER_FLUSH(ah
);
454 static void ath9k_hw_set_4k_power_per_rate_table(struct ath_hw
*ah
,
455 struct ath9k_channel
*chan
,
458 u16 antenna_reduction
,
461 #define CMP_TEST_GRP \
462 (((cfgCtl & ~CTL_MODE_M)| (pCtlMode[ctlMode] & CTL_MODE_M)) == \
463 pEepData->ctlIndex[i]) \
464 || (((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \
465 ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))
468 u16 twiceMinEdgePower
;
469 u16 twiceMaxEdgePower
;
470 u16 scaledPower
= 0, minCtlPower
;
474 struct chan_centers centers
;
475 struct cal_ctl_data_4k
*rep
;
476 struct ar5416_eeprom_4k
*pEepData
= &ah
->eeprom
.map4k
;
477 struct cal_target_power_leg targetPowerOfdm
, targetPowerCck
= {
480 struct cal_target_power_leg targetPowerOfdmExt
= {
481 0, { 0, 0, 0, 0} }, targetPowerCckExt
= {
484 struct cal_target_power_ht targetPowerHt20
, targetPowerHt40
= {
487 static const u16 ctlModesFor11g
[] = {
488 CTL_11B
, CTL_11G
, CTL_2GHT20
,
489 CTL_11B_EXT
, CTL_11G_EXT
, CTL_2GHT40
492 ath9k_hw_get_channel_centers(ah
, chan
, ¢ers
);
494 scaledPower
= powerLimit
- antenna_reduction
;
495 numCtlModes
= ARRAY_SIZE(ctlModesFor11g
) - SUB_NUM_CTL_MODES_AT_2G_40
;
496 pCtlMode
= ctlModesFor11g
;
498 ath9k_hw_get_legacy_target_powers(ah
, chan
,
499 pEepData
->calTargetPowerCck
,
500 AR5416_NUM_2G_CCK_TARGET_POWERS
,
501 &targetPowerCck
, 4, false);
502 ath9k_hw_get_legacy_target_powers(ah
, chan
,
503 pEepData
->calTargetPower2G
,
504 AR5416_NUM_2G_20_TARGET_POWERS
,
505 &targetPowerOfdm
, 4, false);
506 ath9k_hw_get_target_powers(ah
, chan
,
507 pEepData
->calTargetPower2GHT20
,
508 AR5416_NUM_2G_20_TARGET_POWERS
,
509 &targetPowerHt20
, 8, false);
511 if (IS_CHAN_HT40(chan
)) {
512 numCtlModes
= ARRAY_SIZE(ctlModesFor11g
);
513 ath9k_hw_get_target_powers(ah
, chan
,
514 pEepData
->calTargetPower2GHT40
,
515 AR5416_NUM_2G_40_TARGET_POWERS
,
516 &targetPowerHt40
, 8, true);
517 ath9k_hw_get_legacy_target_powers(ah
, chan
,
518 pEepData
->calTargetPowerCck
,
519 AR5416_NUM_2G_CCK_TARGET_POWERS
,
520 &targetPowerCckExt
, 4, true);
521 ath9k_hw_get_legacy_target_powers(ah
, chan
,
522 pEepData
->calTargetPower2G
,
523 AR5416_NUM_2G_20_TARGET_POWERS
,
524 &targetPowerOfdmExt
, 4, true);
527 for (ctlMode
= 0; ctlMode
< numCtlModes
; ctlMode
++) {
528 bool isHt40CtlMode
= (pCtlMode
[ctlMode
] == CTL_5GHT40
) ||
529 (pCtlMode
[ctlMode
] == CTL_2GHT40
);
532 freq
= centers
.synth_center
;
533 else if (pCtlMode
[ctlMode
] & EXT_ADDITIVE
)
534 freq
= centers
.ext_center
;
536 freq
= centers
.ctl_center
;
538 twiceMaxEdgePower
= MAX_RATE_POWER
;
540 for (i
= 0; (i
< AR5416_EEP4K_NUM_CTLS
) &&
541 pEepData
->ctlIndex
[i
]; i
++) {
544 rep
= &(pEepData
->ctlData
[i
]);
546 twiceMinEdgePower
= ath9k_hw_get_max_edge_power(
549 ar5416_get_ntxchains(ah
->txchainmask
) - 1],
551 AR5416_EEP4K_NUM_BAND_EDGES
);
553 if ((cfgCtl
& ~CTL_MODE_M
) == SD_NO_CTL
) {
555 min(twiceMaxEdgePower
,
558 twiceMaxEdgePower
= twiceMinEdgePower
;
564 minCtlPower
= (u8
)min(twiceMaxEdgePower
, scaledPower
);
566 switch (pCtlMode
[ctlMode
]) {
568 for (i
= 0; i
< ARRAY_SIZE(targetPowerCck
.tPow2x
); i
++) {
569 targetPowerCck
.tPow2x
[i
] =
570 min((u16
)targetPowerCck
.tPow2x
[i
],
575 for (i
= 0; i
< ARRAY_SIZE(targetPowerOfdm
.tPow2x
); i
++) {
576 targetPowerOfdm
.tPow2x
[i
] =
577 min((u16
)targetPowerOfdm
.tPow2x
[i
],
582 for (i
= 0; i
< ARRAY_SIZE(targetPowerHt20
.tPow2x
); i
++) {
583 targetPowerHt20
.tPow2x
[i
] =
584 min((u16
)targetPowerHt20
.tPow2x
[i
],
589 targetPowerCckExt
.tPow2x
[0] =
590 min((u16
)targetPowerCckExt
.tPow2x
[0],
594 targetPowerOfdmExt
.tPow2x
[0] =
595 min((u16
)targetPowerOfdmExt
.tPow2x
[0],
599 for (i
= 0; i
< ARRAY_SIZE(targetPowerHt40
.tPow2x
); i
++) {
600 targetPowerHt40
.tPow2x
[i
] =
601 min((u16
)targetPowerHt40
.tPow2x
[i
],
610 ratesArray
[rate6mb
] =
611 ratesArray
[rate9mb
] =
612 ratesArray
[rate12mb
] =
613 ratesArray
[rate18mb
] =
614 ratesArray
[rate24mb
] =
615 targetPowerOfdm
.tPow2x
[0];
617 ratesArray
[rate36mb
] = targetPowerOfdm
.tPow2x
[1];
618 ratesArray
[rate48mb
] = targetPowerOfdm
.tPow2x
[2];
619 ratesArray
[rate54mb
] = targetPowerOfdm
.tPow2x
[3];
620 ratesArray
[rateXr
] = targetPowerOfdm
.tPow2x
[0];
622 for (i
= 0; i
< ARRAY_SIZE(targetPowerHt20
.tPow2x
); i
++)
623 ratesArray
[rateHt20_0
+ i
] = targetPowerHt20
.tPow2x
[i
];
625 ratesArray
[rate1l
] = targetPowerCck
.tPow2x
[0];
626 ratesArray
[rate2s
] = ratesArray
[rate2l
] = targetPowerCck
.tPow2x
[1];
627 ratesArray
[rate5_5s
] = ratesArray
[rate5_5l
] = targetPowerCck
.tPow2x
[2];
628 ratesArray
[rate11s
] = ratesArray
[rate11l
] = targetPowerCck
.tPow2x
[3];
630 if (IS_CHAN_HT40(chan
)) {
631 for (i
= 0; i
< ARRAY_SIZE(targetPowerHt40
.tPow2x
); i
++) {
632 ratesArray
[rateHt40_0
+ i
] =
633 targetPowerHt40
.tPow2x
[i
];
635 ratesArray
[rateDupOfdm
] = targetPowerHt40
.tPow2x
[0];
636 ratesArray
[rateDupCck
] = targetPowerHt40
.tPow2x
[0];
637 ratesArray
[rateExtOfdm
] = targetPowerOfdmExt
.tPow2x
[0];
638 ratesArray
[rateExtCck
] = targetPowerCckExt
.tPow2x
[0];
644 static void ath9k_hw_4k_set_txpower(struct ath_hw
*ah
,
645 struct ath9k_channel
*chan
,
647 u8 twiceAntennaReduction
,
648 u8 powerLimit
, bool test
)
650 struct ath_regulatory
*regulatory
= ath9k_hw_regulatory(ah
);
651 struct ar5416_eeprom_4k
*pEepData
= &ah
->eeprom
.map4k
;
652 struct modal_eep_4k_header
*pModal
= &pEepData
->modalHeader
;
653 int16_t ratesArray
[Ar5416RateSize
];
654 u8 ht40PowerIncForPdadc
= 2;
657 memset(ratesArray
, 0, sizeof(ratesArray
));
659 if ((pEepData
->baseEepHeader
.version
& AR5416_EEP_VER_MINOR_MASK
) >=
660 AR5416_EEP_MINOR_VER_2
) {
661 ht40PowerIncForPdadc
= pModal
->ht40PowerIncForPdadc
;
664 ath9k_hw_set_4k_power_per_rate_table(ah
, chan
,
665 &ratesArray
[0], cfgCtl
,
666 twiceAntennaReduction
,
669 ath9k_hw_set_4k_power_cal_table(ah
, chan
);
671 regulatory
->max_power_level
= 0;
672 for (i
= 0; i
< ARRAY_SIZE(ratesArray
); i
++) {
673 if (ratesArray
[i
] > MAX_RATE_POWER
)
674 ratesArray
[i
] = MAX_RATE_POWER
;
676 if (ratesArray
[i
] > regulatory
->max_power_level
)
677 regulatory
->max_power_level
= ratesArray
[i
];
683 for (i
= 0; i
< Ar5416RateSize
; i
++)
684 ratesArray
[i
] -= AR5416_PWR_TABLE_OFFSET_DB
* 2;
686 ENABLE_REGWRITE_BUFFER(ah
);
688 /* OFDM power per rate */
689 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE1
,
690 ATH9K_POW_SM(ratesArray
[rate18mb
], 24)
691 | ATH9K_POW_SM(ratesArray
[rate12mb
], 16)
692 | ATH9K_POW_SM(ratesArray
[rate9mb
], 8)
693 | ATH9K_POW_SM(ratesArray
[rate6mb
], 0));
694 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE2
,
695 ATH9K_POW_SM(ratesArray
[rate54mb
], 24)
696 | ATH9K_POW_SM(ratesArray
[rate48mb
], 16)
697 | ATH9K_POW_SM(ratesArray
[rate36mb
], 8)
698 | ATH9K_POW_SM(ratesArray
[rate24mb
], 0));
700 /* CCK power per rate */
701 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE3
,
702 ATH9K_POW_SM(ratesArray
[rate2s
], 24)
703 | ATH9K_POW_SM(ratesArray
[rate2l
], 16)
704 | ATH9K_POW_SM(ratesArray
[rateXr
], 8)
705 | ATH9K_POW_SM(ratesArray
[rate1l
], 0));
706 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE4
,
707 ATH9K_POW_SM(ratesArray
[rate11s
], 24)
708 | ATH9K_POW_SM(ratesArray
[rate11l
], 16)
709 | ATH9K_POW_SM(ratesArray
[rate5_5s
], 8)
710 | ATH9K_POW_SM(ratesArray
[rate5_5l
], 0));
712 /* HT20 power per rate */
713 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE5
,
714 ATH9K_POW_SM(ratesArray
[rateHt20_3
], 24)
715 | ATH9K_POW_SM(ratesArray
[rateHt20_2
], 16)
716 | ATH9K_POW_SM(ratesArray
[rateHt20_1
], 8)
717 | ATH9K_POW_SM(ratesArray
[rateHt20_0
], 0));
718 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE6
,
719 ATH9K_POW_SM(ratesArray
[rateHt20_7
], 24)
720 | ATH9K_POW_SM(ratesArray
[rateHt20_6
], 16)
721 | ATH9K_POW_SM(ratesArray
[rateHt20_5
], 8)
722 | ATH9K_POW_SM(ratesArray
[rateHt20_4
], 0));
724 /* HT40 power per rate */
725 if (IS_CHAN_HT40(chan
)) {
726 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE7
,
727 ATH9K_POW_SM(ratesArray
[rateHt40_3
] +
728 ht40PowerIncForPdadc
, 24)
729 | ATH9K_POW_SM(ratesArray
[rateHt40_2
] +
730 ht40PowerIncForPdadc
, 16)
731 | ATH9K_POW_SM(ratesArray
[rateHt40_1
] +
732 ht40PowerIncForPdadc
, 8)
733 | ATH9K_POW_SM(ratesArray
[rateHt40_0
] +
734 ht40PowerIncForPdadc
, 0));
735 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE8
,
736 ATH9K_POW_SM(ratesArray
[rateHt40_7
] +
737 ht40PowerIncForPdadc
, 24)
738 | ATH9K_POW_SM(ratesArray
[rateHt40_6
] +
739 ht40PowerIncForPdadc
, 16)
740 | ATH9K_POW_SM(ratesArray
[rateHt40_5
] +
741 ht40PowerIncForPdadc
, 8)
742 | ATH9K_POW_SM(ratesArray
[rateHt40_4
] +
743 ht40PowerIncForPdadc
, 0));
744 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE9
,
745 ATH9K_POW_SM(ratesArray
[rateExtOfdm
], 24)
746 | ATH9K_POW_SM(ratesArray
[rateExtCck
], 16)
747 | ATH9K_POW_SM(ratesArray
[rateDupOfdm
], 8)
748 | ATH9K_POW_SM(ratesArray
[rateDupCck
], 0));
751 REGWRITE_BUFFER_FLUSH(ah
);
754 static void ath9k_hw_4k_set_gain(struct ath_hw
*ah
,
755 struct modal_eep_4k_header
*pModal
,
756 struct ar5416_eeprom_4k
*eep
,
759 REG_WRITE(ah
, AR_PHY_SWITCH_CHAIN_0
,
760 pModal
->antCtrlChain
[0]);
762 REG_WRITE(ah
, AR_PHY_TIMING_CTRL4(0),
763 (REG_READ(ah
, AR_PHY_TIMING_CTRL4(0)) &
764 ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF
|
765 AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF
)) |
766 SM(pModal
->iqCalICh
[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF
) |
767 SM(pModal
->iqCalQCh
[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF
));
769 if ((eep
->baseEepHeader
.version
& AR5416_EEP_VER_MINOR_MASK
) >=
770 AR5416_EEP_MINOR_VER_3
) {
771 txRxAttenLocal
= pModal
->txRxAttenCh
[0];
773 REG_RMW_FIELD(ah
, AR_PHY_GAIN_2GHZ
,
774 AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN
, pModal
->bswMargin
[0]);
775 REG_RMW_FIELD(ah
, AR_PHY_GAIN_2GHZ
,
776 AR_PHY_GAIN_2GHZ_XATTEN1_DB
, pModal
->bswAtten
[0]);
777 REG_RMW_FIELD(ah
, AR_PHY_GAIN_2GHZ
,
778 AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN
,
779 pModal
->xatten2Margin
[0]);
780 REG_RMW_FIELD(ah
, AR_PHY_GAIN_2GHZ
,
781 AR_PHY_GAIN_2GHZ_XATTEN2_DB
, pModal
->xatten2Db
[0]);
783 /* Set the block 1 value to block 0 value */
784 REG_RMW_FIELD(ah
, AR_PHY_GAIN_2GHZ
+ 0x1000,
785 AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN
,
786 pModal
->bswMargin
[0]);
787 REG_RMW_FIELD(ah
, AR_PHY_GAIN_2GHZ
+ 0x1000,
788 AR_PHY_GAIN_2GHZ_XATTEN1_DB
, pModal
->bswAtten
[0]);
789 REG_RMW_FIELD(ah
, AR_PHY_GAIN_2GHZ
+ 0x1000,
790 AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN
,
791 pModal
->xatten2Margin
[0]);
792 REG_RMW_FIELD(ah
, AR_PHY_GAIN_2GHZ
+ 0x1000,
793 AR_PHY_GAIN_2GHZ_XATTEN2_DB
,
794 pModal
->xatten2Db
[0]);
797 REG_RMW_FIELD(ah
, AR_PHY_RXGAIN
,
798 AR9280_PHY_RXGAIN_TXRX_ATTEN
, txRxAttenLocal
);
799 REG_RMW_FIELD(ah
, AR_PHY_RXGAIN
,
800 AR9280_PHY_RXGAIN_TXRX_MARGIN
, pModal
->rxTxMarginCh
[0]);
802 REG_RMW_FIELD(ah
, AR_PHY_RXGAIN
+ 0x1000,
803 AR9280_PHY_RXGAIN_TXRX_ATTEN
, txRxAttenLocal
);
804 REG_RMW_FIELD(ah
, AR_PHY_RXGAIN
+ 0x1000,
805 AR9280_PHY_RXGAIN_TXRX_MARGIN
, pModal
->rxTxMarginCh
[0]);
809 * Read EEPROM header info and program the device for correct operation
810 * given the channel value.
812 static void ath9k_hw_4k_set_board_values(struct ath_hw
*ah
,
813 struct ath9k_channel
*chan
)
815 struct ath9k_hw_capabilities
*pCap
= &ah
->caps
;
816 struct modal_eep_4k_header
*pModal
;
817 struct ar5416_eeprom_4k
*eep
= &ah
->eeprom
.map4k
;
818 struct base_eep_header_4k
*pBase
= &eep
->baseEepHeader
;
820 u8 ob
[5], db1
[5], db2
[5];
821 u8 ant_div_control1
, ant_div_control2
;
825 pModal
= &eep
->modalHeader
;
828 REG_WRITE(ah
, AR_PHY_SWITCH_COM
, pModal
->antCtrlCommon
);
830 /* Single chain for 4K EEPROM*/
831 ath9k_hw_4k_set_gain(ah
, pModal
, eep
, txRxAttenLocal
);
833 /* Initialize Ant Diversity settings from EEPROM */
834 if (pModal
->version
>= 3) {
835 ant_div_control1
= pModal
->antdiv_ctl1
;
836 ant_div_control2
= pModal
->antdiv_ctl2
;
838 regVal
= REG_READ(ah
, AR_PHY_MULTICHAIN_GAIN_CTL
);
839 regVal
&= (~(AR_PHY_9285_ANT_DIV_CTL_ALL
));
841 regVal
|= SM(ant_div_control1
,
842 AR_PHY_9285_ANT_DIV_CTL
);
843 regVal
|= SM(ant_div_control2
,
844 AR_PHY_9285_ANT_DIV_ALT_LNACONF
);
845 regVal
|= SM((ant_div_control2
>> 2),
846 AR_PHY_9285_ANT_DIV_MAIN_LNACONF
);
847 regVal
|= SM((ant_div_control1
>> 1),
848 AR_PHY_9285_ANT_DIV_ALT_GAINTB
);
849 regVal
|= SM((ant_div_control1
>> 2),
850 AR_PHY_9285_ANT_DIV_MAIN_GAINTB
);
853 REG_WRITE(ah
, AR_PHY_MULTICHAIN_GAIN_CTL
, regVal
);
854 regVal
= REG_READ(ah
, AR_PHY_MULTICHAIN_GAIN_CTL
);
855 regVal
= REG_READ(ah
, AR_PHY_CCK_DETECT
);
856 regVal
&= (~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV
);
857 regVal
|= SM((ant_div_control1
>> 3),
858 AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV
);
860 REG_WRITE(ah
, AR_PHY_CCK_DETECT
, regVal
);
861 regVal
= REG_READ(ah
, AR_PHY_CCK_DETECT
);
863 if (pCap
->hw_caps
& ATH9K_HW_CAP_ANT_DIV_COMB
) {
865 * If diversity combining is enabled,
866 * set MAIN to LNA1 and ALT to LNA2 initially.
868 regVal
= REG_READ(ah
, AR_PHY_MULTICHAIN_GAIN_CTL
);
869 regVal
&= (~(AR_PHY_9285_ANT_DIV_MAIN_LNACONF
|
870 AR_PHY_9285_ANT_DIV_ALT_LNACONF
));
872 regVal
|= (ATH_ANT_DIV_COMB_LNA1
<<
873 AR_PHY_9285_ANT_DIV_MAIN_LNACONF_S
);
874 regVal
|= (ATH_ANT_DIV_COMB_LNA2
<<
875 AR_PHY_9285_ANT_DIV_ALT_LNACONF_S
);
876 regVal
&= (~(AR_PHY_9285_FAST_DIV_BIAS
));
877 regVal
|= (0 << AR_PHY_9285_FAST_DIV_BIAS_S
);
878 REG_WRITE(ah
, AR_PHY_MULTICHAIN_GAIN_CTL
, regVal
);
882 if (pModal
->version
>= 2) {
883 ob
[0] = pModal
->ob_0
;
884 ob
[1] = pModal
->ob_1
;
885 ob
[2] = pModal
->ob_2
;
886 ob
[3] = pModal
->ob_3
;
887 ob
[4] = pModal
->ob_4
;
889 db1
[0] = pModal
->db1_0
;
890 db1
[1] = pModal
->db1_1
;
891 db1
[2] = pModal
->db1_2
;
892 db1
[3] = pModal
->db1_3
;
893 db1
[4] = pModal
->db1_4
;
895 db2
[0] = pModal
->db2_0
;
896 db2
[1] = pModal
->db2_1
;
897 db2
[2] = pModal
->db2_2
;
898 db2
[3] = pModal
->db2_3
;
899 db2
[4] = pModal
->db2_4
;
900 } else if (pModal
->version
== 1) {
901 ob
[0] = pModal
->ob_0
;
902 ob
[1] = ob
[2] = ob
[3] = ob
[4] = pModal
->ob_1
;
903 db1
[0] = pModal
->db1_0
;
904 db1
[1] = db1
[2] = db1
[3] = db1
[4] = pModal
->db1_1
;
905 db2
[0] = pModal
->db2_0
;
906 db2
[1] = db2
[2] = db2
[3] = db2
[4] = pModal
->db2_1
;
910 for (i
= 0; i
< 5; i
++) {
911 ob
[i
] = pModal
->ob_0
;
912 db1
[i
] = pModal
->db1_0
;
913 db2
[i
] = pModal
->db1_0
;
917 if (AR_SREV_9271(ah
)) {
918 ath9k_hw_analog_shift_rmw(ah
,
920 AR9271_AN_RF2G3_OB_cck
,
921 AR9271_AN_RF2G3_OB_cck_S
,
923 ath9k_hw_analog_shift_rmw(ah
,
925 AR9271_AN_RF2G3_OB_psk
,
926 AR9271_AN_RF2G3_OB_psk_S
,
928 ath9k_hw_analog_shift_rmw(ah
,
930 AR9271_AN_RF2G3_OB_qam
,
931 AR9271_AN_RF2G3_OB_qam_S
,
933 ath9k_hw_analog_shift_rmw(ah
,
935 AR9271_AN_RF2G3_DB_1
,
936 AR9271_AN_RF2G3_DB_1_S
,
938 ath9k_hw_analog_shift_rmw(ah
,
940 AR9271_AN_RF2G4_DB_2
,
941 AR9271_AN_RF2G4_DB_2_S
,
944 ath9k_hw_analog_shift_rmw(ah
,
946 AR9285_AN_RF2G3_OB_0
,
947 AR9285_AN_RF2G3_OB_0_S
,
949 ath9k_hw_analog_shift_rmw(ah
,
951 AR9285_AN_RF2G3_OB_1
,
952 AR9285_AN_RF2G3_OB_1_S
,
954 ath9k_hw_analog_shift_rmw(ah
,
956 AR9285_AN_RF2G3_OB_2
,
957 AR9285_AN_RF2G3_OB_2_S
,
959 ath9k_hw_analog_shift_rmw(ah
,
961 AR9285_AN_RF2G3_OB_3
,
962 AR9285_AN_RF2G3_OB_3_S
,
964 ath9k_hw_analog_shift_rmw(ah
,
966 AR9285_AN_RF2G3_OB_4
,
967 AR9285_AN_RF2G3_OB_4_S
,
970 ath9k_hw_analog_shift_rmw(ah
,
972 AR9285_AN_RF2G3_DB1_0
,
973 AR9285_AN_RF2G3_DB1_0_S
,
975 ath9k_hw_analog_shift_rmw(ah
,
977 AR9285_AN_RF2G3_DB1_1
,
978 AR9285_AN_RF2G3_DB1_1_S
,
980 ath9k_hw_analog_shift_rmw(ah
,
982 AR9285_AN_RF2G3_DB1_2
,
983 AR9285_AN_RF2G3_DB1_2_S
,
985 ath9k_hw_analog_shift_rmw(ah
,
987 AR9285_AN_RF2G4_DB1_3
,
988 AR9285_AN_RF2G4_DB1_3_S
,
990 ath9k_hw_analog_shift_rmw(ah
,
992 AR9285_AN_RF2G4_DB1_4
,
993 AR9285_AN_RF2G4_DB1_4_S
, db1
[4]);
995 ath9k_hw_analog_shift_rmw(ah
,
997 AR9285_AN_RF2G4_DB2_0
,
998 AR9285_AN_RF2G4_DB2_0_S
,
1000 ath9k_hw_analog_shift_rmw(ah
,
1002 AR9285_AN_RF2G4_DB2_1
,
1003 AR9285_AN_RF2G4_DB2_1_S
,
1005 ath9k_hw_analog_shift_rmw(ah
,
1007 AR9285_AN_RF2G4_DB2_2
,
1008 AR9285_AN_RF2G4_DB2_2_S
,
1010 ath9k_hw_analog_shift_rmw(ah
,
1012 AR9285_AN_RF2G4_DB2_3
,
1013 AR9285_AN_RF2G4_DB2_3_S
,
1015 ath9k_hw_analog_shift_rmw(ah
,
1017 AR9285_AN_RF2G4_DB2_4
,
1018 AR9285_AN_RF2G4_DB2_4_S
,
1023 REG_RMW_FIELD(ah
, AR_PHY_SETTLING
, AR_PHY_SETTLING_SWITCH
,
1024 pModal
->switchSettling
);
1025 REG_RMW_FIELD(ah
, AR_PHY_DESIRED_SZ
, AR_PHY_DESIRED_SZ_ADC
,
1026 pModal
->adcDesiredSize
);
1028 REG_WRITE(ah
, AR_PHY_RF_CTL4
,
1029 SM(pModal
->txEndToXpaOff
, AR_PHY_RF_CTL4_TX_END_XPAA_OFF
) |
1030 SM(pModal
->txEndToXpaOff
, AR_PHY_RF_CTL4_TX_END_XPAB_OFF
) |
1031 SM(pModal
->txFrameToXpaOn
, AR_PHY_RF_CTL4_FRAME_XPAA_ON
) |
1032 SM(pModal
->txFrameToXpaOn
, AR_PHY_RF_CTL4_FRAME_XPAB_ON
));
1034 REG_RMW_FIELD(ah
, AR_PHY_RF_CTL3
, AR_PHY_TX_END_TO_A2_RX_ON
,
1035 pModal
->txEndToRxOn
);
1037 if (AR_SREV_9271_10(ah
))
1038 REG_RMW_FIELD(ah
, AR_PHY_RF_CTL3
, AR_PHY_TX_END_TO_A2_RX_ON
,
1039 pModal
->txEndToRxOn
);
1040 REG_RMW_FIELD(ah
, AR_PHY_CCA
, AR9280_PHY_CCA_THRESH62
,
1042 REG_RMW_FIELD(ah
, AR_PHY_EXT_CCA0
, AR_PHY_EXT_CCA0_THRESH62
,
1045 if ((eep
->baseEepHeader
.version
& AR5416_EEP_VER_MINOR_MASK
) >=
1046 AR5416_EEP_MINOR_VER_2
) {
1047 REG_RMW_FIELD(ah
, AR_PHY_RF_CTL2
, AR_PHY_TX_END_DATA_START
,
1048 pModal
->txFrameToDataStart
);
1049 REG_RMW_FIELD(ah
, AR_PHY_RF_CTL2
, AR_PHY_TX_END_PA_ON
,
1050 pModal
->txFrameToPaOn
);
1053 if ((eep
->baseEepHeader
.version
& AR5416_EEP_VER_MINOR_MASK
) >=
1054 AR5416_EEP_MINOR_VER_3
) {
1055 if (IS_CHAN_HT40(chan
))
1056 REG_RMW_FIELD(ah
, AR_PHY_SETTLING
,
1057 AR_PHY_SETTLING_SWITCH
,
1058 pModal
->swSettleHt40
);
1061 bb_desired_scale
= (pModal
->bb_scale_smrt_antenna
&
1062 EEP_4K_BB_DESIRED_SCALE_MASK
);
1063 if ((pBase
->txGainType
== 0) && (bb_desired_scale
!= 0)) {
1064 u32 pwrctrl
, mask
, clr
;
1066 mask
= BIT(0)|BIT(5)|BIT(10)|BIT(15)|BIT(20)|BIT(25);
1067 pwrctrl
= mask
* bb_desired_scale
;
1069 REG_RMW(ah
, AR_PHY_TX_PWRCTRL8
, pwrctrl
, clr
);
1070 REG_RMW(ah
, AR_PHY_TX_PWRCTRL10
, pwrctrl
, clr
);
1071 REG_RMW(ah
, AR_PHY_CH0_TX_PWRCTRL12
, pwrctrl
, clr
);
1073 mask
= BIT(0)|BIT(5)|BIT(15);
1074 pwrctrl
= mask
* bb_desired_scale
;
1076 REG_RMW(ah
, AR_PHY_TX_PWRCTRL9
, pwrctrl
, clr
);
1078 mask
= BIT(0)|BIT(5);
1079 pwrctrl
= mask
* bb_desired_scale
;
1081 REG_RMW(ah
, AR_PHY_CH0_TX_PWRCTRL11
, pwrctrl
, clr
);
1082 REG_RMW(ah
, AR_PHY_CH0_TX_PWRCTRL13
, pwrctrl
, clr
);
1086 static u16
ath9k_hw_4k_get_spur_channel(struct ath_hw
*ah
, u16 i
, bool is2GHz
)
1088 #define EEP_MAP4K_SPURCHAN \
1089 (ah->eeprom.map4k.modalHeader.spurChans[i].spurChan)
1090 struct ath_common
*common
= ath9k_hw_common(ah
);
1092 u16 spur_val
= AR_NO_SPUR
;
1094 ath_dbg(common
, ANI
, "Getting spur idx:%d is2Ghz:%d val:%x\n",
1095 i
, is2GHz
, ah
->config
.spurchans
[i
][is2GHz
]);
1097 switch (ah
->config
.spurmode
) {
1100 case SPUR_ENABLE_IOCTL
:
1101 spur_val
= ah
->config
.spurchans
[i
][is2GHz
];
1102 ath_dbg(common
, ANI
, "Getting spur val from new loc. %d\n",
1105 case SPUR_ENABLE_EEPROM
:
1106 spur_val
= EEP_MAP4K_SPURCHAN
;
1112 #undef EEP_MAP4K_SPURCHAN
1115 const struct eeprom_ops eep_4k_ops
= {
1116 .check_eeprom
= ath9k_hw_4k_check_eeprom
,
1117 .get_eeprom
= ath9k_hw_4k_get_eeprom
,
1118 .fill_eeprom
= ath9k_hw_4k_fill_eeprom
,
1119 .dump_eeprom
= ath9k_hw_4k_dump_eeprom
,
1120 .get_eeprom_ver
= ath9k_hw_4k_get_eeprom_ver
,
1121 .get_eeprom_rev
= ath9k_hw_4k_get_eeprom_rev
,
1122 .set_board_values
= ath9k_hw_4k_set_board_values
,
1123 .set_txpower
= ath9k_hw_4k_set_txpower
,
1124 .get_spur_channel
= ath9k_hw_4k_get_spur_channel