2 * Copyright (c) 2008-2011 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 #include <linux/dma-mapping.h>
19 #include "ar9003_mac.h"
21 #define BITS_PER_BYTE 8
22 #define OFDM_PLCP_BITS 22
23 #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1)
29 #define HT_LTF(_ns) (4 * (_ns))
30 #define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */
31 #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */
32 #define TIME_SYMBOLS(t) ((t) >> 2)
33 #define TIME_SYMBOLS_HALFGI(t) (((t) * 5 - 4) / 18)
34 #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
35 #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
38 static u16 bits_per_symbol
[][2] = {
40 { 26, 54 }, /* 0: BPSK */
41 { 52, 108 }, /* 1: QPSK 1/2 */
42 { 78, 162 }, /* 2: QPSK 3/4 */
43 { 104, 216 }, /* 3: 16-QAM 1/2 */
44 { 156, 324 }, /* 4: 16-QAM 3/4 */
45 { 208, 432 }, /* 5: 64-QAM 2/3 */
46 { 234, 486 }, /* 6: 64-QAM 3/4 */
47 { 260, 540 }, /* 7: 64-QAM 5/6 */
50 #define IS_HT_RATE(_rate) ((_rate) & 0x80)
52 static void ath_tx_send_normal(struct ath_softc
*sc
, struct ath_txq
*txq
,
53 struct ath_atx_tid
*tid
, struct sk_buff
*skb
);
54 static void ath_tx_complete(struct ath_softc
*sc
, struct sk_buff
*skb
,
55 int tx_flags
, struct ath_txq
*txq
);
56 static void ath_tx_complete_buf(struct ath_softc
*sc
, struct ath_buf
*bf
,
57 struct ath_txq
*txq
, struct list_head
*bf_q
,
58 struct ath_tx_status
*ts
, int txok
);
59 static void ath_tx_txqaddbuf(struct ath_softc
*sc
, struct ath_txq
*txq
,
60 struct list_head
*head
, bool internal
);
61 static void ath_tx_rc_status(struct ath_softc
*sc
, struct ath_buf
*bf
,
62 struct ath_tx_status
*ts
, int nframes
, int nbad
,
64 static void ath_tx_update_baw(struct ath_softc
*sc
, struct ath_atx_tid
*tid
,
66 static struct ath_buf
*ath_tx_setup_buffer(struct ath_softc
*sc
,
68 struct ath_atx_tid
*tid
,
78 /*********************/
79 /* Aggregation logic */
80 /*********************/
82 void ath_txq_lock(struct ath_softc
*sc
, struct ath_txq
*txq
)
83 __acquires(&txq
->axq_lock
)
85 spin_lock_bh(&txq
->axq_lock
);
88 void ath_txq_unlock(struct ath_softc
*sc
, struct ath_txq
*txq
)
89 __releases(&txq
->axq_lock
)
91 spin_unlock_bh(&txq
->axq_lock
);
94 void ath_txq_unlock_complete(struct ath_softc
*sc
, struct ath_txq
*txq
)
95 __releases(&txq
->axq_lock
)
97 struct sk_buff_head q
;
100 __skb_queue_head_init(&q
);
101 skb_queue_splice_init(&txq
->complete_q
, &q
);
102 spin_unlock_bh(&txq
->axq_lock
);
104 while ((skb
= __skb_dequeue(&q
)))
105 ieee80211_tx_status(sc
->hw
, skb
);
108 static void ath_tx_queue_tid(struct ath_txq
*txq
, struct ath_atx_tid
*tid
)
110 struct ath_atx_ac
*ac
= tid
->ac
;
119 list_add_tail(&tid
->list
, &ac
->tid_q
);
125 list_add_tail(&ac
->list
, &txq
->axq_acq
);
128 static struct ath_frame_info
*get_frame_info(struct sk_buff
*skb
)
130 struct ieee80211_tx_info
*tx_info
= IEEE80211_SKB_CB(skb
);
131 BUILD_BUG_ON(sizeof(struct ath_frame_info
) >
132 sizeof(tx_info
->rate_driver_data
));
133 return (struct ath_frame_info
*) &tx_info
->rate_driver_data
[0];
136 static void ath_send_bar(struct ath_atx_tid
*tid
, u16 seqno
)
141 ieee80211_send_bar(tid
->an
->vif
, tid
->an
->sta
->addr
, tid
->tidno
,
142 seqno
<< IEEE80211_SEQ_SEQ_SHIFT
);
145 static void ath_set_rates(struct ieee80211_vif
*vif
, struct ieee80211_sta
*sta
,
148 ieee80211_get_tx_rates(vif
, sta
, bf
->bf_mpdu
, bf
->rates
,
149 ARRAY_SIZE(bf
->rates
));
152 static void ath_txq_skb_done(struct ath_softc
*sc
, struct ath_txq
*txq
,
157 q
= skb_get_queue_mapping(skb
);
158 if (txq
== sc
->tx
.uapsdq
)
159 txq
= sc
->tx
.txq_map
[q
];
161 if (txq
!= sc
->tx
.txq_map
[q
])
164 if (WARN_ON(--txq
->pending_frames
< 0))
165 txq
->pending_frames
= 0;
168 txq
->pending_frames
< sc
->tx
.txq_max_pending
[q
]) {
169 ieee80211_wake_queue(sc
->hw
, q
);
170 txq
->stopped
= false;
174 static struct ath_atx_tid
*
175 ath_get_skb_tid(struct ath_softc
*sc
, struct ath_node
*an
, struct sk_buff
*skb
)
177 struct ieee80211_hdr
*hdr
;
180 hdr
= (struct ieee80211_hdr
*) skb
->data
;
181 if (ieee80211_is_data_qos(hdr
->frame_control
))
182 tidno
= ieee80211_get_qos_ctl(hdr
)[0];
184 tidno
&= IEEE80211_QOS_CTL_TID_MASK
;
185 return ATH_AN_2_TID(an
, tidno
);
188 static bool ath_tid_has_buffered(struct ath_atx_tid
*tid
)
190 return !skb_queue_empty(&tid
->buf_q
) || !skb_queue_empty(&tid
->retry_q
);
193 static struct sk_buff
*ath_tid_dequeue(struct ath_atx_tid
*tid
)
197 skb
= __skb_dequeue(&tid
->retry_q
);
199 skb
= __skb_dequeue(&tid
->buf_q
);
205 * ath_tx_tid_change_state:
206 * - clears a-mpdu flag of previous session
207 * - force sequence number allocation to fix next BlockAck Window
210 ath_tx_tid_change_state(struct ath_softc
*sc
, struct ath_atx_tid
*tid
)
212 struct ath_txq
*txq
= tid
->ac
->txq
;
213 struct ieee80211_tx_info
*tx_info
;
214 struct sk_buff
*skb
, *tskb
;
216 struct ath_frame_info
*fi
;
218 skb_queue_walk_safe(&tid
->buf_q
, skb
, tskb
) {
219 fi
= get_frame_info(skb
);
222 tx_info
= IEEE80211_SKB_CB(skb
);
223 tx_info
->flags
&= ~IEEE80211_TX_CTL_AMPDU
;
228 bf
= ath_tx_setup_buffer(sc
, txq
, tid
, skb
);
230 __skb_unlink(skb
, &tid
->buf_q
);
231 ath_txq_skb_done(sc
, txq
, skb
);
232 ieee80211_free_txskb(sc
->hw
, skb
);
239 static void ath_tx_flush_tid(struct ath_softc
*sc
, struct ath_atx_tid
*tid
)
241 struct ath_txq
*txq
= tid
->ac
->txq
;
244 struct list_head bf_head
;
245 struct ath_tx_status ts
;
246 struct ath_frame_info
*fi
;
247 bool sendbar
= false;
249 INIT_LIST_HEAD(&bf_head
);
251 memset(&ts
, 0, sizeof(ts
));
253 while ((skb
= __skb_dequeue(&tid
->retry_q
))) {
254 fi
= get_frame_info(skb
);
257 ath_txq_skb_done(sc
, txq
, skb
);
258 ieee80211_free_txskb(sc
->hw
, skb
);
262 if (fi
->baw_tracked
) {
263 ath_tx_update_baw(sc
, tid
, bf
->bf_state
.seqno
);
267 list_add_tail(&bf
->list
, &bf_head
);
268 ath_tx_complete_buf(sc
, bf
, txq
, &bf_head
, &ts
, 0);
272 ath_txq_unlock(sc
, txq
);
273 ath_send_bar(tid
, tid
->seq_start
);
274 ath_txq_lock(sc
, txq
);
278 static void ath_tx_update_baw(struct ath_softc
*sc
, struct ath_atx_tid
*tid
,
283 index
= ATH_BA_INDEX(tid
->seq_start
, seqno
);
284 cindex
= (tid
->baw_head
+ index
) & (ATH_TID_MAX_BUFS
- 1);
286 __clear_bit(cindex
, tid
->tx_buf
);
288 while (tid
->baw_head
!= tid
->baw_tail
&& !test_bit(tid
->baw_head
, tid
->tx_buf
)) {
289 INCR(tid
->seq_start
, IEEE80211_SEQ_MAX
);
290 INCR(tid
->baw_head
, ATH_TID_MAX_BUFS
);
291 if (tid
->bar_index
>= 0)
296 static void ath_tx_addto_baw(struct ath_softc
*sc
, struct ath_atx_tid
*tid
,
299 struct ath_frame_info
*fi
= get_frame_info(bf
->bf_mpdu
);
300 u16 seqno
= bf
->bf_state
.seqno
;
303 index
= ATH_BA_INDEX(tid
->seq_start
, seqno
);
304 cindex
= (tid
->baw_head
+ index
) & (ATH_TID_MAX_BUFS
- 1);
305 __set_bit(cindex
, tid
->tx_buf
);
308 if (index
>= ((tid
->baw_tail
- tid
->baw_head
) &
309 (ATH_TID_MAX_BUFS
- 1))) {
310 tid
->baw_tail
= cindex
;
311 INCR(tid
->baw_tail
, ATH_TID_MAX_BUFS
);
315 static void ath_tid_drain(struct ath_softc
*sc
, struct ath_txq
*txq
,
316 struct ath_atx_tid
*tid
)
321 struct list_head bf_head
;
322 struct ath_tx_status ts
;
323 struct ath_frame_info
*fi
;
325 memset(&ts
, 0, sizeof(ts
));
326 INIT_LIST_HEAD(&bf_head
);
328 while ((skb
= ath_tid_dequeue(tid
))) {
329 fi
= get_frame_info(skb
);
333 ath_tx_complete(sc
, skb
, ATH_TX_ERROR
, txq
);
337 list_add_tail(&bf
->list
, &bf_head
);
338 ath_tx_complete_buf(sc
, bf
, txq
, &bf_head
, &ts
, 0);
342 static void ath_tx_set_retry(struct ath_softc
*sc
, struct ath_txq
*txq
,
343 struct sk_buff
*skb
, int count
)
345 struct ath_frame_info
*fi
= get_frame_info(skb
);
346 struct ath_buf
*bf
= fi
->bf
;
347 struct ieee80211_hdr
*hdr
;
348 int prev
= fi
->retries
;
350 TX_STAT_INC(txq
->axq_qnum
, a_retries
);
351 fi
->retries
+= count
;
356 hdr
= (struct ieee80211_hdr
*)skb
->data
;
357 hdr
->frame_control
|= cpu_to_le16(IEEE80211_FCTL_RETRY
);
358 dma_sync_single_for_device(sc
->dev
, bf
->bf_buf_addr
,
359 sizeof(*hdr
), DMA_TO_DEVICE
);
362 static struct ath_buf
*ath_tx_get_buffer(struct ath_softc
*sc
)
364 struct ath_buf
*bf
= NULL
;
366 spin_lock_bh(&sc
->tx
.txbuflock
);
368 if (unlikely(list_empty(&sc
->tx
.txbuf
))) {
369 spin_unlock_bh(&sc
->tx
.txbuflock
);
373 bf
= list_first_entry(&sc
->tx
.txbuf
, struct ath_buf
, list
);
376 spin_unlock_bh(&sc
->tx
.txbuflock
);
381 static void ath_tx_return_buffer(struct ath_softc
*sc
, struct ath_buf
*bf
)
383 spin_lock_bh(&sc
->tx
.txbuflock
);
384 list_add_tail(&bf
->list
, &sc
->tx
.txbuf
);
385 spin_unlock_bh(&sc
->tx
.txbuflock
);
388 static struct ath_buf
* ath_clone_txbuf(struct ath_softc
*sc
, struct ath_buf
*bf
)
392 tbf
= ath_tx_get_buffer(sc
);
396 ATH_TXBUF_RESET(tbf
);
398 tbf
->bf_mpdu
= bf
->bf_mpdu
;
399 tbf
->bf_buf_addr
= bf
->bf_buf_addr
;
400 memcpy(tbf
->bf_desc
, bf
->bf_desc
, sc
->sc_ah
->caps
.tx_desc_len
);
401 tbf
->bf_state
= bf
->bf_state
;
406 static void ath_tx_count_frames(struct ath_softc
*sc
, struct ath_buf
*bf
,
407 struct ath_tx_status
*ts
, int txok
,
408 int *nframes
, int *nbad
)
410 struct ath_frame_info
*fi
;
412 u32 ba
[WME_BA_BMP_SIZE
>> 5];
419 isaggr
= bf_isaggr(bf
);
421 seq_st
= ts
->ts_seqnum
;
422 memcpy(ba
, &ts
->ba_low
, WME_BA_BMP_SIZE
>> 3);
426 fi
= get_frame_info(bf
->bf_mpdu
);
427 ba_index
= ATH_BA_INDEX(seq_st
, bf
->bf_state
.seqno
);
430 if (!txok
|| (isaggr
&& !ATH_BA_ISSET(ba
, ba_index
)))
438 static void ath_tx_complete_aggr(struct ath_softc
*sc
, struct ath_txq
*txq
,
439 struct ath_buf
*bf
, struct list_head
*bf_q
,
440 struct ath_tx_status
*ts
, int txok
)
442 struct ath_node
*an
= NULL
;
444 struct ieee80211_sta
*sta
;
445 struct ieee80211_hw
*hw
= sc
->hw
;
446 struct ieee80211_hdr
*hdr
;
447 struct ieee80211_tx_info
*tx_info
;
448 struct ath_atx_tid
*tid
= NULL
;
449 struct ath_buf
*bf_next
, *bf_last
= bf
->bf_lastbf
;
450 struct list_head bf_head
;
451 struct sk_buff_head bf_pending
;
452 u16 seq_st
= 0, acked_cnt
= 0, txfail_cnt
= 0, seq_first
;
453 u32 ba
[WME_BA_BMP_SIZE
>> 5];
454 int isaggr
, txfail
, txpending
, sendbar
= 0, needreset
= 0, nbad
= 0;
455 bool rc_update
= true, isba
;
456 struct ieee80211_tx_rate rates
[4];
457 struct ath_frame_info
*fi
;
459 bool flush
= !!(ts
->ts_status
& ATH9K_TX_FLUSH
);
464 hdr
= (struct ieee80211_hdr
*)skb
->data
;
466 tx_info
= IEEE80211_SKB_CB(skb
);
468 memcpy(rates
, bf
->rates
, sizeof(rates
));
470 retries
= ts
->ts_longretry
+ 1;
471 for (i
= 0; i
< ts
->ts_rateindex
; i
++)
472 retries
+= rates
[i
].count
;
476 sta
= ieee80211_find_sta_by_ifaddr(hw
, hdr
->addr1
, hdr
->addr2
);
480 INIT_LIST_HEAD(&bf_head
);
482 bf_next
= bf
->bf_next
;
484 if (!bf
->bf_state
.stale
|| bf_next
!= NULL
)
485 list_move_tail(&bf
->list
, &bf_head
);
487 ath_tx_complete_buf(sc
, bf
, txq
, &bf_head
, ts
, 0);
494 an
= (struct ath_node
*)sta
->drv_priv
;
495 tid
= ath_get_skb_tid(sc
, an
, skb
);
496 seq_first
= tid
->seq_start
;
497 isba
= ts
->ts_flags
& ATH9K_TX_BA
;
500 * The hardware occasionally sends a tx status for the wrong TID.
501 * In this case, the BA status cannot be considered valid and all
502 * subframes need to be retransmitted
504 * Only BlockAcks have a TID and therefore normal Acks cannot be
507 if (isba
&& tid
->tidno
!= ts
->tid
)
510 isaggr
= bf_isaggr(bf
);
511 memset(ba
, 0, WME_BA_BMP_SIZE
>> 3);
513 if (isaggr
&& txok
) {
514 if (ts
->ts_flags
& ATH9K_TX_BA
) {
515 seq_st
= ts
->ts_seqnum
;
516 memcpy(ba
, &ts
->ba_low
, WME_BA_BMP_SIZE
>> 3);
519 * AR5416 can become deaf/mute when BA
520 * issue happens. Chip needs to be reset.
521 * But AP code may have sychronization issues
522 * when perform internal reset in this routine.
523 * Only enable reset in STA mode for now.
525 if (sc
->sc_ah
->opmode
== NL80211_IFTYPE_STATION
)
530 __skb_queue_head_init(&bf_pending
);
532 ath_tx_count_frames(sc
, bf
, ts
, txok
, &nframes
, &nbad
);
534 u16 seqno
= bf
->bf_state
.seqno
;
536 txfail
= txpending
= sendbar
= 0;
537 bf_next
= bf
->bf_next
;
540 tx_info
= IEEE80211_SKB_CB(skb
);
541 fi
= get_frame_info(skb
);
543 if (!BAW_WITHIN(tid
->seq_start
, tid
->baw_size
, seqno
) ||
546 * Outside of the current BlockAck window,
547 * maybe part of a previous session
550 } else if (ATH_BA_ISSET(ba
, ATH_BA_INDEX(seq_st
, seqno
))) {
551 /* transmit completion, subframe is
552 * acked by block ack */
554 } else if (!isaggr
&& txok
) {
555 /* transmit completion */
559 } else if (fi
->retries
< ATH_MAX_SW_RETRIES
) {
560 if (txok
|| !an
->sleeping
)
561 ath_tx_set_retry(sc
, txq
, bf
->bf_mpdu
,
568 bar_index
= max_t(int, bar_index
,
569 ATH_BA_INDEX(seq_first
, seqno
));
573 * Make sure the last desc is reclaimed if it
574 * not a holding desc.
576 INIT_LIST_HEAD(&bf_head
);
577 if (bf_next
!= NULL
|| !bf_last
->bf_state
.stale
)
578 list_move_tail(&bf
->list
, &bf_head
);
582 * complete the acked-ones/xretried ones; update
585 ath_tx_update_baw(sc
, tid
, seqno
);
587 if (rc_update
&& (acked_cnt
== 1 || txfail_cnt
== 1)) {
588 memcpy(tx_info
->control
.rates
, rates
, sizeof(rates
));
589 ath_tx_rc_status(sc
, bf
, ts
, nframes
, nbad
, txok
);
593 ath_tx_complete_buf(sc
, bf
, txq
, &bf_head
, ts
,
596 if (tx_info
->flags
& IEEE80211_TX_STATUS_EOSP
) {
597 tx_info
->flags
&= ~IEEE80211_TX_STATUS_EOSP
;
598 ieee80211_sta_eosp(sta
);
600 /* retry the un-acked ones */
601 if (bf
->bf_next
== NULL
&& bf_last
->bf_state
.stale
) {
604 tbf
= ath_clone_txbuf(sc
, bf_last
);
606 * Update tx baw and complete the
607 * frame with failed status if we
611 ath_tx_update_baw(sc
, tid
, seqno
);
613 ath_tx_complete_buf(sc
, bf
, txq
,
615 bar_index
= max_t(int, bar_index
,
616 ATH_BA_INDEX(seq_first
, seqno
));
624 * Put this buffer to the temporary pending
625 * queue to retain ordering
627 __skb_queue_tail(&bf_pending
, skb
);
633 /* prepend un-acked frames to the beginning of the pending frame queue */
634 if (!skb_queue_empty(&bf_pending
)) {
636 ieee80211_sta_set_buffered(sta
, tid
->tidno
, true);
638 skb_queue_splice_tail(&bf_pending
, &tid
->retry_q
);
640 ath_tx_queue_tid(txq
, tid
);
642 if (ts
->ts_status
& (ATH9K_TXERR_FILT
| ATH9K_TXERR_XRETRY
))
643 tid
->ac
->clear_ps_filter
= true;
647 if (bar_index
>= 0) {
648 u16 bar_seq
= ATH_BA_INDEX2SEQ(seq_first
, bar_index
);
650 if (BAW_WITHIN(tid
->seq_start
, tid
->baw_size
, bar_seq
))
651 tid
->bar_index
= ATH_BA_INDEX(tid
->seq_start
, bar_seq
);
653 ath_txq_unlock(sc
, txq
);
654 ath_send_bar(tid
, ATH_BA_INDEX2SEQ(seq_first
, bar_index
+ 1));
655 ath_txq_lock(sc
, txq
);
661 ath9k_queue_reset(sc
, RESET_TYPE_TX_ERROR
);
664 static bool bf_is_ampdu_not_probing(struct ath_buf
*bf
)
666 struct ieee80211_tx_info
*info
= IEEE80211_SKB_CB(bf
->bf_mpdu
);
667 return bf_isampdu(bf
) && !(info
->flags
& IEEE80211_TX_CTL_RATE_CTRL_PROBE
);
670 static void ath_tx_process_buffer(struct ath_softc
*sc
, struct ath_txq
*txq
,
671 struct ath_tx_status
*ts
, struct ath_buf
*bf
,
672 struct list_head
*bf_head
)
674 struct ieee80211_tx_info
*info
;
677 txok
= !(ts
->ts_status
& ATH9K_TXERR_MASK
);
678 flush
= !!(ts
->ts_status
& ATH9K_TX_FLUSH
);
679 txq
->axq_tx_inprogress
= false;
682 if (bf_is_ampdu_not_probing(bf
))
683 txq
->axq_ampdu_depth
--;
685 if (!bf_isampdu(bf
)) {
687 info
= IEEE80211_SKB_CB(bf
->bf_mpdu
);
688 memcpy(info
->control
.rates
, bf
->rates
,
689 sizeof(info
->control
.rates
));
690 ath_tx_rc_status(sc
, bf
, ts
, 1, txok
? 0 : 1, txok
);
692 ath_tx_complete_buf(sc
, bf
, txq
, bf_head
, ts
, txok
);
694 ath_tx_complete_aggr(sc
, txq
, bf
, bf_head
, ts
, txok
);
697 ath_txq_schedule(sc
, txq
);
700 static bool ath_lookup_legacy(struct ath_buf
*bf
)
703 struct ieee80211_tx_info
*tx_info
;
704 struct ieee80211_tx_rate
*rates
;
708 tx_info
= IEEE80211_SKB_CB(skb
);
709 rates
= tx_info
->control
.rates
;
711 for (i
= 0; i
< 4; i
++) {
712 if (!rates
[i
].count
|| rates
[i
].idx
< 0)
715 if (!(rates
[i
].flags
& IEEE80211_TX_RC_MCS
))
722 static u32
ath_lookup_rate(struct ath_softc
*sc
, struct ath_buf
*bf
,
723 struct ath_atx_tid
*tid
)
726 struct ieee80211_tx_info
*tx_info
;
727 struct ieee80211_tx_rate
*rates
;
728 u32 max_4ms_framelen
, frmlen
;
729 u16 aggr_limit
, bt_aggr_limit
, legacy
= 0;
730 int q
= tid
->ac
->txq
->mac80211_qnum
;
734 tx_info
= IEEE80211_SKB_CB(skb
);
738 * Find the lowest frame length among the rate series that will have a
739 * 4ms (or TXOP limited) transmit duration.
741 max_4ms_framelen
= ATH_AMPDU_LIMIT_MAX
;
743 for (i
= 0; i
< 4; i
++) {
749 if (!(rates
[i
].flags
& IEEE80211_TX_RC_MCS
)) {
754 if (rates
[i
].flags
& IEEE80211_TX_RC_40_MHZ_WIDTH
)
759 if (rates
[i
].flags
& IEEE80211_TX_RC_SHORT_GI
)
762 frmlen
= sc
->tx
.max_aggr_framelen
[q
][modeidx
][rates
[i
].idx
];
763 max_4ms_framelen
= min(max_4ms_framelen
, frmlen
);
767 * limit aggregate size by the minimum rate if rate selected is
768 * not a probe rate, if rate selected is a probe rate then
769 * avoid aggregation of this packet.
771 if (tx_info
->flags
& IEEE80211_TX_CTL_RATE_CTRL_PROBE
|| legacy
)
774 aggr_limit
= min(max_4ms_framelen
, (u32
)ATH_AMPDU_LIMIT_MAX
);
777 * Override the default aggregation limit for BTCOEX.
779 bt_aggr_limit
= ath9k_btcoex_aggr_limit(sc
, max_4ms_framelen
);
781 aggr_limit
= bt_aggr_limit
;
784 * h/w can accept aggregates up to 16 bit lengths (65535).
785 * The IE, however can hold up to 65536, which shows up here
786 * as zero. Ignore 65536 since we are constrained by hw.
788 if (tid
->an
->maxampdu
)
789 aggr_limit
= min(aggr_limit
, tid
->an
->maxampdu
);
795 * Returns the number of delimiters to be added to
796 * meet the minimum required mpdudensity.
798 static int ath_compute_num_delims(struct ath_softc
*sc
, struct ath_atx_tid
*tid
,
799 struct ath_buf
*bf
, u16 frmlen
,
802 #define FIRST_DESC_NDELIMS 60
803 u32 nsymbits
, nsymbols
;
806 int width
, streams
, half_gi
, ndelim
, mindelim
;
807 struct ath_frame_info
*fi
= get_frame_info(bf
->bf_mpdu
);
809 /* Select standard number of delimiters based on frame length alone */
810 ndelim
= ATH_AGGR_GET_NDELIM(frmlen
);
813 * If encryption enabled, hardware requires some more padding between
815 * TODO - this could be improved to be dependent on the rate.
816 * The hardware can keep up at lower rates, but not higher rates
818 if ((fi
->keyix
!= ATH9K_TXKEYIX_INVALID
) &&
819 !(sc
->sc_ah
->caps
.hw_caps
& ATH9K_HW_CAP_EDMA
))
820 ndelim
+= ATH_AGGR_ENCRYPTDELIM
;
823 * Add delimiter when using RTS/CTS with aggregation
824 * and non enterprise AR9003 card
826 if (first_subfrm
&& !AR_SREV_9580_10_OR_LATER(sc
->sc_ah
) &&
827 (sc
->sc_ah
->ent_mode
& AR_ENT_OTP_MIN_PKT_SIZE_DISABLE
))
828 ndelim
= max(ndelim
, FIRST_DESC_NDELIMS
);
831 * Convert desired mpdu density from microeconds to bytes based
832 * on highest rate in rate series (i.e. first rate) to determine
833 * required minimum length for subframe. Take into account
834 * whether high rate is 20 or 40Mhz and half or full GI.
836 * If there is no mpdu density restriction, no further calculation
840 if (tid
->an
->mpdudensity
== 0)
843 rix
= bf
->rates
[0].idx
;
844 flags
= bf
->rates
[0].flags
;
845 width
= (flags
& IEEE80211_TX_RC_40_MHZ_WIDTH
) ? 1 : 0;
846 half_gi
= (flags
& IEEE80211_TX_RC_SHORT_GI
) ? 1 : 0;
849 nsymbols
= NUM_SYMBOLS_PER_USEC_HALFGI(tid
->an
->mpdudensity
);
851 nsymbols
= NUM_SYMBOLS_PER_USEC(tid
->an
->mpdudensity
);
856 streams
= HT_RC_2_STREAMS(rix
);
857 nsymbits
= bits_per_symbol
[rix
% 8][width
] * streams
;
858 minlen
= (nsymbols
* nsymbits
) / BITS_PER_BYTE
;
860 if (frmlen
< minlen
) {
861 mindelim
= (minlen
- frmlen
) / ATH_AGGR_DELIM_SZ
;
862 ndelim
= max(mindelim
, ndelim
);
868 static struct ath_buf
*
869 ath_tx_get_tid_subframe(struct ath_softc
*sc
, struct ath_txq
*txq
,
870 struct ath_atx_tid
*tid
, struct sk_buff_head
**q
)
872 struct ieee80211_tx_info
*tx_info
;
873 struct ath_frame_info
*fi
;
880 if (skb_queue_empty(*q
))
887 fi
= get_frame_info(skb
);
890 bf
= ath_tx_setup_buffer(sc
, txq
, tid
, skb
);
892 bf
->bf_state
.stale
= false;
895 __skb_unlink(skb
, *q
);
896 ath_txq_skb_done(sc
, txq
, skb
);
897 ieee80211_free_txskb(sc
->hw
, skb
);
904 tx_info
= IEEE80211_SKB_CB(skb
);
905 tx_info
->flags
&= ~IEEE80211_TX_CTL_CLEAR_PS_FILT
;
906 if (!(tx_info
->flags
& IEEE80211_TX_CTL_AMPDU
)) {
907 bf
->bf_state
.bf_type
= 0;
911 bf
->bf_state
.bf_type
= BUF_AMPDU
| BUF_AGGR
;
912 seqno
= bf
->bf_state
.seqno
;
914 /* do not step over block-ack window */
915 if (!BAW_WITHIN(tid
->seq_start
, tid
->baw_size
, seqno
))
918 if (tid
->bar_index
> ATH_BA_INDEX(tid
->seq_start
, seqno
)) {
919 struct ath_tx_status ts
= {};
920 struct list_head bf_head
;
922 INIT_LIST_HEAD(&bf_head
);
923 list_add(&bf
->list
, &bf_head
);
924 __skb_unlink(skb
, *q
);
925 ath_tx_update_baw(sc
, tid
, seqno
);
926 ath_tx_complete_buf(sc
, bf
, txq
, &bf_head
, &ts
, 0);
937 ath_tx_form_aggr(struct ath_softc
*sc
, struct ath_txq
*txq
,
938 struct ath_atx_tid
*tid
, struct list_head
*bf_q
,
939 struct ath_buf
*bf_first
, struct sk_buff_head
*tid_q
,
942 #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
943 struct ath_buf
*bf
= bf_first
, *bf_prev
= NULL
;
944 int nframes
= 0, ndelim
;
945 u16 aggr_limit
= 0, al
= 0, bpad
= 0,
946 al_delta
, h_baw
= tid
->baw_size
/ 2;
947 struct ieee80211_tx_info
*tx_info
;
948 struct ath_frame_info
*fi
;
953 aggr_limit
= ath_lookup_rate(sc
, bf
, tid
);
957 fi
= get_frame_info(skb
);
959 /* do not exceed aggregation limit */
960 al_delta
= ATH_AGGR_DELIM_SZ
+ fi
->framelen
;
962 if (aggr_limit
< al
+ bpad
+ al_delta
||
963 ath_lookup_legacy(bf
) || nframes
>= h_baw
)
966 tx_info
= IEEE80211_SKB_CB(bf
->bf_mpdu
);
967 if ((tx_info
->flags
& IEEE80211_TX_CTL_RATE_CTRL_PROBE
) ||
968 !(tx_info
->flags
& IEEE80211_TX_CTL_AMPDU
))
972 /* add padding for previous frame to aggregation length */
973 al
+= bpad
+ al_delta
;
976 * Get the delimiters needed to meet the MPDU
977 * density for this node.
979 ndelim
= ath_compute_num_delims(sc
, tid
, bf_first
, fi
->framelen
,
981 bpad
= PADBYTES(al_delta
) + (ndelim
<< 2);
986 /* link buffers of this frame to the aggregate */
987 if (!fi
->baw_tracked
)
988 ath_tx_addto_baw(sc
, tid
, bf
);
989 bf
->bf_state
.ndelim
= ndelim
;
991 __skb_unlink(skb
, tid_q
);
992 list_add_tail(&bf
->list
, bf_q
);
994 bf_prev
->bf_next
= bf
;
998 bf
= ath_tx_get_tid_subframe(sc
, txq
, tid
, &tid_q
);
1003 } while (ath_tid_has_buffered(tid
));
1006 bf
->bf_lastbf
= bf_prev
;
1008 if (bf
== bf_prev
) {
1009 al
= get_frame_info(bf
->bf_mpdu
)->framelen
;
1010 bf
->bf_state
.bf_type
= BUF_AMPDU
;
1012 TX_STAT_INC(txq
->axq_qnum
, a_aggr
);
1023 * pktlen - total bytes (delims + data + fcs + pads + pad delims)
1024 * width - 0 for 20 MHz, 1 for 40 MHz
1025 * half_gi - to use 4us v/s 3.6 us for symbol time
1027 static u32
ath_pkt_duration(struct ath_softc
*sc
, u8 rix
, int pktlen
,
1028 int width
, int half_gi
, bool shortPreamble
)
1030 u32 nbits
, nsymbits
, duration
, nsymbols
;
1033 /* find number of symbols: PLCP + data */
1034 streams
= HT_RC_2_STREAMS(rix
);
1035 nbits
= (pktlen
<< 3) + OFDM_PLCP_BITS
;
1036 nsymbits
= bits_per_symbol
[rix
% 8][width
] * streams
;
1037 nsymbols
= (nbits
+ nsymbits
- 1) / nsymbits
;
1040 duration
= SYMBOL_TIME(nsymbols
);
1042 duration
= SYMBOL_TIME_HALFGI(nsymbols
);
1044 /* addup duration for legacy/ht training and signal fields */
1045 duration
+= L_STF
+ L_LTF
+ L_SIG
+ HT_SIG
+ HT_STF
+ HT_LTF(streams
);
1050 static int ath_max_framelen(int usec
, int mcs
, bool ht40
, bool sgi
)
1052 int streams
= HT_RC_2_STREAMS(mcs
);
1056 symbols
= sgi
? TIME_SYMBOLS_HALFGI(usec
) : TIME_SYMBOLS(usec
);
1057 bits
= symbols
* bits_per_symbol
[mcs
% 8][ht40
] * streams
;
1058 bits
-= OFDM_PLCP_BITS
;
1060 bytes
-= L_STF
+ L_LTF
+ L_SIG
+ HT_SIG
+ HT_STF
+ HT_LTF(streams
);
1067 void ath_update_max_aggr_framelen(struct ath_softc
*sc
, int queue
, int txop
)
1069 u16
*cur_ht20
, *cur_ht20_sgi
, *cur_ht40
, *cur_ht40_sgi
;
1072 /* 4ms is the default (and maximum) duration */
1073 if (!txop
|| txop
> 4096)
1076 cur_ht20
= sc
->tx
.max_aggr_framelen
[queue
][MCS_HT20
];
1077 cur_ht20_sgi
= sc
->tx
.max_aggr_framelen
[queue
][MCS_HT20_SGI
];
1078 cur_ht40
= sc
->tx
.max_aggr_framelen
[queue
][MCS_HT40
];
1079 cur_ht40_sgi
= sc
->tx
.max_aggr_framelen
[queue
][MCS_HT40_SGI
];
1080 for (mcs
= 0; mcs
< 32; mcs
++) {
1081 cur_ht20
[mcs
] = ath_max_framelen(txop
, mcs
, false, false);
1082 cur_ht20_sgi
[mcs
] = ath_max_framelen(txop
, mcs
, false, true);
1083 cur_ht40
[mcs
] = ath_max_framelen(txop
, mcs
, true, false);
1084 cur_ht40_sgi
[mcs
] = ath_max_framelen(txop
, mcs
, true, true);
1088 static void ath_buf_set_rate(struct ath_softc
*sc
, struct ath_buf
*bf
,
1089 struct ath_tx_info
*info
, int len
, bool rts
)
1091 struct ath_hw
*ah
= sc
->sc_ah
;
1092 struct sk_buff
*skb
;
1093 struct ieee80211_tx_info
*tx_info
;
1094 struct ieee80211_tx_rate
*rates
;
1095 const struct ieee80211_rate
*rate
;
1096 struct ieee80211_hdr
*hdr
;
1097 struct ath_frame_info
*fi
= get_frame_info(bf
->bf_mpdu
);
1098 u32 rts_thresh
= sc
->hw
->wiphy
->rts_threshold
;
1103 tx_info
= IEEE80211_SKB_CB(skb
);
1105 hdr
= (struct ieee80211_hdr
*)skb
->data
;
1107 /* set dur_update_en for l-sig computation except for PS-Poll frames */
1108 info
->dur_update
= !ieee80211_is_pspoll(hdr
->frame_control
);
1109 info
->rtscts_rate
= fi
->rtscts_rate
;
1111 for (i
= 0; i
< ARRAY_SIZE(bf
->rates
); i
++) {
1112 bool is_40
, is_sgi
, is_sp
;
1115 if (!rates
[i
].count
|| (rates
[i
].idx
< 0))
1119 info
->rates
[i
].Tries
= rates
[i
].count
;
1122 * Handle RTS threshold for unaggregated HT frames.
1124 if (bf_isampdu(bf
) && !bf_isaggr(bf
) &&
1125 (rates
[i
].flags
& IEEE80211_TX_RC_MCS
) &&
1126 unlikely(rts_thresh
!= (u32
) -1)) {
1127 if (!rts_thresh
|| (len
> rts_thresh
))
1131 if (rts
|| rates
[i
].flags
& IEEE80211_TX_RC_USE_RTS_CTS
) {
1132 info
->rates
[i
].RateFlags
|= ATH9K_RATESERIES_RTS_CTS
;
1133 info
->flags
|= ATH9K_TXDESC_RTSENA
;
1134 } else if (rates
[i
].flags
& IEEE80211_TX_RC_USE_CTS_PROTECT
) {
1135 info
->rates
[i
].RateFlags
|= ATH9K_RATESERIES_RTS_CTS
;
1136 info
->flags
|= ATH9K_TXDESC_CTSENA
;
1139 if (rates
[i
].flags
& IEEE80211_TX_RC_40_MHZ_WIDTH
)
1140 info
->rates
[i
].RateFlags
|= ATH9K_RATESERIES_2040
;
1141 if (rates
[i
].flags
& IEEE80211_TX_RC_SHORT_GI
)
1142 info
->rates
[i
].RateFlags
|= ATH9K_RATESERIES_HALFGI
;
1144 is_sgi
= !!(rates
[i
].flags
& IEEE80211_TX_RC_SHORT_GI
);
1145 is_40
= !!(rates
[i
].flags
& IEEE80211_TX_RC_40_MHZ_WIDTH
);
1146 is_sp
= !!(rates
[i
].flags
& IEEE80211_TX_RC_USE_SHORT_PREAMBLE
);
1148 if (rates
[i
].flags
& IEEE80211_TX_RC_MCS
) {
1150 info
->rates
[i
].Rate
= rix
| 0x80;
1151 info
->rates
[i
].ChSel
= ath_txchainmask_reduction(sc
,
1152 ah
->txchainmask
, info
->rates
[i
].Rate
);
1153 info
->rates
[i
].PktDuration
= ath_pkt_duration(sc
, rix
, len
,
1154 is_40
, is_sgi
, is_sp
);
1155 if (rix
< 8 && (tx_info
->flags
& IEEE80211_TX_CTL_STBC
))
1156 info
->rates
[i
].RateFlags
|= ATH9K_RATESERIES_STBC
;
1161 rate
= &sc
->sbands
[tx_info
->band
].bitrates
[rates
[i
].idx
];
1162 if ((tx_info
->band
== IEEE80211_BAND_2GHZ
) &&
1163 !(rate
->flags
& IEEE80211_RATE_ERP_G
))
1164 phy
= WLAN_RC_PHY_CCK
;
1166 phy
= WLAN_RC_PHY_OFDM
;
1168 info
->rates
[i
].Rate
= rate
->hw_value
;
1169 if (rate
->hw_value_short
) {
1170 if (rates
[i
].flags
& IEEE80211_TX_RC_USE_SHORT_PREAMBLE
)
1171 info
->rates
[i
].Rate
|= rate
->hw_value_short
;
1176 if (bf
->bf_state
.bfs_paprd
)
1177 info
->rates
[i
].ChSel
= ah
->txchainmask
;
1179 info
->rates
[i
].ChSel
= ath_txchainmask_reduction(sc
,
1180 ah
->txchainmask
, info
->rates
[i
].Rate
);
1182 info
->rates
[i
].PktDuration
= ath9k_hw_computetxtime(sc
->sc_ah
,
1183 phy
, rate
->bitrate
* 100, len
, rix
, is_sp
);
1186 /* For AR5416 - RTS cannot be followed by a frame larger than 8K */
1187 if (bf_isaggr(bf
) && (len
> sc
->sc_ah
->caps
.rts_aggr_limit
))
1188 info
->flags
&= ~ATH9K_TXDESC_RTSENA
;
1190 /* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */
1191 if (info
->flags
& ATH9K_TXDESC_RTSENA
)
1192 info
->flags
&= ~ATH9K_TXDESC_CTSENA
;
1195 static enum ath9k_pkt_type
get_hw_packet_type(struct sk_buff
*skb
)
1197 struct ieee80211_hdr
*hdr
;
1198 enum ath9k_pkt_type htype
;
1201 hdr
= (struct ieee80211_hdr
*)skb
->data
;
1202 fc
= hdr
->frame_control
;
1204 if (ieee80211_is_beacon(fc
))
1205 htype
= ATH9K_PKT_TYPE_BEACON
;
1206 else if (ieee80211_is_probe_resp(fc
))
1207 htype
= ATH9K_PKT_TYPE_PROBE_RESP
;
1208 else if (ieee80211_is_atim(fc
))
1209 htype
= ATH9K_PKT_TYPE_ATIM
;
1210 else if (ieee80211_is_pspoll(fc
))
1211 htype
= ATH9K_PKT_TYPE_PSPOLL
;
1213 htype
= ATH9K_PKT_TYPE_NORMAL
;
1218 static void ath_tx_fill_desc(struct ath_softc
*sc
, struct ath_buf
*bf
,
1219 struct ath_txq
*txq
, int len
)
1221 struct ath_hw
*ah
= sc
->sc_ah
;
1222 struct ath_buf
*bf_first
= NULL
;
1223 struct ath_tx_info info
;
1224 u32 rts_thresh
= sc
->hw
->wiphy
->rts_threshold
;
1227 memset(&info
, 0, sizeof(info
));
1228 info
.is_first
= true;
1229 info
.is_last
= true;
1230 info
.txpower
= MAX_RATE_POWER
;
1231 info
.qcu
= txq
->axq_qnum
;
1234 struct sk_buff
*skb
= bf
->bf_mpdu
;
1235 struct ieee80211_tx_info
*tx_info
= IEEE80211_SKB_CB(skb
);
1236 struct ath_frame_info
*fi
= get_frame_info(skb
);
1237 bool aggr
= !!(bf
->bf_state
.bf_type
& BUF_AGGR
);
1239 info
.type
= get_hw_packet_type(skb
);
1241 info
.link
= bf
->bf_next
->bf_daddr
;
1248 info
.flags
= ATH9K_TXDESC_INTREQ
;
1249 if ((tx_info
->flags
& IEEE80211_TX_CTL_CLEAR_PS_FILT
) ||
1250 txq
== sc
->tx
.uapsdq
)
1251 info
.flags
|= ATH9K_TXDESC_CLRDMASK
;
1253 if (tx_info
->flags
& IEEE80211_TX_CTL_NO_ACK
)
1254 info
.flags
|= ATH9K_TXDESC_NOACK
;
1255 if (tx_info
->flags
& IEEE80211_TX_CTL_LDPC
)
1256 info
.flags
|= ATH9K_TXDESC_LDPC
;
1258 if (bf
->bf_state
.bfs_paprd
)
1259 info
.flags
|= (u32
) bf
->bf_state
.bfs_paprd
<<
1260 ATH9K_TXDESC_PAPRD_S
;
1263 * mac80211 doesn't handle RTS threshold for HT because
1264 * the decision has to be taken based on AMPDU length
1265 * and aggregation is done entirely inside ath9k.
1266 * Set the RTS/CTS flag for the first subframe based
1269 if (aggr
&& (bf
== bf_first
) &&
1270 unlikely(rts_thresh
!= (u32
) -1)) {
1272 * "len" is the size of the entire AMPDU.
1274 if (!rts_thresh
|| (len
> rts_thresh
))
1277 ath_buf_set_rate(sc
, bf
, &info
, len
, rts
);
1280 info
.buf_addr
[0] = bf
->bf_buf_addr
;
1281 info
.buf_len
[0] = skb
->len
;
1282 info
.pkt_len
= fi
->framelen
;
1283 info
.keyix
= fi
->keyix
;
1284 info
.keytype
= fi
->keytype
;
1288 info
.aggr
= AGGR_BUF_FIRST
;
1289 else if (bf
== bf_first
->bf_lastbf
)
1290 info
.aggr
= AGGR_BUF_LAST
;
1292 info
.aggr
= AGGR_BUF_MIDDLE
;
1294 info
.ndelim
= bf
->bf_state
.ndelim
;
1295 info
.aggr_len
= len
;
1298 if (bf
== bf_first
->bf_lastbf
)
1301 ath9k_hw_set_txdesc(ah
, bf
->bf_desc
, &info
);
1307 ath_tx_form_burst(struct ath_softc
*sc
, struct ath_txq
*txq
,
1308 struct ath_atx_tid
*tid
, struct list_head
*bf_q
,
1309 struct ath_buf
*bf_first
, struct sk_buff_head
*tid_q
)
1311 struct ath_buf
*bf
= bf_first
, *bf_prev
= NULL
;
1312 struct sk_buff
*skb
;
1316 struct ieee80211_tx_info
*tx_info
;
1320 __skb_unlink(skb
, tid_q
);
1321 list_add_tail(&bf
->list
, bf_q
);
1323 bf_prev
->bf_next
= bf
;
1329 bf
= ath_tx_get_tid_subframe(sc
, txq
, tid
, &tid_q
);
1333 tx_info
= IEEE80211_SKB_CB(bf
->bf_mpdu
);
1334 if (tx_info
->flags
& IEEE80211_TX_CTL_AMPDU
)
1337 ath_set_rates(tid
->an
->vif
, tid
->an
->sta
, bf
);
1341 static bool ath_tx_sched_aggr(struct ath_softc
*sc
, struct ath_txq
*txq
,
1342 struct ath_atx_tid
*tid
, bool *stop
)
1345 struct ieee80211_tx_info
*tx_info
;
1346 struct sk_buff_head
*tid_q
;
1347 struct list_head bf_q
;
1349 bool aggr
, last
= true;
1351 if (!ath_tid_has_buffered(tid
))
1354 INIT_LIST_HEAD(&bf_q
);
1356 bf
= ath_tx_get_tid_subframe(sc
, txq
, tid
, &tid_q
);
1360 tx_info
= IEEE80211_SKB_CB(bf
->bf_mpdu
);
1361 aggr
= !!(tx_info
->flags
& IEEE80211_TX_CTL_AMPDU
);
1362 if ((aggr
&& txq
->axq_ampdu_depth
>= ATH_AGGR_MIN_QDEPTH
) ||
1363 (!aggr
&& txq
->axq_depth
>= ATH_NON_AGGR_MIN_QDEPTH
)) {
1368 ath_set_rates(tid
->an
->vif
, tid
->an
->sta
, bf
);
1370 last
= ath_tx_form_aggr(sc
, txq
, tid
, &bf_q
, bf
,
1373 ath_tx_form_burst(sc
, txq
, tid
, &bf_q
, bf
, tid_q
);
1375 if (list_empty(&bf_q
))
1378 if (tid
->ac
->clear_ps_filter
|| tid
->an
->no_ps_filter
) {
1379 tid
->ac
->clear_ps_filter
= false;
1380 tx_info
->flags
|= IEEE80211_TX_CTL_CLEAR_PS_FILT
;
1383 ath_tx_fill_desc(sc
, bf
, txq
, aggr_len
);
1384 ath_tx_txqaddbuf(sc
, txq
, &bf_q
, false);
1388 int ath_tx_aggr_start(struct ath_softc
*sc
, struct ieee80211_sta
*sta
,
1391 struct ath_atx_tid
*txtid
;
1392 struct ath_node
*an
;
1395 an
= (struct ath_node
*)sta
->drv_priv
;
1396 txtid
= ATH_AN_2_TID(an
, tid
);
1398 /* update ampdu factor/density, they may have changed. This may happen
1399 * in HT IBSS when a beacon with HT-info is received after the station
1400 * has already been added.
1402 if (sta
->ht_cap
.ht_supported
) {
1403 an
->maxampdu
= 1 << (IEEE80211_HT_MAX_AMPDU_FACTOR
+
1404 sta
->ht_cap
.ampdu_factor
);
1405 density
= ath9k_parse_mpdudensity(sta
->ht_cap
.ampdu_density
);
1406 an
->mpdudensity
= density
;
1409 /* force sequence number allocation for pending frames */
1410 ath_tx_tid_change_state(sc
, txtid
);
1412 txtid
->active
= true;
1413 txtid
->paused
= true;
1414 *ssn
= txtid
->seq_start
= txtid
->seq_next
;
1415 txtid
->bar_index
= -1;
1417 memset(txtid
->tx_buf
, 0, sizeof(txtid
->tx_buf
));
1418 txtid
->baw_head
= txtid
->baw_tail
= 0;
1423 void ath_tx_aggr_stop(struct ath_softc
*sc
, struct ieee80211_sta
*sta
, u16 tid
)
1425 struct ath_node
*an
= (struct ath_node
*)sta
->drv_priv
;
1426 struct ath_atx_tid
*txtid
= ATH_AN_2_TID(an
, tid
);
1427 struct ath_txq
*txq
= txtid
->ac
->txq
;
1429 ath_txq_lock(sc
, txq
);
1430 txtid
->active
= false;
1431 txtid
->paused
= false;
1432 ath_tx_flush_tid(sc
, txtid
);
1433 ath_tx_tid_change_state(sc
, txtid
);
1434 ath_txq_unlock_complete(sc
, txq
);
1437 void ath_tx_aggr_sleep(struct ieee80211_sta
*sta
, struct ath_softc
*sc
,
1438 struct ath_node
*an
)
1440 struct ath_atx_tid
*tid
;
1441 struct ath_atx_ac
*ac
;
1442 struct ath_txq
*txq
;
1446 for (tidno
= 0, tid
= &an
->tid
[tidno
];
1447 tidno
< IEEE80211_NUM_TIDS
; tidno
++, tid
++) {
1455 ath_txq_lock(sc
, txq
);
1457 buffered
= ath_tid_has_buffered(tid
);
1460 list_del(&tid
->list
);
1464 list_del(&ac
->list
);
1467 ath_txq_unlock(sc
, txq
);
1469 ieee80211_sta_set_buffered(sta
, tidno
, buffered
);
1473 void ath_tx_aggr_wakeup(struct ath_softc
*sc
, struct ath_node
*an
)
1475 struct ath_atx_tid
*tid
;
1476 struct ath_atx_ac
*ac
;
1477 struct ath_txq
*txq
;
1480 for (tidno
= 0, tid
= &an
->tid
[tidno
];
1481 tidno
< IEEE80211_NUM_TIDS
; tidno
++, tid
++) {
1486 ath_txq_lock(sc
, txq
);
1487 ac
->clear_ps_filter
= true;
1489 if (!tid
->paused
&& ath_tid_has_buffered(tid
)) {
1490 ath_tx_queue_tid(txq
, tid
);
1491 ath_txq_schedule(sc
, txq
);
1494 ath_txq_unlock_complete(sc
, txq
);
1498 void ath_tx_aggr_resume(struct ath_softc
*sc
, struct ieee80211_sta
*sta
,
1501 struct ath_atx_tid
*tid
;
1502 struct ath_node
*an
;
1503 struct ath_txq
*txq
;
1505 an
= (struct ath_node
*)sta
->drv_priv
;
1506 tid
= ATH_AN_2_TID(an
, tidno
);
1509 ath_txq_lock(sc
, txq
);
1511 tid
->baw_size
= IEEE80211_MIN_AMPDU_BUF
<< sta
->ht_cap
.ampdu_factor
;
1512 tid
->paused
= false;
1514 if (ath_tid_has_buffered(tid
)) {
1515 ath_tx_queue_tid(txq
, tid
);
1516 ath_txq_schedule(sc
, txq
);
1519 ath_txq_unlock_complete(sc
, txq
);
1522 void ath9k_release_buffered_frames(struct ieee80211_hw
*hw
,
1523 struct ieee80211_sta
*sta
,
1524 u16 tids
, int nframes
,
1525 enum ieee80211_frame_release_type reason
,
1528 struct ath_softc
*sc
= hw
->priv
;
1529 struct ath_node
*an
= (struct ath_node
*)sta
->drv_priv
;
1530 struct ath_txq
*txq
= sc
->tx
.uapsdq
;
1531 struct ieee80211_tx_info
*info
;
1532 struct list_head bf_q
;
1533 struct ath_buf
*bf_tail
= NULL
, *bf
;
1534 struct sk_buff_head
*tid_q
;
1538 INIT_LIST_HEAD(&bf_q
);
1539 for (i
= 0; tids
&& nframes
; i
++, tids
>>= 1) {
1540 struct ath_atx_tid
*tid
;
1545 tid
= ATH_AN_2_TID(an
, i
);
1549 ath_txq_lock(sc
, tid
->ac
->txq
);
1550 while (nframes
> 0) {
1551 bf
= ath_tx_get_tid_subframe(sc
, sc
->tx
.uapsdq
, tid
, &tid_q
);
1555 __skb_unlink(bf
->bf_mpdu
, tid_q
);
1556 list_add_tail(&bf
->list
, &bf_q
);
1557 ath_set_rates(tid
->an
->vif
, tid
->an
->sta
, bf
);
1558 ath_tx_addto_baw(sc
, tid
, bf
);
1559 bf
->bf_state
.bf_type
&= ~BUF_AGGR
;
1561 bf_tail
->bf_next
= bf
;
1566 TX_STAT_INC(txq
->axq_qnum
, a_queued_hw
);
1568 if (an
->sta
&& !ath_tid_has_buffered(tid
))
1569 ieee80211_sta_set_buffered(an
->sta
, i
, false);
1571 ath_txq_unlock_complete(sc
, tid
->ac
->txq
);
1574 if (list_empty(&bf_q
))
1577 info
= IEEE80211_SKB_CB(bf_tail
->bf_mpdu
);
1578 info
->flags
|= IEEE80211_TX_STATUS_EOSP
;
1580 bf
= list_first_entry(&bf_q
, struct ath_buf
, list
);
1581 ath_txq_lock(sc
, txq
);
1582 ath_tx_fill_desc(sc
, bf
, txq
, 0);
1583 ath_tx_txqaddbuf(sc
, txq
, &bf_q
, false);
1584 ath_txq_unlock(sc
, txq
);
1587 /********************/
1588 /* Queue Management */
1589 /********************/
1591 struct ath_txq
*ath_txq_setup(struct ath_softc
*sc
, int qtype
, int subtype
)
1593 struct ath_hw
*ah
= sc
->sc_ah
;
1594 struct ath9k_tx_queue_info qi
;
1595 static const int subtype_txq_to_hwq
[] = {
1596 [IEEE80211_AC_BE
] = ATH_TXQ_AC_BE
,
1597 [IEEE80211_AC_BK
] = ATH_TXQ_AC_BK
,
1598 [IEEE80211_AC_VI
] = ATH_TXQ_AC_VI
,
1599 [IEEE80211_AC_VO
] = ATH_TXQ_AC_VO
,
1603 memset(&qi
, 0, sizeof(qi
));
1604 qi
.tqi_subtype
= subtype_txq_to_hwq
[subtype
];
1605 qi
.tqi_aifs
= ATH9K_TXQ_USEDEFAULT
;
1606 qi
.tqi_cwmin
= ATH9K_TXQ_USEDEFAULT
;
1607 qi
.tqi_cwmax
= ATH9K_TXQ_USEDEFAULT
;
1608 qi
.tqi_physCompBuf
= 0;
1611 * Enable interrupts only for EOL and DESC conditions.
1612 * We mark tx descriptors to receive a DESC interrupt
1613 * when a tx queue gets deep; otherwise waiting for the
1614 * EOL to reap descriptors. Note that this is done to
1615 * reduce interrupt load and this only defers reaping
1616 * descriptors, never transmitting frames. Aside from
1617 * reducing interrupts this also permits more concurrency.
1618 * The only potential downside is if the tx queue backs
1619 * up in which case the top half of the kernel may backup
1620 * due to a lack of tx descriptors.
1622 * The UAPSD queue is an exception, since we take a desc-
1623 * based intr on the EOSP frames.
1625 if (ah
->caps
.hw_caps
& ATH9K_HW_CAP_EDMA
) {
1626 qi
.tqi_qflags
= TXQ_FLAG_TXINT_ENABLE
;
1628 if (qtype
== ATH9K_TX_QUEUE_UAPSD
)
1629 qi
.tqi_qflags
= TXQ_FLAG_TXDESCINT_ENABLE
;
1631 qi
.tqi_qflags
= TXQ_FLAG_TXEOLINT_ENABLE
|
1632 TXQ_FLAG_TXDESCINT_ENABLE
;
1634 axq_qnum
= ath9k_hw_setuptxqueue(ah
, qtype
, &qi
);
1635 if (axq_qnum
== -1) {
1637 * NB: don't print a message, this happens
1638 * normally on parts with too few tx queues
1642 if (!ATH_TXQ_SETUP(sc
, axq_qnum
)) {
1643 struct ath_txq
*txq
= &sc
->tx
.txq
[axq_qnum
];
1645 txq
->axq_qnum
= axq_qnum
;
1646 txq
->mac80211_qnum
= -1;
1647 txq
->axq_link
= NULL
;
1648 __skb_queue_head_init(&txq
->complete_q
);
1649 INIT_LIST_HEAD(&txq
->axq_q
);
1650 INIT_LIST_HEAD(&txq
->axq_acq
);
1651 spin_lock_init(&txq
->axq_lock
);
1653 txq
->axq_ampdu_depth
= 0;
1654 txq
->axq_tx_inprogress
= false;
1655 sc
->tx
.txqsetup
|= 1<<axq_qnum
;
1657 txq
->txq_headidx
= txq
->txq_tailidx
= 0;
1658 for (i
= 0; i
< ATH_TXFIFO_DEPTH
; i
++)
1659 INIT_LIST_HEAD(&txq
->txq_fifo
[i
]);
1661 return &sc
->tx
.txq
[axq_qnum
];
1664 int ath_txq_update(struct ath_softc
*sc
, int qnum
,
1665 struct ath9k_tx_queue_info
*qinfo
)
1667 struct ath_hw
*ah
= sc
->sc_ah
;
1669 struct ath9k_tx_queue_info qi
;
1671 BUG_ON(sc
->tx
.txq
[qnum
].axq_qnum
!= qnum
);
1673 ath9k_hw_get_txq_props(ah
, qnum
, &qi
);
1674 qi
.tqi_aifs
= qinfo
->tqi_aifs
;
1675 qi
.tqi_cwmin
= qinfo
->tqi_cwmin
;
1676 qi
.tqi_cwmax
= qinfo
->tqi_cwmax
;
1677 qi
.tqi_burstTime
= qinfo
->tqi_burstTime
;
1678 qi
.tqi_readyTime
= qinfo
->tqi_readyTime
;
1680 if (!ath9k_hw_set_txq_props(ah
, qnum
, &qi
)) {
1681 ath_err(ath9k_hw_common(sc
->sc_ah
),
1682 "Unable to update hardware queue %u!\n", qnum
);
1685 ath9k_hw_resettxqueue(ah
, qnum
);
1691 int ath_cabq_update(struct ath_softc
*sc
)
1693 struct ath9k_tx_queue_info qi
;
1694 struct ath_beacon_config
*cur_conf
= &sc
->cur_beacon_conf
;
1695 int qnum
= sc
->beacon
.cabq
->axq_qnum
;
1697 ath9k_hw_get_txq_props(sc
->sc_ah
, qnum
, &qi
);
1699 * Ensure the readytime % is within the bounds.
1701 if (sc
->config
.cabqReadytime
< ATH9K_READY_TIME_LO_BOUND
)
1702 sc
->config
.cabqReadytime
= ATH9K_READY_TIME_LO_BOUND
;
1703 else if (sc
->config
.cabqReadytime
> ATH9K_READY_TIME_HI_BOUND
)
1704 sc
->config
.cabqReadytime
= ATH9K_READY_TIME_HI_BOUND
;
1706 qi
.tqi_readyTime
= (cur_conf
->beacon_interval
*
1707 sc
->config
.cabqReadytime
) / 100;
1708 ath_txq_update(sc
, qnum
, &qi
);
1713 static void ath_drain_txq_list(struct ath_softc
*sc
, struct ath_txq
*txq
,
1714 struct list_head
*list
)
1716 struct ath_buf
*bf
, *lastbf
;
1717 struct list_head bf_head
;
1718 struct ath_tx_status ts
;
1720 memset(&ts
, 0, sizeof(ts
));
1721 ts
.ts_status
= ATH9K_TX_FLUSH
;
1722 INIT_LIST_HEAD(&bf_head
);
1724 while (!list_empty(list
)) {
1725 bf
= list_first_entry(list
, struct ath_buf
, list
);
1727 if (bf
->bf_state
.stale
) {
1728 list_del(&bf
->list
);
1730 ath_tx_return_buffer(sc
, bf
);
1734 lastbf
= bf
->bf_lastbf
;
1735 list_cut_position(&bf_head
, list
, &lastbf
->list
);
1736 ath_tx_process_buffer(sc
, txq
, &ts
, bf
, &bf_head
);
1741 * Drain a given TX queue (could be Beacon or Data)
1743 * This assumes output has been stopped and
1744 * we do not need to block ath_tx_tasklet.
1746 void ath_draintxq(struct ath_softc
*sc
, struct ath_txq
*txq
)
1748 ath_txq_lock(sc
, txq
);
1750 if (sc
->sc_ah
->caps
.hw_caps
& ATH9K_HW_CAP_EDMA
) {
1751 int idx
= txq
->txq_tailidx
;
1753 while (!list_empty(&txq
->txq_fifo
[idx
])) {
1754 ath_drain_txq_list(sc
, txq
, &txq
->txq_fifo
[idx
]);
1756 INCR(idx
, ATH_TXFIFO_DEPTH
);
1758 txq
->txq_tailidx
= idx
;
1761 txq
->axq_link
= NULL
;
1762 txq
->axq_tx_inprogress
= false;
1763 ath_drain_txq_list(sc
, txq
, &txq
->axq_q
);
1765 ath_txq_unlock_complete(sc
, txq
);
1768 bool ath_drain_all_txq(struct ath_softc
*sc
)
1770 struct ath_hw
*ah
= sc
->sc_ah
;
1771 struct ath_common
*common
= ath9k_hw_common(sc
->sc_ah
);
1772 struct ath_txq
*txq
;
1776 if (test_bit(SC_OP_INVALID
, &sc
->sc_flags
))
1779 ath9k_hw_abort_tx_dma(ah
);
1781 /* Check if any queue remains active */
1782 for (i
= 0; i
< ATH9K_NUM_TX_QUEUES
; i
++) {
1783 if (!ATH_TXQ_SETUP(sc
, i
))
1786 if (ath9k_hw_numtxpending(ah
, sc
->tx
.txq
[i
].axq_qnum
))
1791 ath_err(common
, "Failed to stop TX DMA, queues=0x%03x!\n", npend
);
1793 for (i
= 0; i
< ATH9K_NUM_TX_QUEUES
; i
++) {
1794 if (!ATH_TXQ_SETUP(sc
, i
))
1798 * The caller will resume queues with ieee80211_wake_queues.
1799 * Mark the queue as not stopped to prevent ath_tx_complete
1800 * from waking the queue too early.
1802 txq
= &sc
->tx
.txq
[i
];
1803 txq
->stopped
= false;
1804 ath_draintxq(sc
, txq
);
1810 void ath_tx_cleanupq(struct ath_softc
*sc
, struct ath_txq
*txq
)
1812 ath9k_hw_releasetxqueue(sc
->sc_ah
, txq
->axq_qnum
);
1813 sc
->tx
.txqsetup
&= ~(1<<txq
->axq_qnum
);
1816 /* For each axq_acq entry, for each tid, try to schedule packets
1817 * for transmit until ampdu_depth has reached min Q depth.
1819 void ath_txq_schedule(struct ath_softc
*sc
, struct ath_txq
*txq
)
1821 struct ath_atx_ac
*ac
, *last_ac
;
1822 struct ath_atx_tid
*tid
, *last_tid
;
1825 if (test_bit(SC_OP_HW_RESET
, &sc
->sc_flags
) ||
1826 list_empty(&txq
->axq_acq
))
1831 last_ac
= list_entry(txq
->axq_acq
.prev
, struct ath_atx_ac
, list
);
1832 while (!list_empty(&txq
->axq_acq
)) {
1835 ac
= list_first_entry(&txq
->axq_acq
, struct ath_atx_ac
, list
);
1836 last_tid
= list_entry(ac
->tid_q
.prev
, struct ath_atx_tid
, list
);
1837 list_del(&ac
->list
);
1840 while (!list_empty(&ac
->tid_q
)) {
1842 tid
= list_first_entry(&ac
->tid_q
, struct ath_atx_tid
,
1844 list_del(&tid
->list
);
1850 if (ath_tx_sched_aggr(sc
, txq
, tid
, &stop
))
1854 * add tid to round-robin queue if more frames
1855 * are pending for the tid
1857 if (ath_tid_has_buffered(tid
))
1858 ath_tx_queue_tid(txq
, tid
);
1860 if (stop
|| tid
== last_tid
)
1864 if (!list_empty(&ac
->tid_q
) && !ac
->sched
) {
1866 list_add_tail(&ac
->list
, &txq
->axq_acq
);
1872 if (ac
== last_ac
) {
1877 last_ac
= list_entry(txq
->axq_acq
.prev
,
1878 struct ath_atx_ac
, list
);
1890 * Insert a chain of ath_buf (descriptors) on a txq and
1891 * assume the descriptors are already chained together by caller.
1893 static void ath_tx_txqaddbuf(struct ath_softc
*sc
, struct ath_txq
*txq
,
1894 struct list_head
*head
, bool internal
)
1896 struct ath_hw
*ah
= sc
->sc_ah
;
1897 struct ath_common
*common
= ath9k_hw_common(ah
);
1898 struct ath_buf
*bf
, *bf_last
;
1899 bool puttxbuf
= false;
1903 * Insert the frame on the outbound list and
1904 * pass it on to the hardware.
1907 if (list_empty(head
))
1910 edma
= !!(ah
->caps
.hw_caps
& ATH9K_HW_CAP_EDMA
);
1911 bf
= list_first_entry(head
, struct ath_buf
, list
);
1912 bf_last
= list_entry(head
->prev
, struct ath_buf
, list
);
1914 ath_dbg(common
, QUEUE
, "qnum: %d, txq depth: %d\n",
1915 txq
->axq_qnum
, txq
->axq_depth
);
1917 if (edma
&& list_empty(&txq
->txq_fifo
[txq
->txq_headidx
])) {
1918 list_splice_tail_init(head
, &txq
->txq_fifo
[txq
->txq_headidx
]);
1919 INCR(txq
->txq_headidx
, ATH_TXFIFO_DEPTH
);
1922 list_splice_tail_init(head
, &txq
->axq_q
);
1924 if (txq
->axq_link
) {
1925 ath9k_hw_set_desc_link(ah
, txq
->axq_link
, bf
->bf_daddr
);
1926 ath_dbg(common
, XMIT
, "link[%u] (%p)=%llx (%p)\n",
1927 txq
->axq_qnum
, txq
->axq_link
,
1928 ito64(bf
->bf_daddr
), bf
->bf_desc
);
1932 txq
->axq_link
= bf_last
->bf_desc
;
1936 TX_STAT_INC(txq
->axq_qnum
, puttxbuf
);
1937 ath9k_hw_puttxbuf(ah
, txq
->axq_qnum
, bf
->bf_daddr
);
1938 ath_dbg(common
, XMIT
, "TXDP[%u] = %llx (%p)\n",
1939 txq
->axq_qnum
, ito64(bf
->bf_daddr
), bf
->bf_desc
);
1943 TX_STAT_INC(txq
->axq_qnum
, txstart
);
1944 ath9k_hw_txstart(ah
, txq
->axq_qnum
);
1950 if (bf_is_ampdu_not_probing(bf
))
1951 txq
->axq_ampdu_depth
++;
1953 bf
= bf
->bf_lastbf
->bf_next
;
1958 static void ath_tx_send_normal(struct ath_softc
*sc
, struct ath_txq
*txq
,
1959 struct ath_atx_tid
*tid
, struct sk_buff
*skb
)
1961 struct ath_frame_info
*fi
= get_frame_info(skb
);
1962 struct list_head bf_head
;
1967 INIT_LIST_HEAD(&bf_head
);
1968 list_add_tail(&bf
->list
, &bf_head
);
1969 bf
->bf_state
.bf_type
= 0;
1973 ath_tx_fill_desc(sc
, bf
, txq
, fi
->framelen
);
1974 ath_tx_txqaddbuf(sc
, txq
, &bf_head
, false);
1975 TX_STAT_INC(txq
->axq_qnum
, queued
);
1978 static void setup_frame_info(struct ieee80211_hw
*hw
,
1979 struct ieee80211_sta
*sta
,
1980 struct sk_buff
*skb
,
1983 struct ieee80211_tx_info
*tx_info
= IEEE80211_SKB_CB(skb
);
1984 struct ieee80211_key_conf
*hw_key
= tx_info
->control
.hw_key
;
1985 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)skb
->data
;
1986 const struct ieee80211_rate
*rate
;
1987 struct ath_frame_info
*fi
= get_frame_info(skb
);
1988 struct ath_node
*an
= NULL
;
1989 enum ath9k_key_type keytype
;
1990 bool short_preamble
= false;
1993 * We check if Short Preamble is needed for the CTS rate by
1994 * checking the BSS's global flag.
1995 * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used.
1997 if (tx_info
->control
.vif
&&
1998 tx_info
->control
.vif
->bss_conf
.use_short_preamble
)
1999 short_preamble
= true;
2001 rate
= ieee80211_get_rts_cts_rate(hw
, tx_info
);
2002 keytype
= ath9k_cmn_get_hw_crypto_keytype(skb
);
2005 an
= (struct ath_node
*) sta
->drv_priv
;
2007 memset(fi
, 0, sizeof(*fi
));
2009 fi
->keyix
= hw_key
->hw_key_idx
;
2010 else if (an
&& ieee80211_is_data(hdr
->frame_control
) && an
->ps_key
> 0)
2011 fi
->keyix
= an
->ps_key
;
2013 fi
->keyix
= ATH9K_TXKEYIX_INVALID
;
2014 fi
->keytype
= keytype
;
2015 fi
->framelen
= framelen
;
2016 fi
->rtscts_rate
= rate
->hw_value
;
2018 fi
->rtscts_rate
|= rate
->hw_value_short
;
2021 u8
ath_txchainmask_reduction(struct ath_softc
*sc
, u8 chainmask
, u32 rate
)
2023 struct ath_hw
*ah
= sc
->sc_ah
;
2024 struct ath9k_channel
*curchan
= ah
->curchan
;
2026 if ((ah
->caps
.hw_caps
& ATH9K_HW_CAP_APM
) &&
2027 (curchan
->channelFlags
& CHANNEL_5GHZ
) &&
2028 (chainmask
== 0x7) && (rate
< 0x90))
2030 else if (AR_SREV_9462(ah
) && ath9k_hw_btcoex_is_enabled(ah
) &&
2038 * Assign a descriptor (and sequence number if necessary,
2039 * and map buffer for DMA. Frees skb on error
2041 static struct ath_buf
*ath_tx_setup_buffer(struct ath_softc
*sc
,
2042 struct ath_txq
*txq
,
2043 struct ath_atx_tid
*tid
,
2044 struct sk_buff
*skb
)
2046 struct ath_common
*common
= ath9k_hw_common(sc
->sc_ah
);
2047 struct ath_frame_info
*fi
= get_frame_info(skb
);
2048 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)skb
->data
;
2053 bf
= ath_tx_get_buffer(sc
);
2055 ath_dbg(common
, XMIT
, "TX buffers are full\n");
2059 ATH_TXBUF_RESET(bf
);
2062 fragno
= le16_to_cpu(hdr
->seq_ctrl
) & IEEE80211_SCTL_FRAG
;
2063 seqno
= tid
->seq_next
;
2064 hdr
->seq_ctrl
= cpu_to_le16(tid
->seq_next
<< IEEE80211_SEQ_SEQ_SHIFT
);
2067 hdr
->seq_ctrl
|= cpu_to_le16(fragno
);
2069 if (!ieee80211_has_morefrags(hdr
->frame_control
))
2070 INCR(tid
->seq_next
, IEEE80211_SEQ_MAX
);
2072 bf
->bf_state
.seqno
= seqno
;
2077 bf
->bf_buf_addr
= dma_map_single(sc
->dev
, skb
->data
,
2078 skb
->len
, DMA_TO_DEVICE
);
2079 if (unlikely(dma_mapping_error(sc
->dev
, bf
->bf_buf_addr
))) {
2081 bf
->bf_buf_addr
= 0;
2082 ath_err(ath9k_hw_common(sc
->sc_ah
),
2083 "dma_mapping_error() on TX\n");
2084 ath_tx_return_buffer(sc
, bf
);
2093 static int ath_tx_prepare(struct ieee80211_hw
*hw
, struct sk_buff
*skb
,
2094 struct ath_tx_control
*txctl
)
2096 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*) skb
->data
;
2097 struct ieee80211_tx_info
*info
= IEEE80211_SKB_CB(skb
);
2098 struct ieee80211_sta
*sta
= txctl
->sta
;
2099 struct ieee80211_vif
*vif
= info
->control
.vif
;
2100 struct ath_vif
*avp
;
2101 struct ath_softc
*sc
= hw
->priv
;
2102 int frmlen
= skb
->len
+ FCS_LEN
;
2103 int padpos
, padsize
;
2105 /* NOTE: sta can be NULL according to net/mac80211.h */
2107 txctl
->an
= (struct ath_node
*)sta
->drv_priv
;
2108 else if (vif
&& ieee80211_is_data(hdr
->frame_control
)) {
2109 avp
= (void *)vif
->drv_priv
;
2110 txctl
->an
= &avp
->mcast_node
;
2113 if (info
->control
.hw_key
)
2114 frmlen
+= info
->control
.hw_key
->icv_len
;
2117 * As a temporary workaround, assign seq# here; this will likely need
2118 * to be cleaned up to work better with Beacon transmission and virtual
2121 if (info
->flags
& IEEE80211_TX_CTL_ASSIGN_SEQ
) {
2122 if (info
->flags
& IEEE80211_TX_CTL_FIRST_FRAGMENT
)
2123 sc
->tx
.seq_no
+= 0x10;
2124 hdr
->seq_ctrl
&= cpu_to_le16(IEEE80211_SCTL_FRAG
);
2125 hdr
->seq_ctrl
|= cpu_to_le16(sc
->tx
.seq_no
);
2128 if ((vif
&& vif
->type
!= NL80211_IFTYPE_AP
&&
2129 vif
->type
!= NL80211_IFTYPE_AP_VLAN
) ||
2130 !ieee80211_is_data(hdr
->frame_control
))
2131 info
->flags
|= IEEE80211_TX_CTL_CLEAR_PS_FILT
;
2133 /* Add the padding after the header if this is not already done */
2134 padpos
= ieee80211_hdrlen(hdr
->frame_control
);
2135 padsize
= padpos
& 3;
2136 if (padsize
&& skb
->len
> padpos
) {
2137 if (skb_headroom(skb
) < padsize
)
2140 skb_push(skb
, padsize
);
2141 memmove(skb
->data
, skb
->data
+ padsize
, padpos
);
2144 setup_frame_info(hw
, sta
, skb
, frmlen
);
2149 /* Upon failure caller should free skb */
2150 int ath_tx_start(struct ieee80211_hw
*hw
, struct sk_buff
*skb
,
2151 struct ath_tx_control
*txctl
)
2153 struct ieee80211_hdr
*hdr
;
2154 struct ieee80211_tx_info
*info
= IEEE80211_SKB_CB(skb
);
2155 struct ieee80211_sta
*sta
= txctl
->sta
;
2156 struct ieee80211_vif
*vif
= info
->control
.vif
;
2157 struct ath_softc
*sc
= hw
->priv
;
2158 struct ath_txq
*txq
= txctl
->txq
;
2159 struct ath_atx_tid
*tid
= NULL
;
2164 ret
= ath_tx_prepare(hw
, skb
, txctl
);
2168 hdr
= (struct ieee80211_hdr
*) skb
->data
;
2170 * At this point, the vif, hw_key and sta pointers in the tx control
2171 * info are no longer valid (overwritten by the ath_frame_info data.
2174 q
= skb_get_queue_mapping(skb
);
2176 ath_txq_lock(sc
, txq
);
2177 if (txq
== sc
->tx
.txq_map
[q
] &&
2178 ++txq
->pending_frames
> sc
->tx
.txq_max_pending
[q
] &&
2180 ieee80211_stop_queue(sc
->hw
, q
);
2181 txq
->stopped
= true;
2184 if (info
->flags
& IEEE80211_TX_CTL_PS_RESPONSE
) {
2185 ath_txq_unlock(sc
, txq
);
2186 txq
= sc
->tx
.uapsdq
;
2187 ath_txq_lock(sc
, txq
);
2188 } else if (txctl
->an
&&
2189 ieee80211_is_data_present(hdr
->frame_control
)) {
2190 tid
= ath_get_skb_tid(sc
, txctl
->an
, skb
);
2192 WARN_ON(tid
->ac
->txq
!= txctl
->txq
);
2194 if (info
->flags
& IEEE80211_TX_CTL_CLEAR_PS_FILT
)
2195 tid
->ac
->clear_ps_filter
= true;
2198 * Add this frame to software queue for scheduling later
2201 TX_STAT_INC(txq
->axq_qnum
, a_queued_sw
);
2202 __skb_queue_tail(&tid
->buf_q
, skb
);
2203 if (!txctl
->an
->sleeping
)
2204 ath_tx_queue_tid(txq
, tid
);
2206 ath_txq_schedule(sc
, txq
);
2210 bf
= ath_tx_setup_buffer(sc
, txq
, tid
, skb
);
2212 ath_txq_skb_done(sc
, txq
, skb
);
2214 dev_kfree_skb_any(skb
);
2216 ieee80211_free_txskb(sc
->hw
, skb
);
2220 bf
->bf_state
.bfs_paprd
= txctl
->paprd
;
2223 bf
->bf_state
.bfs_paprd_timestamp
= jiffies
;
2225 ath_set_rates(vif
, sta
, bf
);
2226 ath_tx_send_normal(sc
, txq
, tid
, skb
);
2229 ath_txq_unlock(sc
, txq
);
2234 void ath_tx_cabq(struct ieee80211_hw
*hw
, struct ieee80211_vif
*vif
,
2235 struct sk_buff
*skb
)
2237 struct ath_softc
*sc
= hw
->priv
;
2238 struct ath_tx_control txctl
= {
2239 .txq
= sc
->beacon
.cabq
2241 struct ath_tx_info info
= {};
2242 struct ieee80211_hdr
*hdr
;
2243 struct ath_buf
*bf_tail
= NULL
;
2250 sc
->cur_beacon_conf
.beacon_interval
* 1000 *
2251 sc
->cur_beacon_conf
.dtim_period
/ ATH_BCBUF
;
2254 struct ath_frame_info
*fi
= get_frame_info(skb
);
2256 if (ath_tx_prepare(hw
, skb
, &txctl
))
2259 bf
= ath_tx_setup_buffer(sc
, txctl
.txq
, NULL
, skb
);
2264 ath_set_rates(vif
, NULL
, bf
);
2265 ath_buf_set_rate(sc
, bf
, &info
, fi
->framelen
, false);
2266 duration
+= info
.rates
[0].PktDuration
;
2268 bf_tail
->bf_next
= bf
;
2270 list_add_tail(&bf
->list
, &bf_q
);
2274 if (duration
> max_duration
)
2277 skb
= ieee80211_get_buffered_bc(hw
, vif
);
2281 ieee80211_free_txskb(hw
, skb
);
2283 if (list_empty(&bf_q
))
2286 bf
= list_first_entry(&bf_q
, struct ath_buf
, list
);
2287 hdr
= (struct ieee80211_hdr
*) bf
->bf_mpdu
->data
;
2289 if (hdr
->frame_control
& IEEE80211_FCTL_MOREDATA
) {
2290 hdr
->frame_control
&= ~IEEE80211_FCTL_MOREDATA
;
2291 dma_sync_single_for_device(sc
->dev
, bf
->bf_buf_addr
,
2292 sizeof(*hdr
), DMA_TO_DEVICE
);
2295 ath_txq_lock(sc
, txctl
.txq
);
2296 ath_tx_fill_desc(sc
, bf
, txctl
.txq
, 0);
2297 ath_tx_txqaddbuf(sc
, txctl
.txq
, &bf_q
, false);
2298 TX_STAT_INC(txctl
.txq
->axq_qnum
, queued
);
2299 ath_txq_unlock(sc
, txctl
.txq
);
2306 static void ath_tx_complete(struct ath_softc
*sc
, struct sk_buff
*skb
,
2307 int tx_flags
, struct ath_txq
*txq
)
2309 struct ieee80211_tx_info
*tx_info
= IEEE80211_SKB_CB(skb
);
2310 struct ath_common
*common
= ath9k_hw_common(sc
->sc_ah
);
2311 struct ieee80211_hdr
* hdr
= (struct ieee80211_hdr
*)skb
->data
;
2312 int padpos
, padsize
;
2313 unsigned long flags
;
2315 ath_dbg(common
, XMIT
, "TX complete: skb: %p\n", skb
);
2317 if (sc
->sc_ah
->caldata
)
2318 sc
->sc_ah
->caldata
->paprd_packet_sent
= true;
2320 if (!(tx_flags
& ATH_TX_ERROR
))
2321 /* Frame was ACKed */
2322 tx_info
->flags
|= IEEE80211_TX_STAT_ACK
;
2324 padpos
= ieee80211_hdrlen(hdr
->frame_control
);
2325 padsize
= padpos
& 3;
2326 if (padsize
&& skb
->len
>padpos
+padsize
) {
2328 * Remove MAC header padding before giving the frame back to
2331 memmove(skb
->data
+ padsize
, skb
->data
, padpos
);
2332 skb_pull(skb
, padsize
);
2335 spin_lock_irqsave(&sc
->sc_pm_lock
, flags
);
2336 if ((sc
->ps_flags
& PS_WAIT_FOR_TX_ACK
) && !txq
->axq_depth
) {
2337 sc
->ps_flags
&= ~PS_WAIT_FOR_TX_ACK
;
2339 "Going back to sleep after having received TX status (0x%lx)\n",
2340 sc
->ps_flags
& (PS_WAIT_FOR_BEACON
|
2342 PS_WAIT_FOR_PSPOLL_DATA
|
2343 PS_WAIT_FOR_TX_ACK
));
2345 spin_unlock_irqrestore(&sc
->sc_pm_lock
, flags
);
2347 __skb_queue_tail(&txq
->complete_q
, skb
);
2348 ath_txq_skb_done(sc
, txq
, skb
);
2351 static void ath_tx_complete_buf(struct ath_softc
*sc
, struct ath_buf
*bf
,
2352 struct ath_txq
*txq
, struct list_head
*bf_q
,
2353 struct ath_tx_status
*ts
, int txok
)
2355 struct sk_buff
*skb
= bf
->bf_mpdu
;
2356 struct ieee80211_tx_info
*tx_info
= IEEE80211_SKB_CB(skb
);
2357 unsigned long flags
;
2361 tx_flags
|= ATH_TX_ERROR
;
2363 if (ts
->ts_status
& ATH9K_TXERR_FILT
)
2364 tx_info
->flags
|= IEEE80211_TX_STAT_TX_FILTERED
;
2366 dma_unmap_single(sc
->dev
, bf
->bf_buf_addr
, skb
->len
, DMA_TO_DEVICE
);
2367 bf
->bf_buf_addr
= 0;
2369 if (bf
->bf_state
.bfs_paprd
) {
2370 if (time_after(jiffies
,
2371 bf
->bf_state
.bfs_paprd_timestamp
+
2372 msecs_to_jiffies(ATH_PAPRD_TIMEOUT
)))
2373 dev_kfree_skb_any(skb
);
2375 complete(&sc
->paprd_complete
);
2377 ath_debug_stat_tx(sc
, bf
, ts
, txq
, tx_flags
);
2378 ath_tx_complete(sc
, skb
, tx_flags
, txq
);
2380 /* At this point, skb (bf->bf_mpdu) is consumed...make sure we don't
2381 * accidentally reference it later.
2386 * Return the list of ath_buf of this mpdu to free queue
2388 spin_lock_irqsave(&sc
->tx
.txbuflock
, flags
);
2389 list_splice_tail_init(bf_q
, &sc
->tx
.txbuf
);
2390 spin_unlock_irqrestore(&sc
->tx
.txbuflock
, flags
);
2393 static void ath_tx_rc_status(struct ath_softc
*sc
, struct ath_buf
*bf
,
2394 struct ath_tx_status
*ts
, int nframes
, int nbad
,
2397 struct sk_buff
*skb
= bf
->bf_mpdu
;
2398 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)skb
->data
;
2399 struct ieee80211_tx_info
*tx_info
= IEEE80211_SKB_CB(skb
);
2400 struct ieee80211_hw
*hw
= sc
->hw
;
2401 struct ath_hw
*ah
= sc
->sc_ah
;
2405 tx_info
->status
.ack_signal
= ts
->ts_rssi
;
2407 tx_rateindex
= ts
->ts_rateindex
;
2408 WARN_ON(tx_rateindex
>= hw
->max_rates
);
2410 if (tx_info
->flags
& IEEE80211_TX_CTL_AMPDU
) {
2411 tx_info
->flags
|= IEEE80211_TX_STAT_AMPDU
;
2413 BUG_ON(nbad
> nframes
);
2415 tx_info
->status
.ampdu_len
= nframes
;
2416 tx_info
->status
.ampdu_ack_len
= nframes
- nbad
;
2418 if ((ts
->ts_status
& ATH9K_TXERR_FILT
) == 0 &&
2419 (tx_info
->flags
& IEEE80211_TX_CTL_NO_ACK
) == 0) {
2421 * If an underrun error is seen assume it as an excessive
2422 * retry only if max frame trigger level has been reached
2423 * (2 KB for single stream, and 4 KB for dual stream).
2424 * Adjust the long retry as if the frame was tried
2425 * hw->max_rate_tries times to affect how rate control updates
2426 * PER for the failed rate.
2427 * In case of congestion on the bus penalizing this type of
2428 * underruns should help hardware actually transmit new frames
2429 * successfully by eventually preferring slower rates.
2430 * This itself should also alleviate congestion on the bus.
2432 if (unlikely(ts
->ts_flags
& (ATH9K_TX_DATA_UNDERRUN
|
2433 ATH9K_TX_DELIM_UNDERRUN
)) &&
2434 ieee80211_is_data(hdr
->frame_control
) &&
2435 ah
->tx_trig_level
>= sc
->sc_ah
->config
.max_txtrig_level
)
2436 tx_info
->status
.rates
[tx_rateindex
].count
=
2440 for (i
= tx_rateindex
+ 1; i
< hw
->max_rates
; i
++) {
2441 tx_info
->status
.rates
[i
].count
= 0;
2442 tx_info
->status
.rates
[i
].idx
= -1;
2445 tx_info
->status
.rates
[tx_rateindex
].count
= ts
->ts_longretry
+ 1;
2448 static void ath_tx_processq(struct ath_softc
*sc
, struct ath_txq
*txq
)
2450 struct ath_hw
*ah
= sc
->sc_ah
;
2451 struct ath_common
*common
= ath9k_hw_common(ah
);
2452 struct ath_buf
*bf
, *lastbf
, *bf_held
= NULL
;
2453 struct list_head bf_head
;
2454 struct ath_desc
*ds
;
2455 struct ath_tx_status ts
;
2458 ath_dbg(common
, QUEUE
, "tx queue %d (%x), link %p\n",
2459 txq
->axq_qnum
, ath9k_hw_gettxbuf(sc
->sc_ah
, txq
->axq_qnum
),
2462 ath_txq_lock(sc
, txq
);
2464 if (test_bit(SC_OP_HW_RESET
, &sc
->sc_flags
))
2467 if (list_empty(&txq
->axq_q
)) {
2468 txq
->axq_link
= NULL
;
2469 ath_txq_schedule(sc
, txq
);
2472 bf
= list_first_entry(&txq
->axq_q
, struct ath_buf
, list
);
2475 * There is a race condition that a BH gets scheduled
2476 * after sw writes TxE and before hw re-load the last
2477 * descriptor to get the newly chained one.
2478 * Software must keep the last DONE descriptor as a
2479 * holding descriptor - software does so by marking
2480 * it with the STALE flag.
2483 if (bf
->bf_state
.stale
) {
2485 if (list_is_last(&bf_held
->list
, &txq
->axq_q
))
2488 bf
= list_entry(bf_held
->list
.next
, struct ath_buf
,
2492 lastbf
= bf
->bf_lastbf
;
2493 ds
= lastbf
->bf_desc
;
2495 memset(&ts
, 0, sizeof(ts
));
2496 status
= ath9k_hw_txprocdesc(ah
, ds
, &ts
);
2497 if (status
== -EINPROGRESS
)
2500 TX_STAT_INC(txq
->axq_qnum
, txprocdesc
);
2503 * Remove ath_buf's of the same transmit unit from txq,
2504 * however leave the last descriptor back as the holding
2505 * descriptor for hw.
2507 lastbf
->bf_state
.stale
= true;
2508 INIT_LIST_HEAD(&bf_head
);
2509 if (!list_is_singular(&lastbf
->list
))
2510 list_cut_position(&bf_head
,
2511 &txq
->axq_q
, lastbf
->list
.prev
);
2514 list_del(&bf_held
->list
);
2515 ath_tx_return_buffer(sc
, bf_held
);
2518 ath_tx_process_buffer(sc
, txq
, &ts
, bf
, &bf_head
);
2520 ath_txq_unlock_complete(sc
, txq
);
2523 void ath_tx_tasklet(struct ath_softc
*sc
)
2525 struct ath_hw
*ah
= sc
->sc_ah
;
2526 u32 qcumask
= ((1 << ATH9K_NUM_TX_QUEUES
) - 1) & ah
->intr_txqs
;
2529 for (i
= 0; i
< ATH9K_NUM_TX_QUEUES
; i
++) {
2530 if (ATH_TXQ_SETUP(sc
, i
) && (qcumask
& (1 << i
)))
2531 ath_tx_processq(sc
, &sc
->tx
.txq
[i
]);
2535 void ath_tx_edma_tasklet(struct ath_softc
*sc
)
2537 struct ath_tx_status ts
;
2538 struct ath_common
*common
= ath9k_hw_common(sc
->sc_ah
);
2539 struct ath_hw
*ah
= sc
->sc_ah
;
2540 struct ath_txq
*txq
;
2541 struct ath_buf
*bf
, *lastbf
;
2542 struct list_head bf_head
;
2543 struct list_head
*fifo_list
;
2547 if (test_bit(SC_OP_HW_RESET
, &sc
->sc_flags
))
2550 status
= ath9k_hw_txprocdesc(ah
, NULL
, (void *)&ts
);
2551 if (status
== -EINPROGRESS
)
2553 if (status
== -EIO
) {
2554 ath_dbg(common
, XMIT
, "Error processing tx status\n");
2558 /* Process beacon completions separately */
2559 if (ts
.qid
== sc
->beacon
.beaconq
) {
2560 sc
->beacon
.tx_processed
= true;
2561 sc
->beacon
.tx_last
= !(ts
.ts_status
& ATH9K_TXERR_MASK
);
2563 ath9k_csa_is_finished(sc
);
2567 txq
= &sc
->tx
.txq
[ts
.qid
];
2569 ath_txq_lock(sc
, txq
);
2571 TX_STAT_INC(txq
->axq_qnum
, txprocdesc
);
2573 fifo_list
= &txq
->txq_fifo
[txq
->txq_tailidx
];
2574 if (list_empty(fifo_list
)) {
2575 ath_txq_unlock(sc
, txq
);
2579 bf
= list_first_entry(fifo_list
, struct ath_buf
, list
);
2580 if (bf
->bf_state
.stale
) {
2581 list_del(&bf
->list
);
2582 ath_tx_return_buffer(sc
, bf
);
2583 bf
= list_first_entry(fifo_list
, struct ath_buf
, list
);
2586 lastbf
= bf
->bf_lastbf
;
2588 INIT_LIST_HEAD(&bf_head
);
2589 if (list_is_last(&lastbf
->list
, fifo_list
)) {
2590 list_splice_tail_init(fifo_list
, &bf_head
);
2591 INCR(txq
->txq_tailidx
, ATH_TXFIFO_DEPTH
);
2593 if (!list_empty(&txq
->axq_q
)) {
2594 struct list_head bf_q
;
2596 INIT_LIST_HEAD(&bf_q
);
2597 txq
->axq_link
= NULL
;
2598 list_splice_tail_init(&txq
->axq_q
, &bf_q
);
2599 ath_tx_txqaddbuf(sc
, txq
, &bf_q
, true);
2602 lastbf
->bf_state
.stale
= true;
2604 list_cut_position(&bf_head
, fifo_list
,
2608 ath_tx_process_buffer(sc
, txq
, &ts
, bf
, &bf_head
);
2609 ath_txq_unlock_complete(sc
, txq
);
2617 static int ath_txstatus_setup(struct ath_softc
*sc
, int size
)
2619 struct ath_descdma
*dd
= &sc
->txsdma
;
2620 u8 txs_len
= sc
->sc_ah
->caps
.txs_len
;
2622 dd
->dd_desc_len
= size
* txs_len
;
2623 dd
->dd_desc
= dmam_alloc_coherent(sc
->dev
, dd
->dd_desc_len
,
2624 &dd
->dd_desc_paddr
, GFP_KERNEL
);
2631 static int ath_tx_edma_init(struct ath_softc
*sc
)
2635 err
= ath_txstatus_setup(sc
, ATH_TXSTATUS_RING_SIZE
);
2637 ath9k_hw_setup_statusring(sc
->sc_ah
, sc
->txsdma
.dd_desc
,
2638 sc
->txsdma
.dd_desc_paddr
,
2639 ATH_TXSTATUS_RING_SIZE
);
2644 int ath_tx_init(struct ath_softc
*sc
, int nbufs
)
2646 struct ath_common
*common
= ath9k_hw_common(sc
->sc_ah
);
2649 spin_lock_init(&sc
->tx
.txbuflock
);
2651 error
= ath_descdma_setup(sc
, &sc
->tx
.txdma
, &sc
->tx
.txbuf
,
2655 "Failed to allocate tx descriptors: %d\n", error
);
2659 error
= ath_descdma_setup(sc
, &sc
->beacon
.bdma
, &sc
->beacon
.bbuf
,
2660 "beacon", ATH_BCBUF
, 1, 1);
2663 "Failed to allocate beacon descriptors: %d\n", error
);
2667 INIT_DELAYED_WORK(&sc
->tx_complete_work
, ath_tx_complete_poll_work
);
2669 if (sc
->sc_ah
->caps
.hw_caps
& ATH9K_HW_CAP_EDMA
)
2670 error
= ath_tx_edma_init(sc
);
2675 void ath_tx_node_init(struct ath_softc
*sc
, struct ath_node
*an
)
2677 struct ath_atx_tid
*tid
;
2678 struct ath_atx_ac
*ac
;
2681 for (tidno
= 0, tid
= &an
->tid
[tidno
];
2682 tidno
< IEEE80211_NUM_TIDS
;
2686 tid
->seq_start
= tid
->seq_next
= 0;
2687 tid
->baw_size
= WME_MAX_BA
;
2688 tid
->baw_head
= tid
->baw_tail
= 0;
2690 tid
->paused
= false;
2691 tid
->active
= false;
2692 __skb_queue_head_init(&tid
->buf_q
);
2693 __skb_queue_head_init(&tid
->retry_q
);
2694 acno
= TID_TO_WME_AC(tidno
);
2695 tid
->ac
= &an
->ac
[acno
];
2698 for (acno
= 0, ac
= &an
->ac
[acno
];
2699 acno
< IEEE80211_NUM_ACS
; acno
++, ac
++) {
2701 ac
->clear_ps_filter
= true;
2702 ac
->txq
= sc
->tx
.txq_map
[acno
];
2703 INIT_LIST_HEAD(&ac
->tid_q
);
2707 void ath_tx_node_cleanup(struct ath_softc
*sc
, struct ath_node
*an
)
2709 struct ath_atx_ac
*ac
;
2710 struct ath_atx_tid
*tid
;
2711 struct ath_txq
*txq
;
2714 for (tidno
= 0, tid
= &an
->tid
[tidno
];
2715 tidno
< IEEE80211_NUM_TIDS
; tidno
++, tid
++) {
2720 ath_txq_lock(sc
, txq
);
2723 list_del(&tid
->list
);
2728 list_del(&ac
->list
);
2729 tid
->ac
->sched
= false;
2732 ath_tid_drain(sc
, txq
, tid
);
2733 tid
->active
= false;
2735 ath_txq_unlock(sc
, txq
);