2 * core.c -- Voltage/Current Regulator framework.
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
28 #include <linux/regmap.h>
29 #include <linux/regulator/of_regulator.h>
30 #include <linux/regulator/consumer.h>
31 #include <linux/regulator/driver.h>
32 #include <linux/regulator/machine.h>
33 #include <linux/module.h>
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/regulator.h>
40 #define rdev_crit(rdev, fmt, ...) \
41 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 #define rdev_err(rdev, fmt, ...) \
43 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_warn(rdev, fmt, ...) \
45 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_info(rdev, fmt, ...) \
47 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_dbg(rdev, fmt, ...) \
49 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
51 static DEFINE_MUTEX(regulator_list_mutex
);
52 static LIST_HEAD(regulator_list
);
53 static LIST_HEAD(regulator_map_list
);
54 static LIST_HEAD(regulator_ena_gpio_list
);
55 static bool has_full_constraints
;
56 static bool board_wants_dummy_regulator
;
58 static struct dentry
*debugfs_root
;
61 * struct regulator_map
63 * Used to provide symbolic supply names to devices.
65 struct regulator_map
{
66 struct list_head list
;
67 const char *dev_name
; /* The dev_name() for the consumer */
69 struct regulator_dev
*regulator
;
73 * struct regulator_enable_gpio
75 * Management for shared enable GPIO pin
77 struct regulator_enable_gpio
{
78 struct list_head list
;
80 u32 enable_count
; /* a number of enabled shared GPIO */
81 u32 request_count
; /* a number of requested shared GPIO */
82 unsigned int ena_gpio_invert
:1;
88 * One for each consumer device.
92 struct list_head list
;
93 unsigned int always_on
:1;
94 unsigned int bypass
:1;
99 struct device_attribute dev_attr
;
100 struct regulator_dev
*rdev
;
101 struct dentry
*debugfs
;
104 static int _regulator_is_enabled(struct regulator_dev
*rdev
);
105 static int _regulator_disable(struct regulator_dev
*rdev
);
106 static int _regulator_get_voltage(struct regulator_dev
*rdev
);
107 static int _regulator_get_current_limit(struct regulator_dev
*rdev
);
108 static unsigned int _regulator_get_mode(struct regulator_dev
*rdev
);
109 static void _notifier_call_chain(struct regulator_dev
*rdev
,
110 unsigned long event
, void *data
);
111 static int _regulator_do_set_voltage(struct regulator_dev
*rdev
,
112 int min_uV
, int max_uV
);
113 static struct regulator
*create_regulator(struct regulator_dev
*rdev
,
115 const char *supply_name
);
117 static const char *rdev_get_name(struct regulator_dev
*rdev
)
119 if (rdev
->constraints
&& rdev
->constraints
->name
)
120 return rdev
->constraints
->name
;
121 else if (rdev
->desc
->name
)
122 return rdev
->desc
->name
;
128 * of_get_regulator - get a regulator device node based on supply name
129 * @dev: Device pointer for the consumer (of regulator) device
130 * @supply: regulator supply name
132 * Extract the regulator device node corresponding to the supply name.
133 * returns the device node corresponding to the regulator if found, else
136 static struct device_node
*of_get_regulator(struct device
*dev
, const char *supply
)
138 struct device_node
*regnode
= NULL
;
139 char prop_name
[32]; /* 32 is max size of property name */
141 dev_dbg(dev
, "Looking up %s-supply from device tree\n", supply
);
143 snprintf(prop_name
, 32, "%s-supply", supply
);
144 regnode
= of_parse_phandle(dev
->of_node
, prop_name
, 0);
147 dev_dbg(dev
, "Looking up %s property in node %s failed",
148 prop_name
, dev
->of_node
->full_name
);
154 static int _regulator_can_change_status(struct regulator_dev
*rdev
)
156 if (!rdev
->constraints
)
159 if (rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_STATUS
)
165 /* Platform voltage constraint check */
166 static int regulator_check_voltage(struct regulator_dev
*rdev
,
167 int *min_uV
, int *max_uV
)
169 BUG_ON(*min_uV
> *max_uV
);
171 if (!rdev
->constraints
) {
172 rdev_err(rdev
, "no constraints\n");
175 if (!(rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_VOLTAGE
)) {
176 rdev_err(rdev
, "operation not allowed\n");
180 if (*max_uV
> rdev
->constraints
->max_uV
)
181 *max_uV
= rdev
->constraints
->max_uV
;
182 if (*min_uV
< rdev
->constraints
->min_uV
)
183 *min_uV
= rdev
->constraints
->min_uV
;
185 if (*min_uV
> *max_uV
) {
186 rdev_err(rdev
, "unsupportable voltage range: %d-%duV\n",
194 /* Make sure we select a voltage that suits the needs of all
195 * regulator consumers
197 static int regulator_check_consumers(struct regulator_dev
*rdev
,
198 int *min_uV
, int *max_uV
)
200 struct regulator
*regulator
;
202 list_for_each_entry(regulator
, &rdev
->consumer_list
, list
) {
204 * Assume consumers that didn't say anything are OK
205 * with anything in the constraint range.
207 if (!regulator
->min_uV
&& !regulator
->max_uV
)
210 if (*max_uV
> regulator
->max_uV
)
211 *max_uV
= regulator
->max_uV
;
212 if (*min_uV
< regulator
->min_uV
)
213 *min_uV
= regulator
->min_uV
;
216 if (*min_uV
> *max_uV
) {
217 rdev_err(rdev
, "Restricting voltage, %u-%uuV\n",
225 /* current constraint check */
226 static int regulator_check_current_limit(struct regulator_dev
*rdev
,
227 int *min_uA
, int *max_uA
)
229 BUG_ON(*min_uA
> *max_uA
);
231 if (!rdev
->constraints
) {
232 rdev_err(rdev
, "no constraints\n");
235 if (!(rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_CURRENT
)) {
236 rdev_err(rdev
, "operation not allowed\n");
240 if (*max_uA
> rdev
->constraints
->max_uA
)
241 *max_uA
= rdev
->constraints
->max_uA
;
242 if (*min_uA
< rdev
->constraints
->min_uA
)
243 *min_uA
= rdev
->constraints
->min_uA
;
245 if (*min_uA
> *max_uA
) {
246 rdev_err(rdev
, "unsupportable current range: %d-%duA\n",
254 /* operating mode constraint check */
255 static int regulator_mode_constrain(struct regulator_dev
*rdev
, int *mode
)
258 case REGULATOR_MODE_FAST
:
259 case REGULATOR_MODE_NORMAL
:
260 case REGULATOR_MODE_IDLE
:
261 case REGULATOR_MODE_STANDBY
:
264 rdev_err(rdev
, "invalid mode %x specified\n", *mode
);
268 if (!rdev
->constraints
) {
269 rdev_err(rdev
, "no constraints\n");
272 if (!(rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_MODE
)) {
273 rdev_err(rdev
, "operation not allowed\n");
277 /* The modes are bitmasks, the most power hungry modes having
278 * the lowest values. If the requested mode isn't supported
279 * try higher modes. */
281 if (rdev
->constraints
->valid_modes_mask
& *mode
)
289 /* dynamic regulator mode switching constraint check */
290 static int regulator_check_drms(struct regulator_dev
*rdev
)
292 if (!rdev
->constraints
) {
293 rdev_err(rdev
, "no constraints\n");
296 if (!(rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_DRMS
)) {
297 rdev_err(rdev
, "operation not allowed\n");
303 static ssize_t
regulator_uV_show(struct device
*dev
,
304 struct device_attribute
*attr
, char *buf
)
306 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
309 mutex_lock(&rdev
->mutex
);
310 ret
= sprintf(buf
, "%d\n", _regulator_get_voltage(rdev
));
311 mutex_unlock(&rdev
->mutex
);
315 static DEVICE_ATTR(microvolts
, 0444, regulator_uV_show
, NULL
);
317 static ssize_t
regulator_uA_show(struct device
*dev
,
318 struct device_attribute
*attr
, char *buf
)
320 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
322 return sprintf(buf
, "%d\n", _regulator_get_current_limit(rdev
));
324 static DEVICE_ATTR(microamps
, 0444, regulator_uA_show
, NULL
);
326 static ssize_t
name_show(struct device
*dev
, struct device_attribute
*attr
,
329 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
331 return sprintf(buf
, "%s\n", rdev_get_name(rdev
));
333 static DEVICE_ATTR_RO(name
);
335 static ssize_t
regulator_print_opmode(char *buf
, int mode
)
338 case REGULATOR_MODE_FAST
:
339 return sprintf(buf
, "fast\n");
340 case REGULATOR_MODE_NORMAL
:
341 return sprintf(buf
, "normal\n");
342 case REGULATOR_MODE_IDLE
:
343 return sprintf(buf
, "idle\n");
344 case REGULATOR_MODE_STANDBY
:
345 return sprintf(buf
, "standby\n");
347 return sprintf(buf
, "unknown\n");
350 static ssize_t
regulator_opmode_show(struct device
*dev
,
351 struct device_attribute
*attr
, char *buf
)
353 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
355 return regulator_print_opmode(buf
, _regulator_get_mode(rdev
));
357 static DEVICE_ATTR(opmode
, 0444, regulator_opmode_show
, NULL
);
359 static ssize_t
regulator_print_state(char *buf
, int state
)
362 return sprintf(buf
, "enabled\n");
364 return sprintf(buf
, "disabled\n");
366 return sprintf(buf
, "unknown\n");
369 static ssize_t
regulator_state_show(struct device
*dev
,
370 struct device_attribute
*attr
, char *buf
)
372 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
375 mutex_lock(&rdev
->mutex
);
376 ret
= regulator_print_state(buf
, _regulator_is_enabled(rdev
));
377 mutex_unlock(&rdev
->mutex
);
381 static DEVICE_ATTR(state
, 0444, regulator_state_show
, NULL
);
383 static ssize_t
regulator_status_show(struct device
*dev
,
384 struct device_attribute
*attr
, char *buf
)
386 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
390 status
= rdev
->desc
->ops
->get_status(rdev
);
395 case REGULATOR_STATUS_OFF
:
398 case REGULATOR_STATUS_ON
:
401 case REGULATOR_STATUS_ERROR
:
404 case REGULATOR_STATUS_FAST
:
407 case REGULATOR_STATUS_NORMAL
:
410 case REGULATOR_STATUS_IDLE
:
413 case REGULATOR_STATUS_STANDBY
:
416 case REGULATOR_STATUS_BYPASS
:
419 case REGULATOR_STATUS_UNDEFINED
:
426 return sprintf(buf
, "%s\n", label
);
428 static DEVICE_ATTR(status
, 0444, regulator_status_show
, NULL
);
430 static ssize_t
regulator_min_uA_show(struct device
*dev
,
431 struct device_attribute
*attr
, char *buf
)
433 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
435 if (!rdev
->constraints
)
436 return sprintf(buf
, "constraint not defined\n");
438 return sprintf(buf
, "%d\n", rdev
->constraints
->min_uA
);
440 static DEVICE_ATTR(min_microamps
, 0444, regulator_min_uA_show
, NULL
);
442 static ssize_t
regulator_max_uA_show(struct device
*dev
,
443 struct device_attribute
*attr
, char *buf
)
445 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
447 if (!rdev
->constraints
)
448 return sprintf(buf
, "constraint not defined\n");
450 return sprintf(buf
, "%d\n", rdev
->constraints
->max_uA
);
452 static DEVICE_ATTR(max_microamps
, 0444, regulator_max_uA_show
, NULL
);
454 static ssize_t
regulator_min_uV_show(struct device
*dev
,
455 struct device_attribute
*attr
, char *buf
)
457 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
459 if (!rdev
->constraints
)
460 return sprintf(buf
, "constraint not defined\n");
462 return sprintf(buf
, "%d\n", rdev
->constraints
->min_uV
);
464 static DEVICE_ATTR(min_microvolts
, 0444, regulator_min_uV_show
, NULL
);
466 static ssize_t
regulator_max_uV_show(struct device
*dev
,
467 struct device_attribute
*attr
, char *buf
)
469 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
471 if (!rdev
->constraints
)
472 return sprintf(buf
, "constraint not defined\n");
474 return sprintf(buf
, "%d\n", rdev
->constraints
->max_uV
);
476 static DEVICE_ATTR(max_microvolts
, 0444, regulator_max_uV_show
, NULL
);
478 static ssize_t
regulator_total_uA_show(struct device
*dev
,
479 struct device_attribute
*attr
, char *buf
)
481 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
482 struct regulator
*regulator
;
485 mutex_lock(&rdev
->mutex
);
486 list_for_each_entry(regulator
, &rdev
->consumer_list
, list
)
487 uA
+= regulator
->uA_load
;
488 mutex_unlock(&rdev
->mutex
);
489 return sprintf(buf
, "%d\n", uA
);
491 static DEVICE_ATTR(requested_microamps
, 0444, regulator_total_uA_show
, NULL
);
493 static ssize_t
num_users_show(struct device
*dev
, struct device_attribute
*attr
,
496 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
497 return sprintf(buf
, "%d\n", rdev
->use_count
);
499 static DEVICE_ATTR_RO(num_users
);
501 static ssize_t
type_show(struct device
*dev
, struct device_attribute
*attr
,
504 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
506 switch (rdev
->desc
->type
) {
507 case REGULATOR_VOLTAGE
:
508 return sprintf(buf
, "voltage\n");
509 case REGULATOR_CURRENT
:
510 return sprintf(buf
, "current\n");
512 return sprintf(buf
, "unknown\n");
514 static DEVICE_ATTR_RO(type
);
516 static ssize_t
regulator_suspend_mem_uV_show(struct device
*dev
,
517 struct device_attribute
*attr
, char *buf
)
519 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
521 return sprintf(buf
, "%d\n", rdev
->constraints
->state_mem
.uV
);
523 static DEVICE_ATTR(suspend_mem_microvolts
, 0444,
524 regulator_suspend_mem_uV_show
, NULL
);
526 static ssize_t
regulator_suspend_disk_uV_show(struct device
*dev
,
527 struct device_attribute
*attr
, char *buf
)
529 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
531 return sprintf(buf
, "%d\n", rdev
->constraints
->state_disk
.uV
);
533 static DEVICE_ATTR(suspend_disk_microvolts
, 0444,
534 regulator_suspend_disk_uV_show
, NULL
);
536 static ssize_t
regulator_suspend_standby_uV_show(struct device
*dev
,
537 struct device_attribute
*attr
, char *buf
)
539 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
541 return sprintf(buf
, "%d\n", rdev
->constraints
->state_standby
.uV
);
543 static DEVICE_ATTR(suspend_standby_microvolts
, 0444,
544 regulator_suspend_standby_uV_show
, NULL
);
546 static ssize_t
regulator_suspend_mem_mode_show(struct device
*dev
,
547 struct device_attribute
*attr
, char *buf
)
549 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
551 return regulator_print_opmode(buf
,
552 rdev
->constraints
->state_mem
.mode
);
554 static DEVICE_ATTR(suspend_mem_mode
, 0444,
555 regulator_suspend_mem_mode_show
, NULL
);
557 static ssize_t
regulator_suspend_disk_mode_show(struct device
*dev
,
558 struct device_attribute
*attr
, char *buf
)
560 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
562 return regulator_print_opmode(buf
,
563 rdev
->constraints
->state_disk
.mode
);
565 static DEVICE_ATTR(suspend_disk_mode
, 0444,
566 regulator_suspend_disk_mode_show
, NULL
);
568 static ssize_t
regulator_suspend_standby_mode_show(struct device
*dev
,
569 struct device_attribute
*attr
, char *buf
)
571 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
573 return regulator_print_opmode(buf
,
574 rdev
->constraints
->state_standby
.mode
);
576 static DEVICE_ATTR(suspend_standby_mode
, 0444,
577 regulator_suspend_standby_mode_show
, NULL
);
579 static ssize_t
regulator_suspend_mem_state_show(struct device
*dev
,
580 struct device_attribute
*attr
, char *buf
)
582 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
584 return regulator_print_state(buf
,
585 rdev
->constraints
->state_mem
.enabled
);
587 static DEVICE_ATTR(suspend_mem_state
, 0444,
588 regulator_suspend_mem_state_show
, NULL
);
590 static ssize_t
regulator_suspend_disk_state_show(struct device
*dev
,
591 struct device_attribute
*attr
, char *buf
)
593 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
595 return regulator_print_state(buf
,
596 rdev
->constraints
->state_disk
.enabled
);
598 static DEVICE_ATTR(suspend_disk_state
, 0444,
599 regulator_suspend_disk_state_show
, NULL
);
601 static ssize_t
regulator_suspend_standby_state_show(struct device
*dev
,
602 struct device_attribute
*attr
, char *buf
)
604 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
606 return regulator_print_state(buf
,
607 rdev
->constraints
->state_standby
.enabled
);
609 static DEVICE_ATTR(suspend_standby_state
, 0444,
610 regulator_suspend_standby_state_show
, NULL
);
612 static ssize_t
regulator_bypass_show(struct device
*dev
,
613 struct device_attribute
*attr
, char *buf
)
615 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
620 ret
= rdev
->desc
->ops
->get_bypass(rdev
, &bypass
);
629 return sprintf(buf
, "%s\n", report
);
631 static DEVICE_ATTR(bypass
, 0444,
632 regulator_bypass_show
, NULL
);
635 * These are the only attributes are present for all regulators.
636 * Other attributes are a function of regulator functionality.
638 static struct attribute
*regulator_dev_attrs
[] = {
640 &dev_attr_num_users
.attr
,
644 ATTRIBUTE_GROUPS(regulator_dev
);
646 static void regulator_dev_release(struct device
*dev
)
648 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
652 static struct class regulator_class
= {
654 .dev_release
= regulator_dev_release
,
655 .dev_groups
= regulator_dev_groups
,
658 /* Calculate the new optimum regulator operating mode based on the new total
659 * consumer load. All locks held by caller */
660 static void drms_uA_update(struct regulator_dev
*rdev
)
662 struct regulator
*sibling
;
663 int current_uA
= 0, output_uV
, input_uV
, err
;
666 err
= regulator_check_drms(rdev
);
667 if (err
< 0 || !rdev
->desc
->ops
->get_optimum_mode
||
668 (!rdev
->desc
->ops
->get_voltage
&&
669 !rdev
->desc
->ops
->get_voltage_sel
) ||
670 !rdev
->desc
->ops
->set_mode
)
673 /* get output voltage */
674 output_uV
= _regulator_get_voltage(rdev
);
678 /* get input voltage */
681 input_uV
= regulator_get_voltage(rdev
->supply
);
683 input_uV
= rdev
->constraints
->input_uV
;
687 /* calc total requested load */
688 list_for_each_entry(sibling
, &rdev
->consumer_list
, list
)
689 current_uA
+= sibling
->uA_load
;
691 /* now get the optimum mode for our new total regulator load */
692 mode
= rdev
->desc
->ops
->get_optimum_mode(rdev
, input_uV
,
693 output_uV
, current_uA
);
695 /* check the new mode is allowed */
696 err
= regulator_mode_constrain(rdev
, &mode
);
698 rdev
->desc
->ops
->set_mode(rdev
, mode
);
701 static int suspend_set_state(struct regulator_dev
*rdev
,
702 struct regulator_state
*rstate
)
706 /* If we have no suspend mode configration don't set anything;
707 * only warn if the driver implements set_suspend_voltage or
708 * set_suspend_mode callback.
710 if (!rstate
->enabled
&& !rstate
->disabled
) {
711 if (rdev
->desc
->ops
->set_suspend_voltage
||
712 rdev
->desc
->ops
->set_suspend_mode
)
713 rdev_warn(rdev
, "No configuration\n");
717 if (rstate
->enabled
&& rstate
->disabled
) {
718 rdev_err(rdev
, "invalid configuration\n");
722 if (rstate
->enabled
&& rdev
->desc
->ops
->set_suspend_enable
)
723 ret
= rdev
->desc
->ops
->set_suspend_enable(rdev
);
724 else if (rstate
->disabled
&& rdev
->desc
->ops
->set_suspend_disable
)
725 ret
= rdev
->desc
->ops
->set_suspend_disable(rdev
);
726 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
730 rdev_err(rdev
, "failed to enabled/disable\n");
734 if (rdev
->desc
->ops
->set_suspend_voltage
&& rstate
->uV
> 0) {
735 ret
= rdev
->desc
->ops
->set_suspend_voltage(rdev
, rstate
->uV
);
737 rdev_err(rdev
, "failed to set voltage\n");
742 if (rdev
->desc
->ops
->set_suspend_mode
&& rstate
->mode
> 0) {
743 ret
= rdev
->desc
->ops
->set_suspend_mode(rdev
, rstate
->mode
);
745 rdev_err(rdev
, "failed to set mode\n");
752 /* locks held by caller */
753 static int suspend_prepare(struct regulator_dev
*rdev
, suspend_state_t state
)
755 if (!rdev
->constraints
)
759 case PM_SUSPEND_STANDBY
:
760 return suspend_set_state(rdev
,
761 &rdev
->constraints
->state_standby
);
763 return suspend_set_state(rdev
,
764 &rdev
->constraints
->state_mem
);
766 return suspend_set_state(rdev
,
767 &rdev
->constraints
->state_disk
);
773 static void print_constraints(struct regulator_dev
*rdev
)
775 struct regulation_constraints
*constraints
= rdev
->constraints
;
780 if (constraints
->min_uV
&& constraints
->max_uV
) {
781 if (constraints
->min_uV
== constraints
->max_uV
)
782 count
+= sprintf(buf
+ count
, "%d mV ",
783 constraints
->min_uV
/ 1000);
785 count
+= sprintf(buf
+ count
, "%d <--> %d mV ",
786 constraints
->min_uV
/ 1000,
787 constraints
->max_uV
/ 1000);
790 if (!constraints
->min_uV
||
791 constraints
->min_uV
!= constraints
->max_uV
) {
792 ret
= _regulator_get_voltage(rdev
);
794 count
+= sprintf(buf
+ count
, "at %d mV ", ret
/ 1000);
797 if (constraints
->uV_offset
)
798 count
+= sprintf(buf
, "%dmV offset ",
799 constraints
->uV_offset
/ 1000);
801 if (constraints
->min_uA
&& constraints
->max_uA
) {
802 if (constraints
->min_uA
== constraints
->max_uA
)
803 count
+= sprintf(buf
+ count
, "%d mA ",
804 constraints
->min_uA
/ 1000);
806 count
+= sprintf(buf
+ count
, "%d <--> %d mA ",
807 constraints
->min_uA
/ 1000,
808 constraints
->max_uA
/ 1000);
811 if (!constraints
->min_uA
||
812 constraints
->min_uA
!= constraints
->max_uA
) {
813 ret
= _regulator_get_current_limit(rdev
);
815 count
+= sprintf(buf
+ count
, "at %d mA ", ret
/ 1000);
818 if (constraints
->valid_modes_mask
& REGULATOR_MODE_FAST
)
819 count
+= sprintf(buf
+ count
, "fast ");
820 if (constraints
->valid_modes_mask
& REGULATOR_MODE_NORMAL
)
821 count
+= sprintf(buf
+ count
, "normal ");
822 if (constraints
->valid_modes_mask
& REGULATOR_MODE_IDLE
)
823 count
+= sprintf(buf
+ count
, "idle ");
824 if (constraints
->valid_modes_mask
& REGULATOR_MODE_STANDBY
)
825 count
+= sprintf(buf
+ count
, "standby");
828 sprintf(buf
, "no parameters");
830 rdev_info(rdev
, "%s\n", buf
);
832 if ((constraints
->min_uV
!= constraints
->max_uV
) &&
833 !(constraints
->valid_ops_mask
& REGULATOR_CHANGE_VOLTAGE
))
835 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
838 static int machine_constraints_voltage(struct regulator_dev
*rdev
,
839 struct regulation_constraints
*constraints
)
841 struct regulator_ops
*ops
= rdev
->desc
->ops
;
844 /* do we need to apply the constraint voltage */
845 if (rdev
->constraints
->apply_uV
&&
846 rdev
->constraints
->min_uV
== rdev
->constraints
->max_uV
) {
847 ret
= _regulator_do_set_voltage(rdev
,
848 rdev
->constraints
->min_uV
,
849 rdev
->constraints
->max_uV
);
851 rdev_err(rdev
, "failed to apply %duV constraint\n",
852 rdev
->constraints
->min_uV
);
857 /* constrain machine-level voltage specs to fit
858 * the actual range supported by this regulator.
860 if (ops
->list_voltage
&& rdev
->desc
->n_voltages
) {
861 int count
= rdev
->desc
->n_voltages
;
863 int min_uV
= INT_MAX
;
864 int max_uV
= INT_MIN
;
865 int cmin
= constraints
->min_uV
;
866 int cmax
= constraints
->max_uV
;
868 /* it's safe to autoconfigure fixed-voltage supplies
869 and the constraints are used by list_voltage. */
870 if (count
== 1 && !cmin
) {
873 constraints
->min_uV
= cmin
;
874 constraints
->max_uV
= cmax
;
877 /* voltage constraints are optional */
878 if ((cmin
== 0) && (cmax
== 0))
881 /* else require explicit machine-level constraints */
882 if (cmin
<= 0 || cmax
<= 0 || cmax
< cmin
) {
883 rdev_err(rdev
, "invalid voltage constraints\n");
887 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
888 for (i
= 0; i
< count
; i
++) {
891 value
= ops
->list_voltage(rdev
, i
);
895 /* maybe adjust [min_uV..max_uV] */
896 if (value
>= cmin
&& value
< min_uV
)
898 if (value
<= cmax
&& value
> max_uV
)
902 /* final: [min_uV..max_uV] valid iff constraints valid */
903 if (max_uV
< min_uV
) {
905 "unsupportable voltage constraints %u-%uuV\n",
910 /* use regulator's subset of machine constraints */
911 if (constraints
->min_uV
< min_uV
) {
912 rdev_dbg(rdev
, "override min_uV, %d -> %d\n",
913 constraints
->min_uV
, min_uV
);
914 constraints
->min_uV
= min_uV
;
916 if (constraints
->max_uV
> max_uV
) {
917 rdev_dbg(rdev
, "override max_uV, %d -> %d\n",
918 constraints
->max_uV
, max_uV
);
919 constraints
->max_uV
= max_uV
;
927 * set_machine_constraints - sets regulator constraints
928 * @rdev: regulator source
929 * @constraints: constraints to apply
931 * Allows platform initialisation code to define and constrain
932 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
933 * Constraints *must* be set by platform code in order for some
934 * regulator operations to proceed i.e. set_voltage, set_current_limit,
937 static int set_machine_constraints(struct regulator_dev
*rdev
,
938 const struct regulation_constraints
*constraints
)
941 struct regulator_ops
*ops
= rdev
->desc
->ops
;
944 rdev
->constraints
= kmemdup(constraints
, sizeof(*constraints
),
947 rdev
->constraints
= kzalloc(sizeof(*constraints
),
949 if (!rdev
->constraints
)
952 ret
= machine_constraints_voltage(rdev
, rdev
->constraints
);
956 /* do we need to setup our suspend state */
957 if (rdev
->constraints
->initial_state
) {
958 ret
= suspend_prepare(rdev
, rdev
->constraints
->initial_state
);
960 rdev_err(rdev
, "failed to set suspend state\n");
965 if (rdev
->constraints
->initial_mode
) {
966 if (!ops
->set_mode
) {
967 rdev_err(rdev
, "no set_mode operation\n");
972 ret
= ops
->set_mode(rdev
, rdev
->constraints
->initial_mode
);
974 rdev_err(rdev
, "failed to set initial mode: %d\n", ret
);
979 /* If the constraints say the regulator should be on at this point
980 * and we have control then make sure it is enabled.
982 if ((rdev
->constraints
->always_on
|| rdev
->constraints
->boot_on
) &&
984 ret
= ops
->enable(rdev
);
986 rdev_err(rdev
, "failed to enable\n");
991 if ((rdev
->constraints
->ramp_delay
|| rdev
->constraints
->ramp_disable
)
992 && ops
->set_ramp_delay
) {
993 ret
= ops
->set_ramp_delay(rdev
, rdev
->constraints
->ramp_delay
);
995 rdev_err(rdev
, "failed to set ramp_delay\n");
1000 print_constraints(rdev
);
1003 kfree(rdev
->constraints
);
1004 rdev
->constraints
= NULL
;
1009 * set_supply - set regulator supply regulator
1010 * @rdev: regulator name
1011 * @supply_rdev: supply regulator name
1013 * Called by platform initialisation code to set the supply regulator for this
1014 * regulator. This ensures that a regulators supply will also be enabled by the
1015 * core if it's child is enabled.
1017 static int set_supply(struct regulator_dev
*rdev
,
1018 struct regulator_dev
*supply_rdev
)
1022 rdev_info(rdev
, "supplied by %s\n", rdev_get_name(supply_rdev
));
1024 rdev
->supply
= create_regulator(supply_rdev
, &rdev
->dev
, "SUPPLY");
1025 if (rdev
->supply
== NULL
) {
1029 supply_rdev
->open_count
++;
1035 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1036 * @rdev: regulator source
1037 * @consumer_dev_name: dev_name() string for device supply applies to
1038 * @supply: symbolic name for supply
1040 * Allows platform initialisation code to map physical regulator
1041 * sources to symbolic names for supplies for use by devices. Devices
1042 * should use these symbolic names to request regulators, avoiding the
1043 * need to provide board-specific regulator names as platform data.
1045 static int set_consumer_device_supply(struct regulator_dev
*rdev
,
1046 const char *consumer_dev_name
,
1049 struct regulator_map
*node
;
1055 if (consumer_dev_name
!= NULL
)
1060 list_for_each_entry(node
, ®ulator_map_list
, list
) {
1061 if (node
->dev_name
&& consumer_dev_name
) {
1062 if (strcmp(node
->dev_name
, consumer_dev_name
) != 0)
1064 } else if (node
->dev_name
|| consumer_dev_name
) {
1068 if (strcmp(node
->supply
, supply
) != 0)
1071 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1073 dev_name(&node
->regulator
->dev
),
1074 node
->regulator
->desc
->name
,
1076 dev_name(&rdev
->dev
), rdev_get_name(rdev
));
1080 node
= kzalloc(sizeof(struct regulator_map
), GFP_KERNEL
);
1084 node
->regulator
= rdev
;
1085 node
->supply
= supply
;
1088 node
->dev_name
= kstrdup(consumer_dev_name
, GFP_KERNEL
);
1089 if (node
->dev_name
== NULL
) {
1095 list_add(&node
->list
, ®ulator_map_list
);
1099 static void unset_regulator_supplies(struct regulator_dev
*rdev
)
1101 struct regulator_map
*node
, *n
;
1103 list_for_each_entry_safe(node
, n
, ®ulator_map_list
, list
) {
1104 if (rdev
== node
->regulator
) {
1105 list_del(&node
->list
);
1106 kfree(node
->dev_name
);
1112 #define REG_STR_SIZE 64
1114 static struct regulator
*create_regulator(struct regulator_dev
*rdev
,
1116 const char *supply_name
)
1118 struct regulator
*regulator
;
1119 char buf
[REG_STR_SIZE
];
1122 regulator
= kzalloc(sizeof(*regulator
), GFP_KERNEL
);
1123 if (regulator
== NULL
)
1126 mutex_lock(&rdev
->mutex
);
1127 regulator
->rdev
= rdev
;
1128 list_add(®ulator
->list
, &rdev
->consumer_list
);
1131 regulator
->dev
= dev
;
1133 /* Add a link to the device sysfs entry */
1134 size
= scnprintf(buf
, REG_STR_SIZE
, "%s-%s",
1135 dev
->kobj
.name
, supply_name
);
1136 if (size
>= REG_STR_SIZE
)
1139 regulator
->supply_name
= kstrdup(buf
, GFP_KERNEL
);
1140 if (regulator
->supply_name
== NULL
)
1143 err
= sysfs_create_link(&rdev
->dev
.kobj
, &dev
->kobj
,
1146 rdev_warn(rdev
, "could not add device link %s err %d\n",
1147 dev
->kobj
.name
, err
);
1151 regulator
->supply_name
= kstrdup(supply_name
, GFP_KERNEL
);
1152 if (regulator
->supply_name
== NULL
)
1156 regulator
->debugfs
= debugfs_create_dir(regulator
->supply_name
,
1158 if (!regulator
->debugfs
) {
1159 rdev_warn(rdev
, "Failed to create debugfs directory\n");
1161 debugfs_create_u32("uA_load", 0444, regulator
->debugfs
,
1162 ®ulator
->uA_load
);
1163 debugfs_create_u32("min_uV", 0444, regulator
->debugfs
,
1164 ®ulator
->min_uV
);
1165 debugfs_create_u32("max_uV", 0444, regulator
->debugfs
,
1166 ®ulator
->max_uV
);
1170 * Check now if the regulator is an always on regulator - if
1171 * it is then we don't need to do nearly so much work for
1172 * enable/disable calls.
1174 if (!_regulator_can_change_status(rdev
) &&
1175 _regulator_is_enabled(rdev
))
1176 regulator
->always_on
= true;
1178 mutex_unlock(&rdev
->mutex
);
1181 list_del(®ulator
->list
);
1183 mutex_unlock(&rdev
->mutex
);
1187 static int _regulator_get_enable_time(struct regulator_dev
*rdev
)
1189 if (!rdev
->desc
->ops
->enable_time
)
1190 return rdev
->desc
->enable_time
;
1191 return rdev
->desc
->ops
->enable_time(rdev
);
1194 static struct regulator_dev
*regulator_dev_lookup(struct device
*dev
,
1198 struct regulator_dev
*r
;
1199 struct device_node
*node
;
1200 struct regulator_map
*map
;
1201 const char *devname
= NULL
;
1203 /* first do a dt based lookup */
1204 if (dev
&& dev
->of_node
) {
1205 node
= of_get_regulator(dev
, supply
);
1207 list_for_each_entry(r
, ®ulator_list
, list
)
1208 if (r
->dev
.parent
&&
1209 node
== r
->dev
.of_node
)
1213 * If we couldn't even get the node then it's
1214 * not just that the device didn't register
1215 * yet, there's no node and we'll never
1222 /* if not found, try doing it non-dt way */
1224 devname
= dev_name(dev
);
1226 list_for_each_entry(r
, ®ulator_list
, list
)
1227 if (strcmp(rdev_get_name(r
), supply
) == 0)
1230 list_for_each_entry(map
, ®ulator_map_list
, list
) {
1231 /* If the mapping has a device set up it must match */
1232 if (map
->dev_name
&&
1233 (!devname
|| strcmp(map
->dev_name
, devname
)))
1236 if (strcmp(map
->supply
, supply
) == 0)
1237 return map
->regulator
;
1244 /* Internal regulator request function */
1245 static struct regulator
*_regulator_get(struct device
*dev
, const char *id
,
1248 struct regulator_dev
*rdev
;
1249 struct regulator
*regulator
= ERR_PTR(-EPROBE_DEFER
);
1250 const char *devname
= NULL
;
1254 pr_err("get() with no identifier\n");
1259 devname
= dev_name(dev
);
1261 mutex_lock(®ulator_list_mutex
);
1263 rdev
= regulator_dev_lookup(dev
, id
, &ret
);
1268 * If we have return value from dev_lookup fail, we do not expect to
1269 * succeed, so, quit with appropriate error value
1272 regulator
= ERR_PTR(ret
);
1276 if (board_wants_dummy_regulator
) {
1277 rdev
= dummy_regulator_rdev
;
1281 #ifdef CONFIG_REGULATOR_DUMMY
1283 devname
= "deviceless";
1285 /* If the board didn't flag that it was fully constrained then
1286 * substitute in a dummy regulator so consumers can continue.
1288 if (!has_full_constraints
) {
1289 pr_warn("%s supply %s not found, using dummy regulator\n",
1291 rdev
= dummy_regulator_rdev
;
1296 mutex_unlock(®ulator_list_mutex
);
1300 if (rdev
->exclusive
) {
1301 regulator
= ERR_PTR(-EPERM
);
1305 if (exclusive
&& rdev
->open_count
) {
1306 regulator
= ERR_PTR(-EBUSY
);
1310 if (!try_module_get(rdev
->owner
))
1313 regulator
= create_regulator(rdev
, dev
, id
);
1314 if (regulator
== NULL
) {
1315 regulator
= ERR_PTR(-ENOMEM
);
1316 module_put(rdev
->owner
);
1322 rdev
->exclusive
= 1;
1324 ret
= _regulator_is_enabled(rdev
);
1326 rdev
->use_count
= 1;
1328 rdev
->use_count
= 0;
1332 mutex_unlock(®ulator_list_mutex
);
1338 * regulator_get - lookup and obtain a reference to a regulator.
1339 * @dev: device for regulator "consumer"
1340 * @id: Supply name or regulator ID.
1342 * Returns a struct regulator corresponding to the regulator producer,
1343 * or IS_ERR() condition containing errno.
1345 * Use of supply names configured via regulator_set_device_supply() is
1346 * strongly encouraged. It is recommended that the supply name used
1347 * should match the name used for the supply and/or the relevant
1348 * device pins in the datasheet.
1350 struct regulator
*regulator_get(struct device
*dev
, const char *id
)
1352 return _regulator_get(dev
, id
, false);
1354 EXPORT_SYMBOL_GPL(regulator_get
);
1356 static void devm_regulator_release(struct device
*dev
, void *res
)
1358 regulator_put(*(struct regulator
**)res
);
1362 * devm_regulator_get - Resource managed regulator_get()
1363 * @dev: device for regulator "consumer"
1364 * @id: Supply name or regulator ID.
1366 * Managed regulator_get(). Regulators returned from this function are
1367 * automatically regulator_put() on driver detach. See regulator_get() for more
1370 struct regulator
*devm_regulator_get(struct device
*dev
, const char *id
)
1372 struct regulator
**ptr
, *regulator
;
1374 ptr
= devres_alloc(devm_regulator_release
, sizeof(*ptr
), GFP_KERNEL
);
1376 return ERR_PTR(-ENOMEM
);
1378 regulator
= regulator_get(dev
, id
);
1379 if (!IS_ERR(regulator
)) {
1381 devres_add(dev
, ptr
);
1388 EXPORT_SYMBOL_GPL(devm_regulator_get
);
1391 * regulator_get_exclusive - obtain exclusive access to a regulator.
1392 * @dev: device for regulator "consumer"
1393 * @id: Supply name or regulator ID.
1395 * Returns a struct regulator corresponding to the regulator producer,
1396 * or IS_ERR() condition containing errno. Other consumers will be
1397 * unable to obtain this reference is held and the use count for the
1398 * regulator will be initialised to reflect the current state of the
1401 * This is intended for use by consumers which cannot tolerate shared
1402 * use of the regulator such as those which need to force the
1403 * regulator off for correct operation of the hardware they are
1406 * Use of supply names configured via regulator_set_device_supply() is
1407 * strongly encouraged. It is recommended that the supply name used
1408 * should match the name used for the supply and/or the relevant
1409 * device pins in the datasheet.
1411 struct regulator
*regulator_get_exclusive(struct device
*dev
, const char *id
)
1413 return _regulator_get(dev
, id
, true);
1415 EXPORT_SYMBOL_GPL(regulator_get_exclusive
);
1418 * regulator_get_optional - obtain optional access to a regulator.
1419 * @dev: device for regulator "consumer"
1420 * @id: Supply name or regulator ID.
1422 * Returns a struct regulator corresponding to the regulator producer,
1423 * or IS_ERR() condition containing errno. Other consumers will be
1424 * unable to obtain this reference is held and the use count for the
1425 * regulator will be initialised to reflect the current state of the
1428 * This is intended for use by consumers for devices which can have
1429 * some supplies unconnected in normal use, such as some MMC devices.
1430 * It can allow the regulator core to provide stub supplies for other
1431 * supplies requested using normal regulator_get() calls without
1432 * disrupting the operation of drivers that can handle absent
1435 * Use of supply names configured via regulator_set_device_supply() is
1436 * strongly encouraged. It is recommended that the supply name used
1437 * should match the name used for the supply and/or the relevant
1438 * device pins in the datasheet.
1440 struct regulator
*regulator_get_optional(struct device
*dev
, const char *id
)
1442 return _regulator_get(dev
, id
, 0);
1444 EXPORT_SYMBOL_GPL(regulator_get_optional
);
1447 * devm_regulator_get_optional - Resource managed regulator_get_optional()
1448 * @dev: device for regulator "consumer"
1449 * @id: Supply name or regulator ID.
1451 * Managed regulator_get_optional(). Regulators returned from this
1452 * function are automatically regulator_put() on driver detach. See
1453 * regulator_get_optional() for more information.
1455 struct regulator
*devm_regulator_get_optional(struct device
*dev
,
1458 struct regulator
**ptr
, *regulator
;
1460 ptr
= devres_alloc(devm_regulator_release
, sizeof(*ptr
), GFP_KERNEL
);
1462 return ERR_PTR(-ENOMEM
);
1464 regulator
= regulator_get_optional(dev
, id
);
1465 if (!IS_ERR(regulator
)) {
1467 devres_add(dev
, ptr
);
1474 EXPORT_SYMBOL_GPL(devm_regulator_get_optional
);
1476 /* Locks held by regulator_put() */
1477 static void _regulator_put(struct regulator
*regulator
)
1479 struct regulator_dev
*rdev
;
1481 if (regulator
== NULL
|| IS_ERR(regulator
))
1484 rdev
= regulator
->rdev
;
1486 debugfs_remove_recursive(regulator
->debugfs
);
1488 /* remove any sysfs entries */
1490 sysfs_remove_link(&rdev
->dev
.kobj
, regulator
->supply_name
);
1491 kfree(regulator
->supply_name
);
1492 list_del(®ulator
->list
);
1496 rdev
->exclusive
= 0;
1498 module_put(rdev
->owner
);
1502 * devm_regulator_get_exclusive - Resource managed regulator_get_exclusive()
1503 * @dev: device for regulator "consumer"
1504 * @id: Supply name or regulator ID.
1506 * Managed regulator_get_exclusive(). Regulators returned from this function
1507 * are automatically regulator_put() on driver detach. See regulator_get() for
1510 struct regulator
*devm_regulator_get_exclusive(struct device
*dev
,
1513 struct regulator
**ptr
, *regulator
;
1515 ptr
= devres_alloc(devm_regulator_release
, sizeof(*ptr
), GFP_KERNEL
);
1517 return ERR_PTR(-ENOMEM
);
1519 regulator
= _regulator_get(dev
, id
, 1);
1520 if (!IS_ERR(regulator
)) {
1522 devres_add(dev
, ptr
);
1529 EXPORT_SYMBOL_GPL(devm_regulator_get_exclusive
);
1532 * regulator_put - "free" the regulator source
1533 * @regulator: regulator source
1535 * Note: drivers must ensure that all regulator_enable calls made on this
1536 * regulator source are balanced by regulator_disable calls prior to calling
1539 void regulator_put(struct regulator
*regulator
)
1541 mutex_lock(®ulator_list_mutex
);
1542 _regulator_put(regulator
);
1543 mutex_unlock(®ulator_list_mutex
);
1545 EXPORT_SYMBOL_GPL(regulator_put
);
1547 static int devm_regulator_match(struct device
*dev
, void *res
, void *data
)
1549 struct regulator
**r
= res
;
1558 * devm_regulator_put - Resource managed regulator_put()
1559 * @regulator: regulator to free
1561 * Deallocate a regulator allocated with devm_regulator_get(). Normally
1562 * this function will not need to be called and the resource management
1563 * code will ensure that the resource is freed.
1565 void devm_regulator_put(struct regulator
*regulator
)
1569 rc
= devres_release(regulator
->dev
, devm_regulator_release
,
1570 devm_regulator_match
, regulator
);
1574 EXPORT_SYMBOL_GPL(devm_regulator_put
);
1576 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1577 static int regulator_ena_gpio_request(struct regulator_dev
*rdev
,
1578 const struct regulator_config
*config
)
1580 struct regulator_enable_gpio
*pin
;
1583 list_for_each_entry(pin
, ®ulator_ena_gpio_list
, list
) {
1584 if (pin
->gpio
== config
->ena_gpio
) {
1585 rdev_dbg(rdev
, "GPIO %d is already used\n",
1587 goto update_ena_gpio_to_rdev
;
1591 ret
= gpio_request_one(config
->ena_gpio
,
1592 GPIOF_DIR_OUT
| config
->ena_gpio_flags
,
1593 rdev_get_name(rdev
));
1597 pin
= kzalloc(sizeof(struct regulator_enable_gpio
), GFP_KERNEL
);
1599 gpio_free(config
->ena_gpio
);
1603 pin
->gpio
= config
->ena_gpio
;
1604 pin
->ena_gpio_invert
= config
->ena_gpio_invert
;
1605 list_add(&pin
->list
, ®ulator_ena_gpio_list
);
1607 update_ena_gpio_to_rdev
:
1608 pin
->request_count
++;
1609 rdev
->ena_pin
= pin
;
1613 static void regulator_ena_gpio_free(struct regulator_dev
*rdev
)
1615 struct regulator_enable_gpio
*pin
, *n
;
1620 /* Free the GPIO only in case of no use */
1621 list_for_each_entry_safe(pin
, n
, ®ulator_ena_gpio_list
, list
) {
1622 if (pin
->gpio
== rdev
->ena_pin
->gpio
) {
1623 if (pin
->request_count
<= 1) {
1624 pin
->request_count
= 0;
1625 gpio_free(pin
->gpio
);
1626 list_del(&pin
->list
);
1629 pin
->request_count
--;
1636 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1637 * @rdev: regulator_dev structure
1638 * @enable: enable GPIO at initial use?
1640 * GPIO is enabled in case of initial use. (enable_count is 0)
1641 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1643 static int regulator_ena_gpio_ctrl(struct regulator_dev
*rdev
, bool enable
)
1645 struct regulator_enable_gpio
*pin
= rdev
->ena_pin
;
1651 /* Enable GPIO at initial use */
1652 if (pin
->enable_count
== 0)
1653 gpio_set_value_cansleep(pin
->gpio
,
1654 !pin
->ena_gpio_invert
);
1656 pin
->enable_count
++;
1658 if (pin
->enable_count
> 1) {
1659 pin
->enable_count
--;
1663 /* Disable GPIO if not used */
1664 if (pin
->enable_count
<= 1) {
1665 gpio_set_value_cansleep(pin
->gpio
,
1666 pin
->ena_gpio_invert
);
1667 pin
->enable_count
= 0;
1674 static int _regulator_do_enable(struct regulator_dev
*rdev
)
1678 /* Query before enabling in case configuration dependent. */
1679 ret
= _regulator_get_enable_time(rdev
);
1683 rdev_warn(rdev
, "enable_time() failed: %d\n", ret
);
1687 trace_regulator_enable(rdev_get_name(rdev
));
1689 if (rdev
->ena_pin
) {
1690 ret
= regulator_ena_gpio_ctrl(rdev
, true);
1693 rdev
->ena_gpio_state
= 1;
1694 } else if (rdev
->desc
->ops
->enable
) {
1695 ret
= rdev
->desc
->ops
->enable(rdev
);
1702 /* Allow the regulator to ramp; it would be useful to extend
1703 * this for bulk operations so that the regulators can ramp
1705 trace_regulator_enable_delay(rdev_get_name(rdev
));
1707 if (delay
>= 1000) {
1708 mdelay(delay
/ 1000);
1709 udelay(delay
% 1000);
1714 trace_regulator_enable_complete(rdev_get_name(rdev
));
1719 /* locks held by regulator_enable() */
1720 static int _regulator_enable(struct regulator_dev
*rdev
)
1724 /* check voltage and requested load before enabling */
1725 if (rdev
->constraints
&&
1726 (rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_DRMS
))
1727 drms_uA_update(rdev
);
1729 if (rdev
->use_count
== 0) {
1730 /* The regulator may on if it's not switchable or left on */
1731 ret
= _regulator_is_enabled(rdev
);
1732 if (ret
== -EINVAL
|| ret
== 0) {
1733 if (!_regulator_can_change_status(rdev
))
1736 ret
= _regulator_do_enable(rdev
);
1740 } else if (ret
< 0) {
1741 rdev_err(rdev
, "is_enabled() failed: %d\n", ret
);
1744 /* Fallthrough on positive return values - already enabled */
1753 * regulator_enable - enable regulator output
1754 * @regulator: regulator source
1756 * Request that the regulator be enabled with the regulator output at
1757 * the predefined voltage or current value. Calls to regulator_enable()
1758 * must be balanced with calls to regulator_disable().
1760 * NOTE: the output value can be set by other drivers, boot loader or may be
1761 * hardwired in the regulator.
1763 int regulator_enable(struct regulator
*regulator
)
1765 struct regulator_dev
*rdev
= regulator
->rdev
;
1768 if (regulator
->always_on
)
1772 ret
= regulator_enable(rdev
->supply
);
1777 mutex_lock(&rdev
->mutex
);
1778 ret
= _regulator_enable(rdev
);
1779 mutex_unlock(&rdev
->mutex
);
1781 if (ret
!= 0 && rdev
->supply
)
1782 regulator_disable(rdev
->supply
);
1786 EXPORT_SYMBOL_GPL(regulator_enable
);
1788 static int _regulator_do_disable(struct regulator_dev
*rdev
)
1792 trace_regulator_disable(rdev_get_name(rdev
));
1794 if (rdev
->ena_pin
) {
1795 ret
= regulator_ena_gpio_ctrl(rdev
, false);
1798 rdev
->ena_gpio_state
= 0;
1800 } else if (rdev
->desc
->ops
->disable
) {
1801 ret
= rdev
->desc
->ops
->disable(rdev
);
1806 trace_regulator_disable_complete(rdev_get_name(rdev
));
1808 _notifier_call_chain(rdev
, REGULATOR_EVENT_DISABLE
,
1813 /* locks held by regulator_disable() */
1814 static int _regulator_disable(struct regulator_dev
*rdev
)
1818 if (WARN(rdev
->use_count
<= 0,
1819 "unbalanced disables for %s\n", rdev_get_name(rdev
)))
1822 /* are we the last user and permitted to disable ? */
1823 if (rdev
->use_count
== 1 &&
1824 (rdev
->constraints
&& !rdev
->constraints
->always_on
)) {
1826 /* we are last user */
1827 if (_regulator_can_change_status(rdev
)) {
1828 ret
= _regulator_do_disable(rdev
);
1830 rdev_err(rdev
, "failed to disable\n");
1835 rdev
->use_count
= 0;
1836 } else if (rdev
->use_count
> 1) {
1838 if (rdev
->constraints
&&
1839 (rdev
->constraints
->valid_ops_mask
&
1840 REGULATOR_CHANGE_DRMS
))
1841 drms_uA_update(rdev
);
1850 * regulator_disable - disable regulator output
1851 * @regulator: regulator source
1853 * Disable the regulator output voltage or current. Calls to
1854 * regulator_enable() must be balanced with calls to
1855 * regulator_disable().
1857 * NOTE: this will only disable the regulator output if no other consumer
1858 * devices have it enabled, the regulator device supports disabling and
1859 * machine constraints permit this operation.
1861 int regulator_disable(struct regulator
*regulator
)
1863 struct regulator_dev
*rdev
= regulator
->rdev
;
1866 if (regulator
->always_on
)
1869 mutex_lock(&rdev
->mutex
);
1870 ret
= _regulator_disable(rdev
);
1871 mutex_unlock(&rdev
->mutex
);
1873 if (ret
== 0 && rdev
->supply
)
1874 regulator_disable(rdev
->supply
);
1878 EXPORT_SYMBOL_GPL(regulator_disable
);
1880 /* locks held by regulator_force_disable() */
1881 static int _regulator_force_disable(struct regulator_dev
*rdev
)
1886 if (rdev
->desc
->ops
->disable
) {
1887 /* ah well, who wants to live forever... */
1888 ret
= rdev
->desc
->ops
->disable(rdev
);
1890 rdev_err(rdev
, "failed to force disable\n");
1893 /* notify other consumers that power has been forced off */
1894 _notifier_call_chain(rdev
, REGULATOR_EVENT_FORCE_DISABLE
|
1895 REGULATOR_EVENT_DISABLE
, NULL
);
1902 * regulator_force_disable - force disable regulator output
1903 * @regulator: regulator source
1905 * Forcibly disable the regulator output voltage or current.
1906 * NOTE: this *will* disable the regulator output even if other consumer
1907 * devices have it enabled. This should be used for situations when device
1908 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1910 int regulator_force_disable(struct regulator
*regulator
)
1912 struct regulator_dev
*rdev
= regulator
->rdev
;
1915 mutex_lock(&rdev
->mutex
);
1916 regulator
->uA_load
= 0;
1917 ret
= _regulator_force_disable(regulator
->rdev
);
1918 mutex_unlock(&rdev
->mutex
);
1921 while (rdev
->open_count
--)
1922 regulator_disable(rdev
->supply
);
1926 EXPORT_SYMBOL_GPL(regulator_force_disable
);
1928 static void regulator_disable_work(struct work_struct
*work
)
1930 struct regulator_dev
*rdev
= container_of(work
, struct regulator_dev
,
1934 mutex_lock(&rdev
->mutex
);
1936 BUG_ON(!rdev
->deferred_disables
);
1938 count
= rdev
->deferred_disables
;
1939 rdev
->deferred_disables
= 0;
1941 for (i
= 0; i
< count
; i
++) {
1942 ret
= _regulator_disable(rdev
);
1944 rdev_err(rdev
, "Deferred disable failed: %d\n", ret
);
1947 mutex_unlock(&rdev
->mutex
);
1950 for (i
= 0; i
< count
; i
++) {
1951 ret
= regulator_disable(rdev
->supply
);
1954 "Supply disable failed: %d\n", ret
);
1961 * regulator_disable_deferred - disable regulator output with delay
1962 * @regulator: regulator source
1963 * @ms: miliseconds until the regulator is disabled
1965 * Execute regulator_disable() on the regulator after a delay. This
1966 * is intended for use with devices that require some time to quiesce.
1968 * NOTE: this will only disable the regulator output if no other consumer
1969 * devices have it enabled, the regulator device supports disabling and
1970 * machine constraints permit this operation.
1972 int regulator_disable_deferred(struct regulator
*regulator
, int ms
)
1974 struct regulator_dev
*rdev
= regulator
->rdev
;
1977 if (regulator
->always_on
)
1981 return regulator_disable(regulator
);
1983 mutex_lock(&rdev
->mutex
);
1984 rdev
->deferred_disables
++;
1985 mutex_unlock(&rdev
->mutex
);
1987 ret
= queue_delayed_work(system_power_efficient_wq
,
1988 &rdev
->disable_work
,
1989 msecs_to_jiffies(ms
));
1995 EXPORT_SYMBOL_GPL(regulator_disable_deferred
);
1997 static int _regulator_is_enabled(struct regulator_dev
*rdev
)
1999 /* A GPIO control always takes precedence */
2001 return rdev
->ena_gpio_state
;
2003 /* If we don't know then assume that the regulator is always on */
2004 if (!rdev
->desc
->ops
->is_enabled
)
2007 return rdev
->desc
->ops
->is_enabled(rdev
);
2011 * regulator_is_enabled - is the regulator output enabled
2012 * @regulator: regulator source
2014 * Returns positive if the regulator driver backing the source/client
2015 * has requested that the device be enabled, zero if it hasn't, else a
2016 * negative errno code.
2018 * Note that the device backing this regulator handle can have multiple
2019 * users, so it might be enabled even if regulator_enable() was never
2020 * called for this particular source.
2022 int regulator_is_enabled(struct regulator
*regulator
)
2026 if (regulator
->always_on
)
2029 mutex_lock(®ulator
->rdev
->mutex
);
2030 ret
= _regulator_is_enabled(regulator
->rdev
);
2031 mutex_unlock(®ulator
->rdev
->mutex
);
2035 EXPORT_SYMBOL_GPL(regulator_is_enabled
);
2038 * regulator_can_change_voltage - check if regulator can change voltage
2039 * @regulator: regulator source
2041 * Returns positive if the regulator driver backing the source/client
2042 * can change its voltage, false otherwise. Usefull for detecting fixed
2043 * or dummy regulators and disabling voltage change logic in the client
2046 int regulator_can_change_voltage(struct regulator
*regulator
)
2048 struct regulator_dev
*rdev
= regulator
->rdev
;
2050 if (rdev
->constraints
&&
2051 (rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_VOLTAGE
)) {
2052 if (rdev
->desc
->n_voltages
- rdev
->desc
->linear_min_sel
> 1)
2055 if (rdev
->desc
->continuous_voltage_range
&&
2056 rdev
->constraints
->min_uV
&& rdev
->constraints
->max_uV
&&
2057 rdev
->constraints
->min_uV
!= rdev
->constraints
->max_uV
)
2063 EXPORT_SYMBOL_GPL(regulator_can_change_voltage
);
2066 * regulator_count_voltages - count regulator_list_voltage() selectors
2067 * @regulator: regulator source
2069 * Returns number of selectors, or negative errno. Selectors are
2070 * numbered starting at zero, and typically correspond to bitfields
2071 * in hardware registers.
2073 int regulator_count_voltages(struct regulator
*regulator
)
2075 struct regulator_dev
*rdev
= regulator
->rdev
;
2077 return rdev
->desc
->n_voltages
? : -EINVAL
;
2079 EXPORT_SYMBOL_GPL(regulator_count_voltages
);
2082 * regulator_list_voltage - enumerate supported voltages
2083 * @regulator: regulator source
2084 * @selector: identify voltage to list
2085 * Context: can sleep
2087 * Returns a voltage that can be passed to @regulator_set_voltage(),
2088 * zero if this selector code can't be used on this system, or a
2091 int regulator_list_voltage(struct regulator
*regulator
, unsigned selector
)
2093 struct regulator_dev
*rdev
= regulator
->rdev
;
2094 struct regulator_ops
*ops
= rdev
->desc
->ops
;
2097 if (!ops
->list_voltage
|| selector
>= rdev
->desc
->n_voltages
)
2100 mutex_lock(&rdev
->mutex
);
2101 ret
= ops
->list_voltage(rdev
, selector
);
2102 mutex_unlock(&rdev
->mutex
);
2105 if (ret
< rdev
->constraints
->min_uV
)
2107 else if (ret
> rdev
->constraints
->max_uV
)
2113 EXPORT_SYMBOL_GPL(regulator_list_voltage
);
2116 * regulator_get_linear_step - return the voltage step size between VSEL values
2117 * @regulator: regulator source
2119 * Returns the voltage step size between VSEL values for linear
2120 * regulators, or return 0 if the regulator isn't a linear regulator.
2122 unsigned int regulator_get_linear_step(struct regulator
*regulator
)
2124 struct regulator_dev
*rdev
= regulator
->rdev
;
2126 return rdev
->desc
->uV_step
;
2128 EXPORT_SYMBOL_GPL(regulator_get_linear_step
);
2131 * regulator_is_supported_voltage - check if a voltage range can be supported
2133 * @regulator: Regulator to check.
2134 * @min_uV: Minimum required voltage in uV.
2135 * @max_uV: Maximum required voltage in uV.
2137 * Returns a boolean or a negative error code.
2139 int regulator_is_supported_voltage(struct regulator
*regulator
,
2140 int min_uV
, int max_uV
)
2142 struct regulator_dev
*rdev
= regulator
->rdev
;
2143 int i
, voltages
, ret
;
2145 /* If we can't change voltage check the current voltage */
2146 if (!(rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_VOLTAGE
)) {
2147 ret
= regulator_get_voltage(regulator
);
2149 return (min_uV
<= ret
&& ret
<= max_uV
);
2154 /* Any voltage within constrains range is fine? */
2155 if (rdev
->desc
->continuous_voltage_range
)
2156 return min_uV
>= rdev
->constraints
->min_uV
&&
2157 max_uV
<= rdev
->constraints
->max_uV
;
2159 ret
= regulator_count_voltages(regulator
);
2164 for (i
= 0; i
< voltages
; i
++) {
2165 ret
= regulator_list_voltage(regulator
, i
);
2167 if (ret
>= min_uV
&& ret
<= max_uV
)
2173 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage
);
2175 static int _regulator_do_set_voltage(struct regulator_dev
*rdev
,
2176 int min_uV
, int max_uV
)
2181 unsigned int selector
;
2182 int old_selector
= -1;
2184 trace_regulator_set_voltage(rdev_get_name(rdev
), min_uV
, max_uV
);
2186 min_uV
+= rdev
->constraints
->uV_offset
;
2187 max_uV
+= rdev
->constraints
->uV_offset
;
2190 * If we can't obtain the old selector there is not enough
2191 * info to call set_voltage_time_sel().
2193 if (_regulator_is_enabled(rdev
) &&
2194 rdev
->desc
->ops
->set_voltage_time_sel
&&
2195 rdev
->desc
->ops
->get_voltage_sel
) {
2196 old_selector
= rdev
->desc
->ops
->get_voltage_sel(rdev
);
2197 if (old_selector
< 0)
2198 return old_selector
;
2201 if (rdev
->desc
->ops
->set_voltage
) {
2202 ret
= rdev
->desc
->ops
->set_voltage(rdev
, min_uV
, max_uV
,
2206 if (rdev
->desc
->ops
->list_voltage
)
2207 best_val
= rdev
->desc
->ops
->list_voltage(rdev
,
2210 best_val
= _regulator_get_voltage(rdev
);
2213 } else if (rdev
->desc
->ops
->set_voltage_sel
) {
2214 if (rdev
->desc
->ops
->map_voltage
) {
2215 ret
= rdev
->desc
->ops
->map_voltage(rdev
, min_uV
,
2218 if (rdev
->desc
->ops
->list_voltage
==
2219 regulator_list_voltage_linear
)
2220 ret
= regulator_map_voltage_linear(rdev
,
2223 ret
= regulator_map_voltage_iterate(rdev
,
2228 best_val
= rdev
->desc
->ops
->list_voltage(rdev
, ret
);
2229 if (min_uV
<= best_val
&& max_uV
>= best_val
) {
2231 if (old_selector
== selector
)
2234 ret
= rdev
->desc
->ops
->set_voltage_sel(
2244 /* Call set_voltage_time_sel if successfully obtained old_selector */
2245 if (ret
== 0 && !rdev
->constraints
->ramp_disable
&& old_selector
>= 0
2246 && old_selector
!= selector
) {
2248 delay
= rdev
->desc
->ops
->set_voltage_time_sel(rdev
,
2249 old_selector
, selector
);
2251 rdev_warn(rdev
, "set_voltage_time_sel() failed: %d\n",
2256 /* Insert any necessary delays */
2257 if (delay
>= 1000) {
2258 mdelay(delay
/ 1000);
2259 udelay(delay
% 1000);
2265 if (ret
== 0 && best_val
>= 0) {
2266 unsigned long data
= best_val
;
2268 _notifier_call_chain(rdev
, REGULATOR_EVENT_VOLTAGE_CHANGE
,
2272 trace_regulator_set_voltage_complete(rdev_get_name(rdev
), best_val
);
2278 * regulator_set_voltage - set regulator output voltage
2279 * @regulator: regulator source
2280 * @min_uV: Minimum required voltage in uV
2281 * @max_uV: Maximum acceptable voltage in uV
2283 * Sets a voltage regulator to the desired output voltage. This can be set
2284 * during any regulator state. IOW, regulator can be disabled or enabled.
2286 * If the regulator is enabled then the voltage will change to the new value
2287 * immediately otherwise if the regulator is disabled the regulator will
2288 * output at the new voltage when enabled.
2290 * NOTE: If the regulator is shared between several devices then the lowest
2291 * request voltage that meets the system constraints will be used.
2292 * Regulator system constraints must be set for this regulator before
2293 * calling this function otherwise this call will fail.
2295 int regulator_set_voltage(struct regulator
*regulator
, int min_uV
, int max_uV
)
2297 struct regulator_dev
*rdev
= regulator
->rdev
;
2299 int old_min_uV
, old_max_uV
;
2301 mutex_lock(&rdev
->mutex
);
2303 /* If we're setting the same range as last time the change
2304 * should be a noop (some cpufreq implementations use the same
2305 * voltage for multiple frequencies, for example).
2307 if (regulator
->min_uV
== min_uV
&& regulator
->max_uV
== max_uV
)
2311 if (!rdev
->desc
->ops
->set_voltage
&&
2312 !rdev
->desc
->ops
->set_voltage_sel
) {
2317 /* constraints check */
2318 ret
= regulator_check_voltage(rdev
, &min_uV
, &max_uV
);
2322 /* restore original values in case of error */
2323 old_min_uV
= regulator
->min_uV
;
2324 old_max_uV
= regulator
->max_uV
;
2325 regulator
->min_uV
= min_uV
;
2326 regulator
->max_uV
= max_uV
;
2328 ret
= regulator_check_consumers(rdev
, &min_uV
, &max_uV
);
2332 ret
= _regulator_do_set_voltage(rdev
, min_uV
, max_uV
);
2337 mutex_unlock(&rdev
->mutex
);
2340 regulator
->min_uV
= old_min_uV
;
2341 regulator
->max_uV
= old_max_uV
;
2342 mutex_unlock(&rdev
->mutex
);
2345 EXPORT_SYMBOL_GPL(regulator_set_voltage
);
2348 * regulator_set_voltage_time - get raise/fall time
2349 * @regulator: regulator source
2350 * @old_uV: starting voltage in microvolts
2351 * @new_uV: target voltage in microvolts
2353 * Provided with the starting and ending voltage, this function attempts to
2354 * calculate the time in microseconds required to rise or fall to this new
2357 int regulator_set_voltage_time(struct regulator
*regulator
,
2358 int old_uV
, int new_uV
)
2360 struct regulator_dev
*rdev
= regulator
->rdev
;
2361 struct regulator_ops
*ops
= rdev
->desc
->ops
;
2367 /* Currently requires operations to do this */
2368 if (!ops
->list_voltage
|| !ops
->set_voltage_time_sel
2369 || !rdev
->desc
->n_voltages
)
2372 for (i
= 0; i
< rdev
->desc
->n_voltages
; i
++) {
2373 /* We only look for exact voltage matches here */
2374 voltage
= regulator_list_voltage(regulator
, i
);
2379 if (voltage
== old_uV
)
2381 if (voltage
== new_uV
)
2385 if (old_sel
< 0 || new_sel
< 0)
2388 return ops
->set_voltage_time_sel(rdev
, old_sel
, new_sel
);
2390 EXPORT_SYMBOL_GPL(regulator_set_voltage_time
);
2393 * regulator_set_voltage_time_sel - get raise/fall time
2394 * @rdev: regulator source device
2395 * @old_selector: selector for starting voltage
2396 * @new_selector: selector for target voltage
2398 * Provided with the starting and target voltage selectors, this function
2399 * returns time in microseconds required to rise or fall to this new voltage
2401 * Drivers providing ramp_delay in regulation_constraints can use this as their
2402 * set_voltage_time_sel() operation.
2404 int regulator_set_voltage_time_sel(struct regulator_dev
*rdev
,
2405 unsigned int old_selector
,
2406 unsigned int new_selector
)
2408 unsigned int ramp_delay
= 0;
2409 int old_volt
, new_volt
;
2411 if (rdev
->constraints
->ramp_delay
)
2412 ramp_delay
= rdev
->constraints
->ramp_delay
;
2413 else if (rdev
->desc
->ramp_delay
)
2414 ramp_delay
= rdev
->desc
->ramp_delay
;
2416 if (ramp_delay
== 0) {
2417 rdev_warn(rdev
, "ramp_delay not set\n");
2422 if (!rdev
->desc
->ops
->list_voltage
)
2425 old_volt
= rdev
->desc
->ops
->list_voltage(rdev
, old_selector
);
2426 new_volt
= rdev
->desc
->ops
->list_voltage(rdev
, new_selector
);
2428 return DIV_ROUND_UP(abs(new_volt
- old_volt
), ramp_delay
);
2430 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel
);
2433 * regulator_sync_voltage - re-apply last regulator output voltage
2434 * @regulator: regulator source
2436 * Re-apply the last configured voltage. This is intended to be used
2437 * where some external control source the consumer is cooperating with
2438 * has caused the configured voltage to change.
2440 int regulator_sync_voltage(struct regulator
*regulator
)
2442 struct regulator_dev
*rdev
= regulator
->rdev
;
2443 int ret
, min_uV
, max_uV
;
2445 mutex_lock(&rdev
->mutex
);
2447 if (!rdev
->desc
->ops
->set_voltage
&&
2448 !rdev
->desc
->ops
->set_voltage_sel
) {
2453 /* This is only going to work if we've had a voltage configured. */
2454 if (!regulator
->min_uV
&& !regulator
->max_uV
) {
2459 min_uV
= regulator
->min_uV
;
2460 max_uV
= regulator
->max_uV
;
2462 /* This should be a paranoia check... */
2463 ret
= regulator_check_voltage(rdev
, &min_uV
, &max_uV
);
2467 ret
= regulator_check_consumers(rdev
, &min_uV
, &max_uV
);
2471 ret
= _regulator_do_set_voltage(rdev
, min_uV
, max_uV
);
2474 mutex_unlock(&rdev
->mutex
);
2477 EXPORT_SYMBOL_GPL(regulator_sync_voltage
);
2479 static int _regulator_get_voltage(struct regulator_dev
*rdev
)
2483 if (rdev
->desc
->ops
->get_voltage_sel
) {
2484 sel
= rdev
->desc
->ops
->get_voltage_sel(rdev
);
2487 ret
= rdev
->desc
->ops
->list_voltage(rdev
, sel
);
2488 } else if (rdev
->desc
->ops
->get_voltage
) {
2489 ret
= rdev
->desc
->ops
->get_voltage(rdev
);
2490 } else if (rdev
->desc
->ops
->list_voltage
) {
2491 ret
= rdev
->desc
->ops
->list_voltage(rdev
, 0);
2498 return ret
- rdev
->constraints
->uV_offset
;
2502 * regulator_get_voltage - get regulator output voltage
2503 * @regulator: regulator source
2505 * This returns the current regulator voltage in uV.
2507 * NOTE: If the regulator is disabled it will return the voltage value. This
2508 * function should not be used to determine regulator state.
2510 int regulator_get_voltage(struct regulator
*regulator
)
2514 mutex_lock(®ulator
->rdev
->mutex
);
2516 ret
= _regulator_get_voltage(regulator
->rdev
);
2518 mutex_unlock(®ulator
->rdev
->mutex
);
2522 EXPORT_SYMBOL_GPL(regulator_get_voltage
);
2525 * regulator_set_current_limit - set regulator output current limit
2526 * @regulator: regulator source
2527 * @min_uA: Minimum supported current in uA
2528 * @max_uA: Maximum supported current in uA
2530 * Sets current sink to the desired output current. This can be set during
2531 * any regulator state. IOW, regulator can be disabled or enabled.
2533 * If the regulator is enabled then the current will change to the new value
2534 * immediately otherwise if the regulator is disabled the regulator will
2535 * output at the new current when enabled.
2537 * NOTE: Regulator system constraints must be set for this regulator before
2538 * calling this function otherwise this call will fail.
2540 int regulator_set_current_limit(struct regulator
*regulator
,
2541 int min_uA
, int max_uA
)
2543 struct regulator_dev
*rdev
= regulator
->rdev
;
2546 mutex_lock(&rdev
->mutex
);
2549 if (!rdev
->desc
->ops
->set_current_limit
) {
2554 /* constraints check */
2555 ret
= regulator_check_current_limit(rdev
, &min_uA
, &max_uA
);
2559 ret
= rdev
->desc
->ops
->set_current_limit(rdev
, min_uA
, max_uA
);
2561 mutex_unlock(&rdev
->mutex
);
2564 EXPORT_SYMBOL_GPL(regulator_set_current_limit
);
2566 static int _regulator_get_current_limit(struct regulator_dev
*rdev
)
2570 mutex_lock(&rdev
->mutex
);
2573 if (!rdev
->desc
->ops
->get_current_limit
) {
2578 ret
= rdev
->desc
->ops
->get_current_limit(rdev
);
2580 mutex_unlock(&rdev
->mutex
);
2585 * regulator_get_current_limit - get regulator output current
2586 * @regulator: regulator source
2588 * This returns the current supplied by the specified current sink in uA.
2590 * NOTE: If the regulator is disabled it will return the current value. This
2591 * function should not be used to determine regulator state.
2593 int regulator_get_current_limit(struct regulator
*regulator
)
2595 return _regulator_get_current_limit(regulator
->rdev
);
2597 EXPORT_SYMBOL_GPL(regulator_get_current_limit
);
2600 * regulator_set_mode - set regulator operating mode
2601 * @regulator: regulator source
2602 * @mode: operating mode - one of the REGULATOR_MODE constants
2604 * Set regulator operating mode to increase regulator efficiency or improve
2605 * regulation performance.
2607 * NOTE: Regulator system constraints must be set for this regulator before
2608 * calling this function otherwise this call will fail.
2610 int regulator_set_mode(struct regulator
*regulator
, unsigned int mode
)
2612 struct regulator_dev
*rdev
= regulator
->rdev
;
2614 int regulator_curr_mode
;
2616 mutex_lock(&rdev
->mutex
);
2619 if (!rdev
->desc
->ops
->set_mode
) {
2624 /* return if the same mode is requested */
2625 if (rdev
->desc
->ops
->get_mode
) {
2626 regulator_curr_mode
= rdev
->desc
->ops
->get_mode(rdev
);
2627 if (regulator_curr_mode
== mode
) {
2633 /* constraints check */
2634 ret
= regulator_mode_constrain(rdev
, &mode
);
2638 ret
= rdev
->desc
->ops
->set_mode(rdev
, mode
);
2640 mutex_unlock(&rdev
->mutex
);
2643 EXPORT_SYMBOL_GPL(regulator_set_mode
);
2645 static unsigned int _regulator_get_mode(struct regulator_dev
*rdev
)
2649 mutex_lock(&rdev
->mutex
);
2652 if (!rdev
->desc
->ops
->get_mode
) {
2657 ret
= rdev
->desc
->ops
->get_mode(rdev
);
2659 mutex_unlock(&rdev
->mutex
);
2664 * regulator_get_mode - get regulator operating mode
2665 * @regulator: regulator source
2667 * Get the current regulator operating mode.
2669 unsigned int regulator_get_mode(struct regulator
*regulator
)
2671 return _regulator_get_mode(regulator
->rdev
);
2673 EXPORT_SYMBOL_GPL(regulator_get_mode
);
2676 * regulator_set_optimum_mode - set regulator optimum operating mode
2677 * @regulator: regulator source
2678 * @uA_load: load current
2680 * Notifies the regulator core of a new device load. This is then used by
2681 * DRMS (if enabled by constraints) to set the most efficient regulator
2682 * operating mode for the new regulator loading.
2684 * Consumer devices notify their supply regulator of the maximum power
2685 * they will require (can be taken from device datasheet in the power
2686 * consumption tables) when they change operational status and hence power
2687 * state. Examples of operational state changes that can affect power
2688 * consumption are :-
2690 * o Device is opened / closed.
2691 * o Device I/O is about to begin or has just finished.
2692 * o Device is idling in between work.
2694 * This information is also exported via sysfs to userspace.
2696 * DRMS will sum the total requested load on the regulator and change
2697 * to the most efficient operating mode if platform constraints allow.
2699 * Returns the new regulator mode or error.
2701 int regulator_set_optimum_mode(struct regulator
*regulator
, int uA_load
)
2703 struct regulator_dev
*rdev
= regulator
->rdev
;
2704 struct regulator
*consumer
;
2705 int ret
, output_uV
, input_uV
= 0, total_uA_load
= 0;
2709 input_uV
= regulator_get_voltage(rdev
->supply
);
2711 mutex_lock(&rdev
->mutex
);
2714 * first check to see if we can set modes at all, otherwise just
2715 * tell the consumer everything is OK.
2717 regulator
->uA_load
= uA_load
;
2718 ret
= regulator_check_drms(rdev
);
2724 if (!rdev
->desc
->ops
->get_optimum_mode
)
2728 * we can actually do this so any errors are indicators of
2729 * potential real failure.
2733 if (!rdev
->desc
->ops
->set_mode
)
2736 /* get output voltage */
2737 output_uV
= _regulator_get_voltage(rdev
);
2738 if (output_uV
<= 0) {
2739 rdev_err(rdev
, "invalid output voltage found\n");
2743 /* No supply? Use constraint voltage */
2745 input_uV
= rdev
->constraints
->input_uV
;
2746 if (input_uV
<= 0) {
2747 rdev_err(rdev
, "invalid input voltage found\n");
2751 /* calc total requested load for this regulator */
2752 list_for_each_entry(consumer
, &rdev
->consumer_list
, list
)
2753 total_uA_load
+= consumer
->uA_load
;
2755 mode
= rdev
->desc
->ops
->get_optimum_mode(rdev
,
2756 input_uV
, output_uV
,
2758 ret
= regulator_mode_constrain(rdev
, &mode
);
2760 rdev_err(rdev
, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2761 total_uA_load
, input_uV
, output_uV
);
2765 ret
= rdev
->desc
->ops
->set_mode(rdev
, mode
);
2767 rdev_err(rdev
, "failed to set optimum mode %x\n", mode
);
2772 mutex_unlock(&rdev
->mutex
);
2775 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode
);
2778 * regulator_allow_bypass - allow the regulator to go into bypass mode
2780 * @regulator: Regulator to configure
2781 * @enable: enable or disable bypass mode
2783 * Allow the regulator to go into bypass mode if all other consumers
2784 * for the regulator also enable bypass mode and the machine
2785 * constraints allow this. Bypass mode means that the regulator is
2786 * simply passing the input directly to the output with no regulation.
2788 int regulator_allow_bypass(struct regulator
*regulator
, bool enable
)
2790 struct regulator_dev
*rdev
= regulator
->rdev
;
2793 if (!rdev
->desc
->ops
->set_bypass
)
2796 if (rdev
->constraints
&&
2797 !(rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_BYPASS
))
2800 mutex_lock(&rdev
->mutex
);
2802 if (enable
&& !regulator
->bypass
) {
2803 rdev
->bypass_count
++;
2805 if (rdev
->bypass_count
== rdev
->open_count
) {
2806 ret
= rdev
->desc
->ops
->set_bypass(rdev
, enable
);
2808 rdev
->bypass_count
--;
2811 } else if (!enable
&& regulator
->bypass
) {
2812 rdev
->bypass_count
--;
2814 if (rdev
->bypass_count
!= rdev
->open_count
) {
2815 ret
= rdev
->desc
->ops
->set_bypass(rdev
, enable
);
2817 rdev
->bypass_count
++;
2822 regulator
->bypass
= enable
;
2824 mutex_unlock(&rdev
->mutex
);
2828 EXPORT_SYMBOL_GPL(regulator_allow_bypass
);
2831 * regulator_register_notifier - register regulator event notifier
2832 * @regulator: regulator source
2833 * @nb: notifier block
2835 * Register notifier block to receive regulator events.
2837 int regulator_register_notifier(struct regulator
*regulator
,
2838 struct notifier_block
*nb
)
2840 return blocking_notifier_chain_register(®ulator
->rdev
->notifier
,
2843 EXPORT_SYMBOL_GPL(regulator_register_notifier
);
2846 * regulator_unregister_notifier - unregister regulator event notifier
2847 * @regulator: regulator source
2848 * @nb: notifier block
2850 * Unregister regulator event notifier block.
2852 int regulator_unregister_notifier(struct regulator
*regulator
,
2853 struct notifier_block
*nb
)
2855 return blocking_notifier_chain_unregister(®ulator
->rdev
->notifier
,
2858 EXPORT_SYMBOL_GPL(regulator_unregister_notifier
);
2860 /* notify regulator consumers and downstream regulator consumers.
2861 * Note mutex must be held by caller.
2863 static void _notifier_call_chain(struct regulator_dev
*rdev
,
2864 unsigned long event
, void *data
)
2866 /* call rdev chain first */
2867 blocking_notifier_call_chain(&rdev
->notifier
, event
, data
);
2871 * regulator_bulk_get - get multiple regulator consumers
2873 * @dev: Device to supply
2874 * @num_consumers: Number of consumers to register
2875 * @consumers: Configuration of consumers; clients are stored here.
2877 * @return 0 on success, an errno on failure.
2879 * This helper function allows drivers to get several regulator
2880 * consumers in one operation. If any of the regulators cannot be
2881 * acquired then any regulators that were allocated will be freed
2882 * before returning to the caller.
2884 int regulator_bulk_get(struct device
*dev
, int num_consumers
,
2885 struct regulator_bulk_data
*consumers
)
2890 for (i
= 0; i
< num_consumers
; i
++)
2891 consumers
[i
].consumer
= NULL
;
2893 for (i
= 0; i
< num_consumers
; i
++) {
2894 consumers
[i
].consumer
= regulator_get(dev
,
2895 consumers
[i
].supply
);
2896 if (IS_ERR(consumers
[i
].consumer
)) {
2897 ret
= PTR_ERR(consumers
[i
].consumer
);
2898 dev_err(dev
, "Failed to get supply '%s': %d\n",
2899 consumers
[i
].supply
, ret
);
2900 consumers
[i
].consumer
= NULL
;
2909 regulator_put(consumers
[i
].consumer
);
2913 EXPORT_SYMBOL_GPL(regulator_bulk_get
);
2916 * devm_regulator_bulk_get - managed get multiple regulator consumers
2918 * @dev: Device to supply
2919 * @num_consumers: Number of consumers to register
2920 * @consumers: Configuration of consumers; clients are stored here.
2922 * @return 0 on success, an errno on failure.
2924 * This helper function allows drivers to get several regulator
2925 * consumers in one operation with management, the regulators will
2926 * automatically be freed when the device is unbound. If any of the
2927 * regulators cannot be acquired then any regulators that were
2928 * allocated will be freed before returning to the caller.
2930 int devm_regulator_bulk_get(struct device
*dev
, int num_consumers
,
2931 struct regulator_bulk_data
*consumers
)
2936 for (i
= 0; i
< num_consumers
; i
++)
2937 consumers
[i
].consumer
= NULL
;
2939 for (i
= 0; i
< num_consumers
; i
++) {
2940 consumers
[i
].consumer
= devm_regulator_get(dev
,
2941 consumers
[i
].supply
);
2942 if (IS_ERR(consumers
[i
].consumer
)) {
2943 ret
= PTR_ERR(consumers
[i
].consumer
);
2944 dev_err(dev
, "Failed to get supply '%s': %d\n",
2945 consumers
[i
].supply
, ret
);
2946 consumers
[i
].consumer
= NULL
;
2954 for (i
= 0; i
< num_consumers
&& consumers
[i
].consumer
; i
++)
2955 devm_regulator_put(consumers
[i
].consumer
);
2959 EXPORT_SYMBOL_GPL(devm_regulator_bulk_get
);
2961 static void regulator_bulk_enable_async(void *data
, async_cookie_t cookie
)
2963 struct regulator_bulk_data
*bulk
= data
;
2965 bulk
->ret
= regulator_enable(bulk
->consumer
);
2969 * regulator_bulk_enable - enable multiple regulator consumers
2971 * @num_consumers: Number of consumers
2972 * @consumers: Consumer data; clients are stored here.
2973 * @return 0 on success, an errno on failure
2975 * This convenience API allows consumers to enable multiple regulator
2976 * clients in a single API call. If any consumers cannot be enabled
2977 * then any others that were enabled will be disabled again prior to
2980 int regulator_bulk_enable(int num_consumers
,
2981 struct regulator_bulk_data
*consumers
)
2983 ASYNC_DOMAIN_EXCLUSIVE(async_domain
);
2987 for (i
= 0; i
< num_consumers
; i
++) {
2988 if (consumers
[i
].consumer
->always_on
)
2989 consumers
[i
].ret
= 0;
2991 async_schedule_domain(regulator_bulk_enable_async
,
2992 &consumers
[i
], &async_domain
);
2995 async_synchronize_full_domain(&async_domain
);
2997 /* If any consumer failed we need to unwind any that succeeded */
2998 for (i
= 0; i
< num_consumers
; i
++) {
2999 if (consumers
[i
].ret
!= 0) {
3000 ret
= consumers
[i
].ret
;
3008 for (i
= 0; i
< num_consumers
; i
++) {
3009 if (consumers
[i
].ret
< 0)
3010 pr_err("Failed to enable %s: %d\n", consumers
[i
].supply
,
3013 regulator_disable(consumers
[i
].consumer
);
3018 EXPORT_SYMBOL_GPL(regulator_bulk_enable
);
3021 * regulator_bulk_disable - disable multiple regulator consumers
3023 * @num_consumers: Number of consumers
3024 * @consumers: Consumer data; clients are stored here.
3025 * @return 0 on success, an errno on failure
3027 * This convenience API allows consumers to disable multiple regulator
3028 * clients in a single API call. If any consumers cannot be disabled
3029 * then any others that were disabled will be enabled again prior to
3032 int regulator_bulk_disable(int num_consumers
,
3033 struct regulator_bulk_data
*consumers
)
3038 for (i
= num_consumers
- 1; i
>= 0; --i
) {
3039 ret
= regulator_disable(consumers
[i
].consumer
);
3047 pr_err("Failed to disable %s: %d\n", consumers
[i
].supply
, ret
);
3048 for (++i
; i
< num_consumers
; ++i
) {
3049 r
= regulator_enable(consumers
[i
].consumer
);
3051 pr_err("Failed to reename %s: %d\n",
3052 consumers
[i
].supply
, r
);
3057 EXPORT_SYMBOL_GPL(regulator_bulk_disable
);
3060 * regulator_bulk_force_disable - force disable multiple regulator consumers
3062 * @num_consumers: Number of consumers
3063 * @consumers: Consumer data; clients are stored here.
3064 * @return 0 on success, an errno on failure
3066 * This convenience API allows consumers to forcibly disable multiple regulator
3067 * clients in a single API call.
3068 * NOTE: This should be used for situations when device damage will
3069 * likely occur if the regulators are not disabled (e.g. over temp).
3070 * Although regulator_force_disable function call for some consumers can
3071 * return error numbers, the function is called for all consumers.
3073 int regulator_bulk_force_disable(int num_consumers
,
3074 struct regulator_bulk_data
*consumers
)
3079 for (i
= 0; i
< num_consumers
; i
++)
3081 regulator_force_disable(consumers
[i
].consumer
);
3083 for (i
= 0; i
< num_consumers
; i
++) {
3084 if (consumers
[i
].ret
!= 0) {
3085 ret
= consumers
[i
].ret
;
3094 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable
);
3097 * regulator_bulk_free - free multiple regulator consumers
3099 * @num_consumers: Number of consumers
3100 * @consumers: Consumer data; clients are stored here.
3102 * This convenience API allows consumers to free multiple regulator
3103 * clients in a single API call.
3105 void regulator_bulk_free(int num_consumers
,
3106 struct regulator_bulk_data
*consumers
)
3110 for (i
= 0; i
< num_consumers
; i
++) {
3111 regulator_put(consumers
[i
].consumer
);
3112 consumers
[i
].consumer
= NULL
;
3115 EXPORT_SYMBOL_GPL(regulator_bulk_free
);
3118 * regulator_notifier_call_chain - call regulator event notifier
3119 * @rdev: regulator source
3120 * @event: notifier block
3121 * @data: callback-specific data.
3123 * Called by regulator drivers to notify clients a regulator event has
3124 * occurred. We also notify regulator clients downstream.
3125 * Note lock must be held by caller.
3127 int regulator_notifier_call_chain(struct regulator_dev
*rdev
,
3128 unsigned long event
, void *data
)
3130 _notifier_call_chain(rdev
, event
, data
);
3134 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain
);
3137 * regulator_mode_to_status - convert a regulator mode into a status
3139 * @mode: Mode to convert
3141 * Convert a regulator mode into a status.
3143 int regulator_mode_to_status(unsigned int mode
)
3146 case REGULATOR_MODE_FAST
:
3147 return REGULATOR_STATUS_FAST
;
3148 case REGULATOR_MODE_NORMAL
:
3149 return REGULATOR_STATUS_NORMAL
;
3150 case REGULATOR_MODE_IDLE
:
3151 return REGULATOR_STATUS_IDLE
;
3152 case REGULATOR_MODE_STANDBY
:
3153 return REGULATOR_STATUS_STANDBY
;
3155 return REGULATOR_STATUS_UNDEFINED
;
3158 EXPORT_SYMBOL_GPL(regulator_mode_to_status
);
3161 * To avoid cluttering sysfs (and memory) with useless state, only
3162 * create attributes that can be meaningfully displayed.
3164 static int add_regulator_attributes(struct regulator_dev
*rdev
)
3166 struct device
*dev
= &rdev
->dev
;
3167 struct regulator_ops
*ops
= rdev
->desc
->ops
;
3170 /* some attributes need specific methods to be displayed */
3171 if ((ops
->get_voltage
&& ops
->get_voltage(rdev
) >= 0) ||
3172 (ops
->get_voltage_sel
&& ops
->get_voltage_sel(rdev
) >= 0) ||
3173 (ops
->list_voltage
&& ops
->list_voltage(rdev
, 0) >= 0)) {
3174 status
= device_create_file(dev
, &dev_attr_microvolts
);
3178 if (ops
->get_current_limit
) {
3179 status
= device_create_file(dev
, &dev_attr_microamps
);
3183 if (ops
->get_mode
) {
3184 status
= device_create_file(dev
, &dev_attr_opmode
);
3188 if (rdev
->ena_pin
|| ops
->is_enabled
) {
3189 status
= device_create_file(dev
, &dev_attr_state
);
3193 if (ops
->get_status
) {
3194 status
= device_create_file(dev
, &dev_attr_status
);
3198 if (ops
->get_bypass
) {
3199 status
= device_create_file(dev
, &dev_attr_bypass
);
3204 /* some attributes are type-specific */
3205 if (rdev
->desc
->type
== REGULATOR_CURRENT
) {
3206 status
= device_create_file(dev
, &dev_attr_requested_microamps
);
3211 /* all the other attributes exist to support constraints;
3212 * don't show them if there are no constraints, or if the
3213 * relevant supporting methods are missing.
3215 if (!rdev
->constraints
)
3218 /* constraints need specific supporting methods */
3219 if (ops
->set_voltage
|| ops
->set_voltage_sel
) {
3220 status
= device_create_file(dev
, &dev_attr_min_microvolts
);
3223 status
= device_create_file(dev
, &dev_attr_max_microvolts
);
3227 if (ops
->set_current_limit
) {
3228 status
= device_create_file(dev
, &dev_attr_min_microamps
);
3231 status
= device_create_file(dev
, &dev_attr_max_microamps
);
3236 status
= device_create_file(dev
, &dev_attr_suspend_standby_state
);
3239 status
= device_create_file(dev
, &dev_attr_suspend_mem_state
);
3242 status
= device_create_file(dev
, &dev_attr_suspend_disk_state
);
3246 if (ops
->set_suspend_voltage
) {
3247 status
= device_create_file(dev
,
3248 &dev_attr_suspend_standby_microvolts
);
3251 status
= device_create_file(dev
,
3252 &dev_attr_suspend_mem_microvolts
);
3255 status
= device_create_file(dev
,
3256 &dev_attr_suspend_disk_microvolts
);
3261 if (ops
->set_suspend_mode
) {
3262 status
= device_create_file(dev
,
3263 &dev_attr_suspend_standby_mode
);
3266 status
= device_create_file(dev
,
3267 &dev_attr_suspend_mem_mode
);
3270 status
= device_create_file(dev
,
3271 &dev_attr_suspend_disk_mode
);
3279 static void rdev_init_debugfs(struct regulator_dev
*rdev
)
3281 rdev
->debugfs
= debugfs_create_dir(rdev_get_name(rdev
), debugfs_root
);
3282 if (!rdev
->debugfs
) {
3283 rdev_warn(rdev
, "Failed to create debugfs directory\n");
3287 debugfs_create_u32("use_count", 0444, rdev
->debugfs
,
3289 debugfs_create_u32("open_count", 0444, rdev
->debugfs
,
3291 debugfs_create_u32("bypass_count", 0444, rdev
->debugfs
,
3292 &rdev
->bypass_count
);
3296 * regulator_register - register regulator
3297 * @regulator_desc: regulator to register
3298 * @config: runtime configuration for regulator
3300 * Called by regulator drivers to register a regulator.
3301 * Returns a valid pointer to struct regulator_dev on success
3302 * or an ERR_PTR() on error.
3304 struct regulator_dev
*
3305 regulator_register(const struct regulator_desc
*regulator_desc
,
3306 const struct regulator_config
*config
)
3308 const struct regulation_constraints
*constraints
= NULL
;
3309 const struct regulator_init_data
*init_data
;
3310 static atomic_t regulator_no
= ATOMIC_INIT(0);
3311 struct regulator_dev
*rdev
;
3314 const char *supply
= NULL
;
3316 if (regulator_desc
== NULL
|| config
== NULL
)
3317 return ERR_PTR(-EINVAL
);
3322 if (regulator_desc
->name
== NULL
|| regulator_desc
->ops
== NULL
)
3323 return ERR_PTR(-EINVAL
);
3325 if (regulator_desc
->type
!= REGULATOR_VOLTAGE
&&
3326 regulator_desc
->type
!= REGULATOR_CURRENT
)
3327 return ERR_PTR(-EINVAL
);
3329 /* Only one of each should be implemented */
3330 WARN_ON(regulator_desc
->ops
->get_voltage
&&
3331 regulator_desc
->ops
->get_voltage_sel
);
3332 WARN_ON(regulator_desc
->ops
->set_voltage
&&
3333 regulator_desc
->ops
->set_voltage_sel
);
3335 /* If we're using selectors we must implement list_voltage. */
3336 if (regulator_desc
->ops
->get_voltage_sel
&&
3337 !regulator_desc
->ops
->list_voltage
) {
3338 return ERR_PTR(-EINVAL
);
3340 if (regulator_desc
->ops
->set_voltage_sel
&&
3341 !regulator_desc
->ops
->list_voltage
) {
3342 return ERR_PTR(-EINVAL
);
3345 init_data
= config
->init_data
;
3347 rdev
= kzalloc(sizeof(struct regulator_dev
), GFP_KERNEL
);
3349 return ERR_PTR(-ENOMEM
);
3351 mutex_lock(®ulator_list_mutex
);
3353 mutex_init(&rdev
->mutex
);
3354 rdev
->reg_data
= config
->driver_data
;
3355 rdev
->owner
= regulator_desc
->owner
;
3356 rdev
->desc
= regulator_desc
;
3358 rdev
->regmap
= config
->regmap
;
3359 else if (dev_get_regmap(dev
, NULL
))
3360 rdev
->regmap
= dev_get_regmap(dev
, NULL
);
3361 else if (dev
->parent
)
3362 rdev
->regmap
= dev_get_regmap(dev
->parent
, NULL
);
3363 INIT_LIST_HEAD(&rdev
->consumer_list
);
3364 INIT_LIST_HEAD(&rdev
->list
);
3365 BLOCKING_INIT_NOTIFIER_HEAD(&rdev
->notifier
);
3366 INIT_DELAYED_WORK(&rdev
->disable_work
, regulator_disable_work
);
3368 /* preform any regulator specific init */
3369 if (init_data
&& init_data
->regulator_init
) {
3370 ret
= init_data
->regulator_init(rdev
->reg_data
);
3375 /* register with sysfs */
3376 rdev
->dev
.class = ®ulator_class
;
3377 rdev
->dev
.of_node
= config
->of_node
;
3378 rdev
->dev
.parent
= dev
;
3379 dev_set_name(&rdev
->dev
, "regulator.%d",
3380 atomic_inc_return(®ulator_no
) - 1);
3381 ret
= device_register(&rdev
->dev
);
3383 put_device(&rdev
->dev
);
3387 dev_set_drvdata(&rdev
->dev
, rdev
);
3389 if (config
->ena_gpio
&& gpio_is_valid(config
->ena_gpio
)) {
3390 ret
= regulator_ena_gpio_request(rdev
, config
);
3392 rdev_err(rdev
, "Failed to request enable GPIO%d: %d\n",
3393 config
->ena_gpio
, ret
);
3397 if (config
->ena_gpio_flags
& GPIOF_OUT_INIT_HIGH
)
3398 rdev
->ena_gpio_state
= 1;
3400 if (config
->ena_gpio_invert
)
3401 rdev
->ena_gpio_state
= !rdev
->ena_gpio_state
;
3404 /* set regulator constraints */
3406 constraints
= &init_data
->constraints
;
3408 ret
= set_machine_constraints(rdev
, constraints
);
3412 /* add attributes supported by this regulator */
3413 ret
= add_regulator_attributes(rdev
);
3417 if (init_data
&& init_data
->supply_regulator
)
3418 supply
= init_data
->supply_regulator
;
3419 else if (regulator_desc
->supply_name
)
3420 supply
= regulator_desc
->supply_name
;
3423 struct regulator_dev
*r
;
3425 r
= regulator_dev_lookup(dev
, supply
, &ret
);
3427 if (ret
== -ENODEV
) {
3429 * No supply was specified for this regulator and
3430 * there will never be one.
3435 dev_err(dev
, "Failed to find supply %s\n", supply
);
3436 ret
= -EPROBE_DEFER
;
3440 ret
= set_supply(rdev
, r
);
3444 /* Enable supply if rail is enabled */
3445 if (_regulator_is_enabled(rdev
)) {
3446 ret
= regulator_enable(rdev
->supply
);
3453 /* add consumers devices */
3455 for (i
= 0; i
< init_data
->num_consumer_supplies
; i
++) {
3456 ret
= set_consumer_device_supply(rdev
,
3457 init_data
->consumer_supplies
[i
].dev_name
,
3458 init_data
->consumer_supplies
[i
].supply
);
3460 dev_err(dev
, "Failed to set supply %s\n",
3461 init_data
->consumer_supplies
[i
].supply
);
3462 goto unset_supplies
;
3467 list_add(&rdev
->list
, ®ulator_list
);
3469 rdev_init_debugfs(rdev
);
3471 mutex_unlock(®ulator_list_mutex
);
3475 unset_regulator_supplies(rdev
);
3479 _regulator_put(rdev
->supply
);
3480 regulator_ena_gpio_free(rdev
);
3481 kfree(rdev
->constraints
);
3483 device_unregister(&rdev
->dev
);
3484 /* device core frees rdev */
3485 rdev
= ERR_PTR(ret
);
3490 rdev
= ERR_PTR(ret
);
3493 EXPORT_SYMBOL_GPL(regulator_register
);
3496 * regulator_unregister - unregister regulator
3497 * @rdev: regulator to unregister
3499 * Called by regulator drivers to unregister a regulator.
3501 void regulator_unregister(struct regulator_dev
*rdev
)
3507 while (rdev
->use_count
--)
3508 regulator_disable(rdev
->supply
);
3509 regulator_put(rdev
->supply
);
3511 mutex_lock(®ulator_list_mutex
);
3512 debugfs_remove_recursive(rdev
->debugfs
);
3513 flush_work(&rdev
->disable_work
.work
);
3514 WARN_ON(rdev
->open_count
);
3515 unset_regulator_supplies(rdev
);
3516 list_del(&rdev
->list
);
3517 kfree(rdev
->constraints
);
3518 regulator_ena_gpio_free(rdev
);
3519 device_unregister(&rdev
->dev
);
3520 mutex_unlock(®ulator_list_mutex
);
3522 EXPORT_SYMBOL_GPL(regulator_unregister
);
3525 * regulator_suspend_prepare - prepare regulators for system wide suspend
3526 * @state: system suspend state
3528 * Configure each regulator with it's suspend operating parameters for state.
3529 * This will usually be called by machine suspend code prior to supending.
3531 int regulator_suspend_prepare(suspend_state_t state
)
3533 struct regulator_dev
*rdev
;
3536 /* ON is handled by regulator active state */
3537 if (state
== PM_SUSPEND_ON
)
3540 mutex_lock(®ulator_list_mutex
);
3541 list_for_each_entry(rdev
, ®ulator_list
, list
) {
3543 mutex_lock(&rdev
->mutex
);
3544 ret
= suspend_prepare(rdev
, state
);
3545 mutex_unlock(&rdev
->mutex
);
3548 rdev_err(rdev
, "failed to prepare\n");
3553 mutex_unlock(®ulator_list_mutex
);
3556 EXPORT_SYMBOL_GPL(regulator_suspend_prepare
);
3559 * regulator_suspend_finish - resume regulators from system wide suspend
3561 * Turn on regulators that might be turned off by regulator_suspend_prepare
3562 * and that should be turned on according to the regulators properties.
3564 int regulator_suspend_finish(void)
3566 struct regulator_dev
*rdev
;
3569 mutex_lock(®ulator_list_mutex
);
3570 list_for_each_entry(rdev
, ®ulator_list
, list
) {
3571 struct regulator_ops
*ops
= rdev
->desc
->ops
;
3573 mutex_lock(&rdev
->mutex
);
3574 if ((rdev
->use_count
> 0 || rdev
->constraints
->always_on
) &&
3576 error
= ops
->enable(rdev
);
3580 if (!has_full_constraints
)
3584 if (!_regulator_is_enabled(rdev
))
3587 error
= ops
->disable(rdev
);
3592 mutex_unlock(&rdev
->mutex
);
3594 mutex_unlock(®ulator_list_mutex
);
3597 EXPORT_SYMBOL_GPL(regulator_suspend_finish
);
3600 * regulator_has_full_constraints - the system has fully specified constraints
3602 * Calling this function will cause the regulator API to disable all
3603 * regulators which have a zero use count and don't have an always_on
3604 * constraint in a late_initcall.
3606 * The intention is that this will become the default behaviour in a
3607 * future kernel release so users are encouraged to use this facility
3610 void regulator_has_full_constraints(void)
3612 has_full_constraints
= 1;
3614 EXPORT_SYMBOL_GPL(regulator_has_full_constraints
);
3617 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
3619 * Calling this function will cause the regulator API to provide a
3620 * dummy regulator to consumers if no physical regulator is found,
3621 * allowing most consumers to proceed as though a regulator were
3622 * configured. This allows systems such as those with software
3623 * controllable regulators for the CPU core only to be brought up more
3626 void regulator_use_dummy_regulator(void)
3628 board_wants_dummy_regulator
= true;
3630 EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator
);
3633 * rdev_get_drvdata - get rdev regulator driver data
3636 * Get rdev regulator driver private data. This call can be used in the
3637 * regulator driver context.
3639 void *rdev_get_drvdata(struct regulator_dev
*rdev
)
3641 return rdev
->reg_data
;
3643 EXPORT_SYMBOL_GPL(rdev_get_drvdata
);
3646 * regulator_get_drvdata - get regulator driver data
3647 * @regulator: regulator
3649 * Get regulator driver private data. This call can be used in the consumer
3650 * driver context when non API regulator specific functions need to be called.
3652 void *regulator_get_drvdata(struct regulator
*regulator
)
3654 return regulator
->rdev
->reg_data
;
3656 EXPORT_SYMBOL_GPL(regulator_get_drvdata
);
3659 * regulator_set_drvdata - set regulator driver data
3660 * @regulator: regulator
3663 void regulator_set_drvdata(struct regulator
*regulator
, void *data
)
3665 regulator
->rdev
->reg_data
= data
;
3667 EXPORT_SYMBOL_GPL(regulator_set_drvdata
);
3670 * regulator_get_id - get regulator ID
3673 int rdev_get_id(struct regulator_dev
*rdev
)
3675 return rdev
->desc
->id
;
3677 EXPORT_SYMBOL_GPL(rdev_get_id
);
3679 struct device
*rdev_get_dev(struct regulator_dev
*rdev
)
3683 EXPORT_SYMBOL_GPL(rdev_get_dev
);
3685 void *regulator_get_init_drvdata(struct regulator_init_data
*reg_init_data
)
3687 return reg_init_data
->driver_data
;
3689 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata
);
3691 #ifdef CONFIG_DEBUG_FS
3692 static ssize_t
supply_map_read_file(struct file
*file
, char __user
*user_buf
,
3693 size_t count
, loff_t
*ppos
)
3695 char *buf
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
3696 ssize_t len
, ret
= 0;
3697 struct regulator_map
*map
;
3702 list_for_each_entry(map
, ®ulator_map_list
, list
) {
3703 len
= snprintf(buf
+ ret
, PAGE_SIZE
- ret
,
3705 rdev_get_name(map
->regulator
), map
->dev_name
,
3709 if (ret
> PAGE_SIZE
) {
3715 ret
= simple_read_from_buffer(user_buf
, count
, ppos
, buf
, ret
);
3723 static const struct file_operations supply_map_fops
= {
3724 #ifdef CONFIG_DEBUG_FS
3725 .read
= supply_map_read_file
,
3726 .llseek
= default_llseek
,
3730 static int __init
regulator_init(void)
3734 ret
= class_register(®ulator_class
);
3736 debugfs_root
= debugfs_create_dir("regulator", NULL
);
3738 pr_warn("regulator: Failed to create debugfs directory\n");
3740 debugfs_create_file("supply_map", 0444, debugfs_root
, NULL
,
3743 regulator_dummy_init();
3748 /* init early to allow our consumers to complete system booting */
3749 core_initcall(regulator_init
);
3751 static int __init
regulator_init_complete(void)
3753 struct regulator_dev
*rdev
;
3754 struct regulator_ops
*ops
;
3755 struct regulation_constraints
*c
;
3759 * Since DT doesn't provide an idiomatic mechanism for
3760 * enabling full constraints and since it's much more natural
3761 * with DT to provide them just assume that a DT enabled
3762 * system has full constraints.
3764 if (of_have_populated_dt())
3765 has_full_constraints
= true;
3767 mutex_lock(®ulator_list_mutex
);
3769 /* If we have a full configuration then disable any regulators
3770 * which are not in use or always_on. This will become the
3771 * default behaviour in the future.
3773 list_for_each_entry(rdev
, ®ulator_list
, list
) {
3774 ops
= rdev
->desc
->ops
;
3775 c
= rdev
->constraints
;
3777 if (!ops
->disable
|| (c
&& c
->always_on
))
3780 mutex_lock(&rdev
->mutex
);
3782 if (rdev
->use_count
)
3785 /* If we can't read the status assume it's on. */
3786 if (ops
->is_enabled
)
3787 enabled
= ops
->is_enabled(rdev
);
3794 if (has_full_constraints
) {
3795 /* We log since this may kill the system if it
3797 rdev_info(rdev
, "disabling\n");
3798 ret
= ops
->disable(rdev
);
3800 rdev_err(rdev
, "couldn't disable: %d\n", ret
);
3803 /* The intention is that in future we will
3804 * assume that full constraints are provided
3805 * so warn even if we aren't going to do
3808 rdev_warn(rdev
, "incomplete constraints, leaving on\n");
3812 mutex_unlock(&rdev
->mutex
);
3815 mutex_unlock(®ulator_list_mutex
);
3819 late_initcall(regulator_init_complete
);