2 * Copyright (c) 2008-2011 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 #include <linux/export.h>
21 static void ath9k_hw_set_txq_interrupts(struct ath_hw
*ah
,
22 struct ath9k_tx_queue_info
*qi
)
24 ath_dbg(ath9k_hw_common(ah
), INTERRUPT
,
25 "tx ok 0x%x err 0x%x desc 0x%x eol 0x%x urn 0x%x\n",
26 ah
->txok_interrupt_mask
, ah
->txerr_interrupt_mask
,
27 ah
->txdesc_interrupt_mask
, ah
->txeol_interrupt_mask
,
28 ah
->txurn_interrupt_mask
);
30 ENABLE_REGWRITE_BUFFER(ah
);
32 REG_WRITE(ah
, AR_IMR_S0
,
33 SM(ah
->txok_interrupt_mask
, AR_IMR_S0_QCU_TXOK
)
34 | SM(ah
->txdesc_interrupt_mask
, AR_IMR_S0_QCU_TXDESC
));
35 REG_WRITE(ah
, AR_IMR_S1
,
36 SM(ah
->txerr_interrupt_mask
, AR_IMR_S1_QCU_TXERR
)
37 | SM(ah
->txeol_interrupt_mask
, AR_IMR_S1_QCU_TXEOL
));
39 ah
->imrs2_reg
&= ~AR_IMR_S2_QCU_TXURN
;
40 ah
->imrs2_reg
|= (ah
->txurn_interrupt_mask
& AR_IMR_S2_QCU_TXURN
);
41 REG_WRITE(ah
, AR_IMR_S2
, ah
->imrs2_reg
);
43 REGWRITE_BUFFER_FLUSH(ah
);
46 u32
ath9k_hw_gettxbuf(struct ath_hw
*ah
, u32 q
)
48 return REG_READ(ah
, AR_QTXDP(q
));
50 EXPORT_SYMBOL(ath9k_hw_gettxbuf
);
52 void ath9k_hw_puttxbuf(struct ath_hw
*ah
, u32 q
, u32 txdp
)
54 REG_WRITE(ah
, AR_QTXDP(q
), txdp
);
56 EXPORT_SYMBOL(ath9k_hw_puttxbuf
);
58 void ath9k_hw_txstart(struct ath_hw
*ah
, u32 q
)
60 ath_dbg(ath9k_hw_common(ah
), QUEUE
, "Enable TXE on queue: %u\n", q
);
61 REG_WRITE(ah
, AR_Q_TXE
, 1 << q
);
63 EXPORT_SYMBOL(ath9k_hw_txstart
);
65 u32
ath9k_hw_numtxpending(struct ath_hw
*ah
, u32 q
)
69 npend
= REG_READ(ah
, AR_QSTS(q
)) & AR_Q_STS_PEND_FR_CNT
;
72 if (REG_READ(ah
, AR_Q_TXE
) & (1 << q
))
78 EXPORT_SYMBOL(ath9k_hw_numtxpending
);
81 * ath9k_hw_updatetxtriglevel - adjusts the frame trigger level
83 * @ah: atheros hardware struct
84 * @bIncTrigLevel: whether or not the frame trigger level should be updated
86 * The frame trigger level specifies the minimum number of bytes,
87 * in units of 64 bytes, that must be DMA'ed into the PCU TX FIFO
88 * before the PCU will initiate sending the frame on the air. This can
89 * mean we initiate transmit before a full frame is on the PCU TX FIFO.
90 * Resets to 0x1 (meaning 64 bytes or a full frame, whichever occurs
93 * Caution must be taken to ensure to set the frame trigger level based
94 * on the DMA request size. For example if the DMA request size is set to
95 * 128 bytes the trigger level cannot exceed 6 * 64 = 384. This is because
96 * there need to be enough space in the tx FIFO for the requested transfer
97 * size. Hence the tx FIFO will stop with 512 - 128 = 384 bytes. If we set
98 * the threshold to a value beyond 6, then the transmit will hang.
100 * Current dual stream devices have a PCU TX FIFO size of 8 KB.
101 * Current single stream devices have a PCU TX FIFO size of 4 KB, however,
102 * there is a hardware issue which forces us to use 2 KB instead so the
103 * frame trigger level must not exceed 2 KB for these chipsets.
105 bool ath9k_hw_updatetxtriglevel(struct ath_hw
*ah
, bool bIncTrigLevel
)
107 u32 txcfg
, curLevel
, newLevel
;
109 if (ah
->tx_trig_level
>= ah
->config
.max_txtrig_level
)
112 ath9k_hw_disable_interrupts(ah
);
114 txcfg
= REG_READ(ah
, AR_TXCFG
);
115 curLevel
= MS(txcfg
, AR_FTRIG
);
118 if (curLevel
< ah
->config
.max_txtrig_level
)
120 } else if (curLevel
> MIN_TX_FIFO_THRESHOLD
)
122 if (newLevel
!= curLevel
)
123 REG_WRITE(ah
, AR_TXCFG
,
124 (txcfg
& ~AR_FTRIG
) | SM(newLevel
, AR_FTRIG
));
126 ath9k_hw_enable_interrupts(ah
);
128 ah
->tx_trig_level
= newLevel
;
130 return newLevel
!= curLevel
;
132 EXPORT_SYMBOL(ath9k_hw_updatetxtriglevel
);
134 void ath9k_hw_abort_tx_dma(struct ath_hw
*ah
)
140 if (IS_CHAN_HALF_RATE(ah
->curchan
))
142 else if (IS_CHAN_QUARTER_RATE(ah
->curchan
))
146 REG_WRITE(ah
, AR_Q_TXD
, AR_Q_TXD_M
);
148 REG_SET_BIT(ah
, AR_PCU_MISC
, AR_PCU_FORCE_QUIET_COLL
| AR_PCU_CLEAR_VMF
);
149 REG_SET_BIT(ah
, AR_DIAG_SW
, AR_DIAG_FORCE_CH_IDLE_HIGH
);
150 REG_SET_BIT(ah
, AR_D_GBL_IFS_MISC
, AR_D_GBL_IFS_MISC_IGNORE_BACKOFF
);
152 for (q
= 0; q
< AR_NUM_QCU
; q
++) {
153 for (i
= 0; i
< maxdelay
; i
++) {
157 if (!ath9k_hw_numtxpending(ah
, q
))
162 REG_CLR_BIT(ah
, AR_PCU_MISC
, AR_PCU_FORCE_QUIET_COLL
| AR_PCU_CLEAR_VMF
);
163 REG_CLR_BIT(ah
, AR_DIAG_SW
, AR_DIAG_FORCE_CH_IDLE_HIGH
);
164 REG_CLR_BIT(ah
, AR_D_GBL_IFS_MISC
, AR_D_GBL_IFS_MISC_IGNORE_BACKOFF
);
166 REG_WRITE(ah
, AR_Q_TXD
, 0);
168 EXPORT_SYMBOL(ath9k_hw_abort_tx_dma
);
170 bool ath9k_hw_stop_dma_queue(struct ath_hw
*ah
, u32 q
)
172 #define ATH9K_TX_STOP_DMA_TIMEOUT 1000 /* usec */
173 #define ATH9K_TIME_QUANTUM 100 /* usec */
174 int wait_time
= ATH9K_TX_STOP_DMA_TIMEOUT
/ ATH9K_TIME_QUANTUM
;
177 REG_WRITE(ah
, AR_Q_TXD
, 1 << q
);
179 for (wait
= wait_time
; wait
!= 0; wait
--) {
180 if (wait
!= wait_time
)
181 udelay(ATH9K_TIME_QUANTUM
);
183 if (ath9k_hw_numtxpending(ah
, q
) == 0)
187 REG_WRITE(ah
, AR_Q_TXD
, 0);
191 #undef ATH9K_TX_STOP_DMA_TIMEOUT
192 #undef ATH9K_TIME_QUANTUM
194 EXPORT_SYMBOL(ath9k_hw_stop_dma_queue
);
196 bool ath9k_hw_set_txq_props(struct ath_hw
*ah
, int q
,
197 const struct ath9k_tx_queue_info
*qinfo
)
200 struct ath_common
*common
= ath9k_hw_common(ah
);
201 struct ath9k_tx_queue_info
*qi
;
204 if (qi
->tqi_type
== ATH9K_TX_QUEUE_INACTIVE
) {
205 ath_dbg(common
, QUEUE
,
206 "Set TXQ properties, inactive queue: %u\n", q
);
210 ath_dbg(common
, QUEUE
, "Set queue properties for: %u\n", q
);
212 qi
->tqi_ver
= qinfo
->tqi_ver
;
213 qi
->tqi_subtype
= qinfo
->tqi_subtype
;
214 qi
->tqi_qflags
= qinfo
->tqi_qflags
;
215 qi
->tqi_priority
= qinfo
->tqi_priority
;
216 if (qinfo
->tqi_aifs
!= ATH9K_TXQ_USEDEFAULT
)
217 qi
->tqi_aifs
= min(qinfo
->tqi_aifs
, 255U);
219 qi
->tqi_aifs
= INIT_AIFS
;
220 if (qinfo
->tqi_cwmin
!= ATH9K_TXQ_USEDEFAULT
) {
221 cw
= min(qinfo
->tqi_cwmin
, 1024U);
223 while (qi
->tqi_cwmin
< cw
)
224 qi
->tqi_cwmin
= (qi
->tqi_cwmin
<< 1) | 1;
226 qi
->tqi_cwmin
= qinfo
->tqi_cwmin
;
227 if (qinfo
->tqi_cwmax
!= ATH9K_TXQ_USEDEFAULT
) {
228 cw
= min(qinfo
->tqi_cwmax
, 1024U);
230 while (qi
->tqi_cwmax
< cw
)
231 qi
->tqi_cwmax
= (qi
->tqi_cwmax
<< 1) | 1;
233 qi
->tqi_cwmax
= INIT_CWMAX
;
235 if (qinfo
->tqi_shretry
!= 0)
236 qi
->tqi_shretry
= min((u32
) qinfo
->tqi_shretry
, 15U);
238 qi
->tqi_shretry
= INIT_SH_RETRY
;
239 if (qinfo
->tqi_lgretry
!= 0)
240 qi
->tqi_lgretry
= min((u32
) qinfo
->tqi_lgretry
, 15U);
242 qi
->tqi_lgretry
= INIT_LG_RETRY
;
243 qi
->tqi_cbrPeriod
= qinfo
->tqi_cbrPeriod
;
244 qi
->tqi_cbrOverflowLimit
= qinfo
->tqi_cbrOverflowLimit
;
245 qi
->tqi_burstTime
= qinfo
->tqi_burstTime
;
246 qi
->tqi_readyTime
= qinfo
->tqi_readyTime
;
248 switch (qinfo
->tqi_subtype
) {
250 if (qi
->tqi_type
== ATH9K_TX_QUEUE_DATA
)
251 qi
->tqi_intFlags
= ATH9K_TXQ_USE_LOCKOUT_BKOFF_DIS
;
259 EXPORT_SYMBOL(ath9k_hw_set_txq_props
);
261 bool ath9k_hw_get_txq_props(struct ath_hw
*ah
, int q
,
262 struct ath9k_tx_queue_info
*qinfo
)
264 struct ath_common
*common
= ath9k_hw_common(ah
);
265 struct ath9k_tx_queue_info
*qi
;
268 if (qi
->tqi_type
== ATH9K_TX_QUEUE_INACTIVE
) {
269 ath_dbg(common
, QUEUE
,
270 "Get TXQ properties, inactive queue: %u\n", q
);
274 qinfo
->tqi_qflags
= qi
->tqi_qflags
;
275 qinfo
->tqi_ver
= qi
->tqi_ver
;
276 qinfo
->tqi_subtype
= qi
->tqi_subtype
;
277 qinfo
->tqi_qflags
= qi
->tqi_qflags
;
278 qinfo
->tqi_priority
= qi
->tqi_priority
;
279 qinfo
->tqi_aifs
= qi
->tqi_aifs
;
280 qinfo
->tqi_cwmin
= qi
->tqi_cwmin
;
281 qinfo
->tqi_cwmax
= qi
->tqi_cwmax
;
282 qinfo
->tqi_shretry
= qi
->tqi_shretry
;
283 qinfo
->tqi_lgretry
= qi
->tqi_lgretry
;
284 qinfo
->tqi_cbrPeriod
= qi
->tqi_cbrPeriod
;
285 qinfo
->tqi_cbrOverflowLimit
= qi
->tqi_cbrOverflowLimit
;
286 qinfo
->tqi_burstTime
= qi
->tqi_burstTime
;
287 qinfo
->tqi_readyTime
= qi
->tqi_readyTime
;
291 EXPORT_SYMBOL(ath9k_hw_get_txq_props
);
293 int ath9k_hw_setuptxqueue(struct ath_hw
*ah
, enum ath9k_tx_queue type
,
294 const struct ath9k_tx_queue_info
*qinfo
)
296 struct ath_common
*common
= ath9k_hw_common(ah
);
297 struct ath9k_tx_queue_info
*qi
;
301 case ATH9K_TX_QUEUE_BEACON
:
302 q
= ATH9K_NUM_TX_QUEUES
- 1;
304 case ATH9K_TX_QUEUE_CAB
:
305 q
= ATH9K_NUM_TX_QUEUES
- 2;
307 case ATH9K_TX_QUEUE_PSPOLL
:
310 case ATH9K_TX_QUEUE_UAPSD
:
311 q
= ATH9K_NUM_TX_QUEUES
- 3;
313 case ATH9K_TX_QUEUE_DATA
:
314 for (q
= 0; q
< ATH9K_NUM_TX_QUEUES
; q
++)
315 if (ah
->txq
[q
].tqi_type
==
316 ATH9K_TX_QUEUE_INACTIVE
)
318 if (q
== ATH9K_NUM_TX_QUEUES
) {
319 ath_err(common
, "No available TX queue\n");
324 ath_err(common
, "Invalid TX queue type: %u\n", type
);
328 ath_dbg(common
, QUEUE
, "Setup TX queue: %u\n", q
);
331 if (qi
->tqi_type
!= ATH9K_TX_QUEUE_INACTIVE
) {
332 ath_err(common
, "TX queue: %u already active\n", q
);
335 memset(qi
, 0, sizeof(struct ath9k_tx_queue_info
));
337 qi
->tqi_physCompBuf
= qinfo
->tqi_physCompBuf
;
338 (void) ath9k_hw_set_txq_props(ah
, q
, qinfo
);
342 EXPORT_SYMBOL(ath9k_hw_setuptxqueue
);
344 static void ath9k_hw_clear_queue_interrupts(struct ath_hw
*ah
, u32 q
)
346 ah
->txok_interrupt_mask
&= ~(1 << q
);
347 ah
->txerr_interrupt_mask
&= ~(1 << q
);
348 ah
->txdesc_interrupt_mask
&= ~(1 << q
);
349 ah
->txeol_interrupt_mask
&= ~(1 << q
);
350 ah
->txurn_interrupt_mask
&= ~(1 << q
);
353 bool ath9k_hw_releasetxqueue(struct ath_hw
*ah
, u32 q
)
355 struct ath_common
*common
= ath9k_hw_common(ah
);
356 struct ath9k_tx_queue_info
*qi
;
359 if (qi
->tqi_type
== ATH9K_TX_QUEUE_INACTIVE
) {
360 ath_dbg(common
, QUEUE
, "Release TXQ, inactive queue: %u\n", q
);
364 ath_dbg(common
, QUEUE
, "Release TX queue: %u\n", q
);
366 qi
->tqi_type
= ATH9K_TX_QUEUE_INACTIVE
;
367 ath9k_hw_clear_queue_interrupts(ah
, q
);
368 ath9k_hw_set_txq_interrupts(ah
, qi
);
372 EXPORT_SYMBOL(ath9k_hw_releasetxqueue
);
374 bool ath9k_hw_resettxqueue(struct ath_hw
*ah
, u32 q
)
376 struct ath_common
*common
= ath9k_hw_common(ah
);
377 struct ath9k_channel
*chan
= ah
->curchan
;
378 struct ath9k_tx_queue_info
*qi
;
379 u32 cwMin
, chanCwMin
, value
;
382 if (qi
->tqi_type
== ATH9K_TX_QUEUE_INACTIVE
) {
383 ath_dbg(common
, QUEUE
, "Reset TXQ, inactive queue: %u\n", q
);
387 ath_dbg(common
, QUEUE
, "Reset TX queue: %u\n", q
);
389 if (qi
->tqi_cwmin
== ATH9K_TXQ_USEDEFAULT
) {
390 if (chan
&& IS_CHAN_B(chan
))
391 chanCwMin
= INIT_CWMIN_11B
;
393 chanCwMin
= INIT_CWMIN
;
395 for (cwMin
= 1; cwMin
< chanCwMin
; cwMin
= (cwMin
<< 1) | 1);
397 cwMin
= qi
->tqi_cwmin
;
399 ENABLE_REGWRITE_BUFFER(ah
);
401 REG_WRITE(ah
, AR_DLCL_IFS(q
),
402 SM(cwMin
, AR_D_LCL_IFS_CWMIN
) |
403 SM(qi
->tqi_cwmax
, AR_D_LCL_IFS_CWMAX
) |
404 SM(qi
->tqi_aifs
, AR_D_LCL_IFS_AIFS
));
406 REG_WRITE(ah
, AR_DRETRY_LIMIT(q
),
407 SM(INIT_SSH_RETRY
, AR_D_RETRY_LIMIT_STA_SH
) |
408 SM(INIT_SLG_RETRY
, AR_D_RETRY_LIMIT_STA_LG
) |
409 SM(qi
->tqi_shretry
, AR_D_RETRY_LIMIT_FR_SH
));
411 REG_WRITE(ah
, AR_QMISC(q
), AR_Q_MISC_DCU_EARLY_TERM_REQ
);
413 if (AR_SREV_9340(ah
) && !AR_SREV_9340_13_OR_LATER(ah
))
414 REG_WRITE(ah
, AR_DMISC(q
),
415 AR_D_MISC_CW_BKOFF_EN
| AR_D_MISC_FRAG_WAIT_EN
| 0x1);
417 REG_WRITE(ah
, AR_DMISC(q
),
418 AR_D_MISC_CW_BKOFF_EN
| AR_D_MISC_FRAG_WAIT_EN
| 0x2);
420 if (qi
->tqi_cbrPeriod
) {
421 REG_WRITE(ah
, AR_QCBRCFG(q
),
422 SM(qi
->tqi_cbrPeriod
, AR_Q_CBRCFG_INTERVAL
) |
423 SM(qi
->tqi_cbrOverflowLimit
, AR_Q_CBRCFG_OVF_THRESH
));
424 REG_SET_BIT(ah
, AR_QMISC(q
), AR_Q_MISC_FSP_CBR
|
425 (qi
->tqi_cbrOverflowLimit
?
426 AR_Q_MISC_CBR_EXP_CNTR_LIMIT_EN
: 0));
428 if (qi
->tqi_readyTime
&& (qi
->tqi_type
!= ATH9K_TX_QUEUE_CAB
)) {
429 REG_WRITE(ah
, AR_QRDYTIMECFG(q
),
430 SM(qi
->tqi_readyTime
, AR_Q_RDYTIMECFG_DURATION
) |
434 REG_WRITE(ah
, AR_DCHNTIME(q
),
435 SM(qi
->tqi_burstTime
, AR_D_CHNTIME_DUR
) |
436 (qi
->tqi_burstTime
? AR_D_CHNTIME_EN
: 0));
438 if (qi
->tqi_burstTime
439 && (qi
->tqi_qflags
& TXQ_FLAG_RDYTIME_EXP_POLICY_ENABLE
))
440 REG_SET_BIT(ah
, AR_QMISC(q
), AR_Q_MISC_RDYTIME_EXP_POLICY
);
442 if (qi
->tqi_qflags
& TXQ_FLAG_BACKOFF_DISABLE
)
443 REG_SET_BIT(ah
, AR_DMISC(q
), AR_D_MISC_POST_FR_BKOFF_DIS
);
445 REGWRITE_BUFFER_FLUSH(ah
);
447 if (qi
->tqi_qflags
& TXQ_FLAG_FRAG_BURST_BACKOFF_ENABLE
)
448 REG_SET_BIT(ah
, AR_DMISC(q
), AR_D_MISC_FRAG_BKOFF_EN
);
450 switch (qi
->tqi_type
) {
451 case ATH9K_TX_QUEUE_BEACON
:
452 ENABLE_REGWRITE_BUFFER(ah
);
454 REG_SET_BIT(ah
, AR_QMISC(q
),
455 AR_Q_MISC_FSP_DBA_GATED
456 | AR_Q_MISC_BEACON_USE
457 | AR_Q_MISC_CBR_INCR_DIS1
);
459 REG_SET_BIT(ah
, AR_DMISC(q
),
460 (AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL
<<
461 AR_D_MISC_ARB_LOCKOUT_CNTRL_S
)
462 | AR_D_MISC_BEACON_USE
463 | AR_D_MISC_POST_FR_BKOFF_DIS
);
465 REGWRITE_BUFFER_FLUSH(ah
);
468 * cwmin and cwmax should be 0 for beacon queue
469 * but not for IBSS as we would create an imbalance
470 * on beaconing fairness for participating nodes.
472 if (AR_SREV_9300_20_OR_LATER(ah
) &&
473 ah
->opmode
!= NL80211_IFTYPE_ADHOC
) {
474 REG_WRITE(ah
, AR_DLCL_IFS(q
), SM(0, AR_D_LCL_IFS_CWMIN
)
475 | SM(0, AR_D_LCL_IFS_CWMAX
)
476 | SM(qi
->tqi_aifs
, AR_D_LCL_IFS_AIFS
));
479 case ATH9K_TX_QUEUE_CAB
:
480 ENABLE_REGWRITE_BUFFER(ah
);
482 REG_SET_BIT(ah
, AR_QMISC(q
),
483 AR_Q_MISC_FSP_DBA_GATED
484 | AR_Q_MISC_CBR_INCR_DIS1
485 | AR_Q_MISC_CBR_INCR_DIS0
);
486 value
= (qi
->tqi_readyTime
-
487 (ah
->config
.sw_beacon_response_time
-
488 ah
->config
.dma_beacon_response_time
) -
489 ah
->config
.additional_swba_backoff
) * 1024;
490 REG_WRITE(ah
, AR_QRDYTIMECFG(q
),
491 value
| AR_Q_RDYTIMECFG_EN
);
492 REG_SET_BIT(ah
, AR_DMISC(q
),
493 (AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL
<<
494 AR_D_MISC_ARB_LOCKOUT_CNTRL_S
));
496 REGWRITE_BUFFER_FLUSH(ah
);
499 case ATH9K_TX_QUEUE_PSPOLL
:
500 REG_SET_BIT(ah
, AR_QMISC(q
), AR_Q_MISC_CBR_INCR_DIS1
);
502 case ATH9K_TX_QUEUE_UAPSD
:
503 REG_SET_BIT(ah
, AR_DMISC(q
), AR_D_MISC_POST_FR_BKOFF_DIS
);
509 if (qi
->tqi_intFlags
& ATH9K_TXQ_USE_LOCKOUT_BKOFF_DIS
) {
510 REG_SET_BIT(ah
, AR_DMISC(q
),
511 SM(AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL
,
512 AR_D_MISC_ARB_LOCKOUT_CNTRL
) |
513 AR_D_MISC_POST_FR_BKOFF_DIS
);
516 if (AR_SREV_9300_20_OR_LATER(ah
))
517 REG_WRITE(ah
, AR_Q_DESC_CRCCHK
, AR_Q_DESC_CRCCHK_EN
);
519 ath9k_hw_clear_queue_interrupts(ah
, q
);
520 if (qi
->tqi_qflags
& TXQ_FLAG_TXINT_ENABLE
) {
521 ah
->txok_interrupt_mask
|= 1 << q
;
522 ah
->txerr_interrupt_mask
|= 1 << q
;
524 if (qi
->tqi_qflags
& TXQ_FLAG_TXDESCINT_ENABLE
)
525 ah
->txdesc_interrupt_mask
|= 1 << q
;
526 if (qi
->tqi_qflags
& TXQ_FLAG_TXEOLINT_ENABLE
)
527 ah
->txeol_interrupt_mask
|= 1 << q
;
528 if (qi
->tqi_qflags
& TXQ_FLAG_TXURNINT_ENABLE
)
529 ah
->txurn_interrupt_mask
|= 1 << q
;
530 ath9k_hw_set_txq_interrupts(ah
, qi
);
534 EXPORT_SYMBOL(ath9k_hw_resettxqueue
);
536 int ath9k_hw_rxprocdesc(struct ath_hw
*ah
, struct ath_desc
*ds
,
537 struct ath_rx_status
*rs
)
539 struct ar5416_desc ads
;
540 struct ar5416_desc
*adsp
= AR5416DESC(ds
);
543 if ((adsp
->ds_rxstatus8
& AR_RxDone
) == 0)
546 ads
.u
.rx
= adsp
->u
.rx
;
552 rs
->rs_datalen
= ads
.ds_rxstatus1
& AR_DataLen
;
553 rs
->rs_tstamp
= ads
.AR_RcvTimestamp
;
555 if (ads
.ds_rxstatus8
& AR_PostDelimCRCErr
) {
556 rs
->rs_rssi
= ATH9K_RSSI_BAD
;
557 rs
->rs_rssi_ctl0
= ATH9K_RSSI_BAD
;
558 rs
->rs_rssi_ctl1
= ATH9K_RSSI_BAD
;
559 rs
->rs_rssi_ctl2
= ATH9K_RSSI_BAD
;
560 rs
->rs_rssi_ext0
= ATH9K_RSSI_BAD
;
561 rs
->rs_rssi_ext1
= ATH9K_RSSI_BAD
;
562 rs
->rs_rssi_ext2
= ATH9K_RSSI_BAD
;
564 rs
->rs_rssi
= MS(ads
.ds_rxstatus4
, AR_RxRSSICombined
);
565 rs
->rs_rssi_ctl0
= MS(ads
.ds_rxstatus0
,
567 rs
->rs_rssi_ctl1
= MS(ads
.ds_rxstatus0
,
569 rs
->rs_rssi_ctl2
= MS(ads
.ds_rxstatus0
,
571 rs
->rs_rssi_ext0
= MS(ads
.ds_rxstatus4
,
573 rs
->rs_rssi_ext1
= MS(ads
.ds_rxstatus4
,
575 rs
->rs_rssi_ext2
= MS(ads
.ds_rxstatus4
,
578 if (ads
.ds_rxstatus8
& AR_RxKeyIdxValid
)
579 rs
->rs_keyix
= MS(ads
.ds_rxstatus8
, AR_KeyIdx
);
581 rs
->rs_keyix
= ATH9K_RXKEYIX_INVALID
;
583 rs
->rs_rate
= MS(ads
.ds_rxstatus0
, AR_RxRate
);
584 rs
->rs_more
= (ads
.ds_rxstatus1
& AR_RxMore
) ? 1 : 0;
586 rs
->rs_firstaggr
= (ads
.ds_rxstatus8
& AR_RxFirstAggr
) ? 1 : 0;
587 rs
->rs_isaggr
= (ads
.ds_rxstatus8
& AR_RxAggr
) ? 1 : 0;
588 rs
->rs_moreaggr
= (ads
.ds_rxstatus8
& AR_RxMoreAggr
) ? 1 : 0;
589 rs
->rs_antenna
= MS(ads
.ds_rxstatus3
, AR_RxAntenna
);
591 /* directly mapped flags for ieee80211_rx_status */
593 (ads
.ds_rxstatus3
& AR_GI
) ? RX_FLAG_SHORT_GI
: 0;
595 (ads
.ds_rxstatus3
& AR_2040
) ? RX_FLAG_40MHZ
: 0;
596 if (AR_SREV_9280_20_OR_LATER(ah
))
598 (ads
.ds_rxstatus3
& AR_STBC
) ?
599 /* we can only Nss=1 STBC */
600 (1 << RX_FLAG_STBC_SHIFT
) : 0;
602 if (ads
.ds_rxstatus8
& AR_PreDelimCRCErr
)
603 rs
->rs_flags
|= ATH9K_RX_DELIM_CRC_PRE
;
604 if (ads
.ds_rxstatus8
& AR_PostDelimCRCErr
)
605 rs
->rs_flags
|= ATH9K_RX_DELIM_CRC_POST
;
606 if (ads
.ds_rxstatus8
& AR_DecryptBusyErr
)
607 rs
->rs_flags
|= ATH9K_RX_DECRYPT_BUSY
;
609 if ((ads
.ds_rxstatus8
& AR_RxFrameOK
) == 0) {
611 * Treat these errors as mutually exclusive to avoid spurious
612 * extra error reports from the hardware. If a CRC error is
613 * reported, then decryption and MIC errors are irrelevant,
614 * the frame is going to be dropped either way
616 if (ads
.ds_rxstatus8
& AR_PHYErr
) {
617 rs
->rs_status
|= ATH9K_RXERR_PHY
;
618 phyerr
= MS(ads
.ds_rxstatus8
, AR_PHYErrCode
);
619 rs
->rs_phyerr
= phyerr
;
620 } else if (ads
.ds_rxstatus8
& AR_CRCErr
)
621 rs
->rs_status
|= ATH9K_RXERR_CRC
;
622 else if (ads
.ds_rxstatus8
& AR_DecryptCRCErr
)
623 rs
->rs_status
|= ATH9K_RXERR_DECRYPT
;
624 else if (ads
.ds_rxstatus8
& AR_MichaelErr
)
625 rs
->rs_status
|= ATH9K_RXERR_MIC
;
627 if (ads
.ds_rxstatus8
&
628 (AR_CRCErr
| AR_PHYErr
| AR_DecryptCRCErr
| AR_MichaelErr
))
629 rs
->rs_status
|= ATH9K_RXERR_CORRUPT_DESC
;
631 /* Only up to MCS16 supported, everything above is invalid */
632 if (rs
->rs_rate
>= 0x90)
633 rs
->rs_status
|= ATH9K_RXERR_CORRUPT_DESC
;
636 if (ads
.ds_rxstatus8
& AR_KeyMiss
)
637 rs
->rs_status
|= ATH9K_RXERR_KEYMISS
;
641 EXPORT_SYMBOL(ath9k_hw_rxprocdesc
);
644 * This can stop or re-enables RX.
646 * If bool is set this will kill any frame which is currently being
647 * transferred between the MAC and baseband and also prevent any new
648 * frames from getting started.
650 bool ath9k_hw_setrxabort(struct ath_hw
*ah
, bool set
)
655 REG_SET_BIT(ah
, AR_DIAG_SW
,
656 (AR_DIAG_RX_DIS
| AR_DIAG_RX_ABORT
));
658 if (!ath9k_hw_wait(ah
, AR_OBS_BUS_1
, AR_OBS_BUS_1_RX_STATE
,
659 0, AH_WAIT_TIMEOUT
)) {
660 REG_CLR_BIT(ah
, AR_DIAG_SW
,
664 reg
= REG_READ(ah
, AR_OBS_BUS_1
);
665 ath_err(ath9k_hw_common(ah
),
666 "RX failed to go idle in 10 ms RXSM=0x%x\n",
672 REG_CLR_BIT(ah
, AR_DIAG_SW
,
673 (AR_DIAG_RX_DIS
| AR_DIAG_RX_ABORT
));
678 EXPORT_SYMBOL(ath9k_hw_setrxabort
);
680 void ath9k_hw_putrxbuf(struct ath_hw
*ah
, u32 rxdp
)
682 REG_WRITE(ah
, AR_RXDP
, rxdp
);
684 EXPORT_SYMBOL(ath9k_hw_putrxbuf
);
686 void ath9k_hw_startpcureceive(struct ath_hw
*ah
, bool is_scanning
)
688 ath9k_enable_mib_counters(ah
);
690 ath9k_ani_reset(ah
, is_scanning
);
692 REG_CLR_BIT(ah
, AR_DIAG_SW
, (AR_DIAG_RX_DIS
| AR_DIAG_RX_ABORT
));
694 EXPORT_SYMBOL(ath9k_hw_startpcureceive
);
696 void ath9k_hw_abortpcurecv(struct ath_hw
*ah
)
698 REG_SET_BIT(ah
, AR_DIAG_SW
, AR_DIAG_RX_ABORT
| AR_DIAG_RX_DIS
);
700 ath9k_hw_disable_mib_counters(ah
);
702 EXPORT_SYMBOL(ath9k_hw_abortpcurecv
);
704 bool ath9k_hw_stopdmarecv(struct ath_hw
*ah
, bool *reset
)
706 #define AH_RX_STOP_DMA_TIMEOUT 10000 /* usec */
707 struct ath_common
*common
= ath9k_hw_common(ah
);
708 u32 mac_status
, last_mac_status
= 0;
711 /* Enable access to the DMA observation bus */
712 REG_WRITE(ah
, AR_MACMISC
,
713 ((AR_MACMISC_DMA_OBS_LINE_8
<< AR_MACMISC_DMA_OBS_S
) |
714 (AR_MACMISC_MISC_OBS_BUS_1
<<
715 AR_MACMISC_MISC_OBS_BUS_MSB_S
)));
717 REG_WRITE(ah
, AR_CR
, AR_CR_RXD
);
719 /* Wait for rx enable bit to go low */
720 for (i
= AH_RX_STOP_DMA_TIMEOUT
/ AH_TIME_QUANTUM
; i
!= 0; i
--) {
721 if ((REG_READ(ah
, AR_CR
) & AR_CR_RXE
) == 0)
724 if (!AR_SREV_9300_20_OR_LATER(ah
)) {
725 mac_status
= REG_READ(ah
, AR_DMADBG_7
) & 0x7f0;
726 if (mac_status
== 0x1c0 && mac_status
== last_mac_status
) {
731 last_mac_status
= mac_status
;
734 udelay(AH_TIME_QUANTUM
);
739 "DMA failed to stop in %d ms AR_CR=0x%08x AR_DIAG_SW=0x%08x DMADBG_7=0x%08x\n",
740 AH_RX_STOP_DMA_TIMEOUT
/ 1000,
742 REG_READ(ah
, AR_DIAG_SW
),
743 REG_READ(ah
, AR_DMADBG_7
));
749 #undef AH_RX_STOP_DMA_TIMEOUT
751 EXPORT_SYMBOL(ath9k_hw_stopdmarecv
);
753 int ath9k_hw_beaconq_setup(struct ath_hw
*ah
)
755 struct ath9k_tx_queue_info qi
;
757 memset(&qi
, 0, sizeof(qi
));
762 if (ah
->caps
.hw_caps
& ATH9K_HW_CAP_EDMA
)
763 qi
.tqi_qflags
= TXQ_FLAG_TXINT_ENABLE
;
765 return ath9k_hw_setuptxqueue(ah
, ATH9K_TX_QUEUE_BEACON
, &qi
);
767 EXPORT_SYMBOL(ath9k_hw_beaconq_setup
);
769 bool ath9k_hw_intrpend(struct ath_hw
*ah
)
773 if (AR_SREV_9100(ah
))
776 host_isr
= REG_READ(ah
, AR_INTR_ASYNC_CAUSE
);
778 if (((host_isr
& AR_INTR_MAC_IRQ
) ||
779 (host_isr
& AR_INTR_ASYNC_MASK_MCI
)) &&
780 (host_isr
!= AR_INTR_SPURIOUS
))
783 host_isr
= REG_READ(ah
, AR_INTR_SYNC_CAUSE
);
784 if ((host_isr
& AR_INTR_SYNC_DEFAULT
)
785 && (host_isr
!= AR_INTR_SPURIOUS
))
790 EXPORT_SYMBOL(ath9k_hw_intrpend
);
792 void ath9k_hw_kill_interrupts(struct ath_hw
*ah
)
794 struct ath_common
*common
= ath9k_hw_common(ah
);
796 ath_dbg(common
, INTERRUPT
, "disable IER\n");
797 REG_WRITE(ah
, AR_IER
, AR_IER_DISABLE
);
798 (void) REG_READ(ah
, AR_IER
);
799 if (!AR_SREV_9100(ah
)) {
800 REG_WRITE(ah
, AR_INTR_ASYNC_ENABLE
, 0);
801 (void) REG_READ(ah
, AR_INTR_ASYNC_ENABLE
);
803 REG_WRITE(ah
, AR_INTR_SYNC_ENABLE
, 0);
804 (void) REG_READ(ah
, AR_INTR_SYNC_ENABLE
);
807 EXPORT_SYMBOL(ath9k_hw_kill_interrupts
);
809 void ath9k_hw_disable_interrupts(struct ath_hw
*ah
)
811 if (!(ah
->imask
& ATH9K_INT_GLOBAL
))
812 atomic_set(&ah
->intr_ref_cnt
, -1);
814 atomic_dec(&ah
->intr_ref_cnt
);
816 ath9k_hw_kill_interrupts(ah
);
818 EXPORT_SYMBOL(ath9k_hw_disable_interrupts
);
820 void ath9k_hw_enable_interrupts(struct ath_hw
*ah
)
822 struct ath_common
*common
= ath9k_hw_common(ah
);
823 u32 sync_default
= AR_INTR_SYNC_DEFAULT
;
826 if (!(ah
->imask
& ATH9K_INT_GLOBAL
))
829 if (!atomic_inc_and_test(&ah
->intr_ref_cnt
)) {
830 ath_dbg(common
, INTERRUPT
, "Do not enable IER ref count %d\n",
831 atomic_read(&ah
->intr_ref_cnt
));
835 if (AR_SREV_9340(ah
) || AR_SREV_9550(ah
))
836 sync_default
&= ~AR_INTR_SYNC_HOST1_FATAL
;
838 async_mask
= AR_INTR_MAC_IRQ
;
840 if (ah
->imask
& ATH9K_INT_MCI
)
841 async_mask
|= AR_INTR_ASYNC_MASK_MCI
;
843 ath_dbg(common
, INTERRUPT
, "enable IER\n");
844 REG_WRITE(ah
, AR_IER
, AR_IER_ENABLE
);
845 if (!AR_SREV_9100(ah
)) {
846 REG_WRITE(ah
, AR_INTR_ASYNC_ENABLE
, async_mask
);
847 REG_WRITE(ah
, AR_INTR_ASYNC_MASK
, async_mask
);
849 REG_WRITE(ah
, AR_INTR_SYNC_ENABLE
, sync_default
);
850 REG_WRITE(ah
, AR_INTR_SYNC_MASK
, sync_default
);
852 ath_dbg(common
, INTERRUPT
, "AR_IMR 0x%x IER 0x%x\n",
853 REG_READ(ah
, AR_IMR
), REG_READ(ah
, AR_IER
));
855 EXPORT_SYMBOL(ath9k_hw_enable_interrupts
);
857 void ath9k_hw_set_interrupts(struct ath_hw
*ah
)
859 enum ath9k_int ints
= ah
->imask
;
861 struct ath9k_hw_capabilities
*pCap
= &ah
->caps
;
862 struct ath_common
*common
= ath9k_hw_common(ah
);
864 if (!(ints
& ATH9K_INT_GLOBAL
))
865 ath9k_hw_disable_interrupts(ah
);
867 ath_dbg(common
, INTERRUPT
, "New interrupt mask 0x%x\n", ints
);
869 mask
= ints
& ATH9K_INT_COMMON
;
872 if (ints
& ATH9K_INT_TX
) {
873 if (ah
->config
.tx_intr_mitigation
)
874 mask
|= AR_IMR_TXMINTR
| AR_IMR_TXINTM
;
876 if (ah
->txok_interrupt_mask
)
878 if (ah
->txdesc_interrupt_mask
)
879 mask
|= AR_IMR_TXDESC
;
881 if (ah
->txerr_interrupt_mask
)
882 mask
|= AR_IMR_TXERR
;
883 if (ah
->txeol_interrupt_mask
)
884 mask
|= AR_IMR_TXEOL
;
886 if (ints
& ATH9K_INT_RX
) {
887 if (AR_SREV_9300_20_OR_LATER(ah
)) {
888 mask
|= AR_IMR_RXERR
| AR_IMR_RXOK_HP
;
889 if (ah
->config
.rx_intr_mitigation
) {
890 mask
&= ~AR_IMR_RXOK_LP
;
891 mask
|= AR_IMR_RXMINTR
| AR_IMR_RXINTM
;
893 mask
|= AR_IMR_RXOK_LP
;
896 if (ah
->config
.rx_intr_mitigation
)
897 mask
|= AR_IMR_RXMINTR
| AR_IMR_RXINTM
;
899 mask
|= AR_IMR_RXOK
| AR_IMR_RXDESC
;
901 if (!(pCap
->hw_caps
& ATH9K_HW_CAP_AUTOSLEEP
))
902 mask
|= AR_IMR_GENTMR
;
905 if (ints
& ATH9K_INT_GENTIMER
)
906 mask
|= AR_IMR_GENTMR
;
908 if (ints
& (ATH9K_INT_BMISC
)) {
909 mask
|= AR_IMR_BCNMISC
;
910 if (ints
& ATH9K_INT_TIM
)
911 mask2
|= AR_IMR_S2_TIM
;
912 if (ints
& ATH9K_INT_DTIM
)
913 mask2
|= AR_IMR_S2_DTIM
;
914 if (ints
& ATH9K_INT_DTIMSYNC
)
915 mask2
|= AR_IMR_S2_DTIMSYNC
;
916 if (ints
& ATH9K_INT_CABEND
)
917 mask2
|= AR_IMR_S2_CABEND
;
918 if (ints
& ATH9K_INT_TSFOOR
)
919 mask2
|= AR_IMR_S2_TSFOOR
;
922 if (ints
& (ATH9K_INT_GTT
| ATH9K_INT_CST
)) {
923 mask
|= AR_IMR_BCNMISC
;
924 if (ints
& ATH9K_INT_GTT
)
925 mask2
|= AR_IMR_S2_GTT
;
926 if (ints
& ATH9K_INT_CST
)
927 mask2
|= AR_IMR_S2_CST
;
930 ath_dbg(common
, INTERRUPT
, "new IMR 0x%x\n", mask
);
931 REG_WRITE(ah
, AR_IMR
, mask
);
932 ah
->imrs2_reg
&= ~(AR_IMR_S2_TIM
| AR_IMR_S2_DTIM
| AR_IMR_S2_DTIMSYNC
|
933 AR_IMR_S2_CABEND
| AR_IMR_S2_CABTO
|
934 AR_IMR_S2_TSFOOR
| AR_IMR_S2_GTT
| AR_IMR_S2_CST
);
935 ah
->imrs2_reg
|= mask2
;
936 REG_WRITE(ah
, AR_IMR_S2
, ah
->imrs2_reg
);
938 if (!(pCap
->hw_caps
& ATH9K_HW_CAP_AUTOSLEEP
)) {
939 if (ints
& ATH9K_INT_TIM_TIMER
)
940 REG_SET_BIT(ah
, AR_IMR_S5
, AR_IMR_S5_TIM_TIMER
);
942 REG_CLR_BIT(ah
, AR_IMR_S5
, AR_IMR_S5_TIM_TIMER
);
947 EXPORT_SYMBOL(ath9k_hw_set_interrupts
);