1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2013 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
31 static s32
e1000_wait_autoneg(struct e1000_hw
*hw
);
32 static s32
e1000_access_phy_wakeup_reg_bm(struct e1000_hw
*hw
, u32 offset
,
33 u16
*data
, bool read
, bool page_set
);
34 static u32
e1000_get_phy_addr_for_hv_page(u32 page
);
35 static s32
e1000_access_phy_debug_regs_hv(struct e1000_hw
*hw
, u32 offset
,
36 u16
*data
, bool read
);
38 /* Cable length tables */
39 static const u16 e1000_m88_cable_length_table
[] = {
40 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED
};
41 #define M88E1000_CABLE_LENGTH_TABLE_SIZE \
42 ARRAY_SIZE(e1000_m88_cable_length_table)
44 static const u16 e1000_igp_2_cable_length_table
[] = {
45 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3,
46 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22,
47 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40,
48 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61,
49 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82,
50 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95,
51 100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121,
53 #define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
54 ARRAY_SIZE(e1000_igp_2_cable_length_table)
57 * e1000e_check_reset_block_generic - Check if PHY reset is blocked
58 * @hw: pointer to the HW structure
60 * Read the PHY management control register and check whether a PHY reset
61 * is blocked. If a reset is not blocked return 0, otherwise
62 * return E1000_BLK_PHY_RESET (12).
64 s32
e1000e_check_reset_block_generic(struct e1000_hw
*hw
)
70 return (manc
& E1000_MANC_BLK_PHY_RST_ON_IDE
) ?
71 E1000_BLK_PHY_RESET
: 0;
75 * e1000e_get_phy_id - Retrieve the PHY ID and revision
76 * @hw: pointer to the HW structure
78 * Reads the PHY registers and stores the PHY ID and possibly the PHY
79 * revision in the hardware structure.
81 s32
e1000e_get_phy_id(struct e1000_hw
*hw
)
83 struct e1000_phy_info
*phy
= &hw
->phy
;
88 if (!phy
->ops
.read_reg
)
91 while (retry_count
< 2) {
92 ret_val
= e1e_rphy(hw
, MII_PHYSID1
, &phy_id
);
96 phy
->id
= (u32
)(phy_id
<< 16);
98 ret_val
= e1e_rphy(hw
, MII_PHYSID2
, &phy_id
);
102 phy
->id
|= (u32
)(phy_id
& PHY_REVISION_MASK
);
103 phy
->revision
= (u32
)(phy_id
& ~PHY_REVISION_MASK
);
105 if (phy
->id
!= 0 && phy
->id
!= PHY_REVISION_MASK
)
115 * e1000e_phy_reset_dsp - Reset PHY DSP
116 * @hw: pointer to the HW structure
118 * Reset the digital signal processor.
120 s32
e1000e_phy_reset_dsp(struct e1000_hw
*hw
)
124 ret_val
= e1e_wphy(hw
, M88E1000_PHY_GEN_CONTROL
, 0xC1);
128 return e1e_wphy(hw
, M88E1000_PHY_GEN_CONTROL
, 0);
132 * e1000e_read_phy_reg_mdic - Read MDI control register
133 * @hw: pointer to the HW structure
134 * @offset: register offset to be read
135 * @data: pointer to the read data
137 * Reads the MDI control register in the PHY at offset and stores the
138 * information read to data.
140 s32
e1000e_read_phy_reg_mdic(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
142 struct e1000_phy_info
*phy
= &hw
->phy
;
145 if (offset
> MAX_PHY_REG_ADDRESS
) {
146 e_dbg("PHY Address %d is out of range\n", offset
);
147 return -E1000_ERR_PARAM
;
150 /* Set up Op-code, Phy Address, and register offset in the MDI
151 * Control register. The MAC will take care of interfacing with the
152 * PHY to retrieve the desired data.
154 mdic
= ((offset
<< E1000_MDIC_REG_SHIFT
) |
155 (phy
->addr
<< E1000_MDIC_PHY_SHIFT
) |
156 (E1000_MDIC_OP_READ
));
160 /* Poll the ready bit to see if the MDI read completed
161 * Increasing the time out as testing showed failures with
164 for (i
= 0; i
< (E1000_GEN_POLL_TIMEOUT
* 3); i
++) {
167 if (mdic
& E1000_MDIC_READY
)
170 if (!(mdic
& E1000_MDIC_READY
)) {
171 e_dbg("MDI Read did not complete\n");
172 return -E1000_ERR_PHY
;
174 if (mdic
& E1000_MDIC_ERROR
) {
175 e_dbg("MDI Error\n");
176 return -E1000_ERR_PHY
;
180 /* Allow some time after each MDIC transaction to avoid
181 * reading duplicate data in the next MDIC transaction.
183 if (hw
->mac
.type
== e1000_pch2lan
)
190 * e1000e_write_phy_reg_mdic - Write MDI control register
191 * @hw: pointer to the HW structure
192 * @offset: register offset to write to
193 * @data: data to write to register at offset
195 * Writes data to MDI control register in the PHY at offset.
197 s32
e1000e_write_phy_reg_mdic(struct e1000_hw
*hw
, u32 offset
, u16 data
)
199 struct e1000_phy_info
*phy
= &hw
->phy
;
202 if (offset
> MAX_PHY_REG_ADDRESS
) {
203 e_dbg("PHY Address %d is out of range\n", offset
);
204 return -E1000_ERR_PARAM
;
207 /* Set up Op-code, Phy Address, and register offset in the MDI
208 * Control register. The MAC will take care of interfacing with the
209 * PHY to retrieve the desired data.
211 mdic
= (((u32
)data
) |
212 (offset
<< E1000_MDIC_REG_SHIFT
) |
213 (phy
->addr
<< E1000_MDIC_PHY_SHIFT
) |
214 (E1000_MDIC_OP_WRITE
));
218 /* Poll the ready bit to see if the MDI read completed
219 * Increasing the time out as testing showed failures with
222 for (i
= 0; i
< (E1000_GEN_POLL_TIMEOUT
* 3); i
++) {
225 if (mdic
& E1000_MDIC_READY
)
228 if (!(mdic
& E1000_MDIC_READY
)) {
229 e_dbg("MDI Write did not complete\n");
230 return -E1000_ERR_PHY
;
232 if (mdic
& E1000_MDIC_ERROR
) {
233 e_dbg("MDI Error\n");
234 return -E1000_ERR_PHY
;
237 /* Allow some time after each MDIC transaction to avoid
238 * reading duplicate data in the next MDIC transaction.
240 if (hw
->mac
.type
== e1000_pch2lan
)
247 * e1000e_read_phy_reg_m88 - Read m88 PHY register
248 * @hw: pointer to the HW structure
249 * @offset: register offset to be read
250 * @data: pointer to the read data
252 * Acquires semaphore, if necessary, then reads the PHY register at offset
253 * and storing the retrieved information in data. Release any acquired
254 * semaphores before exiting.
256 s32
e1000e_read_phy_reg_m88(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
260 ret_val
= hw
->phy
.ops
.acquire(hw
);
264 ret_val
= e1000e_read_phy_reg_mdic(hw
, MAX_PHY_REG_ADDRESS
& offset
,
267 hw
->phy
.ops
.release(hw
);
273 * e1000e_write_phy_reg_m88 - Write m88 PHY register
274 * @hw: pointer to the HW structure
275 * @offset: register offset to write to
276 * @data: data to write at register offset
278 * Acquires semaphore, if necessary, then writes the data to PHY register
279 * at the offset. Release any acquired semaphores before exiting.
281 s32
e1000e_write_phy_reg_m88(struct e1000_hw
*hw
, u32 offset
, u16 data
)
285 ret_val
= hw
->phy
.ops
.acquire(hw
);
289 ret_val
= e1000e_write_phy_reg_mdic(hw
, MAX_PHY_REG_ADDRESS
& offset
,
292 hw
->phy
.ops
.release(hw
);
298 * e1000_set_page_igp - Set page as on IGP-like PHY(s)
299 * @hw: pointer to the HW structure
300 * @page: page to set (shifted left when necessary)
302 * Sets PHY page required for PHY register access. Assumes semaphore is
303 * already acquired. Note, this function sets phy.addr to 1 so the caller
304 * must set it appropriately (if necessary) after this function returns.
306 s32
e1000_set_page_igp(struct e1000_hw
*hw
, u16 page
)
308 e_dbg("Setting page 0x%x\n", page
);
312 return e1000e_write_phy_reg_mdic(hw
, IGP01E1000_PHY_PAGE_SELECT
, page
);
316 * __e1000e_read_phy_reg_igp - Read igp PHY register
317 * @hw: pointer to the HW structure
318 * @offset: register offset to be read
319 * @data: pointer to the read data
320 * @locked: semaphore has already been acquired or not
322 * Acquires semaphore, if necessary, then reads the PHY register at offset
323 * and stores the retrieved information in data. Release any acquired
324 * semaphores before exiting.
326 static s32
__e1000e_read_phy_reg_igp(struct e1000_hw
*hw
, u32 offset
, u16
*data
,
332 if (!hw
->phy
.ops
.acquire
)
335 ret_val
= hw
->phy
.ops
.acquire(hw
);
340 if (offset
> MAX_PHY_MULTI_PAGE_REG
)
341 ret_val
= e1000e_write_phy_reg_mdic(hw
,
342 IGP01E1000_PHY_PAGE_SELECT
,
345 ret_val
= e1000e_read_phy_reg_mdic(hw
,
346 MAX_PHY_REG_ADDRESS
& offset
,
349 hw
->phy
.ops
.release(hw
);
355 * e1000e_read_phy_reg_igp - Read igp PHY register
356 * @hw: pointer to the HW structure
357 * @offset: register offset to be read
358 * @data: pointer to the read data
360 * Acquires semaphore then reads the PHY register at offset and stores the
361 * retrieved information in data.
362 * Release the acquired semaphore before exiting.
364 s32
e1000e_read_phy_reg_igp(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
366 return __e1000e_read_phy_reg_igp(hw
, offset
, data
, false);
370 * e1000e_read_phy_reg_igp_locked - Read igp PHY register
371 * @hw: pointer to the HW structure
372 * @offset: register offset to be read
373 * @data: pointer to the read data
375 * Reads the PHY register at offset and stores the retrieved information
376 * in data. Assumes semaphore already acquired.
378 s32
e1000e_read_phy_reg_igp_locked(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
380 return __e1000e_read_phy_reg_igp(hw
, offset
, data
, true);
384 * e1000e_write_phy_reg_igp - Write igp PHY register
385 * @hw: pointer to the HW structure
386 * @offset: register offset to write to
387 * @data: data to write at register offset
388 * @locked: semaphore has already been acquired or not
390 * Acquires semaphore, if necessary, then writes the data to PHY register
391 * at the offset. Release any acquired semaphores before exiting.
393 static s32
__e1000e_write_phy_reg_igp(struct e1000_hw
*hw
, u32 offset
, u16 data
,
399 if (!hw
->phy
.ops
.acquire
)
402 ret_val
= hw
->phy
.ops
.acquire(hw
);
407 if (offset
> MAX_PHY_MULTI_PAGE_REG
)
408 ret_val
= e1000e_write_phy_reg_mdic(hw
,
409 IGP01E1000_PHY_PAGE_SELECT
,
412 ret_val
= e1000e_write_phy_reg_mdic(hw
, MAX_PHY_REG_ADDRESS
&
416 hw
->phy
.ops
.release(hw
);
422 * e1000e_write_phy_reg_igp - Write igp PHY register
423 * @hw: pointer to the HW structure
424 * @offset: register offset to write to
425 * @data: data to write at register offset
427 * Acquires semaphore then writes the data to PHY register
428 * at the offset. Release any acquired semaphores before exiting.
430 s32
e1000e_write_phy_reg_igp(struct e1000_hw
*hw
, u32 offset
, u16 data
)
432 return __e1000e_write_phy_reg_igp(hw
, offset
, data
, false);
436 * e1000e_write_phy_reg_igp_locked - Write igp PHY register
437 * @hw: pointer to the HW structure
438 * @offset: register offset to write to
439 * @data: data to write at register offset
441 * Writes the data to PHY register at the offset.
442 * Assumes semaphore already acquired.
444 s32
e1000e_write_phy_reg_igp_locked(struct e1000_hw
*hw
, u32 offset
, u16 data
)
446 return __e1000e_write_phy_reg_igp(hw
, offset
, data
, true);
450 * __e1000_read_kmrn_reg - Read kumeran register
451 * @hw: pointer to the HW structure
452 * @offset: register offset to be read
453 * @data: pointer to the read data
454 * @locked: semaphore has already been acquired or not
456 * Acquires semaphore, if necessary. Then reads the PHY register at offset
457 * using the kumeran interface. The information retrieved is stored in data.
458 * Release any acquired semaphores before exiting.
460 static s32
__e1000_read_kmrn_reg(struct e1000_hw
*hw
, u32 offset
, u16
*data
,
468 if (!hw
->phy
.ops
.acquire
)
471 ret_val
= hw
->phy
.ops
.acquire(hw
);
476 kmrnctrlsta
= ((offset
<< E1000_KMRNCTRLSTA_OFFSET_SHIFT
) &
477 E1000_KMRNCTRLSTA_OFFSET
) | E1000_KMRNCTRLSTA_REN
;
478 ew32(KMRNCTRLSTA
, kmrnctrlsta
);
483 kmrnctrlsta
= er32(KMRNCTRLSTA
);
484 *data
= (u16
)kmrnctrlsta
;
487 hw
->phy
.ops
.release(hw
);
493 * e1000e_read_kmrn_reg - Read kumeran register
494 * @hw: pointer to the HW structure
495 * @offset: register offset to be read
496 * @data: pointer to the read data
498 * Acquires semaphore then reads the PHY register at offset using the
499 * kumeran interface. The information retrieved is stored in data.
500 * Release the acquired semaphore before exiting.
502 s32
e1000e_read_kmrn_reg(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
504 return __e1000_read_kmrn_reg(hw
, offset
, data
, false);
508 * e1000e_read_kmrn_reg_locked - Read kumeran register
509 * @hw: pointer to the HW structure
510 * @offset: register offset to be read
511 * @data: pointer to the read data
513 * Reads the PHY register at offset using the kumeran interface. The
514 * information retrieved is stored in data.
515 * Assumes semaphore already acquired.
517 s32
e1000e_read_kmrn_reg_locked(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
519 return __e1000_read_kmrn_reg(hw
, offset
, data
, true);
523 * __e1000_write_kmrn_reg - Write kumeran register
524 * @hw: pointer to the HW structure
525 * @offset: register offset to write to
526 * @data: data to write at register offset
527 * @locked: semaphore has already been acquired or not
529 * Acquires semaphore, if necessary. Then write the data to PHY register
530 * at the offset using the kumeran interface. Release any acquired semaphores
533 static s32
__e1000_write_kmrn_reg(struct e1000_hw
*hw
, u32 offset
, u16 data
,
541 if (!hw
->phy
.ops
.acquire
)
544 ret_val
= hw
->phy
.ops
.acquire(hw
);
549 kmrnctrlsta
= ((offset
<< E1000_KMRNCTRLSTA_OFFSET_SHIFT
) &
550 E1000_KMRNCTRLSTA_OFFSET
) | data
;
551 ew32(KMRNCTRLSTA
, kmrnctrlsta
);
557 hw
->phy
.ops
.release(hw
);
563 * e1000e_write_kmrn_reg - Write kumeran register
564 * @hw: pointer to the HW structure
565 * @offset: register offset to write to
566 * @data: data to write at register offset
568 * Acquires semaphore then writes the data to the PHY register at the offset
569 * using the kumeran interface. Release the acquired semaphore before exiting.
571 s32
e1000e_write_kmrn_reg(struct e1000_hw
*hw
, u32 offset
, u16 data
)
573 return __e1000_write_kmrn_reg(hw
, offset
, data
, false);
577 * e1000e_write_kmrn_reg_locked - Write kumeran register
578 * @hw: pointer to the HW structure
579 * @offset: register offset to write to
580 * @data: data to write at register offset
582 * Write the data to PHY register at the offset using the kumeran interface.
583 * Assumes semaphore already acquired.
585 s32
e1000e_write_kmrn_reg_locked(struct e1000_hw
*hw
, u32 offset
, u16 data
)
587 return __e1000_write_kmrn_reg(hw
, offset
, data
, true);
591 * e1000_set_master_slave_mode - Setup PHY for Master/slave mode
592 * @hw: pointer to the HW structure
594 * Sets up Master/slave mode
596 static s32
e1000_set_master_slave_mode(struct e1000_hw
*hw
)
601 /* Resolve Master/Slave mode */
602 ret_val
= e1e_rphy(hw
, MII_CTRL1000
, &phy_data
);
606 /* load defaults for future use */
607 hw
->phy
.original_ms_type
= (phy_data
& CTL1000_ENABLE_MASTER
) ?
608 ((phy_data
& CTL1000_AS_MASTER
) ?
609 e1000_ms_force_master
: e1000_ms_force_slave
) : e1000_ms_auto
;
611 switch (hw
->phy
.ms_type
) {
612 case e1000_ms_force_master
:
613 phy_data
|= (CTL1000_ENABLE_MASTER
| CTL1000_AS_MASTER
);
615 case e1000_ms_force_slave
:
616 phy_data
|= CTL1000_ENABLE_MASTER
;
617 phy_data
&= ~(CTL1000_AS_MASTER
);
620 phy_data
&= ~CTL1000_ENABLE_MASTER
;
626 return e1e_wphy(hw
, MII_CTRL1000
, phy_data
);
630 * e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link
631 * @hw: pointer to the HW structure
633 * Sets up Carrier-sense on Transmit and downshift values.
635 s32
e1000_copper_link_setup_82577(struct e1000_hw
*hw
)
640 /* Enable CRS on Tx. This must be set for half-duplex operation. */
641 ret_val
= e1e_rphy(hw
, I82577_CFG_REG
, &phy_data
);
645 phy_data
|= I82577_CFG_ASSERT_CRS_ON_TX
;
647 /* Enable downshift */
648 phy_data
|= I82577_CFG_ENABLE_DOWNSHIFT
;
650 ret_val
= e1e_wphy(hw
, I82577_CFG_REG
, phy_data
);
654 /* Set MDI/MDIX mode */
655 ret_val
= e1e_rphy(hw
, I82577_PHY_CTRL_2
, &phy_data
);
658 phy_data
&= ~I82577_PHY_CTRL2_MDIX_CFG_MASK
;
664 switch (hw
->phy
.mdix
) {
668 phy_data
|= I82577_PHY_CTRL2_MANUAL_MDIX
;
672 phy_data
|= I82577_PHY_CTRL2_AUTO_MDI_MDIX
;
675 ret_val
= e1e_wphy(hw
, I82577_PHY_CTRL_2
, phy_data
);
679 return e1000_set_master_slave_mode(hw
);
683 * e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link
684 * @hw: pointer to the HW structure
686 * Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock
687 * and downshift values are set also.
689 s32
e1000e_copper_link_setup_m88(struct e1000_hw
*hw
)
691 struct e1000_phy_info
*phy
= &hw
->phy
;
695 /* Enable CRS on Tx. This must be set for half-duplex operation. */
696 ret_val
= e1e_rphy(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_data
);
700 /* For BM PHY this bit is downshift enable */
701 if (phy
->type
!= e1000_phy_bm
)
702 phy_data
|= M88E1000_PSCR_ASSERT_CRS_ON_TX
;
705 * MDI/MDI-X = 0 (default)
706 * 0 - Auto for all speeds
709 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
711 phy_data
&= ~M88E1000_PSCR_AUTO_X_MODE
;
715 phy_data
|= M88E1000_PSCR_MDI_MANUAL_MODE
;
718 phy_data
|= M88E1000_PSCR_MDIX_MANUAL_MODE
;
721 phy_data
|= M88E1000_PSCR_AUTO_X_1000T
;
725 phy_data
|= M88E1000_PSCR_AUTO_X_MODE
;
730 * disable_polarity_correction = 0 (default)
731 * Automatic Correction for Reversed Cable Polarity
735 phy_data
&= ~M88E1000_PSCR_POLARITY_REVERSAL
;
736 if (phy
->disable_polarity_correction
)
737 phy_data
|= M88E1000_PSCR_POLARITY_REVERSAL
;
739 /* Enable downshift on BM (disabled by default) */
740 if (phy
->type
== e1000_phy_bm
) {
741 /* For 82574/82583, first disable then enable downshift */
742 if (phy
->id
== BME1000_E_PHY_ID_R2
) {
743 phy_data
&= ~BME1000_PSCR_ENABLE_DOWNSHIFT
;
744 ret_val
= e1e_wphy(hw
, M88E1000_PHY_SPEC_CTRL
,
748 /* Commit the changes. */
749 ret_val
= phy
->ops
.commit(hw
);
751 e_dbg("Error committing the PHY changes\n");
756 phy_data
|= BME1000_PSCR_ENABLE_DOWNSHIFT
;
759 ret_val
= e1e_wphy(hw
, M88E1000_PHY_SPEC_CTRL
, phy_data
);
763 if ((phy
->type
== e1000_phy_m88
) &&
764 (phy
->revision
< E1000_REVISION_4
) &&
765 (phy
->id
!= BME1000_E_PHY_ID_R2
)) {
766 /* Force TX_CLK in the Extended PHY Specific Control Register
769 ret_val
= e1e_rphy(hw
, M88E1000_EXT_PHY_SPEC_CTRL
, &phy_data
);
773 phy_data
|= M88E1000_EPSCR_TX_CLK_25
;
775 if ((phy
->revision
== 2) &&
776 (phy
->id
== M88E1111_I_PHY_ID
)) {
777 /* 82573L PHY - set the downshift counter to 5x. */
778 phy_data
&= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK
;
779 phy_data
|= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X
;
781 /* Configure Master and Slave downshift values */
782 phy_data
&= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK
|
783 M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK
);
784 phy_data
|= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X
|
785 M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X
);
787 ret_val
= e1e_wphy(hw
, M88E1000_EXT_PHY_SPEC_CTRL
, phy_data
);
792 if ((phy
->type
== e1000_phy_bm
) && (phy
->id
== BME1000_E_PHY_ID_R2
)) {
793 /* Set PHY page 0, register 29 to 0x0003 */
794 ret_val
= e1e_wphy(hw
, 29, 0x0003);
798 /* Set PHY page 0, register 30 to 0x0000 */
799 ret_val
= e1e_wphy(hw
, 30, 0x0000);
804 /* Commit the changes. */
805 if (phy
->ops
.commit
) {
806 ret_val
= phy
->ops
.commit(hw
);
808 e_dbg("Error committing the PHY changes\n");
813 if (phy
->type
== e1000_phy_82578
) {
814 ret_val
= e1e_rphy(hw
, M88E1000_EXT_PHY_SPEC_CTRL
, &phy_data
);
818 /* 82578 PHY - set the downshift count to 1x. */
819 phy_data
|= I82578_EPSCR_DOWNSHIFT_ENABLE
;
820 phy_data
&= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK
;
821 ret_val
= e1e_wphy(hw
, M88E1000_EXT_PHY_SPEC_CTRL
, phy_data
);
830 * e1000e_copper_link_setup_igp - Setup igp PHY's for copper link
831 * @hw: pointer to the HW structure
833 * Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
836 s32
e1000e_copper_link_setup_igp(struct e1000_hw
*hw
)
838 struct e1000_phy_info
*phy
= &hw
->phy
;
842 ret_val
= e1000_phy_hw_reset(hw
);
844 e_dbg("Error resetting the PHY.\n");
848 /* Wait 100ms for MAC to configure PHY from NVM settings, to avoid
849 * timeout issues when LFS is enabled.
853 /* disable lplu d0 during driver init */
854 if (hw
->phy
.ops
.set_d0_lplu_state
) {
855 ret_val
= hw
->phy
.ops
.set_d0_lplu_state(hw
, false);
857 e_dbg("Error Disabling LPLU D0\n");
861 /* Configure mdi-mdix settings */
862 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CTRL
, &data
);
866 data
&= ~IGP01E1000_PSCR_AUTO_MDIX
;
870 data
&= ~IGP01E1000_PSCR_FORCE_MDI_MDIX
;
873 data
|= IGP01E1000_PSCR_FORCE_MDI_MDIX
;
877 data
|= IGP01E1000_PSCR_AUTO_MDIX
;
880 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CTRL
, data
);
884 /* set auto-master slave resolution settings */
885 if (hw
->mac
.autoneg
) {
886 /* when autonegotiation advertisement is only 1000Mbps then we
887 * should disable SmartSpeed and enable Auto MasterSlave
888 * resolution as hardware default.
890 if (phy
->autoneg_advertised
== ADVERTISE_1000_FULL
) {
891 /* Disable SmartSpeed */
892 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
897 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
898 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
903 /* Set auto Master/Slave resolution process */
904 ret_val
= e1e_rphy(hw
, MII_CTRL1000
, &data
);
908 data
&= ~CTL1000_ENABLE_MASTER
;
909 ret_val
= e1e_wphy(hw
, MII_CTRL1000
, data
);
914 ret_val
= e1000_set_master_slave_mode(hw
);
921 * e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
922 * @hw: pointer to the HW structure
924 * Reads the MII auto-neg advertisement register and/or the 1000T control
925 * register and if the PHY is already setup for auto-negotiation, then
926 * return successful. Otherwise, setup advertisement and flow control to
927 * the appropriate values for the wanted auto-negotiation.
929 static s32
e1000_phy_setup_autoneg(struct e1000_hw
*hw
)
931 struct e1000_phy_info
*phy
= &hw
->phy
;
933 u16 mii_autoneg_adv_reg
;
934 u16 mii_1000t_ctrl_reg
= 0;
936 phy
->autoneg_advertised
&= phy
->autoneg_mask
;
938 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
939 ret_val
= e1e_rphy(hw
, MII_ADVERTISE
, &mii_autoneg_adv_reg
);
943 if (phy
->autoneg_mask
& ADVERTISE_1000_FULL
) {
944 /* Read the MII 1000Base-T Control Register (Address 9). */
945 ret_val
= e1e_rphy(hw
, MII_CTRL1000
, &mii_1000t_ctrl_reg
);
950 /* Need to parse both autoneg_advertised and fc and set up
951 * the appropriate PHY registers. First we will parse for
952 * autoneg_advertised software override. Since we can advertise
953 * a plethora of combinations, we need to check each bit
957 /* First we clear all the 10/100 mb speed bits in the Auto-Neg
958 * Advertisement Register (Address 4) and the 1000 mb speed bits in
959 * the 1000Base-T Control Register (Address 9).
961 mii_autoneg_adv_reg
&= ~(ADVERTISE_100FULL
|
963 ADVERTISE_10FULL
| ADVERTISE_10HALF
);
964 mii_1000t_ctrl_reg
&= ~(ADVERTISE_1000HALF
| ADVERTISE_1000FULL
);
966 e_dbg("autoneg_advertised %x\n", phy
->autoneg_advertised
);
968 /* Do we want to advertise 10 Mb Half Duplex? */
969 if (phy
->autoneg_advertised
& ADVERTISE_10_HALF
) {
970 e_dbg("Advertise 10mb Half duplex\n");
971 mii_autoneg_adv_reg
|= ADVERTISE_10HALF
;
974 /* Do we want to advertise 10 Mb Full Duplex? */
975 if (phy
->autoneg_advertised
& ADVERTISE_10_FULL
) {
976 e_dbg("Advertise 10mb Full duplex\n");
977 mii_autoneg_adv_reg
|= ADVERTISE_10FULL
;
980 /* Do we want to advertise 100 Mb Half Duplex? */
981 if (phy
->autoneg_advertised
& ADVERTISE_100_HALF
) {
982 e_dbg("Advertise 100mb Half duplex\n");
983 mii_autoneg_adv_reg
|= ADVERTISE_100HALF
;
986 /* Do we want to advertise 100 Mb Full Duplex? */
987 if (phy
->autoneg_advertised
& ADVERTISE_100_FULL
) {
988 e_dbg("Advertise 100mb Full duplex\n");
989 mii_autoneg_adv_reg
|= ADVERTISE_100FULL
;
992 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
993 if (phy
->autoneg_advertised
& ADVERTISE_1000_HALF
)
994 e_dbg("Advertise 1000mb Half duplex request denied!\n");
996 /* Do we want to advertise 1000 Mb Full Duplex? */
997 if (phy
->autoneg_advertised
& ADVERTISE_1000_FULL
) {
998 e_dbg("Advertise 1000mb Full duplex\n");
999 mii_1000t_ctrl_reg
|= ADVERTISE_1000FULL
;
1002 /* Check for a software override of the flow control settings, and
1003 * setup the PHY advertisement registers accordingly. If
1004 * auto-negotiation is enabled, then software will have to set the
1005 * "PAUSE" bits to the correct value in the Auto-Negotiation
1006 * Advertisement Register (MII_ADVERTISE) and re-start auto-
1009 * The possible values of the "fc" parameter are:
1010 * 0: Flow control is completely disabled
1011 * 1: Rx flow control is enabled (we can receive pause frames
1012 * but not send pause frames).
1013 * 2: Tx flow control is enabled (we can send pause frames
1014 * but we do not support receiving pause frames).
1015 * 3: Both Rx and Tx flow control (symmetric) are enabled.
1016 * other: No software override. The flow control configuration
1017 * in the EEPROM is used.
1019 switch (hw
->fc
.current_mode
) {
1021 /* Flow control (Rx & Tx) is completely disabled by a
1022 * software over-ride.
1024 mii_autoneg_adv_reg
&=
1025 ~(ADVERTISE_PAUSE_ASYM
| ADVERTISE_PAUSE_CAP
);
1027 case e1000_fc_rx_pause
:
1028 /* Rx Flow control is enabled, and Tx Flow control is
1029 * disabled, by a software over-ride.
1031 * Since there really isn't a way to advertise that we are
1032 * capable of Rx Pause ONLY, we will advertise that we
1033 * support both symmetric and asymmetric Rx PAUSE. Later
1034 * (in e1000e_config_fc_after_link_up) we will disable the
1035 * hw's ability to send PAUSE frames.
1037 mii_autoneg_adv_reg
|=
1038 (ADVERTISE_PAUSE_ASYM
| ADVERTISE_PAUSE_CAP
);
1040 case e1000_fc_tx_pause
:
1041 /* Tx Flow control is enabled, and Rx Flow control is
1042 * disabled, by a software over-ride.
1044 mii_autoneg_adv_reg
|= ADVERTISE_PAUSE_ASYM
;
1045 mii_autoneg_adv_reg
&= ~ADVERTISE_PAUSE_CAP
;
1048 /* Flow control (both Rx and Tx) is enabled by a software
1051 mii_autoneg_adv_reg
|=
1052 (ADVERTISE_PAUSE_ASYM
| ADVERTISE_PAUSE_CAP
);
1055 e_dbg("Flow control param set incorrectly\n");
1056 return -E1000_ERR_CONFIG
;
1059 ret_val
= e1e_wphy(hw
, MII_ADVERTISE
, mii_autoneg_adv_reg
);
1063 e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg
);
1065 if (phy
->autoneg_mask
& ADVERTISE_1000_FULL
)
1066 ret_val
= e1e_wphy(hw
, MII_CTRL1000
, mii_1000t_ctrl_reg
);
1072 * e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
1073 * @hw: pointer to the HW structure
1075 * Performs initial bounds checking on autoneg advertisement parameter, then
1076 * configure to advertise the full capability. Setup the PHY to autoneg
1077 * and restart the negotiation process between the link partner. If
1078 * autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
1080 static s32
e1000_copper_link_autoneg(struct e1000_hw
*hw
)
1082 struct e1000_phy_info
*phy
= &hw
->phy
;
1086 /* Perform some bounds checking on the autoneg advertisement
1089 phy
->autoneg_advertised
&= phy
->autoneg_mask
;
1091 /* If autoneg_advertised is zero, we assume it was not defaulted
1092 * by the calling code so we set to advertise full capability.
1094 if (!phy
->autoneg_advertised
)
1095 phy
->autoneg_advertised
= phy
->autoneg_mask
;
1097 e_dbg("Reconfiguring auto-neg advertisement params\n");
1098 ret_val
= e1000_phy_setup_autoneg(hw
);
1100 e_dbg("Error Setting up Auto-Negotiation\n");
1103 e_dbg("Restarting Auto-Neg\n");
1105 /* Restart auto-negotiation by setting the Auto Neg Enable bit and
1106 * the Auto Neg Restart bit in the PHY control register.
1108 ret_val
= e1e_rphy(hw
, MII_BMCR
, &phy_ctrl
);
1112 phy_ctrl
|= (BMCR_ANENABLE
| BMCR_ANRESTART
);
1113 ret_val
= e1e_wphy(hw
, MII_BMCR
, phy_ctrl
);
1117 /* Does the user want to wait for Auto-Neg to complete here, or
1118 * check at a later time (for example, callback routine).
1120 if (phy
->autoneg_wait_to_complete
) {
1121 ret_val
= e1000_wait_autoneg(hw
);
1123 e_dbg("Error while waiting for autoneg to complete\n");
1128 hw
->mac
.get_link_status
= true;
1134 * e1000e_setup_copper_link - Configure copper link settings
1135 * @hw: pointer to the HW structure
1137 * Calls the appropriate function to configure the link for auto-neg or forced
1138 * speed and duplex. Then we check for link, once link is established calls
1139 * to configure collision distance and flow control are called. If link is
1140 * not established, we return -E1000_ERR_PHY (-2).
1142 s32
e1000e_setup_copper_link(struct e1000_hw
*hw
)
1147 if (hw
->mac
.autoneg
) {
1148 /* Setup autoneg and flow control advertisement and perform
1151 ret_val
= e1000_copper_link_autoneg(hw
);
1155 /* PHY will be set to 10H, 10F, 100H or 100F
1156 * depending on user settings.
1158 e_dbg("Forcing Speed and Duplex\n");
1159 ret_val
= hw
->phy
.ops
.force_speed_duplex(hw
);
1161 e_dbg("Error Forcing Speed and Duplex\n");
1166 /* Check link status. Wait up to 100 microseconds for link to become
1169 ret_val
= e1000e_phy_has_link_generic(hw
, COPPER_LINK_UP_LIMIT
, 10,
1175 e_dbg("Valid link established!!!\n");
1176 hw
->mac
.ops
.config_collision_dist(hw
);
1177 ret_val
= e1000e_config_fc_after_link_up(hw
);
1179 e_dbg("Unable to establish link!!!\n");
1186 * e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1187 * @hw: pointer to the HW structure
1189 * Calls the PHY setup function to force speed and duplex. Clears the
1190 * auto-crossover to force MDI manually. Waits for link and returns
1191 * successful if link up is successful, else -E1000_ERR_PHY (-2).
1193 s32
e1000e_phy_force_speed_duplex_igp(struct e1000_hw
*hw
)
1195 struct e1000_phy_info
*phy
= &hw
->phy
;
1200 ret_val
= e1e_rphy(hw
, MII_BMCR
, &phy_data
);
1204 e1000e_phy_force_speed_duplex_setup(hw
, &phy_data
);
1206 ret_val
= e1e_wphy(hw
, MII_BMCR
, phy_data
);
1210 /* Clear Auto-Crossover to force MDI manually. IGP requires MDI
1211 * forced whenever speed and duplex are forced.
1213 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CTRL
, &phy_data
);
1217 phy_data
&= ~IGP01E1000_PSCR_AUTO_MDIX
;
1218 phy_data
&= ~IGP01E1000_PSCR_FORCE_MDI_MDIX
;
1220 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CTRL
, phy_data
);
1224 e_dbg("IGP PSCR: %X\n", phy_data
);
1228 if (phy
->autoneg_wait_to_complete
) {
1229 e_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
1231 ret_val
= e1000e_phy_has_link_generic(hw
, PHY_FORCE_LIMIT
,
1237 e_dbg("Link taking longer than expected.\n");
1240 ret_val
= e1000e_phy_has_link_generic(hw
, PHY_FORCE_LIMIT
,
1248 * e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1249 * @hw: pointer to the HW structure
1251 * Calls the PHY setup function to force speed and duplex. Clears the
1252 * auto-crossover to force MDI manually. Resets the PHY to commit the
1253 * changes. If time expires while waiting for link up, we reset the DSP.
1254 * After reset, TX_CLK and CRS on Tx must be set. Return successful upon
1255 * successful completion, else return corresponding error code.
1257 s32
e1000e_phy_force_speed_duplex_m88(struct e1000_hw
*hw
)
1259 struct e1000_phy_info
*phy
= &hw
->phy
;
1264 /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
1265 * forced whenever speed and duplex are forced.
1267 ret_val
= e1e_rphy(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_data
);
1271 phy_data
&= ~M88E1000_PSCR_AUTO_X_MODE
;
1272 ret_val
= e1e_wphy(hw
, M88E1000_PHY_SPEC_CTRL
, phy_data
);
1276 e_dbg("M88E1000 PSCR: %X\n", phy_data
);
1278 ret_val
= e1e_rphy(hw
, MII_BMCR
, &phy_data
);
1282 e1000e_phy_force_speed_duplex_setup(hw
, &phy_data
);
1284 ret_val
= e1e_wphy(hw
, MII_BMCR
, phy_data
);
1288 /* Reset the phy to commit changes. */
1289 if (hw
->phy
.ops
.commit
) {
1290 ret_val
= hw
->phy
.ops
.commit(hw
);
1295 if (phy
->autoneg_wait_to_complete
) {
1296 e_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
1298 ret_val
= e1000e_phy_has_link_generic(hw
, PHY_FORCE_LIMIT
,
1304 if (hw
->phy
.type
!= e1000_phy_m88
) {
1305 e_dbg("Link taking longer than expected.\n");
1307 /* We didn't get link.
1308 * Reset the DSP and cross our fingers.
1310 ret_val
= e1e_wphy(hw
, M88E1000_PHY_PAGE_SELECT
,
1314 ret_val
= e1000e_phy_reset_dsp(hw
);
1321 ret_val
= e1000e_phy_has_link_generic(hw
, PHY_FORCE_LIMIT
,
1327 if (hw
->phy
.type
!= e1000_phy_m88
)
1330 ret_val
= e1e_rphy(hw
, M88E1000_EXT_PHY_SPEC_CTRL
, &phy_data
);
1334 /* Resetting the phy means we need to re-force TX_CLK in the
1335 * Extended PHY Specific Control Register to 25MHz clock from
1336 * the reset value of 2.5MHz.
1338 phy_data
|= M88E1000_EPSCR_TX_CLK_25
;
1339 ret_val
= e1e_wphy(hw
, M88E1000_EXT_PHY_SPEC_CTRL
, phy_data
);
1343 /* In addition, we must re-enable CRS on Tx for both half and full
1346 ret_val
= e1e_rphy(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_data
);
1350 phy_data
|= M88E1000_PSCR_ASSERT_CRS_ON_TX
;
1351 ret_val
= e1e_wphy(hw
, M88E1000_PHY_SPEC_CTRL
, phy_data
);
1357 * e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex
1358 * @hw: pointer to the HW structure
1360 * Forces the speed and duplex settings of the PHY.
1361 * This is a function pointer entry point only called by
1362 * PHY setup routines.
1364 s32
e1000_phy_force_speed_duplex_ife(struct e1000_hw
*hw
)
1366 struct e1000_phy_info
*phy
= &hw
->phy
;
1371 ret_val
= e1e_rphy(hw
, MII_BMCR
, &data
);
1375 e1000e_phy_force_speed_duplex_setup(hw
, &data
);
1377 ret_val
= e1e_wphy(hw
, MII_BMCR
, data
);
1381 /* Disable MDI-X support for 10/100 */
1382 ret_val
= e1e_rphy(hw
, IFE_PHY_MDIX_CONTROL
, &data
);
1386 data
&= ~IFE_PMC_AUTO_MDIX
;
1387 data
&= ~IFE_PMC_FORCE_MDIX
;
1389 ret_val
= e1e_wphy(hw
, IFE_PHY_MDIX_CONTROL
, data
);
1393 e_dbg("IFE PMC: %X\n", data
);
1397 if (phy
->autoneg_wait_to_complete
) {
1398 e_dbg("Waiting for forced speed/duplex link on IFE phy.\n");
1400 ret_val
= e1000e_phy_has_link_generic(hw
, PHY_FORCE_LIMIT
,
1406 e_dbg("Link taking longer than expected.\n");
1409 ret_val
= e1000e_phy_has_link_generic(hw
, PHY_FORCE_LIMIT
,
1419 * e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1420 * @hw: pointer to the HW structure
1421 * @phy_ctrl: pointer to current value of MII_BMCR
1423 * Forces speed and duplex on the PHY by doing the following: disable flow
1424 * control, force speed/duplex on the MAC, disable auto speed detection,
1425 * disable auto-negotiation, configure duplex, configure speed, configure
1426 * the collision distance, write configuration to CTRL register. The
1427 * caller must write to the MII_BMCR register for these settings to
1430 void e1000e_phy_force_speed_duplex_setup(struct e1000_hw
*hw
, u16
*phy_ctrl
)
1432 struct e1000_mac_info
*mac
= &hw
->mac
;
1435 /* Turn off flow control when forcing speed/duplex */
1436 hw
->fc
.current_mode
= e1000_fc_none
;
1438 /* Force speed/duplex on the mac */
1440 ctrl
|= (E1000_CTRL_FRCSPD
| E1000_CTRL_FRCDPX
);
1441 ctrl
&= ~E1000_CTRL_SPD_SEL
;
1443 /* Disable Auto Speed Detection */
1444 ctrl
&= ~E1000_CTRL_ASDE
;
1446 /* Disable autoneg on the phy */
1447 *phy_ctrl
&= ~BMCR_ANENABLE
;
1449 /* Forcing Full or Half Duplex? */
1450 if (mac
->forced_speed_duplex
& E1000_ALL_HALF_DUPLEX
) {
1451 ctrl
&= ~E1000_CTRL_FD
;
1452 *phy_ctrl
&= ~BMCR_FULLDPLX
;
1453 e_dbg("Half Duplex\n");
1455 ctrl
|= E1000_CTRL_FD
;
1456 *phy_ctrl
|= BMCR_FULLDPLX
;
1457 e_dbg("Full Duplex\n");
1460 /* Forcing 10mb or 100mb? */
1461 if (mac
->forced_speed_duplex
& E1000_ALL_100_SPEED
) {
1462 ctrl
|= E1000_CTRL_SPD_100
;
1463 *phy_ctrl
|= BMCR_SPEED100
;
1464 *phy_ctrl
&= ~BMCR_SPEED1000
;
1465 e_dbg("Forcing 100mb\n");
1467 ctrl
&= ~(E1000_CTRL_SPD_1000
| E1000_CTRL_SPD_100
);
1468 *phy_ctrl
&= ~(BMCR_SPEED1000
| BMCR_SPEED100
);
1469 e_dbg("Forcing 10mb\n");
1472 hw
->mac
.ops
.config_collision_dist(hw
);
1478 * e1000e_set_d3_lplu_state - Sets low power link up state for D3
1479 * @hw: pointer to the HW structure
1480 * @active: boolean used to enable/disable lplu
1482 * Success returns 0, Failure returns 1
1484 * The low power link up (lplu) state is set to the power management level D3
1485 * and SmartSpeed is disabled when active is true, else clear lplu for D3
1486 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
1487 * is used during Dx states where the power conservation is most important.
1488 * During driver activity, SmartSpeed should be enabled so performance is
1491 s32
e1000e_set_d3_lplu_state(struct e1000_hw
*hw
, bool active
)
1493 struct e1000_phy_info
*phy
= &hw
->phy
;
1497 ret_val
= e1e_rphy(hw
, IGP02E1000_PHY_POWER_MGMT
, &data
);
1502 data
&= ~IGP02E1000_PM_D3_LPLU
;
1503 ret_val
= e1e_wphy(hw
, IGP02E1000_PHY_POWER_MGMT
, data
);
1506 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
1507 * during Dx states where the power conservation is most
1508 * important. During driver activity we should enable
1509 * SmartSpeed, so performance is maintained.
1511 if (phy
->smart_speed
== e1000_smart_speed_on
) {
1512 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1517 data
|= IGP01E1000_PSCFR_SMART_SPEED
;
1518 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1522 } else if (phy
->smart_speed
== e1000_smart_speed_off
) {
1523 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1528 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
1529 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1534 } else if ((phy
->autoneg_advertised
== E1000_ALL_SPEED_DUPLEX
) ||
1535 (phy
->autoneg_advertised
== E1000_ALL_NOT_GIG
) ||
1536 (phy
->autoneg_advertised
== E1000_ALL_10_SPEED
)) {
1537 data
|= IGP02E1000_PM_D3_LPLU
;
1538 ret_val
= e1e_wphy(hw
, IGP02E1000_PHY_POWER_MGMT
, data
);
1542 /* When LPLU is enabled, we should disable SmartSpeed */
1543 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, &data
);
1547 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
1548 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, data
);
1555 * e1000e_check_downshift - Checks whether a downshift in speed occurred
1556 * @hw: pointer to the HW structure
1558 * Success returns 0, Failure returns 1
1560 * A downshift is detected by querying the PHY link health.
1562 s32
e1000e_check_downshift(struct e1000_hw
*hw
)
1564 struct e1000_phy_info
*phy
= &hw
->phy
;
1566 u16 phy_data
, offset
, mask
;
1568 switch (phy
->type
) {
1570 case e1000_phy_gg82563
:
1572 case e1000_phy_82578
:
1573 offset
= M88E1000_PHY_SPEC_STATUS
;
1574 mask
= M88E1000_PSSR_DOWNSHIFT
;
1576 case e1000_phy_igp_2
:
1577 case e1000_phy_igp_3
:
1578 offset
= IGP01E1000_PHY_LINK_HEALTH
;
1579 mask
= IGP01E1000_PLHR_SS_DOWNGRADE
;
1582 /* speed downshift not supported */
1583 phy
->speed_downgraded
= false;
1587 ret_val
= e1e_rphy(hw
, offset
, &phy_data
);
1590 phy
->speed_downgraded
= !!(phy_data
& mask
);
1596 * e1000_check_polarity_m88 - Checks the polarity.
1597 * @hw: pointer to the HW structure
1599 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1601 * Polarity is determined based on the PHY specific status register.
1603 s32
e1000_check_polarity_m88(struct e1000_hw
*hw
)
1605 struct e1000_phy_info
*phy
= &hw
->phy
;
1609 ret_val
= e1e_rphy(hw
, M88E1000_PHY_SPEC_STATUS
, &data
);
1612 phy
->cable_polarity
= (data
& M88E1000_PSSR_REV_POLARITY
)
1613 ? e1000_rev_polarity_reversed
1614 : e1000_rev_polarity_normal
;
1620 * e1000_check_polarity_igp - Checks the polarity.
1621 * @hw: pointer to the HW structure
1623 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1625 * Polarity is determined based on the PHY port status register, and the
1626 * current speed (since there is no polarity at 100Mbps).
1628 s32
e1000_check_polarity_igp(struct e1000_hw
*hw
)
1630 struct e1000_phy_info
*phy
= &hw
->phy
;
1632 u16 data
, offset
, mask
;
1634 /* Polarity is determined based on the speed of
1637 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_STATUS
, &data
);
1641 if ((data
& IGP01E1000_PSSR_SPEED_MASK
) ==
1642 IGP01E1000_PSSR_SPEED_1000MBPS
) {
1643 offset
= IGP01E1000_PHY_PCS_INIT_REG
;
1644 mask
= IGP01E1000_PHY_POLARITY_MASK
;
1646 /* This really only applies to 10Mbps since
1647 * there is no polarity for 100Mbps (always 0).
1649 offset
= IGP01E1000_PHY_PORT_STATUS
;
1650 mask
= IGP01E1000_PSSR_POLARITY_REVERSED
;
1653 ret_val
= e1e_rphy(hw
, offset
, &data
);
1656 phy
->cable_polarity
= (data
& mask
)
1657 ? e1000_rev_polarity_reversed
1658 : e1000_rev_polarity_normal
;
1664 * e1000_check_polarity_ife - Check cable polarity for IFE PHY
1665 * @hw: pointer to the HW structure
1667 * Polarity is determined on the polarity reversal feature being enabled.
1669 s32
e1000_check_polarity_ife(struct e1000_hw
*hw
)
1671 struct e1000_phy_info
*phy
= &hw
->phy
;
1673 u16 phy_data
, offset
, mask
;
1675 /* Polarity is determined based on the reversal feature being enabled.
1677 if (phy
->polarity_correction
) {
1678 offset
= IFE_PHY_EXTENDED_STATUS_CONTROL
;
1679 mask
= IFE_PESC_POLARITY_REVERSED
;
1681 offset
= IFE_PHY_SPECIAL_CONTROL
;
1682 mask
= IFE_PSC_FORCE_POLARITY
;
1685 ret_val
= e1e_rphy(hw
, offset
, &phy_data
);
1688 phy
->cable_polarity
= (phy_data
& mask
)
1689 ? e1000_rev_polarity_reversed
1690 : e1000_rev_polarity_normal
;
1696 * e1000_wait_autoneg - Wait for auto-neg completion
1697 * @hw: pointer to the HW structure
1699 * Waits for auto-negotiation to complete or for the auto-negotiation time
1700 * limit to expire, which ever happens first.
1702 static s32
e1000_wait_autoneg(struct e1000_hw
*hw
)
1707 /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1708 for (i
= PHY_AUTO_NEG_LIMIT
; i
> 0; i
--) {
1709 ret_val
= e1e_rphy(hw
, MII_BMSR
, &phy_status
);
1712 ret_val
= e1e_rphy(hw
, MII_BMSR
, &phy_status
);
1715 if (phy_status
& BMSR_ANEGCOMPLETE
)
1720 /* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1727 * e1000e_phy_has_link_generic - Polls PHY for link
1728 * @hw: pointer to the HW structure
1729 * @iterations: number of times to poll for link
1730 * @usec_interval: delay between polling attempts
1731 * @success: pointer to whether polling was successful or not
1733 * Polls the PHY status register for link, 'iterations' number of times.
1735 s32
e1000e_phy_has_link_generic(struct e1000_hw
*hw
, u32 iterations
,
1736 u32 usec_interval
, bool *success
)
1741 for (i
= 0; i
< iterations
; i
++) {
1742 /* Some PHYs require the MII_BMSR register to be read
1743 * twice due to the link bit being sticky. No harm doing
1744 * it across the board.
1746 ret_val
= e1e_rphy(hw
, MII_BMSR
, &phy_status
);
1748 /* If the first read fails, another entity may have
1749 * ownership of the resources, wait and try again to
1750 * see if they have relinquished the resources yet.
1752 udelay(usec_interval
);
1753 ret_val
= e1e_rphy(hw
, MII_BMSR
, &phy_status
);
1756 if (phy_status
& BMSR_LSTATUS
)
1758 if (usec_interval
>= 1000)
1759 mdelay(usec_interval
/1000);
1761 udelay(usec_interval
);
1764 *success
= (i
< iterations
);
1770 * e1000e_get_cable_length_m88 - Determine cable length for m88 PHY
1771 * @hw: pointer to the HW structure
1773 * Reads the PHY specific status register to retrieve the cable length
1774 * information. The cable length is determined by averaging the minimum and
1775 * maximum values to get the "average" cable length. The m88 PHY has four
1776 * possible cable length values, which are:
1777 * Register Value Cable Length
1781 * 3 110 - 140 meters
1784 s32
e1000e_get_cable_length_m88(struct e1000_hw
*hw
)
1786 struct e1000_phy_info
*phy
= &hw
->phy
;
1788 u16 phy_data
, index
;
1790 ret_val
= e1e_rphy(hw
, M88E1000_PHY_SPEC_STATUS
, &phy_data
);
1794 index
= (phy_data
& M88E1000_PSSR_CABLE_LENGTH
) >>
1795 M88E1000_PSSR_CABLE_LENGTH_SHIFT
;
1797 if (index
>= M88E1000_CABLE_LENGTH_TABLE_SIZE
- 1)
1798 return -E1000_ERR_PHY
;
1800 phy
->min_cable_length
= e1000_m88_cable_length_table
[index
];
1801 phy
->max_cable_length
= e1000_m88_cable_length_table
[index
+ 1];
1803 phy
->cable_length
= (phy
->min_cable_length
+ phy
->max_cable_length
) / 2;
1809 * e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1810 * @hw: pointer to the HW structure
1812 * The automatic gain control (agc) normalizes the amplitude of the
1813 * received signal, adjusting for the attenuation produced by the
1814 * cable. By reading the AGC registers, which represent the
1815 * combination of coarse and fine gain value, the value can be put
1816 * into a lookup table to obtain the approximate cable length
1819 s32
e1000e_get_cable_length_igp_2(struct e1000_hw
*hw
)
1821 struct e1000_phy_info
*phy
= &hw
->phy
;
1823 u16 phy_data
, i
, agc_value
= 0;
1824 u16 cur_agc_index
, max_agc_index
= 0;
1825 u16 min_agc_index
= IGP02E1000_CABLE_LENGTH_TABLE_SIZE
- 1;
1826 static const u16 agc_reg_array
[IGP02E1000_PHY_CHANNEL_NUM
] = {
1827 IGP02E1000_PHY_AGC_A
,
1828 IGP02E1000_PHY_AGC_B
,
1829 IGP02E1000_PHY_AGC_C
,
1830 IGP02E1000_PHY_AGC_D
1833 /* Read the AGC registers for all channels */
1834 for (i
= 0; i
< IGP02E1000_PHY_CHANNEL_NUM
; i
++) {
1835 ret_val
= e1e_rphy(hw
, agc_reg_array
[i
], &phy_data
);
1839 /* Getting bits 15:9, which represent the combination of
1840 * coarse and fine gain values. The result is a number
1841 * that can be put into the lookup table to obtain the
1842 * approximate cable length.
1844 cur_agc_index
= (phy_data
>> IGP02E1000_AGC_LENGTH_SHIFT
) &
1845 IGP02E1000_AGC_LENGTH_MASK
;
1847 /* Array index bound check. */
1848 if ((cur_agc_index
>= IGP02E1000_CABLE_LENGTH_TABLE_SIZE
) ||
1849 (cur_agc_index
== 0))
1850 return -E1000_ERR_PHY
;
1852 /* Remove min & max AGC values from calculation. */
1853 if (e1000_igp_2_cable_length_table
[min_agc_index
] >
1854 e1000_igp_2_cable_length_table
[cur_agc_index
])
1855 min_agc_index
= cur_agc_index
;
1856 if (e1000_igp_2_cable_length_table
[max_agc_index
] <
1857 e1000_igp_2_cable_length_table
[cur_agc_index
])
1858 max_agc_index
= cur_agc_index
;
1860 agc_value
+= e1000_igp_2_cable_length_table
[cur_agc_index
];
1863 agc_value
-= (e1000_igp_2_cable_length_table
[min_agc_index
] +
1864 e1000_igp_2_cable_length_table
[max_agc_index
]);
1865 agc_value
/= (IGP02E1000_PHY_CHANNEL_NUM
- 2);
1867 /* Calculate cable length with the error range of +/- 10 meters. */
1868 phy
->min_cable_length
= ((agc_value
- IGP02E1000_AGC_RANGE
) > 0) ?
1869 (agc_value
- IGP02E1000_AGC_RANGE
) : 0;
1870 phy
->max_cable_length
= agc_value
+ IGP02E1000_AGC_RANGE
;
1872 phy
->cable_length
= (phy
->min_cable_length
+ phy
->max_cable_length
) / 2;
1878 * e1000e_get_phy_info_m88 - Retrieve PHY information
1879 * @hw: pointer to the HW structure
1881 * Valid for only copper links. Read the PHY status register (sticky read)
1882 * to verify that link is up. Read the PHY special control register to
1883 * determine the polarity and 10base-T extended distance. Read the PHY
1884 * special status register to determine MDI/MDIx and current speed. If
1885 * speed is 1000, then determine cable length, local and remote receiver.
1887 s32
e1000e_get_phy_info_m88(struct e1000_hw
*hw
)
1889 struct e1000_phy_info
*phy
= &hw
->phy
;
1894 if (phy
->media_type
!= e1000_media_type_copper
) {
1895 e_dbg("Phy info is only valid for copper media\n");
1896 return -E1000_ERR_CONFIG
;
1899 ret_val
= e1000e_phy_has_link_generic(hw
, 1, 0, &link
);
1904 e_dbg("Phy info is only valid if link is up\n");
1905 return -E1000_ERR_CONFIG
;
1908 ret_val
= e1e_rphy(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_data
);
1912 phy
->polarity_correction
= !!(phy_data
&
1913 M88E1000_PSCR_POLARITY_REVERSAL
);
1915 ret_val
= e1000_check_polarity_m88(hw
);
1919 ret_val
= e1e_rphy(hw
, M88E1000_PHY_SPEC_STATUS
, &phy_data
);
1923 phy
->is_mdix
= !!(phy_data
& M88E1000_PSSR_MDIX
);
1925 if ((phy_data
& M88E1000_PSSR_SPEED
) == M88E1000_PSSR_1000MBS
) {
1926 ret_val
= hw
->phy
.ops
.get_cable_length(hw
);
1930 ret_val
= e1e_rphy(hw
, MII_STAT1000
, &phy_data
);
1934 phy
->local_rx
= (phy_data
& LPA_1000LOCALRXOK
)
1935 ? e1000_1000t_rx_status_ok
: e1000_1000t_rx_status_not_ok
;
1937 phy
->remote_rx
= (phy_data
& LPA_1000REMRXOK
)
1938 ? e1000_1000t_rx_status_ok
: e1000_1000t_rx_status_not_ok
;
1940 /* Set values to "undefined" */
1941 phy
->cable_length
= E1000_CABLE_LENGTH_UNDEFINED
;
1942 phy
->local_rx
= e1000_1000t_rx_status_undefined
;
1943 phy
->remote_rx
= e1000_1000t_rx_status_undefined
;
1950 * e1000e_get_phy_info_igp - Retrieve igp PHY information
1951 * @hw: pointer to the HW structure
1953 * Read PHY status to determine if link is up. If link is up, then
1954 * set/determine 10base-T extended distance and polarity correction. Read
1955 * PHY port status to determine MDI/MDIx and speed. Based on the speed,
1956 * determine on the cable length, local and remote receiver.
1958 s32
e1000e_get_phy_info_igp(struct e1000_hw
*hw
)
1960 struct e1000_phy_info
*phy
= &hw
->phy
;
1965 ret_val
= e1000e_phy_has_link_generic(hw
, 1, 0, &link
);
1970 e_dbg("Phy info is only valid if link is up\n");
1971 return -E1000_ERR_CONFIG
;
1974 phy
->polarity_correction
= true;
1976 ret_val
= e1000_check_polarity_igp(hw
);
1980 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_STATUS
, &data
);
1984 phy
->is_mdix
= !!(data
& IGP01E1000_PSSR_MDIX
);
1986 if ((data
& IGP01E1000_PSSR_SPEED_MASK
) ==
1987 IGP01E1000_PSSR_SPEED_1000MBPS
) {
1988 ret_val
= phy
->ops
.get_cable_length(hw
);
1992 ret_val
= e1e_rphy(hw
, MII_STAT1000
, &data
);
1996 phy
->local_rx
= (data
& LPA_1000LOCALRXOK
)
1997 ? e1000_1000t_rx_status_ok
: e1000_1000t_rx_status_not_ok
;
1999 phy
->remote_rx
= (data
& LPA_1000REMRXOK
)
2000 ? e1000_1000t_rx_status_ok
: e1000_1000t_rx_status_not_ok
;
2002 phy
->cable_length
= E1000_CABLE_LENGTH_UNDEFINED
;
2003 phy
->local_rx
= e1000_1000t_rx_status_undefined
;
2004 phy
->remote_rx
= e1000_1000t_rx_status_undefined
;
2011 * e1000_get_phy_info_ife - Retrieves various IFE PHY states
2012 * @hw: pointer to the HW structure
2014 * Populates "phy" structure with various feature states.
2016 s32
e1000_get_phy_info_ife(struct e1000_hw
*hw
)
2018 struct e1000_phy_info
*phy
= &hw
->phy
;
2023 ret_val
= e1000e_phy_has_link_generic(hw
, 1, 0, &link
);
2028 e_dbg("Phy info is only valid if link is up\n");
2029 return -E1000_ERR_CONFIG
;
2032 ret_val
= e1e_rphy(hw
, IFE_PHY_SPECIAL_CONTROL
, &data
);
2035 phy
->polarity_correction
= !(data
& IFE_PSC_AUTO_POLARITY_DISABLE
);
2037 if (phy
->polarity_correction
) {
2038 ret_val
= e1000_check_polarity_ife(hw
);
2042 /* Polarity is forced */
2043 phy
->cable_polarity
= (data
& IFE_PSC_FORCE_POLARITY
)
2044 ? e1000_rev_polarity_reversed
2045 : e1000_rev_polarity_normal
;
2048 ret_val
= e1e_rphy(hw
, IFE_PHY_MDIX_CONTROL
, &data
);
2052 phy
->is_mdix
= !!(data
& IFE_PMC_MDIX_STATUS
);
2054 /* The following parameters are undefined for 10/100 operation. */
2055 phy
->cable_length
= E1000_CABLE_LENGTH_UNDEFINED
;
2056 phy
->local_rx
= e1000_1000t_rx_status_undefined
;
2057 phy
->remote_rx
= e1000_1000t_rx_status_undefined
;
2063 * e1000e_phy_sw_reset - PHY software reset
2064 * @hw: pointer to the HW structure
2066 * Does a software reset of the PHY by reading the PHY control register and
2067 * setting/write the control register reset bit to the PHY.
2069 s32
e1000e_phy_sw_reset(struct e1000_hw
*hw
)
2074 ret_val
= e1e_rphy(hw
, MII_BMCR
, &phy_ctrl
);
2078 phy_ctrl
|= BMCR_RESET
;
2079 ret_val
= e1e_wphy(hw
, MII_BMCR
, phy_ctrl
);
2089 * e1000e_phy_hw_reset_generic - PHY hardware reset
2090 * @hw: pointer to the HW structure
2092 * Verify the reset block is not blocking us from resetting. Acquire
2093 * semaphore (if necessary) and read/set/write the device control reset
2094 * bit in the PHY. Wait the appropriate delay time for the device to
2095 * reset and release the semaphore (if necessary).
2097 s32
e1000e_phy_hw_reset_generic(struct e1000_hw
*hw
)
2099 struct e1000_phy_info
*phy
= &hw
->phy
;
2103 if (phy
->ops
.check_reset_block
) {
2104 ret_val
= phy
->ops
.check_reset_block(hw
);
2109 ret_val
= phy
->ops
.acquire(hw
);
2114 ew32(CTRL
, ctrl
| E1000_CTRL_PHY_RST
);
2117 udelay(phy
->reset_delay_us
);
2124 phy
->ops
.release(hw
);
2126 return phy
->ops
.get_cfg_done(hw
);
2130 * e1000e_get_cfg_done_generic - Generic configuration done
2131 * @hw: pointer to the HW structure
2133 * Generic function to wait 10 milli-seconds for configuration to complete
2134 * and return success.
2136 s32
e1000e_get_cfg_done_generic(struct e1000_hw __always_unused
*hw
)
2144 * e1000e_phy_init_script_igp3 - Inits the IGP3 PHY
2145 * @hw: pointer to the HW structure
2147 * Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
2149 s32
e1000e_phy_init_script_igp3(struct e1000_hw
*hw
)
2151 e_dbg("Running IGP 3 PHY init script\n");
2153 /* PHY init IGP 3 */
2154 /* Enable rise/fall, 10-mode work in class-A */
2155 e1e_wphy(hw
, 0x2F5B, 0x9018);
2156 /* Remove all caps from Replica path filter */
2157 e1e_wphy(hw
, 0x2F52, 0x0000);
2158 /* Bias trimming for ADC, AFE and Driver (Default) */
2159 e1e_wphy(hw
, 0x2FB1, 0x8B24);
2160 /* Increase Hybrid poly bias */
2161 e1e_wphy(hw
, 0x2FB2, 0xF8F0);
2162 /* Add 4% to Tx amplitude in Gig mode */
2163 e1e_wphy(hw
, 0x2010, 0x10B0);
2164 /* Disable trimming (TTT) */
2165 e1e_wphy(hw
, 0x2011, 0x0000);
2166 /* Poly DC correction to 94.6% + 2% for all channels */
2167 e1e_wphy(hw
, 0x20DD, 0x249A);
2168 /* ABS DC correction to 95.9% */
2169 e1e_wphy(hw
, 0x20DE, 0x00D3);
2170 /* BG temp curve trim */
2171 e1e_wphy(hw
, 0x28B4, 0x04CE);
2172 /* Increasing ADC OPAMP stage 1 currents to max */
2173 e1e_wphy(hw
, 0x2F70, 0x29E4);
2174 /* Force 1000 ( required for enabling PHY regs configuration) */
2175 e1e_wphy(hw
, 0x0000, 0x0140);
2176 /* Set upd_freq to 6 */
2177 e1e_wphy(hw
, 0x1F30, 0x1606);
2179 e1e_wphy(hw
, 0x1F31, 0xB814);
2180 /* Disable adaptive fixed FFE (Default) */
2181 e1e_wphy(hw
, 0x1F35, 0x002A);
2182 /* Enable FFE hysteresis */
2183 e1e_wphy(hw
, 0x1F3E, 0x0067);
2184 /* Fixed FFE for short cable lengths */
2185 e1e_wphy(hw
, 0x1F54, 0x0065);
2186 /* Fixed FFE for medium cable lengths */
2187 e1e_wphy(hw
, 0x1F55, 0x002A);
2188 /* Fixed FFE for long cable lengths */
2189 e1e_wphy(hw
, 0x1F56, 0x002A);
2190 /* Enable Adaptive Clip Threshold */
2191 e1e_wphy(hw
, 0x1F72, 0x3FB0);
2192 /* AHT reset limit to 1 */
2193 e1e_wphy(hw
, 0x1F76, 0xC0FF);
2194 /* Set AHT master delay to 127 msec */
2195 e1e_wphy(hw
, 0x1F77, 0x1DEC);
2196 /* Set scan bits for AHT */
2197 e1e_wphy(hw
, 0x1F78, 0xF9EF);
2198 /* Set AHT Preset bits */
2199 e1e_wphy(hw
, 0x1F79, 0x0210);
2200 /* Change integ_factor of channel A to 3 */
2201 e1e_wphy(hw
, 0x1895, 0x0003);
2202 /* Change prop_factor of channels BCD to 8 */
2203 e1e_wphy(hw
, 0x1796, 0x0008);
2204 /* Change cg_icount + enable integbp for channels BCD */
2205 e1e_wphy(hw
, 0x1798, 0xD008);
2206 /* Change cg_icount + enable integbp + change prop_factor_master
2207 * to 8 for channel A
2209 e1e_wphy(hw
, 0x1898, 0xD918);
2210 /* Disable AHT in Slave mode on channel A */
2211 e1e_wphy(hw
, 0x187A, 0x0800);
2212 /* Enable LPLU and disable AN to 1000 in non-D0a states,
2215 e1e_wphy(hw
, 0x0019, 0x008D);
2216 /* Enable restart AN on an1000_dis change */
2217 e1e_wphy(hw
, 0x001B, 0x2080);
2218 /* Enable wh_fifo read clock in 10/100 modes */
2219 e1e_wphy(hw
, 0x0014, 0x0045);
2220 /* Restart AN, Speed selection is 1000 */
2221 e1e_wphy(hw
, 0x0000, 0x1340);
2227 * e1000e_get_phy_type_from_id - Get PHY type from id
2228 * @phy_id: phy_id read from the phy
2230 * Returns the phy type from the id.
2232 enum e1000_phy_type
e1000e_get_phy_type_from_id(u32 phy_id
)
2234 enum e1000_phy_type phy_type
= e1000_phy_unknown
;
2237 case M88E1000_I_PHY_ID
:
2238 case M88E1000_E_PHY_ID
:
2239 case M88E1111_I_PHY_ID
:
2240 case M88E1011_I_PHY_ID
:
2241 phy_type
= e1000_phy_m88
;
2243 case IGP01E1000_I_PHY_ID
: /* IGP 1 & 2 share this */
2244 phy_type
= e1000_phy_igp_2
;
2246 case GG82563_E_PHY_ID
:
2247 phy_type
= e1000_phy_gg82563
;
2249 case IGP03E1000_E_PHY_ID
:
2250 phy_type
= e1000_phy_igp_3
;
2253 case IFE_PLUS_E_PHY_ID
:
2254 case IFE_C_E_PHY_ID
:
2255 phy_type
= e1000_phy_ife
;
2257 case BME1000_E_PHY_ID
:
2258 case BME1000_E_PHY_ID_R2
:
2259 phy_type
= e1000_phy_bm
;
2261 case I82578_E_PHY_ID
:
2262 phy_type
= e1000_phy_82578
;
2264 case I82577_E_PHY_ID
:
2265 phy_type
= e1000_phy_82577
;
2267 case I82579_E_PHY_ID
:
2268 phy_type
= e1000_phy_82579
;
2271 phy_type
= e1000_phy_i217
;
2274 phy_type
= e1000_phy_unknown
;
2281 * e1000e_determine_phy_address - Determines PHY address.
2282 * @hw: pointer to the HW structure
2284 * This uses a trial and error method to loop through possible PHY
2285 * addresses. It tests each by reading the PHY ID registers and
2286 * checking for a match.
2288 s32
e1000e_determine_phy_address(struct e1000_hw
*hw
)
2292 enum e1000_phy_type phy_type
= e1000_phy_unknown
;
2294 hw
->phy
.id
= phy_type
;
2296 for (phy_addr
= 0; phy_addr
< E1000_MAX_PHY_ADDR
; phy_addr
++) {
2297 hw
->phy
.addr
= phy_addr
;
2301 e1000e_get_phy_id(hw
);
2302 phy_type
= e1000e_get_phy_type_from_id(hw
->phy
.id
);
2304 /* If phy_type is valid, break - we found our
2307 if (phy_type
!= e1000_phy_unknown
)
2310 usleep_range(1000, 2000);
2315 return -E1000_ERR_PHY_TYPE
;
2319 * e1000_get_phy_addr_for_bm_page - Retrieve PHY page address
2320 * @page: page to access
2322 * Returns the phy address for the page requested.
2324 static u32
e1000_get_phy_addr_for_bm_page(u32 page
, u32 reg
)
2328 if ((page
>= 768) || (page
== 0 && reg
== 25) || (reg
== 31))
2335 * e1000e_write_phy_reg_bm - Write BM PHY register
2336 * @hw: pointer to the HW structure
2337 * @offset: register offset to write to
2338 * @data: data to write at register offset
2340 * Acquires semaphore, if necessary, then writes the data to PHY register
2341 * at the offset. Release any acquired semaphores before exiting.
2343 s32
e1000e_write_phy_reg_bm(struct e1000_hw
*hw
, u32 offset
, u16 data
)
2346 u32 page
= offset
>> IGP_PAGE_SHIFT
;
2348 ret_val
= hw
->phy
.ops
.acquire(hw
);
2352 /* Page 800 works differently than the rest so it has its own func */
2353 if (page
== BM_WUC_PAGE
) {
2354 ret_val
= e1000_access_phy_wakeup_reg_bm(hw
, offset
, &data
,
2359 hw
->phy
.addr
= e1000_get_phy_addr_for_bm_page(page
, offset
);
2361 if (offset
> MAX_PHY_MULTI_PAGE_REG
) {
2362 u32 page_shift
, page_select
;
2364 /* Page select is register 31 for phy address 1 and 22 for
2365 * phy address 2 and 3. Page select is shifted only for
2368 if (hw
->phy
.addr
== 1) {
2369 page_shift
= IGP_PAGE_SHIFT
;
2370 page_select
= IGP01E1000_PHY_PAGE_SELECT
;
2373 page_select
= BM_PHY_PAGE_SELECT
;
2376 /* Page is shifted left, PHY expects (page x 32) */
2377 ret_val
= e1000e_write_phy_reg_mdic(hw
, page_select
,
2378 (page
<< page_shift
));
2383 ret_val
= e1000e_write_phy_reg_mdic(hw
, MAX_PHY_REG_ADDRESS
& offset
,
2387 hw
->phy
.ops
.release(hw
);
2392 * e1000e_read_phy_reg_bm - Read BM PHY register
2393 * @hw: pointer to the HW structure
2394 * @offset: register offset to be read
2395 * @data: pointer to the read data
2397 * Acquires semaphore, if necessary, then reads the PHY register at offset
2398 * and storing the retrieved information in data. Release any acquired
2399 * semaphores before exiting.
2401 s32
e1000e_read_phy_reg_bm(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
2404 u32 page
= offset
>> IGP_PAGE_SHIFT
;
2406 ret_val
= hw
->phy
.ops
.acquire(hw
);
2410 /* Page 800 works differently than the rest so it has its own func */
2411 if (page
== BM_WUC_PAGE
) {
2412 ret_val
= e1000_access_phy_wakeup_reg_bm(hw
, offset
, data
,
2417 hw
->phy
.addr
= e1000_get_phy_addr_for_bm_page(page
, offset
);
2419 if (offset
> MAX_PHY_MULTI_PAGE_REG
) {
2420 u32 page_shift
, page_select
;
2422 /* Page select is register 31 for phy address 1 and 22 for
2423 * phy address 2 and 3. Page select is shifted only for
2426 if (hw
->phy
.addr
== 1) {
2427 page_shift
= IGP_PAGE_SHIFT
;
2428 page_select
= IGP01E1000_PHY_PAGE_SELECT
;
2431 page_select
= BM_PHY_PAGE_SELECT
;
2434 /* Page is shifted left, PHY expects (page x 32) */
2435 ret_val
= e1000e_write_phy_reg_mdic(hw
, page_select
,
2436 (page
<< page_shift
));
2441 ret_val
= e1000e_read_phy_reg_mdic(hw
, MAX_PHY_REG_ADDRESS
& offset
,
2444 hw
->phy
.ops
.release(hw
);
2449 * e1000e_read_phy_reg_bm2 - Read BM PHY register
2450 * @hw: pointer to the HW structure
2451 * @offset: register offset to be read
2452 * @data: pointer to the read data
2454 * Acquires semaphore, if necessary, then reads the PHY register at offset
2455 * and storing the retrieved information in data. Release any acquired
2456 * semaphores before exiting.
2458 s32
e1000e_read_phy_reg_bm2(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
2461 u16 page
= (u16
)(offset
>> IGP_PAGE_SHIFT
);
2463 ret_val
= hw
->phy
.ops
.acquire(hw
);
2467 /* Page 800 works differently than the rest so it has its own func */
2468 if (page
== BM_WUC_PAGE
) {
2469 ret_val
= e1000_access_phy_wakeup_reg_bm(hw
, offset
, data
,
2476 if (offset
> MAX_PHY_MULTI_PAGE_REG
) {
2477 /* Page is shifted left, PHY expects (page x 32) */
2478 ret_val
= e1000e_write_phy_reg_mdic(hw
, BM_PHY_PAGE_SELECT
,
2485 ret_val
= e1000e_read_phy_reg_mdic(hw
, MAX_PHY_REG_ADDRESS
& offset
,
2488 hw
->phy
.ops
.release(hw
);
2493 * e1000e_write_phy_reg_bm2 - Write BM PHY register
2494 * @hw: pointer to the HW structure
2495 * @offset: register offset to write to
2496 * @data: data to write at register offset
2498 * Acquires semaphore, if necessary, then writes the data to PHY register
2499 * at the offset. Release any acquired semaphores before exiting.
2501 s32
e1000e_write_phy_reg_bm2(struct e1000_hw
*hw
, u32 offset
, u16 data
)
2504 u16 page
= (u16
)(offset
>> IGP_PAGE_SHIFT
);
2506 ret_val
= hw
->phy
.ops
.acquire(hw
);
2510 /* Page 800 works differently than the rest so it has its own func */
2511 if (page
== BM_WUC_PAGE
) {
2512 ret_val
= e1000_access_phy_wakeup_reg_bm(hw
, offset
, &data
,
2519 if (offset
> MAX_PHY_MULTI_PAGE_REG
) {
2520 /* Page is shifted left, PHY expects (page x 32) */
2521 ret_val
= e1000e_write_phy_reg_mdic(hw
, BM_PHY_PAGE_SELECT
,
2528 ret_val
= e1000e_write_phy_reg_mdic(hw
, MAX_PHY_REG_ADDRESS
& offset
,
2532 hw
->phy
.ops
.release(hw
);
2537 * e1000_enable_phy_wakeup_reg_access_bm - enable access to BM wakeup registers
2538 * @hw: pointer to the HW structure
2539 * @phy_reg: pointer to store original contents of BM_WUC_ENABLE_REG
2541 * Assumes semaphore already acquired and phy_reg points to a valid memory
2542 * address to store contents of the BM_WUC_ENABLE_REG register.
2544 s32
e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw
*hw
, u16
*phy_reg
)
2549 /* All page select, port ctrl and wakeup registers use phy address 1 */
2552 /* Select Port Control Registers page */
2553 ret_val
= e1000_set_page_igp(hw
, (BM_PORT_CTRL_PAGE
<< IGP_PAGE_SHIFT
));
2555 e_dbg("Could not set Port Control page\n");
2559 ret_val
= e1000e_read_phy_reg_mdic(hw
, BM_WUC_ENABLE_REG
, phy_reg
);
2561 e_dbg("Could not read PHY register %d.%d\n",
2562 BM_PORT_CTRL_PAGE
, BM_WUC_ENABLE_REG
);
2566 /* Enable both PHY wakeup mode and Wakeup register page writes.
2567 * Prevent a power state change by disabling ME and Host PHY wakeup.
2570 temp
|= BM_WUC_ENABLE_BIT
;
2571 temp
&= ~(BM_WUC_ME_WU_BIT
| BM_WUC_HOST_WU_BIT
);
2573 ret_val
= e1000e_write_phy_reg_mdic(hw
, BM_WUC_ENABLE_REG
, temp
);
2575 e_dbg("Could not write PHY register %d.%d\n",
2576 BM_PORT_CTRL_PAGE
, BM_WUC_ENABLE_REG
);
2580 /* Select Host Wakeup Registers page - caller now able to write
2581 * registers on the Wakeup registers page
2583 return e1000_set_page_igp(hw
, (BM_WUC_PAGE
<< IGP_PAGE_SHIFT
));
2587 * e1000_disable_phy_wakeup_reg_access_bm - disable access to BM wakeup regs
2588 * @hw: pointer to the HW structure
2589 * @phy_reg: pointer to original contents of BM_WUC_ENABLE_REG
2591 * Restore BM_WUC_ENABLE_REG to its original value.
2593 * Assumes semaphore already acquired and *phy_reg is the contents of the
2594 * BM_WUC_ENABLE_REG before register(s) on BM_WUC_PAGE were accessed by
2597 s32
e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw
*hw
, u16
*phy_reg
)
2601 /* Select Port Control Registers page */
2602 ret_val
= e1000_set_page_igp(hw
, (BM_PORT_CTRL_PAGE
<< IGP_PAGE_SHIFT
));
2604 e_dbg("Could not set Port Control page\n");
2608 /* Restore 769.17 to its original value */
2609 ret_val
= e1000e_write_phy_reg_mdic(hw
, BM_WUC_ENABLE_REG
, *phy_reg
);
2611 e_dbg("Could not restore PHY register %d.%d\n",
2612 BM_PORT_CTRL_PAGE
, BM_WUC_ENABLE_REG
);
2618 * e1000_access_phy_wakeup_reg_bm - Read/write BM PHY wakeup register
2619 * @hw: pointer to the HW structure
2620 * @offset: register offset to be read or written
2621 * @data: pointer to the data to read or write
2622 * @read: determines if operation is read or write
2623 * @page_set: BM_WUC_PAGE already set and access enabled
2625 * Read the PHY register at offset and store the retrieved information in
2626 * data, or write data to PHY register at offset. Note the procedure to
2627 * access the PHY wakeup registers is different than reading the other PHY
2628 * registers. It works as such:
2629 * 1) Set 769.17.2 (page 769, register 17, bit 2) = 1
2630 * 2) Set page to 800 for host (801 if we were manageability)
2631 * 3) Write the address using the address opcode (0x11)
2632 * 4) Read or write the data using the data opcode (0x12)
2633 * 5) Restore 769.17.2 to its original value
2635 * Steps 1 and 2 are done by e1000_enable_phy_wakeup_reg_access_bm() and
2636 * step 5 is done by e1000_disable_phy_wakeup_reg_access_bm().
2638 * Assumes semaphore is already acquired. When page_set==true, assumes
2639 * the PHY page is set to BM_WUC_PAGE (i.e. a function in the call stack
2640 * is responsible for calls to e1000_[enable|disable]_phy_wakeup_reg_bm()).
2642 static s32
e1000_access_phy_wakeup_reg_bm(struct e1000_hw
*hw
, u32 offset
,
2643 u16
*data
, bool read
, bool page_set
)
2646 u16 reg
= BM_PHY_REG_NUM(offset
);
2647 u16 page
= BM_PHY_REG_PAGE(offset
);
2650 /* Gig must be disabled for MDIO accesses to Host Wakeup reg page */
2651 if ((hw
->mac
.type
== e1000_pchlan
) &&
2652 (!(er32(PHY_CTRL
) & E1000_PHY_CTRL_GBE_DISABLE
)))
2653 e_dbg("Attempting to access page %d while gig enabled.\n",
2657 /* Enable access to PHY wakeup registers */
2658 ret_val
= e1000_enable_phy_wakeup_reg_access_bm(hw
, &phy_reg
);
2660 e_dbg("Could not enable PHY wakeup reg access\n");
2665 e_dbg("Accessing PHY page %d reg 0x%x\n", page
, reg
);
2667 /* Write the Wakeup register page offset value using opcode 0x11 */
2668 ret_val
= e1000e_write_phy_reg_mdic(hw
, BM_WUC_ADDRESS_OPCODE
, reg
);
2670 e_dbg("Could not write address opcode to page %d\n", page
);
2675 /* Read the Wakeup register page value using opcode 0x12 */
2676 ret_val
= e1000e_read_phy_reg_mdic(hw
, BM_WUC_DATA_OPCODE
,
2679 /* Write the Wakeup register page value using opcode 0x12 */
2680 ret_val
= e1000e_write_phy_reg_mdic(hw
, BM_WUC_DATA_OPCODE
,
2685 e_dbg("Could not access PHY reg %d.%d\n", page
, reg
);
2690 ret_val
= e1000_disable_phy_wakeup_reg_access_bm(hw
, &phy_reg
);
2696 * e1000_power_up_phy_copper - Restore copper link in case of PHY power down
2697 * @hw: pointer to the HW structure
2699 * In the case of a PHY power down to save power, or to turn off link during a
2700 * driver unload, or wake on lan is not enabled, restore the link to previous
2703 void e1000_power_up_phy_copper(struct e1000_hw
*hw
)
2707 /* The PHY will retain its settings across a power down/up cycle */
2708 e1e_rphy(hw
, MII_BMCR
, &mii_reg
);
2709 mii_reg
&= ~BMCR_PDOWN
;
2710 e1e_wphy(hw
, MII_BMCR
, mii_reg
);
2714 * e1000_power_down_phy_copper - Restore copper link in case of PHY power down
2715 * @hw: pointer to the HW structure
2717 * In the case of a PHY power down to save power, or to turn off link during a
2718 * driver unload, or wake on lan is not enabled, restore the link to previous
2721 void e1000_power_down_phy_copper(struct e1000_hw
*hw
)
2725 /* The PHY will retain its settings across a power down/up cycle */
2726 e1e_rphy(hw
, MII_BMCR
, &mii_reg
);
2727 mii_reg
|= BMCR_PDOWN
;
2728 e1e_wphy(hw
, MII_BMCR
, mii_reg
);
2729 usleep_range(1000, 2000);
2733 * __e1000_read_phy_reg_hv - Read HV PHY register
2734 * @hw: pointer to the HW structure
2735 * @offset: register offset to be read
2736 * @data: pointer to the read data
2737 * @locked: semaphore has already been acquired or not
2739 * Acquires semaphore, if necessary, then reads the PHY register at offset
2740 * and stores the retrieved information in data. Release any acquired
2741 * semaphore before exiting.
2743 static s32
__e1000_read_phy_reg_hv(struct e1000_hw
*hw
, u32 offset
, u16
*data
,
2744 bool locked
, bool page_set
)
2747 u16 page
= BM_PHY_REG_PAGE(offset
);
2748 u16 reg
= BM_PHY_REG_NUM(offset
);
2749 u32 phy_addr
= hw
->phy
.addr
= e1000_get_phy_addr_for_hv_page(page
);
2752 ret_val
= hw
->phy
.ops
.acquire(hw
);
2757 /* Page 800 works differently than the rest so it has its own func */
2758 if (page
== BM_WUC_PAGE
) {
2759 ret_val
= e1000_access_phy_wakeup_reg_bm(hw
, offset
, data
,
2764 if (page
> 0 && page
< HV_INTC_FC_PAGE_START
) {
2765 ret_val
= e1000_access_phy_debug_regs_hv(hw
, offset
,
2771 if (page
== HV_INTC_FC_PAGE_START
)
2774 if (reg
> MAX_PHY_MULTI_PAGE_REG
) {
2775 /* Page is shifted left, PHY expects (page x 32) */
2776 ret_val
= e1000_set_page_igp(hw
,
2777 (page
<< IGP_PAGE_SHIFT
));
2779 hw
->phy
.addr
= phy_addr
;
2786 e_dbg("reading PHY page %d (or 0x%x shifted) reg 0x%x\n", page
,
2787 page
<< IGP_PAGE_SHIFT
, reg
);
2789 ret_val
= e1000e_read_phy_reg_mdic(hw
, MAX_PHY_REG_ADDRESS
& reg
,
2793 hw
->phy
.ops
.release(hw
);
2799 * e1000_read_phy_reg_hv - Read HV PHY register
2800 * @hw: pointer to the HW structure
2801 * @offset: register offset to be read
2802 * @data: pointer to the read data
2804 * Acquires semaphore then reads the PHY register at offset and stores
2805 * the retrieved information in data. Release the acquired semaphore
2808 s32
e1000_read_phy_reg_hv(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
2810 return __e1000_read_phy_reg_hv(hw
, offset
, data
, false, false);
2814 * e1000_read_phy_reg_hv_locked - Read HV PHY register
2815 * @hw: pointer to the HW structure
2816 * @offset: register offset to be read
2817 * @data: pointer to the read data
2819 * Reads the PHY register at offset and stores the retrieved information
2820 * in data. Assumes semaphore already acquired.
2822 s32
e1000_read_phy_reg_hv_locked(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
2824 return __e1000_read_phy_reg_hv(hw
, offset
, data
, true, false);
2828 * e1000_read_phy_reg_page_hv - Read HV PHY register
2829 * @hw: pointer to the HW structure
2830 * @offset: register offset to write to
2831 * @data: data to write at register offset
2833 * Reads the PHY register at offset and stores the retrieved information
2834 * in data. Assumes semaphore already acquired and page already set.
2836 s32
e1000_read_phy_reg_page_hv(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
2838 return __e1000_read_phy_reg_hv(hw
, offset
, data
, true, true);
2842 * __e1000_write_phy_reg_hv - Write HV PHY register
2843 * @hw: pointer to the HW structure
2844 * @offset: register offset to write to
2845 * @data: data to write at register offset
2846 * @locked: semaphore has already been acquired or not
2848 * Acquires semaphore, if necessary, then writes the data to PHY register
2849 * at the offset. Release any acquired semaphores before exiting.
2851 static s32
__e1000_write_phy_reg_hv(struct e1000_hw
*hw
, u32 offset
, u16 data
,
2852 bool locked
, bool page_set
)
2855 u16 page
= BM_PHY_REG_PAGE(offset
);
2856 u16 reg
= BM_PHY_REG_NUM(offset
);
2857 u32 phy_addr
= hw
->phy
.addr
= e1000_get_phy_addr_for_hv_page(page
);
2860 ret_val
= hw
->phy
.ops
.acquire(hw
);
2865 /* Page 800 works differently than the rest so it has its own func */
2866 if (page
== BM_WUC_PAGE
) {
2867 ret_val
= e1000_access_phy_wakeup_reg_bm(hw
, offset
, &data
,
2872 if (page
> 0 && page
< HV_INTC_FC_PAGE_START
) {
2873 ret_val
= e1000_access_phy_debug_regs_hv(hw
, offset
,
2879 if (page
== HV_INTC_FC_PAGE_START
)
2882 /* Workaround MDIO accesses being disabled after entering IEEE
2883 * Power Down (when bit 11 of the PHY Control register is set)
2885 if ((hw
->phy
.type
== e1000_phy_82578
) &&
2886 (hw
->phy
.revision
>= 1) &&
2887 (hw
->phy
.addr
== 2) &&
2888 !(MAX_PHY_REG_ADDRESS
& reg
) && (data
& (1 << 11))) {
2890 ret_val
= e1000_access_phy_debug_regs_hv(hw
,
2897 if (reg
> MAX_PHY_MULTI_PAGE_REG
) {
2898 /* Page is shifted left, PHY expects (page x 32) */
2899 ret_val
= e1000_set_page_igp(hw
,
2900 (page
<< IGP_PAGE_SHIFT
));
2902 hw
->phy
.addr
= phy_addr
;
2909 e_dbg("writing PHY page %d (or 0x%x shifted) reg 0x%x\n", page
,
2910 page
<< IGP_PAGE_SHIFT
, reg
);
2912 ret_val
= e1000e_write_phy_reg_mdic(hw
, MAX_PHY_REG_ADDRESS
& reg
,
2917 hw
->phy
.ops
.release(hw
);
2923 * e1000_write_phy_reg_hv - Write HV PHY register
2924 * @hw: pointer to the HW structure
2925 * @offset: register offset to write to
2926 * @data: data to write at register offset
2928 * Acquires semaphore then writes the data to PHY register at the offset.
2929 * Release the acquired semaphores before exiting.
2931 s32
e1000_write_phy_reg_hv(struct e1000_hw
*hw
, u32 offset
, u16 data
)
2933 return __e1000_write_phy_reg_hv(hw
, offset
, data
, false, false);
2937 * e1000_write_phy_reg_hv_locked - Write HV PHY register
2938 * @hw: pointer to the HW structure
2939 * @offset: register offset to write to
2940 * @data: data to write at register offset
2942 * Writes the data to PHY register at the offset. Assumes semaphore
2945 s32
e1000_write_phy_reg_hv_locked(struct e1000_hw
*hw
, u32 offset
, u16 data
)
2947 return __e1000_write_phy_reg_hv(hw
, offset
, data
, true, false);
2951 * e1000_write_phy_reg_page_hv - Write HV PHY register
2952 * @hw: pointer to the HW structure
2953 * @offset: register offset to write to
2954 * @data: data to write at register offset
2956 * Writes the data to PHY register at the offset. Assumes semaphore
2957 * already acquired and page already set.
2959 s32
e1000_write_phy_reg_page_hv(struct e1000_hw
*hw
, u32 offset
, u16 data
)
2961 return __e1000_write_phy_reg_hv(hw
, offset
, data
, true, true);
2965 * e1000_get_phy_addr_for_hv_page - Get PHY address based on page
2966 * @page: page to be accessed
2968 static u32
e1000_get_phy_addr_for_hv_page(u32 page
)
2972 if (page
>= HV_INTC_FC_PAGE_START
)
2979 * e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers
2980 * @hw: pointer to the HW structure
2981 * @offset: register offset to be read or written
2982 * @data: pointer to the data to be read or written
2983 * @read: determines if operation is read or write
2985 * Reads the PHY register at offset and stores the retreived information
2986 * in data. Assumes semaphore already acquired. Note that the procedure
2987 * to access these regs uses the address port and data port to read/write.
2988 * These accesses done with PHY address 2 and without using pages.
2990 static s32
e1000_access_phy_debug_regs_hv(struct e1000_hw
*hw
, u32 offset
,
2991 u16
*data
, bool read
)
2997 /* This takes care of the difference with desktop vs mobile phy */
2998 addr_reg
= (hw
->phy
.type
== e1000_phy_82578
) ?
2999 I82578_ADDR_REG
: I82577_ADDR_REG
;
3000 data_reg
= addr_reg
+ 1;
3002 /* All operations in this function are phy address 2 */
3005 /* masking with 0x3F to remove the page from offset */
3006 ret_val
= e1000e_write_phy_reg_mdic(hw
, addr_reg
, (u16
)offset
& 0x3F);
3008 e_dbg("Could not write the Address Offset port register\n");
3012 /* Read or write the data value next */
3014 ret_val
= e1000e_read_phy_reg_mdic(hw
, data_reg
, data
);
3016 ret_val
= e1000e_write_phy_reg_mdic(hw
, data_reg
, *data
);
3019 e_dbg("Could not access the Data port register\n");
3025 * e1000_link_stall_workaround_hv - Si workaround
3026 * @hw: pointer to the HW structure
3028 * This function works around a Si bug where the link partner can get
3029 * a link up indication before the PHY does. If small packets are sent
3030 * by the link partner they can be placed in the packet buffer without
3031 * being properly accounted for by the PHY and will stall preventing
3032 * further packets from being received. The workaround is to clear the
3033 * packet buffer after the PHY detects link up.
3035 s32
e1000_link_stall_workaround_hv(struct e1000_hw
*hw
)
3040 if (hw
->phy
.type
!= e1000_phy_82578
)
3043 /* Do not apply workaround if in PHY loopback bit 14 set */
3044 e1e_rphy(hw
, MII_BMCR
, &data
);
3045 if (data
& BMCR_LOOPBACK
)
3048 /* check if link is up and at 1Gbps */
3049 ret_val
= e1e_rphy(hw
, BM_CS_STATUS
, &data
);
3053 data
&= BM_CS_STATUS_LINK_UP
| BM_CS_STATUS_RESOLVED
|
3054 BM_CS_STATUS_SPEED_MASK
;
3056 if (data
!= (BM_CS_STATUS_LINK_UP
| BM_CS_STATUS_RESOLVED
|
3057 BM_CS_STATUS_SPEED_1000
))
3062 /* flush the packets in the fifo buffer */
3063 ret_val
= e1e_wphy(hw
, HV_MUX_DATA_CTRL
,
3064 (HV_MUX_DATA_CTRL_GEN_TO_MAC
|
3065 HV_MUX_DATA_CTRL_FORCE_SPEED
));
3069 return e1e_wphy(hw
, HV_MUX_DATA_CTRL
, HV_MUX_DATA_CTRL_GEN_TO_MAC
);
3073 * e1000_check_polarity_82577 - Checks the polarity.
3074 * @hw: pointer to the HW structure
3076 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
3078 * Polarity is determined based on the PHY specific status register.
3080 s32
e1000_check_polarity_82577(struct e1000_hw
*hw
)
3082 struct e1000_phy_info
*phy
= &hw
->phy
;
3086 ret_val
= e1e_rphy(hw
, I82577_PHY_STATUS_2
, &data
);
3089 phy
->cable_polarity
= (data
& I82577_PHY_STATUS2_REV_POLARITY
)
3090 ? e1000_rev_polarity_reversed
3091 : e1000_rev_polarity_normal
;
3097 * e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY
3098 * @hw: pointer to the HW structure
3100 * Calls the PHY setup function to force speed and duplex.
3102 s32
e1000_phy_force_speed_duplex_82577(struct e1000_hw
*hw
)
3104 struct e1000_phy_info
*phy
= &hw
->phy
;
3109 ret_val
= e1e_rphy(hw
, MII_BMCR
, &phy_data
);
3113 e1000e_phy_force_speed_duplex_setup(hw
, &phy_data
);
3115 ret_val
= e1e_wphy(hw
, MII_BMCR
, phy_data
);
3121 if (phy
->autoneg_wait_to_complete
) {
3122 e_dbg("Waiting for forced speed/duplex link on 82577 phy\n");
3124 ret_val
= e1000e_phy_has_link_generic(hw
, PHY_FORCE_LIMIT
,
3130 e_dbg("Link taking longer than expected.\n");
3133 ret_val
= e1000e_phy_has_link_generic(hw
, PHY_FORCE_LIMIT
,
3141 * e1000_get_phy_info_82577 - Retrieve I82577 PHY information
3142 * @hw: pointer to the HW structure
3144 * Read PHY status to determine if link is up. If link is up, then
3145 * set/determine 10base-T extended distance and polarity correction. Read
3146 * PHY port status to determine MDI/MDIx and speed. Based on the speed,
3147 * determine on the cable length, local and remote receiver.
3149 s32
e1000_get_phy_info_82577(struct e1000_hw
*hw
)
3151 struct e1000_phy_info
*phy
= &hw
->phy
;
3156 ret_val
= e1000e_phy_has_link_generic(hw
, 1, 0, &link
);
3161 e_dbg("Phy info is only valid if link is up\n");
3162 return -E1000_ERR_CONFIG
;
3165 phy
->polarity_correction
= true;
3167 ret_val
= e1000_check_polarity_82577(hw
);
3171 ret_val
= e1e_rphy(hw
, I82577_PHY_STATUS_2
, &data
);
3175 phy
->is_mdix
= !!(data
& I82577_PHY_STATUS2_MDIX
);
3177 if ((data
& I82577_PHY_STATUS2_SPEED_MASK
) ==
3178 I82577_PHY_STATUS2_SPEED_1000MBPS
) {
3179 ret_val
= hw
->phy
.ops
.get_cable_length(hw
);
3183 ret_val
= e1e_rphy(hw
, MII_STAT1000
, &data
);
3187 phy
->local_rx
= (data
& LPA_1000LOCALRXOK
)
3188 ? e1000_1000t_rx_status_ok
: e1000_1000t_rx_status_not_ok
;
3190 phy
->remote_rx
= (data
& LPA_1000REMRXOK
)
3191 ? e1000_1000t_rx_status_ok
: e1000_1000t_rx_status_not_ok
;
3193 phy
->cable_length
= E1000_CABLE_LENGTH_UNDEFINED
;
3194 phy
->local_rx
= e1000_1000t_rx_status_undefined
;
3195 phy
->remote_rx
= e1000_1000t_rx_status_undefined
;
3202 * e1000_get_cable_length_82577 - Determine cable length for 82577 PHY
3203 * @hw: pointer to the HW structure
3205 * Reads the diagnostic status register and verifies result is valid before
3206 * placing it in the phy_cable_length field.
3208 s32
e1000_get_cable_length_82577(struct e1000_hw
*hw
)
3210 struct e1000_phy_info
*phy
= &hw
->phy
;
3212 u16 phy_data
, length
;
3214 ret_val
= e1e_rphy(hw
, I82577_PHY_DIAG_STATUS
, &phy_data
);
3218 length
= (phy_data
& I82577_DSTATUS_CABLE_LENGTH
) >>
3219 I82577_DSTATUS_CABLE_LENGTH_SHIFT
;
3221 if (length
== E1000_CABLE_LENGTH_UNDEFINED
)
3222 return -E1000_ERR_PHY
;
3224 phy
->cable_length
= length
;