ARM: mm: Recreate kernel mappings in early_paging_init()
[linux/fpc-iii.git] / drivers / net / wireless / mwifiex / cfp.c
blob9eefacbc844bfab2eae14777c70719db377b3f7d
1 /*
2 * Marvell Wireless LAN device driver: Channel, Frequence and Power
4 * Copyright (C) 2011, Marvell International Ltd.
6 * This software file (the "File") is distributed by Marvell International
7 * Ltd. under the terms of the GNU General Public License Version 2, June 1991
8 * (the "License"). You may use, redistribute and/or modify this File in
9 * accordance with the terms and conditions of the License, a copy of which
10 * is available by writing to the Free Software Foundation, Inc.,
11 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA or on the
12 * worldwide web at http://www.gnu.org/licenses/old-licenses/gpl-2.0.txt.
14 * THE FILE IS DISTRIBUTED AS-IS, WITHOUT WARRANTY OF ANY KIND, AND THE
15 * IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE
16 * ARE EXPRESSLY DISCLAIMED. The License provides additional details about
17 * this warranty disclaimer.
20 #include "decl.h"
21 #include "ioctl.h"
22 #include "util.h"
23 #include "fw.h"
24 #include "main.h"
25 #include "cfg80211.h"
27 /* 100mW */
28 #define MWIFIEX_TX_PWR_DEFAULT 20
29 /* 100mW */
30 #define MWIFIEX_TX_PWR_US_DEFAULT 20
31 /* 50mW */
32 #define MWIFIEX_TX_PWR_JP_DEFAULT 16
33 /* 100mW */
34 #define MWIFIEX_TX_PWR_FR_100MW 20
35 /* 10mW */
36 #define MWIFIEX_TX_PWR_FR_10MW 10
37 /* 100mW */
38 #define MWIFIEX_TX_PWR_EMEA_DEFAULT 20
40 static u8 adhoc_rates_b[B_SUPPORTED_RATES] = { 0x82, 0x84, 0x8b, 0x96, 0 };
42 static u8 adhoc_rates_g[G_SUPPORTED_RATES] = { 0x8c, 0x12, 0x98, 0x24,
43 0xb0, 0x48, 0x60, 0x6c, 0 };
45 static u8 adhoc_rates_bg[BG_SUPPORTED_RATES] = { 0x82, 0x84, 0x8b, 0x96,
46 0x0c, 0x12, 0x18, 0x24,
47 0x30, 0x48, 0x60, 0x6c, 0 };
49 static u8 adhoc_rates_a[A_SUPPORTED_RATES] = { 0x8c, 0x12, 0x98, 0x24,
50 0xb0, 0x48, 0x60, 0x6c, 0 };
51 static u8 supported_rates_a[A_SUPPORTED_RATES] = { 0x0c, 0x12, 0x18, 0x24,
52 0xb0, 0x48, 0x60, 0x6c, 0 };
53 static u16 mwifiex_data_rates[MWIFIEX_SUPPORTED_RATES_EXT] = { 0x02, 0x04,
54 0x0B, 0x16, 0x00, 0x0C, 0x12, 0x18,
55 0x24, 0x30, 0x48, 0x60, 0x6C, 0x90,
56 0x0D, 0x1A, 0x27, 0x34, 0x4E, 0x68,
57 0x75, 0x82, 0x0C, 0x1B, 0x36, 0x51,
58 0x6C, 0xA2, 0xD8, 0xF3, 0x10E, 0x00 };
60 static u8 supported_rates_b[B_SUPPORTED_RATES] = { 0x02, 0x04, 0x0b, 0x16, 0 };
62 static u8 supported_rates_g[G_SUPPORTED_RATES] = { 0x0c, 0x12, 0x18, 0x24,
63 0x30, 0x48, 0x60, 0x6c, 0 };
65 static u8 supported_rates_bg[BG_SUPPORTED_RATES] = { 0x02, 0x04, 0x0b, 0x0c,
66 0x12, 0x16, 0x18, 0x24, 0x30, 0x48,
67 0x60, 0x6c, 0 };
69 u16 region_code_index[MWIFIEX_MAX_REGION_CODE] = { 0x10, 0x20, 0x30,
70 0x32, 0x40, 0x41, 0xff };
72 static u8 supported_rates_n[N_SUPPORTED_RATES] = { 0x02, 0x04, 0 };
74 struct region_code_mapping {
75 u8 code;
76 u8 region[IEEE80211_COUNTRY_STRING_LEN];
79 static struct region_code_mapping region_code_mapping_t[] = {
80 { 0x10, "US " }, /* US FCC */
81 { 0x20, "CA " }, /* IC Canada */
82 { 0x30, "EU " }, /* ETSI */
83 { 0x31, "ES " }, /* Spain */
84 { 0x32, "FR " }, /* France */
85 { 0x40, "JP " }, /* Japan */
86 { 0x41, "JP " }, /* Japan */
87 { 0x50, "CN " }, /* China */
90 /* This function converts integer code to region string */
91 u8 *mwifiex_11d_code_2_region(u8 code)
93 u8 i;
94 u8 size = sizeof(region_code_mapping_t)/
95 sizeof(struct region_code_mapping);
97 /* Look for code in mapping table */
98 for (i = 0; i < size; i++)
99 if (region_code_mapping_t[i].code == code)
100 return region_code_mapping_t[i].region;
102 return NULL;
106 * This function maps an index in supported rates table into
107 * the corresponding data rate.
109 u32 mwifiex_index_to_acs_data_rate(struct mwifiex_private *priv,
110 u8 index, u8 ht_info)
113 * For every mcs_rate line, the first 8 bytes are for stream 1x1,
114 * and all 16 bytes are for stream 2x2.
116 u16 mcs_rate[4][16] = {
117 /* LGI 40M */
118 { 0x1b, 0x36, 0x51, 0x6c, 0xa2, 0xd8, 0xf3, 0x10e,
119 0x36, 0x6c, 0xa2, 0xd8, 0x144, 0x1b0, 0x1e6, 0x21c },
121 /* SGI 40M */
122 { 0x1e, 0x3c, 0x5a, 0x78, 0xb4, 0xf0, 0x10e, 0x12c,
123 0x3c, 0x78, 0xb4, 0xf0, 0x168, 0x1e0, 0x21c, 0x258 },
125 /* LGI 20M */
126 { 0x0d, 0x1a, 0x27, 0x34, 0x4e, 0x68, 0x75, 0x82,
127 0x1a, 0x34, 0x4e, 0x68, 0x9c, 0xd0, 0xea, 0x104 },
129 /* SGI 20M */
130 { 0x0e, 0x1c, 0x2b, 0x39, 0x56, 0x73, 0x82, 0x90,
131 0x1c, 0x39, 0x56, 0x73, 0xad, 0xe7, 0x104, 0x120 }
133 /* AC rates */
134 u16 ac_mcs_rate_nss1[8][10] = {
135 /* LG 160M */
136 { 0x75, 0xEA, 0x15F, 0x1D4, 0x2BE, 0x3A8, 0x41D,
137 0x492, 0x57C, 0x618 },
139 /* SG 160M */
140 { 0x82, 0x104, 0x186, 0x208, 0x30C, 0x410, 0x492,
141 0x514, 0x618, 0x6C6 },
143 /* LG 80M */
144 { 0x3B, 0x75, 0xB0, 0xEA, 0x15F, 0x1D4, 0x20F,
145 0x249, 0x2BE, 0x30C },
147 /* SG 80M */
148 { 0x41, 0x82, 0xC3, 0x104, 0x186, 0x208, 0x249,
149 0x28A, 0x30C, 0x363 },
151 /* LG 40M */
152 { 0x1B, 0x36, 0x51, 0x6C, 0xA2, 0xD8, 0xF3,
153 0x10E, 0x144, 0x168 },
155 /* SG 40M */
156 { 0x1E, 0x3C, 0x5A, 0x78, 0xB4, 0xF0, 0x10E,
157 0x12C, 0x168, 0x190 },
159 /* LG 20M */
160 { 0xD, 0x1A, 0x27, 0x34, 0x4E, 0x68, 0x75, 0x82, 0x9C, 0x00 },
162 /* SG 20M */
163 { 0xF, 0x1D, 0x2C, 0x3A, 0x57, 0x74, 0x82, 0x91, 0xAE, 0x00 },
165 /* NSS2 note: the value in the table is 2 multiplier of the actual
166 * rate
168 u16 ac_mcs_rate_nss2[8][10] = {
169 /* LG 160M */
170 { 0xEA, 0x1D4, 0x2BE, 0x3A8, 0x57C, 0x750, 0x83A,
171 0x924, 0xAF8, 0xC30 },
173 /* SG 160M */
174 { 0x104, 0x208, 0x30C, 0x410, 0x618, 0x820, 0x924,
175 0xA28, 0xC30, 0xD8B },
177 /* LG 80M */
178 { 0x75, 0xEA, 0x15F, 0x1D4, 0x2BE, 0x3A8, 0x41D,
179 0x492, 0x57C, 0x618 },
181 /* SG 80M */
182 { 0x82, 0x104, 0x186, 0x208, 0x30C, 0x410, 0x492,
183 0x514, 0x618, 0x6C6 },
185 /* LG 40M */
186 { 0x36, 0x6C, 0xA2, 0xD8, 0x144, 0x1B0, 0x1E6,
187 0x21C, 0x288, 0x2D0 },
189 /* SG 40M */
190 { 0x3C, 0x78, 0xB4, 0xF0, 0x168, 0x1E0, 0x21C,
191 0x258, 0x2D0, 0x320 },
193 /* LG 20M */
194 { 0x1A, 0x34, 0x4A, 0x68, 0x9C, 0xD0, 0xEA, 0x104,
195 0x138, 0x00 },
197 /* SG 20M */
198 { 0x1D, 0x3A, 0x57, 0x74, 0xAE, 0xE6, 0x104, 0x121,
199 0x15B, 0x00 },
201 u32 rate = 0;
202 u8 mcs_index = 0;
203 u8 bw = 0;
204 u8 gi = 0;
206 if ((ht_info & 0x3) == MWIFIEX_RATE_FORMAT_VHT) {
207 mcs_index = min(index & 0xF, 9);
209 /* 20M: bw=0, 40M: bw=1, 80M: bw=2, 160M: bw=3 */
210 bw = (ht_info & 0xC) >> 2;
212 /* LGI: gi =0, SGI: gi = 1 */
213 gi = (ht_info & 0x10) >> 4;
215 if ((index >> 4) == 1) /* NSS = 2 */
216 rate = ac_mcs_rate_nss2[2 * (3 - bw) + gi][mcs_index];
217 else /* NSS = 1 */
218 rate = ac_mcs_rate_nss1[2 * (3 - bw) + gi][mcs_index];
219 } else if ((ht_info & 0x3) == MWIFIEX_RATE_FORMAT_HT) {
220 /* 20M: bw=0, 40M: bw=1 */
221 bw = (ht_info & 0xC) >> 2;
223 /* LGI: gi =0, SGI: gi = 1 */
224 gi = (ht_info & 0x10) >> 4;
226 if (index == MWIFIEX_RATE_BITMAP_MCS0) {
227 if (gi == 1)
228 rate = 0x0D; /* MCS 32 SGI rate */
229 else
230 rate = 0x0C; /* MCS 32 LGI rate */
231 } else if (index < 16) {
232 if ((bw == 1) || (bw == 0))
233 rate = mcs_rate[2 * (1 - bw) + gi][index];
234 else
235 rate = mwifiex_data_rates[0];
236 } else {
237 rate = mwifiex_data_rates[0];
239 } else {
240 /* 11n non-HT rates */
241 if (index >= MWIFIEX_SUPPORTED_RATES_EXT)
242 index = 0;
243 rate = mwifiex_data_rates[index];
246 return rate;
249 /* This function maps an index in supported rates table into
250 * the corresponding data rate.
252 u32 mwifiex_index_to_data_rate(struct mwifiex_private *priv,
253 u8 index, u8 ht_info)
255 /* For every mcs_rate line, the first 8 bytes are for stream 1x1,
256 * and all 16 bytes are for stream 2x2.
258 u16 mcs_rate[4][16] = {
259 /* LGI 40M */
260 { 0x1b, 0x36, 0x51, 0x6c, 0xa2, 0xd8, 0xf3, 0x10e,
261 0x36, 0x6c, 0xa2, 0xd8, 0x144, 0x1b0, 0x1e6, 0x21c },
263 /* SGI 40M */
264 { 0x1e, 0x3c, 0x5a, 0x78, 0xb4, 0xf0, 0x10e, 0x12c,
265 0x3c, 0x78, 0xb4, 0xf0, 0x168, 0x1e0, 0x21c, 0x258 },
267 /* LGI 20M */
268 { 0x0d, 0x1a, 0x27, 0x34, 0x4e, 0x68, 0x75, 0x82,
269 0x1a, 0x34, 0x4e, 0x68, 0x9c, 0xd0, 0xea, 0x104 },
271 /* SGI 20M */
272 { 0x0e, 0x1c, 0x2b, 0x39, 0x56, 0x73, 0x82, 0x90,
273 0x1c, 0x39, 0x56, 0x73, 0xad, 0xe7, 0x104, 0x120 }
275 u32 mcs_num_supp =
276 (priv->adapter->hw_dev_mcs_support == HT_STREAM_2X2) ? 16 : 8;
277 u32 rate;
279 if (priv->adapter->is_hw_11ac_capable)
280 return mwifiex_index_to_acs_data_rate(priv, index, ht_info);
282 if (ht_info & BIT(0)) {
283 if (index == MWIFIEX_RATE_BITMAP_MCS0) {
284 if (ht_info & BIT(2))
285 rate = 0x0D; /* MCS 32 SGI rate */
286 else
287 rate = 0x0C; /* MCS 32 LGI rate */
288 } else if (index < mcs_num_supp) {
289 if (ht_info & BIT(1)) {
290 if (ht_info & BIT(2))
291 /* SGI, 40M */
292 rate = mcs_rate[1][index];
293 else
294 /* LGI, 40M */
295 rate = mcs_rate[0][index];
296 } else {
297 if (ht_info & BIT(2))
298 /* SGI, 20M */
299 rate = mcs_rate[3][index];
300 else
301 /* LGI, 20M */
302 rate = mcs_rate[2][index];
304 } else
305 rate = mwifiex_data_rates[0];
306 } else {
307 if (index >= MWIFIEX_SUPPORTED_RATES_EXT)
308 index = 0;
309 rate = mwifiex_data_rates[index];
311 return rate;
315 * This function returns the current active data rates.
317 * The result may vary depending upon connection status.
319 u32 mwifiex_get_active_data_rates(struct mwifiex_private *priv, u8 *rates)
321 if (!priv->media_connected)
322 return mwifiex_get_supported_rates(priv, rates);
323 else
324 return mwifiex_copy_rates(rates, 0,
325 priv->curr_bss_params.data_rates,
326 priv->curr_bss_params.num_of_rates);
330 * This function locates the Channel-Frequency-Power triplet based upon
331 * band and channel/frequency parameters.
333 struct mwifiex_chan_freq_power *
334 mwifiex_get_cfp(struct mwifiex_private *priv, u8 band, u16 channel, u32 freq)
336 struct mwifiex_chan_freq_power *cfp = NULL;
337 struct ieee80211_supported_band *sband;
338 struct ieee80211_channel *ch = NULL;
339 int i;
341 if (!channel && !freq)
342 return cfp;
344 if (mwifiex_band_to_radio_type(band) == HostCmd_SCAN_RADIO_TYPE_BG)
345 sband = priv->wdev->wiphy->bands[IEEE80211_BAND_2GHZ];
346 else
347 sband = priv->wdev->wiphy->bands[IEEE80211_BAND_5GHZ];
349 if (!sband) {
350 dev_err(priv->adapter->dev, "%s: cannot find cfp by band %d\n",
351 __func__, band);
352 return cfp;
355 for (i = 0; i < sband->n_channels; i++) {
356 ch = &sband->channels[i];
358 if (ch->flags & IEEE80211_CHAN_DISABLED)
359 continue;
361 if (freq) {
362 if (ch->center_freq == freq)
363 break;
364 } else {
365 /* find by valid channel*/
366 if (ch->hw_value == channel ||
367 channel == FIRST_VALID_CHANNEL)
368 break;
371 if (i == sband->n_channels) {
372 dev_err(priv->adapter->dev, "%s: cannot find cfp by band %d"
373 " & channel=%d freq=%d\n", __func__, band, channel,
374 freq);
375 } else {
376 if (!ch)
377 return cfp;
379 priv->cfp.channel = ch->hw_value;
380 priv->cfp.freq = ch->center_freq;
381 priv->cfp.max_tx_power = ch->max_power;
382 cfp = &priv->cfp;
385 return cfp;
389 * This function checks if the data rate is set to auto.
392 mwifiex_is_rate_auto(struct mwifiex_private *priv)
394 u32 i;
395 int rate_num = 0;
397 for (i = 0; i < ARRAY_SIZE(priv->bitmap_rates); i++)
398 if (priv->bitmap_rates[i])
399 rate_num++;
401 if (rate_num > 1)
402 return true;
403 else
404 return false;
407 /* This function gets the supported data rates from bitmask inside
408 * cfg80211_scan_request.
410 u32 mwifiex_get_rates_from_cfg80211(struct mwifiex_private *priv,
411 u8 *rates, u8 radio_type)
413 struct wiphy *wiphy = priv->adapter->wiphy;
414 struct cfg80211_scan_request *request = priv->scan_request;
415 u32 num_rates, rate_mask;
416 struct ieee80211_supported_band *sband;
417 int i;
419 if (radio_type) {
420 sband = wiphy->bands[IEEE80211_BAND_5GHZ];
421 if (WARN_ON_ONCE(!sband))
422 return 0;
423 rate_mask = request->rates[IEEE80211_BAND_5GHZ];
424 } else {
425 sband = wiphy->bands[IEEE80211_BAND_2GHZ];
426 if (WARN_ON_ONCE(!sband))
427 return 0;
428 rate_mask = request->rates[IEEE80211_BAND_2GHZ];
431 num_rates = 0;
432 for (i = 0; i < sband->n_bitrates; i++) {
433 if ((BIT(i) & rate_mask) == 0)
434 continue; /* skip rate */
435 rates[num_rates++] = (u8)(sband->bitrates[i].bitrate / 5);
438 return num_rates;
441 /* This function gets the supported data rates. The function works in
442 * both Ad-Hoc and infra mode by printing the band and returning the
443 * data rates.
445 u32 mwifiex_get_supported_rates(struct mwifiex_private *priv, u8 *rates)
447 u32 k = 0;
448 struct mwifiex_adapter *adapter = priv->adapter;
450 if (priv->bss_mode == NL80211_IFTYPE_STATION ||
451 priv->bss_mode == NL80211_IFTYPE_P2P_CLIENT) {
452 switch (adapter->config_bands) {
453 case BAND_B:
454 dev_dbg(adapter->dev, "info: infra band=%d "
455 "supported_rates_b\n", adapter->config_bands);
456 k = mwifiex_copy_rates(rates, k, supported_rates_b,
457 sizeof(supported_rates_b));
458 break;
459 case BAND_G:
460 case BAND_G | BAND_GN:
461 case BAND_G | BAND_GN | BAND_GAC:
462 dev_dbg(adapter->dev, "info: infra band=%d "
463 "supported_rates_g\n", adapter->config_bands);
464 k = mwifiex_copy_rates(rates, k, supported_rates_g,
465 sizeof(supported_rates_g));
466 break;
467 case BAND_B | BAND_G:
468 case BAND_A | BAND_B | BAND_G:
469 case BAND_A | BAND_B:
470 case BAND_A | BAND_B | BAND_G | BAND_GN | BAND_AN:
471 case BAND_A | BAND_B | BAND_G | BAND_GN | BAND_AN | BAND_AAC:
472 case BAND_A | BAND_B | BAND_G | BAND_GN | BAND_AN |
473 BAND_AAC | BAND_GAC:
474 case BAND_B | BAND_G | BAND_GN:
475 case BAND_B | BAND_G | BAND_GN | BAND_GAC:
476 dev_dbg(adapter->dev, "info: infra band=%d "
477 "supported_rates_bg\n", adapter->config_bands);
478 k = mwifiex_copy_rates(rates, k, supported_rates_bg,
479 sizeof(supported_rates_bg));
480 break;
481 case BAND_A:
482 case BAND_A | BAND_G:
483 dev_dbg(adapter->dev, "info: infra band=%d "
484 "supported_rates_a\n", adapter->config_bands);
485 k = mwifiex_copy_rates(rates, k, supported_rates_a,
486 sizeof(supported_rates_a));
487 break;
488 case BAND_AN:
489 case BAND_A | BAND_AN:
490 case BAND_A | BAND_AN | BAND_AAC:
491 case BAND_A | BAND_G | BAND_AN | BAND_GN:
492 case BAND_A | BAND_G | BAND_AN | BAND_GN | BAND_AAC:
493 dev_dbg(adapter->dev, "info: infra band=%d "
494 "supported_rates_a\n", adapter->config_bands);
495 k = mwifiex_copy_rates(rates, k, supported_rates_a,
496 sizeof(supported_rates_a));
497 break;
498 case BAND_GN:
499 case BAND_GN | BAND_GAC:
500 dev_dbg(adapter->dev, "info: infra band=%d "
501 "supported_rates_n\n", adapter->config_bands);
502 k = mwifiex_copy_rates(rates, k, supported_rates_n,
503 sizeof(supported_rates_n));
504 break;
506 } else {
507 /* Ad-hoc mode */
508 switch (adapter->adhoc_start_band) {
509 case BAND_B:
510 dev_dbg(adapter->dev, "info: adhoc B\n");
511 k = mwifiex_copy_rates(rates, k, adhoc_rates_b,
512 sizeof(adhoc_rates_b));
513 break;
514 case BAND_G:
515 case BAND_G | BAND_GN:
516 dev_dbg(adapter->dev, "info: adhoc G only\n");
517 k = mwifiex_copy_rates(rates, k, adhoc_rates_g,
518 sizeof(adhoc_rates_g));
519 break;
520 case BAND_B | BAND_G:
521 case BAND_B | BAND_G | BAND_GN:
522 dev_dbg(adapter->dev, "info: adhoc BG\n");
523 k = mwifiex_copy_rates(rates, k, adhoc_rates_bg,
524 sizeof(adhoc_rates_bg));
525 break;
526 case BAND_A:
527 case BAND_A | BAND_AN:
528 dev_dbg(adapter->dev, "info: adhoc A\n");
529 k = mwifiex_copy_rates(rates, k, adhoc_rates_a,
530 sizeof(adhoc_rates_a));
531 break;
535 return k;