2 * Copyright (c) 2008-2011 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 #include <asm/unaligned.h>
19 #include "ar9002_phy.h"
21 #define SIZE_EEPROM_AR9287 (sizeof(struct ar9287_eeprom) / sizeof(u16))
23 static int ath9k_hw_ar9287_get_eeprom_ver(struct ath_hw
*ah
)
25 return (ah
->eeprom
.map9287
.baseEepHeader
.version
>> 12) & 0xF;
28 static int ath9k_hw_ar9287_get_eeprom_rev(struct ath_hw
*ah
)
30 return (ah
->eeprom
.map9287
.baseEepHeader
.version
) & 0xFFF;
33 static bool __ath9k_hw_ar9287_fill_eeprom(struct ath_hw
*ah
)
35 struct ar9287_eeprom
*eep
= &ah
->eeprom
.map9287
;
37 int addr
, eep_start_loc
= AR9287_EEP_START_LOC
;
38 eep_data
= (u16
*)eep
;
40 for (addr
= 0; addr
< SIZE_EEPROM_AR9287
; addr
++) {
41 if (!ath9k_hw_nvram_read(ah
, addr
+ eep_start_loc
, eep_data
))
49 static bool __ath9k_hw_usb_ar9287_fill_eeprom(struct ath_hw
*ah
)
51 u16
*eep_data
= (u16
*)&ah
->eeprom
.map9287
;
53 ath9k_hw_usb_gen_fill_eeprom(ah
, eep_data
,
54 AR9287_HTC_EEP_START_LOC
,
59 static bool ath9k_hw_ar9287_fill_eeprom(struct ath_hw
*ah
)
61 struct ath_common
*common
= ath9k_hw_common(ah
);
63 if (!ath9k_hw_use_flash(ah
)) {
64 ath_dbg(common
, EEPROM
, "Reading from EEPROM, not flash\n");
67 if (common
->bus_ops
->ath_bus_type
== ATH_USB
)
68 return __ath9k_hw_usb_ar9287_fill_eeprom(ah
);
70 return __ath9k_hw_ar9287_fill_eeprom(ah
);
73 #if defined(CONFIG_ATH9K_DEBUGFS) || defined(CONFIG_ATH9K_HTC_DEBUGFS)
74 static u32
ar9287_dump_modal_eeprom(char *buf
, u32 len
, u32 size
,
75 struct modal_eep_ar9287_header
*modal_hdr
)
77 PR_EEP("Chain0 Ant. Control", modal_hdr
->antCtrlChain
[0]);
78 PR_EEP("Chain1 Ant. Control", modal_hdr
->antCtrlChain
[1]);
79 PR_EEP("Ant. Common Control", modal_hdr
->antCtrlCommon
);
80 PR_EEP("Chain0 Ant. Gain", modal_hdr
->antennaGainCh
[0]);
81 PR_EEP("Chain1 Ant. Gain", modal_hdr
->antennaGainCh
[1]);
82 PR_EEP("Switch Settle", modal_hdr
->switchSettling
);
83 PR_EEP("Chain0 TxRxAtten", modal_hdr
->txRxAttenCh
[0]);
84 PR_EEP("Chain1 TxRxAtten", modal_hdr
->txRxAttenCh
[1]);
85 PR_EEP("Chain0 RxTxMargin", modal_hdr
->rxTxMarginCh
[0]);
86 PR_EEP("Chain1 RxTxMargin", modal_hdr
->rxTxMarginCh
[1]);
87 PR_EEP("ADC Desired size", modal_hdr
->adcDesiredSize
);
88 PR_EEP("txEndToXpaOff", modal_hdr
->txEndToXpaOff
);
89 PR_EEP("txEndToRxOn", modal_hdr
->txEndToRxOn
);
90 PR_EEP("txFrameToXpaOn", modal_hdr
->txFrameToXpaOn
);
91 PR_EEP("CCA Threshold)", modal_hdr
->thresh62
);
92 PR_EEP("Chain0 NF Threshold", modal_hdr
->noiseFloorThreshCh
[0]);
93 PR_EEP("Chain1 NF Threshold", modal_hdr
->noiseFloorThreshCh
[1]);
94 PR_EEP("xpdGain", modal_hdr
->xpdGain
);
95 PR_EEP("External PD", modal_hdr
->xpd
);
96 PR_EEP("Chain0 I Coefficient", modal_hdr
->iqCalICh
[0]);
97 PR_EEP("Chain1 I Coefficient", modal_hdr
->iqCalICh
[1]);
98 PR_EEP("Chain0 Q Coefficient", modal_hdr
->iqCalQCh
[0]);
99 PR_EEP("Chain1 Q Coefficient", modal_hdr
->iqCalQCh
[1]);
100 PR_EEP("pdGainOverlap", modal_hdr
->pdGainOverlap
);
101 PR_EEP("xPA Bias Level", modal_hdr
->xpaBiasLvl
);
102 PR_EEP("txFrameToDataStart", modal_hdr
->txFrameToDataStart
);
103 PR_EEP("txFrameToPaOn", modal_hdr
->txFrameToPaOn
);
104 PR_EEP("HT40 Power Inc.", modal_hdr
->ht40PowerIncForPdadc
);
105 PR_EEP("Chain0 bswAtten", modal_hdr
->bswAtten
[0]);
106 PR_EEP("Chain1 bswAtten", modal_hdr
->bswAtten
[1]);
107 PR_EEP("Chain0 bswMargin", modal_hdr
->bswMargin
[0]);
108 PR_EEP("Chain1 bswMargin", modal_hdr
->bswMargin
[1]);
109 PR_EEP("HT40 Switch Settle", modal_hdr
->swSettleHt40
);
110 PR_EEP("AR92x7 Version", modal_hdr
->version
);
111 PR_EEP("DriverBias1", modal_hdr
->db1
);
112 PR_EEP("DriverBias2", modal_hdr
->db1
);
113 PR_EEP("CCK OutputBias", modal_hdr
->ob_cck
);
114 PR_EEP("PSK OutputBias", modal_hdr
->ob_psk
);
115 PR_EEP("QAM OutputBias", modal_hdr
->ob_qam
);
116 PR_EEP("PAL_OFF OutputBias", modal_hdr
->ob_pal_off
);
121 static u32
ath9k_hw_ar9287_dump_eeprom(struct ath_hw
*ah
, bool dump_base_hdr
,
122 u8
*buf
, u32 len
, u32 size
)
124 struct ar9287_eeprom
*eep
= &ah
->eeprom
.map9287
;
125 struct base_eep_ar9287_header
*pBase
= &eep
->baseEepHeader
;
127 if (!dump_base_hdr
) {
128 len
+= snprintf(buf
+ len
, size
- len
,
129 "%20s :\n", "2GHz modal Header");
130 len
= ar9287_dump_modal_eeprom(buf
, len
, size
,
135 PR_EEP("Major Version", pBase
->version
>> 12);
136 PR_EEP("Minor Version", pBase
->version
& 0xFFF);
137 PR_EEP("Checksum", pBase
->checksum
);
138 PR_EEP("Length", pBase
->length
);
139 PR_EEP("RegDomain1", pBase
->regDmn
[0]);
140 PR_EEP("RegDomain2", pBase
->regDmn
[1]);
141 PR_EEP("TX Mask", pBase
->txMask
);
142 PR_EEP("RX Mask", pBase
->rxMask
);
143 PR_EEP("Allow 5GHz", !!(pBase
->opCapFlags
& AR5416_OPFLAGS_11A
));
144 PR_EEP("Allow 2GHz", !!(pBase
->opCapFlags
& AR5416_OPFLAGS_11G
));
145 PR_EEP("Disable 2GHz HT20", !!(pBase
->opCapFlags
&
146 AR5416_OPFLAGS_N_2G_HT20
));
147 PR_EEP("Disable 2GHz HT40", !!(pBase
->opCapFlags
&
148 AR5416_OPFLAGS_N_2G_HT40
));
149 PR_EEP("Disable 5Ghz HT20", !!(pBase
->opCapFlags
&
150 AR5416_OPFLAGS_N_5G_HT20
));
151 PR_EEP("Disable 5Ghz HT40", !!(pBase
->opCapFlags
&
152 AR5416_OPFLAGS_N_5G_HT40
));
153 PR_EEP("Big Endian", !!(pBase
->eepMisc
& 0x01));
154 PR_EEP("Cal Bin Major Ver", (pBase
->binBuildNumber
>> 24) & 0xFF);
155 PR_EEP("Cal Bin Minor Ver", (pBase
->binBuildNumber
>> 16) & 0xFF);
156 PR_EEP("Cal Bin Build", (pBase
->binBuildNumber
>> 8) & 0xFF);
157 PR_EEP("Power Table Offset", pBase
->pwrTableOffset
);
158 PR_EEP("OpenLoop Power Ctrl", pBase
->openLoopPwrCntl
);
160 len
+= snprintf(buf
+ len
, size
- len
, "%20s : %pM\n", "MacAddress",
170 static u32
ath9k_hw_ar9287_dump_eeprom(struct ath_hw
*ah
, bool dump_base_hdr
,
171 u8
*buf
, u32 len
, u32 size
)
178 static int ath9k_hw_ar9287_check_eeprom(struct ath_hw
*ah
)
180 u32 sum
= 0, el
, integer
;
181 u16 temp
, word
, magic
, magic2
, *eepdata
;
183 bool need_swap
= false;
184 struct ar9287_eeprom
*eep
= &ah
->eeprom
.map9287
;
185 struct ath_common
*common
= ath9k_hw_common(ah
);
187 if (!ath9k_hw_use_flash(ah
)) {
188 if (!ath9k_hw_nvram_read(ah
, AR5416_EEPROM_MAGIC_OFFSET
,
190 ath_err(common
, "Reading Magic # failed\n");
194 ath_dbg(common
, EEPROM
, "Read Magic = 0x%04X\n", magic
);
196 if (magic
!= AR5416_EEPROM_MAGIC
) {
197 magic2
= swab16(magic
);
199 if (magic2
== AR5416_EEPROM_MAGIC
) {
201 eepdata
= (u16
*)(&ah
->eeprom
);
203 for (addr
= 0; addr
< SIZE_EEPROM_AR9287
; addr
++) {
204 temp
= swab16(*eepdata
);
210 "Invalid EEPROM Magic. Endianness mismatch.\n");
216 ath_dbg(common
, EEPROM
, "need_swap = %s\n",
217 need_swap
? "True" : "False");
220 el
= swab16(ah
->eeprom
.map9287
.baseEepHeader
.length
);
222 el
= ah
->eeprom
.map9287
.baseEepHeader
.length
;
224 if (el
> sizeof(struct ar9287_eeprom
))
225 el
= sizeof(struct ar9287_eeprom
) / sizeof(u16
);
227 el
= el
/ sizeof(u16
);
229 eepdata
= (u16
*)(&ah
->eeprom
);
231 for (i
= 0; i
< el
; i
++)
235 word
= swab16(eep
->baseEepHeader
.length
);
236 eep
->baseEepHeader
.length
= word
;
238 word
= swab16(eep
->baseEepHeader
.checksum
);
239 eep
->baseEepHeader
.checksum
= word
;
241 word
= swab16(eep
->baseEepHeader
.version
);
242 eep
->baseEepHeader
.version
= word
;
244 word
= swab16(eep
->baseEepHeader
.regDmn
[0]);
245 eep
->baseEepHeader
.regDmn
[0] = word
;
247 word
= swab16(eep
->baseEepHeader
.regDmn
[1]);
248 eep
->baseEepHeader
.regDmn
[1] = word
;
250 word
= swab16(eep
->baseEepHeader
.rfSilent
);
251 eep
->baseEepHeader
.rfSilent
= word
;
253 word
= swab16(eep
->baseEepHeader
.blueToothOptions
);
254 eep
->baseEepHeader
.blueToothOptions
= word
;
256 word
= swab16(eep
->baseEepHeader
.deviceCap
);
257 eep
->baseEepHeader
.deviceCap
= word
;
259 integer
= swab32(eep
->modalHeader
.antCtrlCommon
);
260 eep
->modalHeader
.antCtrlCommon
= integer
;
262 for (i
= 0; i
< AR9287_MAX_CHAINS
; i
++) {
263 integer
= swab32(eep
->modalHeader
.antCtrlChain
[i
]);
264 eep
->modalHeader
.antCtrlChain
[i
] = integer
;
267 for (i
= 0; i
< AR_EEPROM_MODAL_SPURS
; i
++) {
268 word
= swab16(eep
->modalHeader
.spurChans
[i
].spurChan
);
269 eep
->modalHeader
.spurChans
[i
].spurChan
= word
;
273 if (sum
!= 0xffff || ah
->eep_ops
->get_eeprom_ver(ah
) != AR9287_EEP_VER
274 || ah
->eep_ops
->get_eeprom_rev(ah
) < AR5416_EEP_NO_BACK_VER
) {
275 ath_err(common
, "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
276 sum
, ah
->eep_ops
->get_eeprom_ver(ah
));
283 static u32
ath9k_hw_ar9287_get_eeprom(struct ath_hw
*ah
,
284 enum eeprom_param param
)
286 struct ar9287_eeprom
*eep
= &ah
->eeprom
.map9287
;
287 struct modal_eep_ar9287_header
*pModal
= &eep
->modalHeader
;
288 struct base_eep_ar9287_header
*pBase
= &eep
->baseEepHeader
;
291 ver_minor
= pBase
->version
& AR9287_EEP_VER_MINOR_MASK
;
295 return pModal
->noiseFloorThreshCh
[0];
297 return get_unaligned_be16(pBase
->macAddr
);
299 return get_unaligned_be16(pBase
->macAddr
+ 2);
301 return get_unaligned_be16(pBase
->macAddr
+ 4);
303 return pBase
->regDmn
[0];
305 return pBase
->deviceCap
;
307 return pBase
->opCapFlags
;
309 return pBase
->rfSilent
;
313 return pBase
->txMask
;
315 return pBase
->rxMask
;
317 return pBase
->deviceType
;
319 return pBase
->openLoopPwrCntl
;
320 case EEP_TEMPSENSE_SLOPE
:
321 if (ver_minor
>= AR9287_EEP_MINOR_VER_2
)
322 return pBase
->tempSensSlope
;
325 case EEP_TEMPSENSE_SLOPE_PAL_ON
:
326 if (ver_minor
>= AR9287_EEP_MINOR_VER_3
)
327 return pBase
->tempSensSlopePalOn
;
330 case EEP_ANTENNA_GAIN_2G
:
331 return max_t(u8
, pModal
->antennaGainCh
[0],
332 pModal
->antennaGainCh
[1]);
338 static void ar9287_eeprom_get_tx_gain_index(struct ath_hw
*ah
,
339 struct ath9k_channel
*chan
,
340 struct cal_data_op_loop_ar9287
*pRawDatasetOpLoop
,
341 u8
*pCalChans
, u16 availPiers
, int8_t *pPwr
)
343 u16 idxL
= 0, idxR
= 0, numPiers
;
345 struct chan_centers centers
;
347 ath9k_hw_get_channel_centers(ah
, chan
, ¢ers
);
349 for (numPiers
= 0; numPiers
< availPiers
; numPiers
++) {
350 if (pCalChans
[numPiers
] == AR5416_BCHAN_UNUSED
)
354 match
= ath9k_hw_get_lower_upper_index(
355 (u8
)FREQ2FBIN(centers
.synth_center
, IS_CHAN_2GHZ(chan
)),
356 pCalChans
, numPiers
, &idxL
, &idxR
);
359 *pPwr
= (int8_t) pRawDatasetOpLoop
[idxL
].pwrPdg
[0][0];
361 *pPwr
= ((int8_t) pRawDatasetOpLoop
[idxL
].pwrPdg
[0][0] +
362 (int8_t) pRawDatasetOpLoop
[idxR
].pwrPdg
[0][0])/2;
367 static void ar9287_eeprom_olpc_set_pdadcs(struct ath_hw
*ah
,
368 int32_t txPower
, u16 chain
)
373 /* Enable OLPC for chain 0 */
375 tmpVal
= REG_READ(ah
, 0xa270);
376 tmpVal
= tmpVal
& 0xFCFFFFFF;
377 tmpVal
= tmpVal
| (0x3 << 24);
378 REG_WRITE(ah
, 0xa270, tmpVal
);
380 /* Enable OLPC for chain 1 */
382 tmpVal
= REG_READ(ah
, 0xb270);
383 tmpVal
= tmpVal
& 0xFCFFFFFF;
384 tmpVal
= tmpVal
| (0x3 << 24);
385 REG_WRITE(ah
, 0xb270, tmpVal
);
387 /* Write the OLPC ref power for chain 0 */
390 tmpVal
= REG_READ(ah
, 0xa398);
391 tmpVal
= tmpVal
& 0xff00ffff;
393 tmpVal
= tmpVal
| (a
<< 16);
394 REG_WRITE(ah
, 0xa398, tmpVal
);
397 /* Write the OLPC ref power for chain 1 */
400 tmpVal
= REG_READ(ah
, 0xb398);
401 tmpVal
= tmpVal
& 0xff00ffff;
403 tmpVal
= tmpVal
| (a
<< 16);
404 REG_WRITE(ah
, 0xb398, tmpVal
);
408 static void ath9k_hw_set_ar9287_power_cal_table(struct ath_hw
*ah
,
409 struct ath9k_channel
*chan
)
411 struct cal_data_per_freq_ar9287
*pRawDataset
;
412 struct cal_data_op_loop_ar9287
*pRawDatasetOpenLoop
;
413 u8
*pCalBChans
= NULL
;
414 u16 pdGainOverlap_t2
;
415 u8 pdadcValues
[AR5416_NUM_PDADC_VALUES
];
416 u16 gainBoundaries
[AR5416_PD_GAINS_IN_MASK
];
417 u16 numPiers
= 0, i
, j
;
418 u16 numXpdGain
, xpdMask
;
419 u16 xpdGainValues
[AR5416_NUM_PD_GAINS
] = {0, 0, 0, 0};
420 u32 reg32
, regOffset
, regChainOffset
, regval
;
422 struct ar9287_eeprom
*pEepData
= &ah
->eeprom
.map9287
;
424 xpdMask
= pEepData
->modalHeader
.xpdGain
;
426 if ((pEepData
->baseEepHeader
.version
& AR9287_EEP_VER_MINOR_MASK
) >=
427 AR9287_EEP_MINOR_VER_2
)
428 pdGainOverlap_t2
= pEepData
->modalHeader
.pdGainOverlap
;
430 pdGainOverlap_t2
= (u16
)(MS(REG_READ(ah
, AR_PHY_TPCRG5
),
431 AR_PHY_TPCRG5_PD_GAIN_OVERLAP
));
433 if (IS_CHAN_2GHZ(chan
)) {
434 pCalBChans
= pEepData
->calFreqPier2G
;
435 numPiers
= AR9287_NUM_2G_CAL_PIERS
;
436 if (ath9k_hw_ar9287_get_eeprom(ah
, EEP_OL_PWRCTRL
)) {
437 pRawDatasetOpenLoop
=
438 (struct cal_data_op_loop_ar9287
*)pEepData
->calPierData2G
[0];
439 ah
->initPDADC
= pRawDatasetOpenLoop
->vpdPdg
[0][0];
445 /* Calculate the value of xpdgains from the xpdGain Mask */
446 for (i
= 1; i
<= AR5416_PD_GAINS_IN_MASK
; i
++) {
447 if ((xpdMask
>> (AR5416_PD_GAINS_IN_MASK
- i
)) & 1) {
448 if (numXpdGain
>= AR5416_NUM_PD_GAINS
)
450 xpdGainValues
[numXpdGain
] =
451 (u16
)(AR5416_PD_GAINS_IN_MASK
-i
);
456 REG_RMW_FIELD(ah
, AR_PHY_TPCRG1
, AR_PHY_TPCRG1_NUM_PD_GAIN
,
457 (numXpdGain
- 1) & 0x3);
458 REG_RMW_FIELD(ah
, AR_PHY_TPCRG1
, AR_PHY_TPCRG1_PD_GAIN_1
,
460 REG_RMW_FIELD(ah
, AR_PHY_TPCRG1
, AR_PHY_TPCRG1_PD_GAIN_2
,
462 REG_RMW_FIELD(ah
, AR_PHY_TPCRG1
, AR_PHY_TPCRG1_PD_GAIN_3
,
465 for (i
= 0; i
< AR9287_MAX_CHAINS
; i
++) {
466 regChainOffset
= i
* 0x1000;
468 if (pEepData
->baseEepHeader
.txMask
& (1 << i
)) {
469 pRawDatasetOpenLoop
=
470 (struct cal_data_op_loop_ar9287
*)pEepData
->calPierData2G
[i
];
472 if (ath9k_hw_ar9287_get_eeprom(ah
, EEP_OL_PWRCTRL
)) {
474 ar9287_eeprom_get_tx_gain_index(ah
, chan
,
476 pCalBChans
, numPiers
,
478 ar9287_eeprom_olpc_set_pdadcs(ah
, txPower
, i
);
481 (struct cal_data_per_freq_ar9287
*)
482 pEepData
->calPierData2G
[i
];
484 ath9k_hw_get_gain_boundaries_pdadcs(ah
, chan
,
486 pCalBChans
, numPiers
,
493 ENABLE_REGWRITE_BUFFER(ah
);
496 if (!ath9k_hw_ar9287_get_eeprom(ah
,
499 regval
= SM(pdGainOverlap_t2
,
500 AR_PHY_TPCRG5_PD_GAIN_OVERLAP
)
501 | SM(gainBoundaries
[0],
502 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1
)
503 | SM(gainBoundaries
[1],
504 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2
)
505 | SM(gainBoundaries
[2],
506 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3
)
507 | SM(gainBoundaries
[3],
508 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4
);
511 AR_PHY_TPCRG5
+ regChainOffset
,
516 if ((int32_t)AR9287_PWR_TABLE_OFFSET_DB
!=
517 pEepData
->baseEepHeader
.pwrTableOffset
) {
518 diff
= (u16
)(pEepData
->baseEepHeader
.pwrTableOffset
-
519 (int32_t)AR9287_PWR_TABLE_OFFSET_DB
);
522 for (j
= 0; j
< ((u16
)AR5416_NUM_PDADC_VALUES
-diff
); j
++)
523 pdadcValues
[j
] = pdadcValues
[j
+diff
];
525 for (j
= (u16
)(AR5416_NUM_PDADC_VALUES
-diff
);
526 j
< AR5416_NUM_PDADC_VALUES
; j
++)
528 pdadcValues
[AR5416_NUM_PDADC_VALUES
-diff
];
531 if (!ath9k_hw_ar9287_get_eeprom(ah
, EEP_OL_PWRCTRL
)) {
532 regOffset
= AR_PHY_BASE
+
533 (672 << 2) + regChainOffset
;
535 for (j
= 0; j
< 32; j
++) {
536 reg32
= get_unaligned_le32(&pdadcValues
[4 * j
]);
538 REG_WRITE(ah
, regOffset
, reg32
);
542 REGWRITE_BUFFER_FLUSH(ah
);
547 static void ath9k_hw_set_ar9287_power_per_rate_table(struct ath_hw
*ah
,
548 struct ath9k_channel
*chan
,
551 u16 antenna_reduction
,
555 (((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \
556 pEepData->ctlIndex[i])
559 (((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \
560 ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))
562 u16 twiceMaxEdgePower
;
564 struct cal_ctl_data_ar9287
*rep
;
565 struct cal_target_power_leg targetPowerOfdm
= {0, {0, 0, 0, 0} },
566 targetPowerCck
= {0, {0, 0, 0, 0} };
567 struct cal_target_power_leg targetPowerOfdmExt
= {0, {0, 0, 0, 0} },
568 targetPowerCckExt
= {0, {0, 0, 0, 0} };
569 struct cal_target_power_ht targetPowerHt20
,
570 targetPowerHt40
= {0, {0, 0, 0, 0} };
571 u16 scaledPower
= 0, minCtlPower
;
572 static const u16 ctlModesFor11g
[] = {
573 CTL_11B
, CTL_11G
, CTL_2GHT20
,
574 CTL_11B_EXT
, CTL_11G_EXT
, CTL_2GHT40
577 const u16
*pCtlMode
= NULL
;
579 struct chan_centers centers
;
581 u16 twiceMinEdgePower
;
582 struct ar9287_eeprom
*pEepData
= &ah
->eeprom
.map9287
;
583 tx_chainmask
= ah
->txchainmask
;
585 ath9k_hw_get_channel_centers(ah
, chan
, ¢ers
);
586 scaledPower
= ath9k_hw_get_scaled_power(ah
, powerLimit
,
590 * Get TX power from EEPROM.
592 if (IS_CHAN_2GHZ(chan
)) {
593 /* CTL_11B, CTL_11G, CTL_2GHT20 */
595 ARRAY_SIZE(ctlModesFor11g
) - SUB_NUM_CTL_MODES_AT_2G_40
;
597 pCtlMode
= ctlModesFor11g
;
599 ath9k_hw_get_legacy_target_powers(ah
, chan
,
600 pEepData
->calTargetPowerCck
,
601 AR9287_NUM_2G_CCK_TARGET_POWERS
,
602 &targetPowerCck
, 4, false);
603 ath9k_hw_get_legacy_target_powers(ah
, chan
,
604 pEepData
->calTargetPower2G
,
605 AR9287_NUM_2G_20_TARGET_POWERS
,
606 &targetPowerOfdm
, 4, false);
607 ath9k_hw_get_target_powers(ah
, chan
,
608 pEepData
->calTargetPower2GHT20
,
609 AR9287_NUM_2G_20_TARGET_POWERS
,
610 &targetPowerHt20
, 8, false);
612 if (IS_CHAN_HT40(chan
)) {
614 numCtlModes
= ARRAY_SIZE(ctlModesFor11g
);
615 ath9k_hw_get_target_powers(ah
, chan
,
616 pEepData
->calTargetPower2GHT40
,
617 AR9287_NUM_2G_40_TARGET_POWERS
,
618 &targetPowerHt40
, 8, true);
619 ath9k_hw_get_legacy_target_powers(ah
, chan
,
620 pEepData
->calTargetPowerCck
,
621 AR9287_NUM_2G_CCK_TARGET_POWERS
,
622 &targetPowerCckExt
, 4, true);
623 ath9k_hw_get_legacy_target_powers(ah
, chan
,
624 pEepData
->calTargetPower2G
,
625 AR9287_NUM_2G_20_TARGET_POWERS
,
626 &targetPowerOfdmExt
, 4, true);
630 for (ctlMode
= 0; ctlMode
< numCtlModes
; ctlMode
++) {
632 (pCtlMode
[ctlMode
] == CTL_2GHT40
) ? true : false;
635 freq
= centers
.synth_center
;
636 else if (pCtlMode
[ctlMode
] & EXT_ADDITIVE
)
637 freq
= centers
.ext_center
;
639 freq
= centers
.ctl_center
;
641 twiceMaxEdgePower
= MAX_RATE_POWER
;
642 /* Walk through the CTL indices stored in EEPROM */
643 for (i
= 0; (i
< AR9287_NUM_CTLS
) && pEepData
->ctlIndex
[i
]; i
++) {
644 struct cal_ctl_edges
*pRdEdgesPower
;
647 * Compare test group from regulatory channel list
648 * with test mode from pCtlMode list
650 if (CMP_CTL
|| CMP_NO_CTL
) {
651 rep
= &(pEepData
->ctlData
[i
]);
653 rep
->ctlEdges
[ar5416_get_ntxchains(tx_chainmask
) - 1];
655 twiceMinEdgePower
= ath9k_hw_get_max_edge_power(freq
,
658 AR5416_NUM_BAND_EDGES
);
660 if ((cfgCtl
& ~CTL_MODE_M
) == SD_NO_CTL
) {
661 twiceMaxEdgePower
= min(twiceMaxEdgePower
,
664 twiceMaxEdgePower
= twiceMinEdgePower
;
670 minCtlPower
= (u8
)min(twiceMaxEdgePower
, scaledPower
);
672 /* Apply ctl mode to correct target power set */
673 switch (pCtlMode
[ctlMode
]) {
675 for (i
= 0; i
< ARRAY_SIZE(targetPowerCck
.tPow2x
); i
++) {
676 targetPowerCck
.tPow2x
[i
] =
677 (u8
)min((u16
)targetPowerCck
.tPow2x
[i
],
683 for (i
= 0; i
< ARRAY_SIZE(targetPowerOfdm
.tPow2x
); i
++) {
684 targetPowerOfdm
.tPow2x
[i
] =
685 (u8
)min((u16
)targetPowerOfdm
.tPow2x
[i
],
691 for (i
= 0; i
< ARRAY_SIZE(targetPowerHt20
.tPow2x
); i
++) {
692 targetPowerHt20
.tPow2x
[i
] =
693 (u8
)min((u16
)targetPowerHt20
.tPow2x
[i
],
698 targetPowerCckExt
.tPow2x
[0] =
699 (u8
)min((u16
)targetPowerCckExt
.tPow2x
[0],
704 targetPowerOfdmExt
.tPow2x
[0] =
705 (u8
)min((u16
)targetPowerOfdmExt
.tPow2x
[0],
710 for (i
= 0; i
< ARRAY_SIZE(targetPowerHt40
.tPow2x
); i
++) {
711 targetPowerHt40
.tPow2x
[i
] =
712 (u8
)min((u16
)targetPowerHt40
.tPow2x
[i
],
721 /* Now set the rates array */
723 ratesArray
[rate6mb
] =
724 ratesArray
[rate9mb
] =
725 ratesArray
[rate12mb
] =
726 ratesArray
[rate18mb
] =
727 ratesArray
[rate24mb
] = targetPowerOfdm
.tPow2x
[0];
729 ratesArray
[rate36mb
] = targetPowerOfdm
.tPow2x
[1];
730 ratesArray
[rate48mb
] = targetPowerOfdm
.tPow2x
[2];
731 ratesArray
[rate54mb
] = targetPowerOfdm
.tPow2x
[3];
732 ratesArray
[rateXr
] = targetPowerOfdm
.tPow2x
[0];
734 for (i
= 0; i
< ARRAY_SIZE(targetPowerHt20
.tPow2x
); i
++)
735 ratesArray
[rateHt20_0
+ i
] = targetPowerHt20
.tPow2x
[i
];
737 if (IS_CHAN_2GHZ(chan
)) {
738 ratesArray
[rate1l
] = targetPowerCck
.tPow2x
[0];
740 ratesArray
[rate2l
] = targetPowerCck
.tPow2x
[1];
741 ratesArray
[rate5_5s
] =
742 ratesArray
[rate5_5l
] = targetPowerCck
.tPow2x
[2];
743 ratesArray
[rate11s
] =
744 ratesArray
[rate11l
] = targetPowerCck
.tPow2x
[3];
746 if (IS_CHAN_HT40(chan
)) {
747 for (i
= 0; i
< ARRAY_SIZE(targetPowerHt40
.tPow2x
); i
++)
748 ratesArray
[rateHt40_0
+ i
] = targetPowerHt40
.tPow2x
[i
];
750 ratesArray
[rateDupOfdm
] = targetPowerHt40
.tPow2x
[0];
751 ratesArray
[rateDupCck
] = targetPowerHt40
.tPow2x
[0];
752 ratesArray
[rateExtOfdm
] = targetPowerOfdmExt
.tPow2x
[0];
754 if (IS_CHAN_2GHZ(chan
))
755 ratesArray
[rateExtCck
] = targetPowerCckExt
.tPow2x
[0];
762 static void ath9k_hw_ar9287_set_txpower(struct ath_hw
*ah
,
763 struct ath9k_channel
*chan
, u16 cfgCtl
,
764 u8 twiceAntennaReduction
,
765 u8 powerLimit
, bool test
)
767 struct ath_regulatory
*regulatory
= ath9k_hw_regulatory(ah
);
768 struct ar9287_eeprom
*pEepData
= &ah
->eeprom
.map9287
;
769 struct modal_eep_ar9287_header
*pModal
= &pEepData
->modalHeader
;
770 int16_t ratesArray
[Ar5416RateSize
];
771 u8 ht40PowerIncForPdadc
= 2;
774 memset(ratesArray
, 0, sizeof(ratesArray
));
776 if ((pEepData
->baseEepHeader
.version
& AR9287_EEP_VER_MINOR_MASK
) >=
777 AR9287_EEP_MINOR_VER_2
)
778 ht40PowerIncForPdadc
= pModal
->ht40PowerIncForPdadc
;
780 ath9k_hw_set_ar9287_power_per_rate_table(ah
, chan
,
781 &ratesArray
[0], cfgCtl
,
782 twiceAntennaReduction
,
785 ath9k_hw_set_ar9287_power_cal_table(ah
, chan
);
787 regulatory
->max_power_level
= 0;
788 for (i
= 0; i
< ARRAY_SIZE(ratesArray
); i
++) {
789 if (ratesArray
[i
] > MAX_RATE_POWER
)
790 ratesArray
[i
] = MAX_RATE_POWER
;
792 if (ratesArray
[i
] > regulatory
->max_power_level
)
793 regulatory
->max_power_level
= ratesArray
[i
];
796 ath9k_hw_update_regulatory_maxpower(ah
);
801 for (i
= 0; i
< Ar5416RateSize
; i
++)
802 ratesArray
[i
] -= AR9287_PWR_TABLE_OFFSET_DB
* 2;
804 ENABLE_REGWRITE_BUFFER(ah
);
806 /* OFDM power per rate */
807 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE1
,
808 ATH9K_POW_SM(ratesArray
[rate18mb
], 24)
809 | ATH9K_POW_SM(ratesArray
[rate12mb
], 16)
810 | ATH9K_POW_SM(ratesArray
[rate9mb
], 8)
811 | ATH9K_POW_SM(ratesArray
[rate6mb
], 0));
813 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE2
,
814 ATH9K_POW_SM(ratesArray
[rate54mb
], 24)
815 | ATH9K_POW_SM(ratesArray
[rate48mb
], 16)
816 | ATH9K_POW_SM(ratesArray
[rate36mb
], 8)
817 | ATH9K_POW_SM(ratesArray
[rate24mb
], 0));
819 /* CCK power per rate */
820 if (IS_CHAN_2GHZ(chan
)) {
821 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE3
,
822 ATH9K_POW_SM(ratesArray
[rate2s
], 24)
823 | ATH9K_POW_SM(ratesArray
[rate2l
], 16)
824 | ATH9K_POW_SM(ratesArray
[rateXr
], 8)
825 | ATH9K_POW_SM(ratesArray
[rate1l
], 0));
826 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE4
,
827 ATH9K_POW_SM(ratesArray
[rate11s
], 24)
828 | ATH9K_POW_SM(ratesArray
[rate11l
], 16)
829 | ATH9K_POW_SM(ratesArray
[rate5_5s
], 8)
830 | ATH9K_POW_SM(ratesArray
[rate5_5l
], 0));
833 /* HT20 power per rate */
834 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE5
,
835 ATH9K_POW_SM(ratesArray
[rateHt20_3
], 24)
836 | ATH9K_POW_SM(ratesArray
[rateHt20_2
], 16)
837 | ATH9K_POW_SM(ratesArray
[rateHt20_1
], 8)
838 | ATH9K_POW_SM(ratesArray
[rateHt20_0
], 0));
840 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE6
,
841 ATH9K_POW_SM(ratesArray
[rateHt20_7
], 24)
842 | ATH9K_POW_SM(ratesArray
[rateHt20_6
], 16)
843 | ATH9K_POW_SM(ratesArray
[rateHt20_5
], 8)
844 | ATH9K_POW_SM(ratesArray
[rateHt20_4
], 0));
846 /* HT40 power per rate */
847 if (IS_CHAN_HT40(chan
)) {
848 if (ath9k_hw_ar9287_get_eeprom(ah
, EEP_OL_PWRCTRL
)) {
849 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE7
,
850 ATH9K_POW_SM(ratesArray
[rateHt40_3
], 24)
851 | ATH9K_POW_SM(ratesArray
[rateHt40_2
], 16)
852 | ATH9K_POW_SM(ratesArray
[rateHt40_1
], 8)
853 | ATH9K_POW_SM(ratesArray
[rateHt40_0
], 0));
855 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE8
,
856 ATH9K_POW_SM(ratesArray
[rateHt40_7
], 24)
857 | ATH9K_POW_SM(ratesArray
[rateHt40_6
], 16)
858 | ATH9K_POW_SM(ratesArray
[rateHt40_5
], 8)
859 | ATH9K_POW_SM(ratesArray
[rateHt40_4
], 0));
861 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE7
,
862 ATH9K_POW_SM(ratesArray
[rateHt40_3
] +
863 ht40PowerIncForPdadc
, 24)
864 | ATH9K_POW_SM(ratesArray
[rateHt40_2
] +
865 ht40PowerIncForPdadc
, 16)
866 | ATH9K_POW_SM(ratesArray
[rateHt40_1
] +
867 ht40PowerIncForPdadc
, 8)
868 | ATH9K_POW_SM(ratesArray
[rateHt40_0
] +
869 ht40PowerIncForPdadc
, 0));
871 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE8
,
872 ATH9K_POW_SM(ratesArray
[rateHt40_7
] +
873 ht40PowerIncForPdadc
, 24)
874 | ATH9K_POW_SM(ratesArray
[rateHt40_6
] +
875 ht40PowerIncForPdadc
, 16)
876 | ATH9K_POW_SM(ratesArray
[rateHt40_5
] +
877 ht40PowerIncForPdadc
, 8)
878 | ATH9K_POW_SM(ratesArray
[rateHt40_4
] +
879 ht40PowerIncForPdadc
, 0));
882 /* Dup/Ext power per rate */
883 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE9
,
884 ATH9K_POW_SM(ratesArray
[rateExtOfdm
], 24)
885 | ATH9K_POW_SM(ratesArray
[rateExtCck
], 16)
886 | ATH9K_POW_SM(ratesArray
[rateDupOfdm
], 8)
887 | ATH9K_POW_SM(ratesArray
[rateDupCck
], 0));
889 REGWRITE_BUFFER_FLUSH(ah
);
892 static void ath9k_hw_ar9287_set_board_values(struct ath_hw
*ah
,
893 struct ath9k_channel
*chan
)
895 struct ar9287_eeprom
*eep
= &ah
->eeprom
.map9287
;
896 struct modal_eep_ar9287_header
*pModal
= &eep
->modalHeader
;
897 u32 regChainOffset
, regval
;
901 pModal
= &eep
->modalHeader
;
903 REG_WRITE(ah
, AR_PHY_SWITCH_COM
, pModal
->antCtrlCommon
);
905 for (i
= 0; i
< AR9287_MAX_CHAINS
; i
++) {
906 regChainOffset
= i
* 0x1000;
908 REG_WRITE(ah
, AR_PHY_SWITCH_CHAIN_0
+ regChainOffset
,
909 pModal
->antCtrlChain
[i
]);
911 REG_WRITE(ah
, AR_PHY_TIMING_CTRL4(0) + regChainOffset
,
912 (REG_READ(ah
, AR_PHY_TIMING_CTRL4(0) + regChainOffset
)
913 & ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF
|
914 AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF
)) |
915 SM(pModal
->iqCalICh
[i
],
916 AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF
) |
917 SM(pModal
->iqCalQCh
[i
],
918 AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF
));
920 txRxAttenLocal
= pModal
->txRxAttenCh
[i
];
922 REG_RMW_FIELD(ah
, AR_PHY_GAIN_2GHZ
+ regChainOffset
,
923 AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN
,
924 pModal
->bswMargin
[i
]);
925 REG_RMW_FIELD(ah
, AR_PHY_GAIN_2GHZ
+ regChainOffset
,
926 AR_PHY_GAIN_2GHZ_XATTEN1_DB
,
927 pModal
->bswAtten
[i
]);
928 REG_RMW_FIELD(ah
, AR_PHY_RXGAIN
+ regChainOffset
,
929 AR9280_PHY_RXGAIN_TXRX_ATTEN
,
931 REG_RMW_FIELD(ah
, AR_PHY_RXGAIN
+ regChainOffset
,
932 AR9280_PHY_RXGAIN_TXRX_MARGIN
,
933 pModal
->rxTxMarginCh
[i
]);
937 if (IS_CHAN_HT40(chan
))
938 REG_RMW_FIELD(ah
, AR_PHY_SETTLING
,
939 AR_PHY_SETTLING_SWITCH
, pModal
->swSettleHt40
);
941 REG_RMW_FIELD(ah
, AR_PHY_SETTLING
,
942 AR_PHY_SETTLING_SWITCH
, pModal
->switchSettling
);
944 REG_RMW_FIELD(ah
, AR_PHY_DESIRED_SZ
,
945 AR_PHY_DESIRED_SZ_ADC
, pModal
->adcDesiredSize
);
947 REG_WRITE(ah
, AR_PHY_RF_CTL4
,
948 SM(pModal
->txEndToXpaOff
, AR_PHY_RF_CTL4_TX_END_XPAA_OFF
)
949 | SM(pModal
->txEndToXpaOff
, AR_PHY_RF_CTL4_TX_END_XPAB_OFF
)
950 | SM(pModal
->txFrameToXpaOn
, AR_PHY_RF_CTL4_FRAME_XPAA_ON
)
951 | SM(pModal
->txFrameToXpaOn
, AR_PHY_RF_CTL4_FRAME_XPAB_ON
));
953 REG_RMW_FIELD(ah
, AR_PHY_RF_CTL3
,
954 AR_PHY_TX_END_TO_A2_RX_ON
, pModal
->txEndToRxOn
);
956 REG_RMW_FIELD(ah
, AR_PHY_CCA
,
957 AR9280_PHY_CCA_THRESH62
, pModal
->thresh62
);
958 REG_RMW_FIELD(ah
, AR_PHY_EXT_CCA0
,
959 AR_PHY_EXT_CCA0_THRESH62
, pModal
->thresh62
);
961 regval
= REG_READ(ah
, AR9287_AN_RF2G3_CH0
);
962 regval
&= ~(AR9287_AN_RF2G3_DB1
|
963 AR9287_AN_RF2G3_DB2
|
964 AR9287_AN_RF2G3_OB_CCK
|
965 AR9287_AN_RF2G3_OB_PSK
|
966 AR9287_AN_RF2G3_OB_QAM
|
967 AR9287_AN_RF2G3_OB_PAL_OFF
);
968 regval
|= (SM(pModal
->db1
, AR9287_AN_RF2G3_DB1
) |
969 SM(pModal
->db2
, AR9287_AN_RF2G3_DB2
) |
970 SM(pModal
->ob_cck
, AR9287_AN_RF2G3_OB_CCK
) |
971 SM(pModal
->ob_psk
, AR9287_AN_RF2G3_OB_PSK
) |
972 SM(pModal
->ob_qam
, AR9287_AN_RF2G3_OB_QAM
) |
973 SM(pModal
->ob_pal_off
, AR9287_AN_RF2G3_OB_PAL_OFF
));
975 ath9k_hw_analog_shift_regwrite(ah
, AR9287_AN_RF2G3_CH0
, regval
);
977 regval
= REG_READ(ah
, AR9287_AN_RF2G3_CH1
);
978 regval
&= ~(AR9287_AN_RF2G3_DB1
|
979 AR9287_AN_RF2G3_DB2
|
980 AR9287_AN_RF2G3_OB_CCK
|
981 AR9287_AN_RF2G3_OB_PSK
|
982 AR9287_AN_RF2G3_OB_QAM
|
983 AR9287_AN_RF2G3_OB_PAL_OFF
);
984 regval
|= (SM(pModal
->db1
, AR9287_AN_RF2G3_DB1
) |
985 SM(pModal
->db2
, AR9287_AN_RF2G3_DB2
) |
986 SM(pModal
->ob_cck
, AR9287_AN_RF2G3_OB_CCK
) |
987 SM(pModal
->ob_psk
, AR9287_AN_RF2G3_OB_PSK
) |
988 SM(pModal
->ob_qam
, AR9287_AN_RF2G3_OB_QAM
) |
989 SM(pModal
->ob_pal_off
, AR9287_AN_RF2G3_OB_PAL_OFF
));
991 ath9k_hw_analog_shift_regwrite(ah
, AR9287_AN_RF2G3_CH1
, regval
);
993 REG_RMW_FIELD(ah
, AR_PHY_RF_CTL2
,
994 AR_PHY_TX_END_DATA_START
, pModal
->txFrameToDataStart
);
995 REG_RMW_FIELD(ah
, AR_PHY_RF_CTL2
,
996 AR_PHY_TX_END_PA_ON
, pModal
->txFrameToPaOn
);
998 ath9k_hw_analog_shift_rmw(ah
, AR9287_AN_TOP2
,
999 AR9287_AN_TOP2_XPABIAS_LVL
,
1000 AR9287_AN_TOP2_XPABIAS_LVL_S
,
1001 pModal
->xpaBiasLvl
);
1004 static u16
ath9k_hw_ar9287_get_spur_channel(struct ath_hw
*ah
,
1007 #define EEP_MAP9287_SPURCHAN \
1008 (ah->eeprom.map9287.modalHeader.spurChans[i].spurChan)
1010 struct ath_common
*common
= ath9k_hw_common(ah
);
1011 u16 spur_val
= AR_NO_SPUR
;
1013 ath_dbg(common
, ANI
, "Getting spur idx:%d is2Ghz:%d val:%x\n",
1014 i
, is2GHz
, ah
->config
.spurchans
[i
][is2GHz
]);
1016 switch (ah
->config
.spurmode
) {
1019 case SPUR_ENABLE_IOCTL
:
1020 spur_val
= ah
->config
.spurchans
[i
][is2GHz
];
1021 ath_dbg(common
, ANI
, "Getting spur val from new loc. %d\n",
1024 case SPUR_ENABLE_EEPROM
:
1025 spur_val
= EEP_MAP9287_SPURCHAN
;
1031 #undef EEP_MAP9287_SPURCHAN
1034 const struct eeprom_ops eep_ar9287_ops
= {
1035 .check_eeprom
= ath9k_hw_ar9287_check_eeprom
,
1036 .get_eeprom
= ath9k_hw_ar9287_get_eeprom
,
1037 .fill_eeprom
= ath9k_hw_ar9287_fill_eeprom
,
1038 .dump_eeprom
= ath9k_hw_ar9287_dump_eeprom
,
1039 .get_eeprom_ver
= ath9k_hw_ar9287_get_eeprom_ver
,
1040 .get_eeprom_rev
= ath9k_hw_ar9287_get_eeprom_rev
,
1041 .set_board_values
= ath9k_hw_ar9287_set_board_values
,
1042 .set_txpower
= ath9k_hw_ar9287_set_txpower
,
1043 .get_spur_channel
= ath9k_hw_ar9287_get_spur_channel