ARM: mm: Recreate kernel mappings in early_paging_init()
[linux/fpc-iii.git] / drivers / net / wireless / ath / ath9k / eeprom_9287.c
blob3ae1f3df063758f000519a5f7d08984e8fb474b2
1 /*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 #include <asm/unaligned.h>
18 #include "hw.h"
19 #include "ar9002_phy.h"
21 #define SIZE_EEPROM_AR9287 (sizeof(struct ar9287_eeprom) / sizeof(u16))
23 static int ath9k_hw_ar9287_get_eeprom_ver(struct ath_hw *ah)
25 return (ah->eeprom.map9287.baseEepHeader.version >> 12) & 0xF;
28 static int ath9k_hw_ar9287_get_eeprom_rev(struct ath_hw *ah)
30 return (ah->eeprom.map9287.baseEepHeader.version) & 0xFFF;
33 static bool __ath9k_hw_ar9287_fill_eeprom(struct ath_hw *ah)
35 struct ar9287_eeprom *eep = &ah->eeprom.map9287;
36 u16 *eep_data;
37 int addr, eep_start_loc = AR9287_EEP_START_LOC;
38 eep_data = (u16 *)eep;
40 for (addr = 0; addr < SIZE_EEPROM_AR9287; addr++) {
41 if (!ath9k_hw_nvram_read(ah, addr + eep_start_loc, eep_data))
42 return false;
43 eep_data++;
46 return true;
49 static bool __ath9k_hw_usb_ar9287_fill_eeprom(struct ath_hw *ah)
51 u16 *eep_data = (u16 *)&ah->eeprom.map9287;
53 ath9k_hw_usb_gen_fill_eeprom(ah, eep_data,
54 AR9287_HTC_EEP_START_LOC,
55 SIZE_EEPROM_AR9287);
56 return true;
59 static bool ath9k_hw_ar9287_fill_eeprom(struct ath_hw *ah)
61 struct ath_common *common = ath9k_hw_common(ah);
63 if (!ath9k_hw_use_flash(ah)) {
64 ath_dbg(common, EEPROM, "Reading from EEPROM, not flash\n");
67 if (common->bus_ops->ath_bus_type == ATH_USB)
68 return __ath9k_hw_usb_ar9287_fill_eeprom(ah);
69 else
70 return __ath9k_hw_ar9287_fill_eeprom(ah);
73 #if defined(CONFIG_ATH9K_DEBUGFS) || defined(CONFIG_ATH9K_HTC_DEBUGFS)
74 static u32 ar9287_dump_modal_eeprom(char *buf, u32 len, u32 size,
75 struct modal_eep_ar9287_header *modal_hdr)
77 PR_EEP("Chain0 Ant. Control", modal_hdr->antCtrlChain[0]);
78 PR_EEP("Chain1 Ant. Control", modal_hdr->antCtrlChain[1]);
79 PR_EEP("Ant. Common Control", modal_hdr->antCtrlCommon);
80 PR_EEP("Chain0 Ant. Gain", modal_hdr->antennaGainCh[0]);
81 PR_EEP("Chain1 Ant. Gain", modal_hdr->antennaGainCh[1]);
82 PR_EEP("Switch Settle", modal_hdr->switchSettling);
83 PR_EEP("Chain0 TxRxAtten", modal_hdr->txRxAttenCh[0]);
84 PR_EEP("Chain1 TxRxAtten", modal_hdr->txRxAttenCh[1]);
85 PR_EEP("Chain0 RxTxMargin", modal_hdr->rxTxMarginCh[0]);
86 PR_EEP("Chain1 RxTxMargin", modal_hdr->rxTxMarginCh[1]);
87 PR_EEP("ADC Desired size", modal_hdr->adcDesiredSize);
88 PR_EEP("txEndToXpaOff", modal_hdr->txEndToXpaOff);
89 PR_EEP("txEndToRxOn", modal_hdr->txEndToRxOn);
90 PR_EEP("txFrameToXpaOn", modal_hdr->txFrameToXpaOn);
91 PR_EEP("CCA Threshold)", modal_hdr->thresh62);
92 PR_EEP("Chain0 NF Threshold", modal_hdr->noiseFloorThreshCh[0]);
93 PR_EEP("Chain1 NF Threshold", modal_hdr->noiseFloorThreshCh[1]);
94 PR_EEP("xpdGain", modal_hdr->xpdGain);
95 PR_EEP("External PD", modal_hdr->xpd);
96 PR_EEP("Chain0 I Coefficient", modal_hdr->iqCalICh[0]);
97 PR_EEP("Chain1 I Coefficient", modal_hdr->iqCalICh[1]);
98 PR_EEP("Chain0 Q Coefficient", modal_hdr->iqCalQCh[0]);
99 PR_EEP("Chain1 Q Coefficient", modal_hdr->iqCalQCh[1]);
100 PR_EEP("pdGainOverlap", modal_hdr->pdGainOverlap);
101 PR_EEP("xPA Bias Level", modal_hdr->xpaBiasLvl);
102 PR_EEP("txFrameToDataStart", modal_hdr->txFrameToDataStart);
103 PR_EEP("txFrameToPaOn", modal_hdr->txFrameToPaOn);
104 PR_EEP("HT40 Power Inc.", modal_hdr->ht40PowerIncForPdadc);
105 PR_EEP("Chain0 bswAtten", modal_hdr->bswAtten[0]);
106 PR_EEP("Chain1 bswAtten", modal_hdr->bswAtten[1]);
107 PR_EEP("Chain0 bswMargin", modal_hdr->bswMargin[0]);
108 PR_EEP("Chain1 bswMargin", modal_hdr->bswMargin[1]);
109 PR_EEP("HT40 Switch Settle", modal_hdr->swSettleHt40);
110 PR_EEP("AR92x7 Version", modal_hdr->version);
111 PR_EEP("DriverBias1", modal_hdr->db1);
112 PR_EEP("DriverBias2", modal_hdr->db1);
113 PR_EEP("CCK OutputBias", modal_hdr->ob_cck);
114 PR_EEP("PSK OutputBias", modal_hdr->ob_psk);
115 PR_EEP("QAM OutputBias", modal_hdr->ob_qam);
116 PR_EEP("PAL_OFF OutputBias", modal_hdr->ob_pal_off);
118 return len;
121 static u32 ath9k_hw_ar9287_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
122 u8 *buf, u32 len, u32 size)
124 struct ar9287_eeprom *eep = &ah->eeprom.map9287;
125 struct base_eep_ar9287_header *pBase = &eep->baseEepHeader;
127 if (!dump_base_hdr) {
128 len += snprintf(buf + len, size - len,
129 "%20s :\n", "2GHz modal Header");
130 len = ar9287_dump_modal_eeprom(buf, len, size,
131 &eep->modalHeader);
132 goto out;
135 PR_EEP("Major Version", pBase->version >> 12);
136 PR_EEP("Minor Version", pBase->version & 0xFFF);
137 PR_EEP("Checksum", pBase->checksum);
138 PR_EEP("Length", pBase->length);
139 PR_EEP("RegDomain1", pBase->regDmn[0]);
140 PR_EEP("RegDomain2", pBase->regDmn[1]);
141 PR_EEP("TX Mask", pBase->txMask);
142 PR_EEP("RX Mask", pBase->rxMask);
143 PR_EEP("Allow 5GHz", !!(pBase->opCapFlags & AR5416_OPFLAGS_11A));
144 PR_EEP("Allow 2GHz", !!(pBase->opCapFlags & AR5416_OPFLAGS_11G));
145 PR_EEP("Disable 2GHz HT20", !!(pBase->opCapFlags &
146 AR5416_OPFLAGS_N_2G_HT20));
147 PR_EEP("Disable 2GHz HT40", !!(pBase->opCapFlags &
148 AR5416_OPFLAGS_N_2G_HT40));
149 PR_EEP("Disable 5Ghz HT20", !!(pBase->opCapFlags &
150 AR5416_OPFLAGS_N_5G_HT20));
151 PR_EEP("Disable 5Ghz HT40", !!(pBase->opCapFlags &
152 AR5416_OPFLAGS_N_5G_HT40));
153 PR_EEP("Big Endian", !!(pBase->eepMisc & 0x01));
154 PR_EEP("Cal Bin Major Ver", (pBase->binBuildNumber >> 24) & 0xFF);
155 PR_EEP("Cal Bin Minor Ver", (pBase->binBuildNumber >> 16) & 0xFF);
156 PR_EEP("Cal Bin Build", (pBase->binBuildNumber >> 8) & 0xFF);
157 PR_EEP("Power Table Offset", pBase->pwrTableOffset);
158 PR_EEP("OpenLoop Power Ctrl", pBase->openLoopPwrCntl);
160 len += snprintf(buf + len, size - len, "%20s : %pM\n", "MacAddress",
161 pBase->macAddr);
163 out:
164 if (len > size)
165 len = size;
167 return len;
169 #else
170 static u32 ath9k_hw_ar9287_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
171 u8 *buf, u32 len, u32 size)
173 return 0;
175 #endif
178 static int ath9k_hw_ar9287_check_eeprom(struct ath_hw *ah)
180 u32 sum = 0, el, integer;
181 u16 temp, word, magic, magic2, *eepdata;
182 int i, addr;
183 bool need_swap = false;
184 struct ar9287_eeprom *eep = &ah->eeprom.map9287;
185 struct ath_common *common = ath9k_hw_common(ah);
187 if (!ath9k_hw_use_flash(ah)) {
188 if (!ath9k_hw_nvram_read(ah, AR5416_EEPROM_MAGIC_OFFSET,
189 &magic)) {
190 ath_err(common, "Reading Magic # failed\n");
191 return false;
194 ath_dbg(common, EEPROM, "Read Magic = 0x%04X\n", magic);
196 if (magic != AR5416_EEPROM_MAGIC) {
197 magic2 = swab16(magic);
199 if (magic2 == AR5416_EEPROM_MAGIC) {
200 need_swap = true;
201 eepdata = (u16 *)(&ah->eeprom);
203 for (addr = 0; addr < SIZE_EEPROM_AR9287; addr++) {
204 temp = swab16(*eepdata);
205 *eepdata = temp;
206 eepdata++;
208 } else {
209 ath_err(common,
210 "Invalid EEPROM Magic. Endianness mismatch.\n");
211 return -EINVAL;
216 ath_dbg(common, EEPROM, "need_swap = %s\n",
217 need_swap ? "True" : "False");
219 if (need_swap)
220 el = swab16(ah->eeprom.map9287.baseEepHeader.length);
221 else
222 el = ah->eeprom.map9287.baseEepHeader.length;
224 if (el > sizeof(struct ar9287_eeprom))
225 el = sizeof(struct ar9287_eeprom) / sizeof(u16);
226 else
227 el = el / sizeof(u16);
229 eepdata = (u16 *)(&ah->eeprom);
231 for (i = 0; i < el; i++)
232 sum ^= *eepdata++;
234 if (need_swap) {
235 word = swab16(eep->baseEepHeader.length);
236 eep->baseEepHeader.length = word;
238 word = swab16(eep->baseEepHeader.checksum);
239 eep->baseEepHeader.checksum = word;
241 word = swab16(eep->baseEepHeader.version);
242 eep->baseEepHeader.version = word;
244 word = swab16(eep->baseEepHeader.regDmn[0]);
245 eep->baseEepHeader.regDmn[0] = word;
247 word = swab16(eep->baseEepHeader.regDmn[1]);
248 eep->baseEepHeader.regDmn[1] = word;
250 word = swab16(eep->baseEepHeader.rfSilent);
251 eep->baseEepHeader.rfSilent = word;
253 word = swab16(eep->baseEepHeader.blueToothOptions);
254 eep->baseEepHeader.blueToothOptions = word;
256 word = swab16(eep->baseEepHeader.deviceCap);
257 eep->baseEepHeader.deviceCap = word;
259 integer = swab32(eep->modalHeader.antCtrlCommon);
260 eep->modalHeader.antCtrlCommon = integer;
262 for (i = 0; i < AR9287_MAX_CHAINS; i++) {
263 integer = swab32(eep->modalHeader.antCtrlChain[i]);
264 eep->modalHeader.antCtrlChain[i] = integer;
267 for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
268 word = swab16(eep->modalHeader.spurChans[i].spurChan);
269 eep->modalHeader.spurChans[i].spurChan = word;
273 if (sum != 0xffff || ah->eep_ops->get_eeprom_ver(ah) != AR9287_EEP_VER
274 || ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_NO_BACK_VER) {
275 ath_err(common, "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
276 sum, ah->eep_ops->get_eeprom_ver(ah));
277 return -EINVAL;
280 return 0;
283 static u32 ath9k_hw_ar9287_get_eeprom(struct ath_hw *ah,
284 enum eeprom_param param)
286 struct ar9287_eeprom *eep = &ah->eeprom.map9287;
287 struct modal_eep_ar9287_header *pModal = &eep->modalHeader;
288 struct base_eep_ar9287_header *pBase = &eep->baseEepHeader;
289 u16 ver_minor;
291 ver_minor = pBase->version & AR9287_EEP_VER_MINOR_MASK;
293 switch (param) {
294 case EEP_NFTHRESH_2:
295 return pModal->noiseFloorThreshCh[0];
296 case EEP_MAC_LSW:
297 return get_unaligned_be16(pBase->macAddr);
298 case EEP_MAC_MID:
299 return get_unaligned_be16(pBase->macAddr + 2);
300 case EEP_MAC_MSW:
301 return get_unaligned_be16(pBase->macAddr + 4);
302 case EEP_REG_0:
303 return pBase->regDmn[0];
304 case EEP_OP_CAP:
305 return pBase->deviceCap;
306 case EEP_OP_MODE:
307 return pBase->opCapFlags;
308 case EEP_RF_SILENT:
309 return pBase->rfSilent;
310 case EEP_MINOR_REV:
311 return ver_minor;
312 case EEP_TX_MASK:
313 return pBase->txMask;
314 case EEP_RX_MASK:
315 return pBase->rxMask;
316 case EEP_DEV_TYPE:
317 return pBase->deviceType;
318 case EEP_OL_PWRCTRL:
319 return pBase->openLoopPwrCntl;
320 case EEP_TEMPSENSE_SLOPE:
321 if (ver_minor >= AR9287_EEP_MINOR_VER_2)
322 return pBase->tempSensSlope;
323 else
324 return 0;
325 case EEP_TEMPSENSE_SLOPE_PAL_ON:
326 if (ver_minor >= AR9287_EEP_MINOR_VER_3)
327 return pBase->tempSensSlopePalOn;
328 else
329 return 0;
330 case EEP_ANTENNA_GAIN_2G:
331 return max_t(u8, pModal->antennaGainCh[0],
332 pModal->antennaGainCh[1]);
333 default:
334 return 0;
338 static void ar9287_eeprom_get_tx_gain_index(struct ath_hw *ah,
339 struct ath9k_channel *chan,
340 struct cal_data_op_loop_ar9287 *pRawDatasetOpLoop,
341 u8 *pCalChans, u16 availPiers, int8_t *pPwr)
343 u16 idxL = 0, idxR = 0, numPiers;
344 bool match;
345 struct chan_centers centers;
347 ath9k_hw_get_channel_centers(ah, chan, &centers);
349 for (numPiers = 0; numPiers < availPiers; numPiers++) {
350 if (pCalChans[numPiers] == AR5416_BCHAN_UNUSED)
351 break;
354 match = ath9k_hw_get_lower_upper_index(
355 (u8)FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)),
356 pCalChans, numPiers, &idxL, &idxR);
358 if (match) {
359 *pPwr = (int8_t) pRawDatasetOpLoop[idxL].pwrPdg[0][0];
360 } else {
361 *pPwr = ((int8_t) pRawDatasetOpLoop[idxL].pwrPdg[0][0] +
362 (int8_t) pRawDatasetOpLoop[idxR].pwrPdg[0][0])/2;
367 static void ar9287_eeprom_olpc_set_pdadcs(struct ath_hw *ah,
368 int32_t txPower, u16 chain)
370 u32 tmpVal;
371 u32 a;
373 /* Enable OLPC for chain 0 */
375 tmpVal = REG_READ(ah, 0xa270);
376 tmpVal = tmpVal & 0xFCFFFFFF;
377 tmpVal = tmpVal | (0x3 << 24);
378 REG_WRITE(ah, 0xa270, tmpVal);
380 /* Enable OLPC for chain 1 */
382 tmpVal = REG_READ(ah, 0xb270);
383 tmpVal = tmpVal & 0xFCFFFFFF;
384 tmpVal = tmpVal | (0x3 << 24);
385 REG_WRITE(ah, 0xb270, tmpVal);
387 /* Write the OLPC ref power for chain 0 */
389 if (chain == 0) {
390 tmpVal = REG_READ(ah, 0xa398);
391 tmpVal = tmpVal & 0xff00ffff;
392 a = (txPower)&0xff;
393 tmpVal = tmpVal | (a << 16);
394 REG_WRITE(ah, 0xa398, tmpVal);
397 /* Write the OLPC ref power for chain 1 */
399 if (chain == 1) {
400 tmpVal = REG_READ(ah, 0xb398);
401 tmpVal = tmpVal & 0xff00ffff;
402 a = (txPower)&0xff;
403 tmpVal = tmpVal | (a << 16);
404 REG_WRITE(ah, 0xb398, tmpVal);
408 static void ath9k_hw_set_ar9287_power_cal_table(struct ath_hw *ah,
409 struct ath9k_channel *chan)
411 struct cal_data_per_freq_ar9287 *pRawDataset;
412 struct cal_data_op_loop_ar9287 *pRawDatasetOpenLoop;
413 u8 *pCalBChans = NULL;
414 u16 pdGainOverlap_t2;
415 u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
416 u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK];
417 u16 numPiers = 0, i, j;
418 u16 numXpdGain, xpdMask;
419 u16 xpdGainValues[AR5416_NUM_PD_GAINS] = {0, 0, 0, 0};
420 u32 reg32, regOffset, regChainOffset, regval;
421 int16_t diff = 0;
422 struct ar9287_eeprom *pEepData = &ah->eeprom.map9287;
424 xpdMask = pEepData->modalHeader.xpdGain;
426 if ((pEepData->baseEepHeader.version & AR9287_EEP_VER_MINOR_MASK) >=
427 AR9287_EEP_MINOR_VER_2)
428 pdGainOverlap_t2 = pEepData->modalHeader.pdGainOverlap;
429 else
430 pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
431 AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
433 if (IS_CHAN_2GHZ(chan)) {
434 pCalBChans = pEepData->calFreqPier2G;
435 numPiers = AR9287_NUM_2G_CAL_PIERS;
436 if (ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
437 pRawDatasetOpenLoop =
438 (struct cal_data_op_loop_ar9287 *)pEepData->calPierData2G[0];
439 ah->initPDADC = pRawDatasetOpenLoop->vpdPdg[0][0];
443 numXpdGain = 0;
445 /* Calculate the value of xpdgains from the xpdGain Mask */
446 for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
447 if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
448 if (numXpdGain >= AR5416_NUM_PD_GAINS)
449 break;
450 xpdGainValues[numXpdGain] =
451 (u16)(AR5416_PD_GAINS_IN_MASK-i);
452 numXpdGain++;
456 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
457 (numXpdGain - 1) & 0x3);
458 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
459 xpdGainValues[0]);
460 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
461 xpdGainValues[1]);
462 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3,
463 xpdGainValues[2]);
465 for (i = 0; i < AR9287_MAX_CHAINS; i++) {
466 regChainOffset = i * 0x1000;
468 if (pEepData->baseEepHeader.txMask & (1 << i)) {
469 pRawDatasetOpenLoop =
470 (struct cal_data_op_loop_ar9287 *)pEepData->calPierData2G[i];
472 if (ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
473 int8_t txPower;
474 ar9287_eeprom_get_tx_gain_index(ah, chan,
475 pRawDatasetOpenLoop,
476 pCalBChans, numPiers,
477 &txPower);
478 ar9287_eeprom_olpc_set_pdadcs(ah, txPower, i);
479 } else {
480 pRawDataset =
481 (struct cal_data_per_freq_ar9287 *)
482 pEepData->calPierData2G[i];
484 ath9k_hw_get_gain_boundaries_pdadcs(ah, chan,
485 pRawDataset,
486 pCalBChans, numPiers,
487 pdGainOverlap_t2,
488 gainBoundaries,
489 pdadcValues,
490 numXpdGain);
493 ENABLE_REGWRITE_BUFFER(ah);
495 if (i == 0) {
496 if (!ath9k_hw_ar9287_get_eeprom(ah,
497 EEP_OL_PWRCTRL)) {
499 regval = SM(pdGainOverlap_t2,
500 AR_PHY_TPCRG5_PD_GAIN_OVERLAP)
501 | SM(gainBoundaries[0],
502 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)
503 | SM(gainBoundaries[1],
504 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)
505 | SM(gainBoundaries[2],
506 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)
507 | SM(gainBoundaries[3],
508 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4);
510 REG_WRITE(ah,
511 AR_PHY_TPCRG5 + regChainOffset,
512 regval);
516 if ((int32_t)AR9287_PWR_TABLE_OFFSET_DB !=
517 pEepData->baseEepHeader.pwrTableOffset) {
518 diff = (u16)(pEepData->baseEepHeader.pwrTableOffset -
519 (int32_t)AR9287_PWR_TABLE_OFFSET_DB);
520 diff *= 2;
522 for (j = 0; j < ((u16)AR5416_NUM_PDADC_VALUES-diff); j++)
523 pdadcValues[j] = pdadcValues[j+diff];
525 for (j = (u16)(AR5416_NUM_PDADC_VALUES-diff);
526 j < AR5416_NUM_PDADC_VALUES; j++)
527 pdadcValues[j] =
528 pdadcValues[AR5416_NUM_PDADC_VALUES-diff];
531 if (!ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
532 regOffset = AR_PHY_BASE +
533 (672 << 2) + regChainOffset;
535 for (j = 0; j < 32; j++) {
536 reg32 = get_unaligned_le32(&pdadcValues[4 * j]);
538 REG_WRITE(ah, regOffset, reg32);
539 regOffset += 4;
542 REGWRITE_BUFFER_FLUSH(ah);
547 static void ath9k_hw_set_ar9287_power_per_rate_table(struct ath_hw *ah,
548 struct ath9k_channel *chan,
549 int16_t *ratesArray,
550 u16 cfgCtl,
551 u16 antenna_reduction,
552 u16 powerLimit)
554 #define CMP_CTL \
555 (((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \
556 pEepData->ctlIndex[i])
558 #define CMP_NO_CTL \
559 (((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \
560 ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))
562 u16 twiceMaxEdgePower;
563 int i;
564 struct cal_ctl_data_ar9287 *rep;
565 struct cal_target_power_leg targetPowerOfdm = {0, {0, 0, 0, 0} },
566 targetPowerCck = {0, {0, 0, 0, 0} };
567 struct cal_target_power_leg targetPowerOfdmExt = {0, {0, 0, 0, 0} },
568 targetPowerCckExt = {0, {0, 0, 0, 0} };
569 struct cal_target_power_ht targetPowerHt20,
570 targetPowerHt40 = {0, {0, 0, 0, 0} };
571 u16 scaledPower = 0, minCtlPower;
572 static const u16 ctlModesFor11g[] = {
573 CTL_11B, CTL_11G, CTL_2GHT20,
574 CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
576 u16 numCtlModes = 0;
577 const u16 *pCtlMode = NULL;
578 u16 ctlMode, freq;
579 struct chan_centers centers;
580 int tx_chainmask;
581 u16 twiceMinEdgePower;
582 struct ar9287_eeprom *pEepData = &ah->eeprom.map9287;
583 tx_chainmask = ah->txchainmask;
585 ath9k_hw_get_channel_centers(ah, chan, &centers);
586 scaledPower = ath9k_hw_get_scaled_power(ah, powerLimit,
587 antenna_reduction);
590 * Get TX power from EEPROM.
592 if (IS_CHAN_2GHZ(chan)) {
593 /* CTL_11B, CTL_11G, CTL_2GHT20 */
594 numCtlModes =
595 ARRAY_SIZE(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40;
597 pCtlMode = ctlModesFor11g;
599 ath9k_hw_get_legacy_target_powers(ah, chan,
600 pEepData->calTargetPowerCck,
601 AR9287_NUM_2G_CCK_TARGET_POWERS,
602 &targetPowerCck, 4, false);
603 ath9k_hw_get_legacy_target_powers(ah, chan,
604 pEepData->calTargetPower2G,
605 AR9287_NUM_2G_20_TARGET_POWERS,
606 &targetPowerOfdm, 4, false);
607 ath9k_hw_get_target_powers(ah, chan,
608 pEepData->calTargetPower2GHT20,
609 AR9287_NUM_2G_20_TARGET_POWERS,
610 &targetPowerHt20, 8, false);
612 if (IS_CHAN_HT40(chan)) {
613 /* All 2G CTLs */
614 numCtlModes = ARRAY_SIZE(ctlModesFor11g);
615 ath9k_hw_get_target_powers(ah, chan,
616 pEepData->calTargetPower2GHT40,
617 AR9287_NUM_2G_40_TARGET_POWERS,
618 &targetPowerHt40, 8, true);
619 ath9k_hw_get_legacy_target_powers(ah, chan,
620 pEepData->calTargetPowerCck,
621 AR9287_NUM_2G_CCK_TARGET_POWERS,
622 &targetPowerCckExt, 4, true);
623 ath9k_hw_get_legacy_target_powers(ah, chan,
624 pEepData->calTargetPower2G,
625 AR9287_NUM_2G_20_TARGET_POWERS,
626 &targetPowerOfdmExt, 4, true);
630 for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
631 bool isHt40CtlMode =
632 (pCtlMode[ctlMode] == CTL_2GHT40) ? true : false;
634 if (isHt40CtlMode)
635 freq = centers.synth_center;
636 else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
637 freq = centers.ext_center;
638 else
639 freq = centers.ctl_center;
641 twiceMaxEdgePower = MAX_RATE_POWER;
642 /* Walk through the CTL indices stored in EEPROM */
643 for (i = 0; (i < AR9287_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
644 struct cal_ctl_edges *pRdEdgesPower;
647 * Compare test group from regulatory channel list
648 * with test mode from pCtlMode list
650 if (CMP_CTL || CMP_NO_CTL) {
651 rep = &(pEepData->ctlData[i]);
652 pRdEdgesPower =
653 rep->ctlEdges[ar5416_get_ntxchains(tx_chainmask) - 1];
655 twiceMinEdgePower = ath9k_hw_get_max_edge_power(freq,
656 pRdEdgesPower,
657 IS_CHAN_2GHZ(chan),
658 AR5416_NUM_BAND_EDGES);
660 if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
661 twiceMaxEdgePower = min(twiceMaxEdgePower,
662 twiceMinEdgePower);
663 } else {
664 twiceMaxEdgePower = twiceMinEdgePower;
665 break;
670 minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
672 /* Apply ctl mode to correct target power set */
673 switch (pCtlMode[ctlMode]) {
674 case CTL_11B:
675 for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
676 targetPowerCck.tPow2x[i] =
677 (u8)min((u16)targetPowerCck.tPow2x[i],
678 minCtlPower);
680 break;
681 case CTL_11A:
682 case CTL_11G:
683 for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
684 targetPowerOfdm.tPow2x[i] =
685 (u8)min((u16)targetPowerOfdm.tPow2x[i],
686 minCtlPower);
688 break;
689 case CTL_5GHT20:
690 case CTL_2GHT20:
691 for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
692 targetPowerHt20.tPow2x[i] =
693 (u8)min((u16)targetPowerHt20.tPow2x[i],
694 minCtlPower);
696 break;
697 case CTL_11B_EXT:
698 targetPowerCckExt.tPow2x[0] =
699 (u8)min((u16)targetPowerCckExt.tPow2x[0],
700 minCtlPower);
701 break;
702 case CTL_11A_EXT:
703 case CTL_11G_EXT:
704 targetPowerOfdmExt.tPow2x[0] =
705 (u8)min((u16)targetPowerOfdmExt.tPow2x[0],
706 minCtlPower);
707 break;
708 case CTL_5GHT40:
709 case CTL_2GHT40:
710 for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
711 targetPowerHt40.tPow2x[i] =
712 (u8)min((u16)targetPowerHt40.tPow2x[i],
713 minCtlPower);
715 break;
716 default:
717 break;
721 /* Now set the rates array */
723 ratesArray[rate6mb] =
724 ratesArray[rate9mb] =
725 ratesArray[rate12mb] =
726 ratesArray[rate18mb] =
727 ratesArray[rate24mb] = targetPowerOfdm.tPow2x[0];
729 ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
730 ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
731 ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
732 ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
734 for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
735 ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
737 if (IS_CHAN_2GHZ(chan)) {
738 ratesArray[rate1l] = targetPowerCck.tPow2x[0];
739 ratesArray[rate2s] =
740 ratesArray[rate2l] = targetPowerCck.tPow2x[1];
741 ratesArray[rate5_5s] =
742 ratesArray[rate5_5l] = targetPowerCck.tPow2x[2];
743 ratesArray[rate11s] =
744 ratesArray[rate11l] = targetPowerCck.tPow2x[3];
746 if (IS_CHAN_HT40(chan)) {
747 for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++)
748 ratesArray[rateHt40_0 + i] = targetPowerHt40.tPow2x[i];
750 ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
751 ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
752 ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
754 if (IS_CHAN_2GHZ(chan))
755 ratesArray[rateExtCck] = targetPowerCckExt.tPow2x[0];
758 #undef CMP_CTL
759 #undef CMP_NO_CTL
762 static void ath9k_hw_ar9287_set_txpower(struct ath_hw *ah,
763 struct ath9k_channel *chan, u16 cfgCtl,
764 u8 twiceAntennaReduction,
765 u8 powerLimit, bool test)
767 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
768 struct ar9287_eeprom *pEepData = &ah->eeprom.map9287;
769 struct modal_eep_ar9287_header *pModal = &pEepData->modalHeader;
770 int16_t ratesArray[Ar5416RateSize];
771 u8 ht40PowerIncForPdadc = 2;
772 int i;
774 memset(ratesArray, 0, sizeof(ratesArray));
776 if ((pEepData->baseEepHeader.version & AR9287_EEP_VER_MINOR_MASK) >=
777 AR9287_EEP_MINOR_VER_2)
778 ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
780 ath9k_hw_set_ar9287_power_per_rate_table(ah, chan,
781 &ratesArray[0], cfgCtl,
782 twiceAntennaReduction,
783 powerLimit);
785 ath9k_hw_set_ar9287_power_cal_table(ah, chan);
787 regulatory->max_power_level = 0;
788 for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
789 if (ratesArray[i] > MAX_RATE_POWER)
790 ratesArray[i] = MAX_RATE_POWER;
792 if (ratesArray[i] > regulatory->max_power_level)
793 regulatory->max_power_level = ratesArray[i];
796 ath9k_hw_update_regulatory_maxpower(ah);
798 if (test)
799 return;
801 for (i = 0; i < Ar5416RateSize; i++)
802 ratesArray[i] -= AR9287_PWR_TABLE_OFFSET_DB * 2;
804 ENABLE_REGWRITE_BUFFER(ah);
806 /* OFDM power per rate */
807 REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
808 ATH9K_POW_SM(ratesArray[rate18mb], 24)
809 | ATH9K_POW_SM(ratesArray[rate12mb], 16)
810 | ATH9K_POW_SM(ratesArray[rate9mb], 8)
811 | ATH9K_POW_SM(ratesArray[rate6mb], 0));
813 REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
814 ATH9K_POW_SM(ratesArray[rate54mb], 24)
815 | ATH9K_POW_SM(ratesArray[rate48mb], 16)
816 | ATH9K_POW_SM(ratesArray[rate36mb], 8)
817 | ATH9K_POW_SM(ratesArray[rate24mb], 0));
819 /* CCK power per rate */
820 if (IS_CHAN_2GHZ(chan)) {
821 REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
822 ATH9K_POW_SM(ratesArray[rate2s], 24)
823 | ATH9K_POW_SM(ratesArray[rate2l], 16)
824 | ATH9K_POW_SM(ratesArray[rateXr], 8)
825 | ATH9K_POW_SM(ratesArray[rate1l], 0));
826 REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
827 ATH9K_POW_SM(ratesArray[rate11s], 24)
828 | ATH9K_POW_SM(ratesArray[rate11l], 16)
829 | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
830 | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
833 /* HT20 power per rate */
834 REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
835 ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
836 | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
837 | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
838 | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
840 REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
841 ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
842 | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
843 | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
844 | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
846 /* HT40 power per rate */
847 if (IS_CHAN_HT40(chan)) {
848 if (ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
849 REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
850 ATH9K_POW_SM(ratesArray[rateHt40_3], 24)
851 | ATH9K_POW_SM(ratesArray[rateHt40_2], 16)
852 | ATH9K_POW_SM(ratesArray[rateHt40_1], 8)
853 | ATH9K_POW_SM(ratesArray[rateHt40_0], 0));
855 REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
856 ATH9K_POW_SM(ratesArray[rateHt40_7], 24)
857 | ATH9K_POW_SM(ratesArray[rateHt40_6], 16)
858 | ATH9K_POW_SM(ratesArray[rateHt40_5], 8)
859 | ATH9K_POW_SM(ratesArray[rateHt40_4], 0));
860 } else {
861 REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
862 ATH9K_POW_SM(ratesArray[rateHt40_3] +
863 ht40PowerIncForPdadc, 24)
864 | ATH9K_POW_SM(ratesArray[rateHt40_2] +
865 ht40PowerIncForPdadc, 16)
866 | ATH9K_POW_SM(ratesArray[rateHt40_1] +
867 ht40PowerIncForPdadc, 8)
868 | ATH9K_POW_SM(ratesArray[rateHt40_0] +
869 ht40PowerIncForPdadc, 0));
871 REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
872 ATH9K_POW_SM(ratesArray[rateHt40_7] +
873 ht40PowerIncForPdadc, 24)
874 | ATH9K_POW_SM(ratesArray[rateHt40_6] +
875 ht40PowerIncForPdadc, 16)
876 | ATH9K_POW_SM(ratesArray[rateHt40_5] +
877 ht40PowerIncForPdadc, 8)
878 | ATH9K_POW_SM(ratesArray[rateHt40_4] +
879 ht40PowerIncForPdadc, 0));
882 /* Dup/Ext power per rate */
883 REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
884 ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
885 | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
886 | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
887 | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
889 REGWRITE_BUFFER_FLUSH(ah);
892 static void ath9k_hw_ar9287_set_board_values(struct ath_hw *ah,
893 struct ath9k_channel *chan)
895 struct ar9287_eeprom *eep = &ah->eeprom.map9287;
896 struct modal_eep_ar9287_header *pModal = &eep->modalHeader;
897 u32 regChainOffset, regval;
898 u8 txRxAttenLocal;
899 int i;
901 pModal = &eep->modalHeader;
903 REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon);
905 for (i = 0; i < AR9287_MAX_CHAINS; i++) {
906 regChainOffset = i * 0x1000;
908 REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
909 pModal->antCtrlChain[i]);
911 REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset,
912 (REG_READ(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset)
913 & ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
914 AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
915 SM(pModal->iqCalICh[i],
916 AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
917 SM(pModal->iqCalQCh[i],
918 AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
920 txRxAttenLocal = pModal->txRxAttenCh[i];
922 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
923 AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
924 pModal->bswMargin[i]);
925 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
926 AR_PHY_GAIN_2GHZ_XATTEN1_DB,
927 pModal->bswAtten[i]);
928 REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
929 AR9280_PHY_RXGAIN_TXRX_ATTEN,
930 txRxAttenLocal);
931 REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
932 AR9280_PHY_RXGAIN_TXRX_MARGIN,
933 pModal->rxTxMarginCh[i]);
937 if (IS_CHAN_HT40(chan))
938 REG_RMW_FIELD(ah, AR_PHY_SETTLING,
939 AR_PHY_SETTLING_SWITCH, pModal->swSettleHt40);
940 else
941 REG_RMW_FIELD(ah, AR_PHY_SETTLING,
942 AR_PHY_SETTLING_SWITCH, pModal->switchSettling);
944 REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
945 AR_PHY_DESIRED_SZ_ADC, pModal->adcDesiredSize);
947 REG_WRITE(ah, AR_PHY_RF_CTL4,
948 SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
949 | SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
950 | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON)
951 | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
953 REG_RMW_FIELD(ah, AR_PHY_RF_CTL3,
954 AR_PHY_TX_END_TO_A2_RX_ON, pModal->txEndToRxOn);
956 REG_RMW_FIELD(ah, AR_PHY_CCA,
957 AR9280_PHY_CCA_THRESH62, pModal->thresh62);
958 REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0,
959 AR_PHY_EXT_CCA0_THRESH62, pModal->thresh62);
961 regval = REG_READ(ah, AR9287_AN_RF2G3_CH0);
962 regval &= ~(AR9287_AN_RF2G3_DB1 |
963 AR9287_AN_RF2G3_DB2 |
964 AR9287_AN_RF2G3_OB_CCK |
965 AR9287_AN_RF2G3_OB_PSK |
966 AR9287_AN_RF2G3_OB_QAM |
967 AR9287_AN_RF2G3_OB_PAL_OFF);
968 regval |= (SM(pModal->db1, AR9287_AN_RF2G3_DB1) |
969 SM(pModal->db2, AR9287_AN_RF2G3_DB2) |
970 SM(pModal->ob_cck, AR9287_AN_RF2G3_OB_CCK) |
971 SM(pModal->ob_psk, AR9287_AN_RF2G3_OB_PSK) |
972 SM(pModal->ob_qam, AR9287_AN_RF2G3_OB_QAM) |
973 SM(pModal->ob_pal_off, AR9287_AN_RF2G3_OB_PAL_OFF));
975 ath9k_hw_analog_shift_regwrite(ah, AR9287_AN_RF2G3_CH0, regval);
977 regval = REG_READ(ah, AR9287_AN_RF2G3_CH1);
978 regval &= ~(AR9287_AN_RF2G3_DB1 |
979 AR9287_AN_RF2G3_DB2 |
980 AR9287_AN_RF2G3_OB_CCK |
981 AR9287_AN_RF2G3_OB_PSK |
982 AR9287_AN_RF2G3_OB_QAM |
983 AR9287_AN_RF2G3_OB_PAL_OFF);
984 regval |= (SM(pModal->db1, AR9287_AN_RF2G3_DB1) |
985 SM(pModal->db2, AR9287_AN_RF2G3_DB2) |
986 SM(pModal->ob_cck, AR9287_AN_RF2G3_OB_CCK) |
987 SM(pModal->ob_psk, AR9287_AN_RF2G3_OB_PSK) |
988 SM(pModal->ob_qam, AR9287_AN_RF2G3_OB_QAM) |
989 SM(pModal->ob_pal_off, AR9287_AN_RF2G3_OB_PAL_OFF));
991 ath9k_hw_analog_shift_regwrite(ah, AR9287_AN_RF2G3_CH1, regval);
993 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
994 AR_PHY_TX_END_DATA_START, pModal->txFrameToDataStart);
995 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
996 AR_PHY_TX_END_PA_ON, pModal->txFrameToPaOn);
998 ath9k_hw_analog_shift_rmw(ah, AR9287_AN_TOP2,
999 AR9287_AN_TOP2_XPABIAS_LVL,
1000 AR9287_AN_TOP2_XPABIAS_LVL_S,
1001 pModal->xpaBiasLvl);
1004 static u16 ath9k_hw_ar9287_get_spur_channel(struct ath_hw *ah,
1005 u16 i, bool is2GHz)
1007 #define EEP_MAP9287_SPURCHAN \
1008 (ah->eeprom.map9287.modalHeader.spurChans[i].spurChan)
1010 struct ath_common *common = ath9k_hw_common(ah);
1011 u16 spur_val = AR_NO_SPUR;
1013 ath_dbg(common, ANI, "Getting spur idx:%d is2Ghz:%d val:%x\n",
1014 i, is2GHz, ah->config.spurchans[i][is2GHz]);
1016 switch (ah->config.spurmode) {
1017 case SPUR_DISABLE:
1018 break;
1019 case SPUR_ENABLE_IOCTL:
1020 spur_val = ah->config.spurchans[i][is2GHz];
1021 ath_dbg(common, ANI, "Getting spur val from new loc. %d\n",
1022 spur_val);
1023 break;
1024 case SPUR_ENABLE_EEPROM:
1025 spur_val = EEP_MAP9287_SPURCHAN;
1026 break;
1029 return spur_val;
1031 #undef EEP_MAP9287_SPURCHAN
1034 const struct eeprom_ops eep_ar9287_ops = {
1035 .check_eeprom = ath9k_hw_ar9287_check_eeprom,
1036 .get_eeprom = ath9k_hw_ar9287_get_eeprom,
1037 .fill_eeprom = ath9k_hw_ar9287_fill_eeprom,
1038 .dump_eeprom = ath9k_hw_ar9287_dump_eeprom,
1039 .get_eeprom_ver = ath9k_hw_ar9287_get_eeprom_ver,
1040 .get_eeprom_rev = ath9k_hw_ar9287_get_eeprom_rev,
1041 .set_board_values = ath9k_hw_ar9287_set_board_values,
1042 .set_txpower = ath9k_hw_ar9287_set_txpower,
1043 .get_spur_channel = ath9k_hw_ar9287_get_spur_channel