sched/deadline: Fix hrtick for a non-leftmost task
[linux/fpc-iii.git] / kernel / sched / deadline.c
blob7b684f9341a505a14a8ba20c71a4a8a50364add2
1 /*
2 * Deadline Scheduling Class (SCHED_DEADLINE)
4 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
6 * Tasks that periodically executes their instances for less than their
7 * runtime won't miss any of their deadlines.
8 * Tasks that are not periodic or sporadic or that tries to execute more
9 * than their reserved bandwidth will be slowed down (and may potentially
10 * miss some of their deadlines), and won't affect any other task.
12 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
13 * Juri Lelli <juri.lelli@gmail.com>,
14 * Michael Trimarchi <michael@amarulasolutions.com>,
15 * Fabio Checconi <fchecconi@gmail.com>
17 #include "sched.h"
19 #include <linux/slab.h>
21 struct dl_bandwidth def_dl_bandwidth;
23 static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
25 return container_of(dl_se, struct task_struct, dl);
28 static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
30 return container_of(dl_rq, struct rq, dl);
33 static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
35 struct task_struct *p = dl_task_of(dl_se);
36 struct rq *rq = task_rq(p);
38 return &rq->dl;
41 static inline int on_dl_rq(struct sched_dl_entity *dl_se)
43 return !RB_EMPTY_NODE(&dl_se->rb_node);
46 static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq)
48 struct sched_dl_entity *dl_se = &p->dl;
50 return dl_rq->rb_leftmost == &dl_se->rb_node;
53 void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime)
55 raw_spin_lock_init(&dl_b->dl_runtime_lock);
56 dl_b->dl_period = period;
57 dl_b->dl_runtime = runtime;
60 void init_dl_bw(struct dl_bw *dl_b)
62 raw_spin_lock_init(&dl_b->lock);
63 raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock);
64 if (global_rt_runtime() == RUNTIME_INF)
65 dl_b->bw = -1;
66 else
67 dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
68 raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock);
69 dl_b->total_bw = 0;
72 void init_dl_rq(struct dl_rq *dl_rq, struct rq *rq)
74 dl_rq->rb_root = RB_ROOT;
76 #ifdef CONFIG_SMP
77 /* zero means no -deadline tasks */
78 dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
80 dl_rq->dl_nr_migratory = 0;
81 dl_rq->overloaded = 0;
82 dl_rq->pushable_dl_tasks_root = RB_ROOT;
83 #else
84 init_dl_bw(&dl_rq->dl_bw);
85 #endif
88 #ifdef CONFIG_SMP
90 static inline int dl_overloaded(struct rq *rq)
92 return atomic_read(&rq->rd->dlo_count);
95 static inline void dl_set_overload(struct rq *rq)
97 if (!rq->online)
98 return;
100 cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
102 * Must be visible before the overload count is
103 * set (as in sched_rt.c).
105 * Matched by the barrier in pull_dl_task().
107 smp_wmb();
108 atomic_inc(&rq->rd->dlo_count);
111 static inline void dl_clear_overload(struct rq *rq)
113 if (!rq->online)
114 return;
116 atomic_dec(&rq->rd->dlo_count);
117 cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
120 static void update_dl_migration(struct dl_rq *dl_rq)
122 if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) {
123 if (!dl_rq->overloaded) {
124 dl_set_overload(rq_of_dl_rq(dl_rq));
125 dl_rq->overloaded = 1;
127 } else if (dl_rq->overloaded) {
128 dl_clear_overload(rq_of_dl_rq(dl_rq));
129 dl_rq->overloaded = 0;
133 static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
135 struct task_struct *p = dl_task_of(dl_se);
137 if (p->nr_cpus_allowed > 1)
138 dl_rq->dl_nr_migratory++;
140 update_dl_migration(dl_rq);
143 static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
145 struct task_struct *p = dl_task_of(dl_se);
147 if (p->nr_cpus_allowed > 1)
148 dl_rq->dl_nr_migratory--;
150 update_dl_migration(dl_rq);
154 * The list of pushable -deadline task is not a plist, like in
155 * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
157 static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
159 struct dl_rq *dl_rq = &rq->dl;
160 struct rb_node **link = &dl_rq->pushable_dl_tasks_root.rb_node;
161 struct rb_node *parent = NULL;
162 struct task_struct *entry;
163 int leftmost = 1;
165 BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
167 while (*link) {
168 parent = *link;
169 entry = rb_entry(parent, struct task_struct,
170 pushable_dl_tasks);
171 if (dl_entity_preempt(&p->dl, &entry->dl))
172 link = &parent->rb_left;
173 else {
174 link = &parent->rb_right;
175 leftmost = 0;
179 if (leftmost)
180 dl_rq->pushable_dl_tasks_leftmost = &p->pushable_dl_tasks;
182 rb_link_node(&p->pushable_dl_tasks, parent, link);
183 rb_insert_color(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
186 static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
188 struct dl_rq *dl_rq = &rq->dl;
190 if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
191 return;
193 if (dl_rq->pushable_dl_tasks_leftmost == &p->pushable_dl_tasks) {
194 struct rb_node *next_node;
196 next_node = rb_next(&p->pushable_dl_tasks);
197 dl_rq->pushable_dl_tasks_leftmost = next_node;
200 rb_erase(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
201 RB_CLEAR_NODE(&p->pushable_dl_tasks);
204 static inline int has_pushable_dl_tasks(struct rq *rq)
206 return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root);
209 static int push_dl_task(struct rq *rq);
211 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
213 return dl_task(prev);
216 static inline void set_post_schedule(struct rq *rq)
218 rq->post_schedule = has_pushable_dl_tasks(rq);
221 #else
223 static inline
224 void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
228 static inline
229 void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
233 static inline
234 void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
238 static inline
239 void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
243 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
245 return false;
248 static inline int pull_dl_task(struct rq *rq)
250 return 0;
253 static inline void set_post_schedule(struct rq *rq)
256 #endif /* CONFIG_SMP */
258 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
259 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags);
260 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
261 int flags);
264 * We are being explicitly informed that a new instance is starting,
265 * and this means that:
266 * - the absolute deadline of the entity has to be placed at
267 * current time + relative deadline;
268 * - the runtime of the entity has to be set to the maximum value.
270 * The capability of specifying such event is useful whenever a -deadline
271 * entity wants to (try to!) synchronize its behaviour with the scheduler's
272 * one, and to (try to!) reconcile itself with its own scheduling
273 * parameters.
275 static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se,
276 struct sched_dl_entity *pi_se)
278 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
279 struct rq *rq = rq_of_dl_rq(dl_rq);
281 WARN_ON(!dl_se->dl_new || dl_se->dl_throttled);
284 * We use the regular wall clock time to set deadlines in the
285 * future; in fact, we must consider execution overheads (time
286 * spent on hardirq context, etc.).
288 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
289 dl_se->runtime = pi_se->dl_runtime;
290 dl_se->dl_new = 0;
294 * Pure Earliest Deadline First (EDF) scheduling does not deal with the
295 * possibility of a entity lasting more than what it declared, and thus
296 * exhausting its runtime.
298 * Here we are interested in making runtime overrun possible, but we do
299 * not want a entity which is misbehaving to affect the scheduling of all
300 * other entities.
301 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
302 * is used, in order to confine each entity within its own bandwidth.
304 * This function deals exactly with that, and ensures that when the runtime
305 * of a entity is replenished, its deadline is also postponed. That ensures
306 * the overrunning entity can't interfere with other entity in the system and
307 * can't make them miss their deadlines. Reasons why this kind of overruns
308 * could happen are, typically, a entity voluntarily trying to overcome its
309 * runtime, or it just underestimated it during sched_setattr().
311 static void replenish_dl_entity(struct sched_dl_entity *dl_se,
312 struct sched_dl_entity *pi_se)
314 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
315 struct rq *rq = rq_of_dl_rq(dl_rq);
317 BUG_ON(pi_se->dl_runtime <= 0);
320 * This could be the case for a !-dl task that is boosted.
321 * Just go with full inherited parameters.
323 if (dl_se->dl_deadline == 0) {
324 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
325 dl_se->runtime = pi_se->dl_runtime;
329 * We keep moving the deadline away until we get some
330 * available runtime for the entity. This ensures correct
331 * handling of situations where the runtime overrun is
332 * arbitrary large.
334 while (dl_se->runtime <= 0) {
335 dl_se->deadline += pi_se->dl_period;
336 dl_se->runtime += pi_se->dl_runtime;
340 * At this point, the deadline really should be "in
341 * the future" with respect to rq->clock. If it's
342 * not, we are, for some reason, lagging too much!
343 * Anyway, after having warn userspace abut that,
344 * we still try to keep the things running by
345 * resetting the deadline and the budget of the
346 * entity.
348 if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
349 printk_deferred_once("sched: DL replenish lagged to much\n");
350 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
351 dl_se->runtime = pi_se->dl_runtime;
356 * Here we check if --at time t-- an entity (which is probably being
357 * [re]activated or, in general, enqueued) can use its remaining runtime
358 * and its current deadline _without_ exceeding the bandwidth it is
359 * assigned (function returns true if it can't). We are in fact applying
360 * one of the CBS rules: when a task wakes up, if the residual runtime
361 * over residual deadline fits within the allocated bandwidth, then we
362 * can keep the current (absolute) deadline and residual budget without
363 * disrupting the schedulability of the system. Otherwise, we should
364 * refill the runtime and set the deadline a period in the future,
365 * because keeping the current (absolute) deadline of the task would
366 * result in breaking guarantees promised to other tasks (refer to
367 * Documentation/scheduler/sched-deadline.txt for more informations).
369 * This function returns true if:
371 * runtime / (deadline - t) > dl_runtime / dl_period ,
373 * IOW we can't recycle current parameters.
375 * Notice that the bandwidth check is done against the period. For
376 * task with deadline equal to period this is the same of using
377 * dl_deadline instead of dl_period in the equation above.
379 static bool dl_entity_overflow(struct sched_dl_entity *dl_se,
380 struct sched_dl_entity *pi_se, u64 t)
382 u64 left, right;
385 * left and right are the two sides of the equation above,
386 * after a bit of shuffling to use multiplications instead
387 * of divisions.
389 * Note that none of the time values involved in the two
390 * multiplications are absolute: dl_deadline and dl_runtime
391 * are the relative deadline and the maximum runtime of each
392 * instance, runtime is the runtime left for the last instance
393 * and (deadline - t), since t is rq->clock, is the time left
394 * to the (absolute) deadline. Even if overflowing the u64 type
395 * is very unlikely to occur in both cases, here we scale down
396 * as we want to avoid that risk at all. Scaling down by 10
397 * means that we reduce granularity to 1us. We are fine with it,
398 * since this is only a true/false check and, anyway, thinking
399 * of anything below microseconds resolution is actually fiction
400 * (but still we want to give the user that illusion >;).
402 left = (pi_se->dl_period >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
403 right = ((dl_se->deadline - t) >> DL_SCALE) *
404 (pi_se->dl_runtime >> DL_SCALE);
406 return dl_time_before(right, left);
410 * When a -deadline entity is queued back on the runqueue, its runtime and
411 * deadline might need updating.
413 * The policy here is that we update the deadline of the entity only if:
414 * - the current deadline is in the past,
415 * - using the remaining runtime with the current deadline would make
416 * the entity exceed its bandwidth.
418 static void update_dl_entity(struct sched_dl_entity *dl_se,
419 struct sched_dl_entity *pi_se)
421 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
422 struct rq *rq = rq_of_dl_rq(dl_rq);
425 * The arrival of a new instance needs special treatment, i.e.,
426 * the actual scheduling parameters have to be "renewed".
428 if (dl_se->dl_new) {
429 setup_new_dl_entity(dl_se, pi_se);
430 return;
433 if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
434 dl_entity_overflow(dl_se, pi_se, rq_clock(rq))) {
435 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
436 dl_se->runtime = pi_se->dl_runtime;
441 * If the entity depleted all its runtime, and if we want it to sleep
442 * while waiting for some new execution time to become available, we
443 * set the bandwidth enforcement timer to the replenishment instant
444 * and try to activate it.
446 * Notice that it is important for the caller to know if the timer
447 * actually started or not (i.e., the replenishment instant is in
448 * the future or in the past).
450 static int start_dl_timer(struct sched_dl_entity *dl_se, bool boosted)
452 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
453 struct rq *rq = rq_of_dl_rq(dl_rq);
454 ktime_t now, act;
455 ktime_t soft, hard;
456 unsigned long range;
457 s64 delta;
459 if (boosted)
460 return 0;
462 * We want the timer to fire at the deadline, but considering
463 * that it is actually coming from rq->clock and not from
464 * hrtimer's time base reading.
466 act = ns_to_ktime(dl_se->deadline);
467 now = hrtimer_cb_get_time(&dl_se->dl_timer);
468 delta = ktime_to_ns(now) - rq_clock(rq);
469 act = ktime_add_ns(act, delta);
472 * If the expiry time already passed, e.g., because the value
473 * chosen as the deadline is too small, don't even try to
474 * start the timer in the past!
476 if (ktime_us_delta(act, now) < 0)
477 return 0;
479 hrtimer_set_expires(&dl_se->dl_timer, act);
481 soft = hrtimer_get_softexpires(&dl_se->dl_timer);
482 hard = hrtimer_get_expires(&dl_se->dl_timer);
483 range = ktime_to_ns(ktime_sub(hard, soft));
484 __hrtimer_start_range_ns(&dl_se->dl_timer, soft,
485 range, HRTIMER_MODE_ABS, 0);
487 return hrtimer_active(&dl_se->dl_timer);
491 * This is the bandwidth enforcement timer callback. If here, we know
492 * a task is not on its dl_rq, since the fact that the timer was running
493 * means the task is throttled and needs a runtime replenishment.
495 * However, what we actually do depends on the fact the task is active,
496 * (it is on its rq) or has been removed from there by a call to
497 * dequeue_task_dl(). In the former case we must issue the runtime
498 * replenishment and add the task back to the dl_rq; in the latter, we just
499 * do nothing but clearing dl_throttled, so that runtime and deadline
500 * updating (and the queueing back to dl_rq) will be done by the
501 * next call to enqueue_task_dl().
503 static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
505 struct sched_dl_entity *dl_se = container_of(timer,
506 struct sched_dl_entity,
507 dl_timer);
508 struct task_struct *p = dl_task_of(dl_se);
509 struct rq *rq;
510 again:
511 rq = task_rq(p);
512 raw_spin_lock(&rq->lock);
514 if (rq != task_rq(p)) {
515 /* Task was moved, retrying. */
516 raw_spin_unlock(&rq->lock);
517 goto again;
521 * We need to take care of several possible races here:
523 * - the task might have changed its scheduling policy
524 * to something different than SCHED_DEADLINE
525 * - the task might have changed its reservation parameters
526 * (through sched_setattr())
527 * - the task might have been boosted by someone else and
528 * might be in the boosting/deboosting path
530 * In all this cases we bail out, as the task is already
531 * in the runqueue or is going to be enqueued back anyway.
533 if (!dl_task(p) || dl_se->dl_new ||
534 dl_se->dl_boosted || !dl_se->dl_throttled)
535 goto unlock;
537 sched_clock_tick();
538 update_rq_clock(rq);
539 dl_se->dl_throttled = 0;
540 dl_se->dl_yielded = 0;
541 if (task_on_rq_queued(p)) {
542 enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
543 if (dl_task(rq->curr))
544 check_preempt_curr_dl(rq, p, 0);
545 else
546 resched_curr(rq);
547 #ifdef CONFIG_SMP
549 * Queueing this task back might have overloaded rq,
550 * check if we need to kick someone away.
552 if (has_pushable_dl_tasks(rq))
553 push_dl_task(rq);
554 #endif
556 unlock:
557 raw_spin_unlock(&rq->lock);
559 return HRTIMER_NORESTART;
562 void init_dl_task_timer(struct sched_dl_entity *dl_se)
564 struct hrtimer *timer = &dl_se->dl_timer;
566 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
567 timer->function = dl_task_timer;
570 static
571 int dl_runtime_exceeded(struct rq *rq, struct sched_dl_entity *dl_se)
573 return (dl_se->runtime <= 0);
576 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
579 * Update the current task's runtime statistics (provided it is still
580 * a -deadline task and has not been removed from the dl_rq).
582 static void update_curr_dl(struct rq *rq)
584 struct task_struct *curr = rq->curr;
585 struct sched_dl_entity *dl_se = &curr->dl;
586 u64 delta_exec;
588 if (!dl_task(curr) || !on_dl_rq(dl_se))
589 return;
592 * Consumed budget is computed considering the time as
593 * observed by schedulable tasks (excluding time spent
594 * in hardirq context, etc.). Deadlines are instead
595 * computed using hard walltime. This seems to be the more
596 * natural solution, but the full ramifications of this
597 * approach need further study.
599 delta_exec = rq_clock_task(rq) - curr->se.exec_start;
600 if (unlikely((s64)delta_exec <= 0))
601 return;
603 schedstat_set(curr->se.statistics.exec_max,
604 max(curr->se.statistics.exec_max, delta_exec));
606 curr->se.sum_exec_runtime += delta_exec;
607 account_group_exec_runtime(curr, delta_exec);
609 curr->se.exec_start = rq_clock_task(rq);
610 cpuacct_charge(curr, delta_exec);
612 sched_rt_avg_update(rq, delta_exec);
614 dl_se->runtime -= dl_se->dl_yielded ? 0 : delta_exec;
615 if (dl_runtime_exceeded(rq, dl_se)) {
616 __dequeue_task_dl(rq, curr, 0);
617 if (likely(start_dl_timer(dl_se, curr->dl.dl_boosted)))
618 dl_se->dl_throttled = 1;
619 else
620 enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH);
622 if (!is_leftmost(curr, &rq->dl))
623 resched_curr(rq);
627 * Because -- for now -- we share the rt bandwidth, we need to
628 * account our runtime there too, otherwise actual rt tasks
629 * would be able to exceed the shared quota.
631 * Account to the root rt group for now.
633 * The solution we're working towards is having the RT groups scheduled
634 * using deadline servers -- however there's a few nasties to figure
635 * out before that can happen.
637 if (rt_bandwidth_enabled()) {
638 struct rt_rq *rt_rq = &rq->rt;
640 raw_spin_lock(&rt_rq->rt_runtime_lock);
642 * We'll let actual RT tasks worry about the overflow here, we
643 * have our own CBS to keep us inline; only account when RT
644 * bandwidth is relevant.
646 if (sched_rt_bandwidth_account(rt_rq))
647 rt_rq->rt_time += delta_exec;
648 raw_spin_unlock(&rt_rq->rt_runtime_lock);
652 #ifdef CONFIG_SMP
654 static struct task_struct *pick_next_earliest_dl_task(struct rq *rq, int cpu);
656 static inline u64 next_deadline(struct rq *rq)
658 struct task_struct *next = pick_next_earliest_dl_task(rq, rq->cpu);
660 if (next && dl_prio(next->prio))
661 return next->dl.deadline;
662 else
663 return 0;
666 static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
668 struct rq *rq = rq_of_dl_rq(dl_rq);
670 if (dl_rq->earliest_dl.curr == 0 ||
671 dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
673 * If the dl_rq had no -deadline tasks, or if the new task
674 * has shorter deadline than the current one on dl_rq, we
675 * know that the previous earliest becomes our next earliest,
676 * as the new task becomes the earliest itself.
678 dl_rq->earliest_dl.next = dl_rq->earliest_dl.curr;
679 dl_rq->earliest_dl.curr = deadline;
680 cpudl_set(&rq->rd->cpudl, rq->cpu, deadline, 1);
681 } else if (dl_rq->earliest_dl.next == 0 ||
682 dl_time_before(deadline, dl_rq->earliest_dl.next)) {
684 * On the other hand, if the new -deadline task has a
685 * a later deadline than the earliest one on dl_rq, but
686 * it is earlier than the next (if any), we must
687 * recompute the next-earliest.
689 dl_rq->earliest_dl.next = next_deadline(rq);
693 static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
695 struct rq *rq = rq_of_dl_rq(dl_rq);
698 * Since we may have removed our earliest (and/or next earliest)
699 * task we must recompute them.
701 if (!dl_rq->dl_nr_running) {
702 dl_rq->earliest_dl.curr = 0;
703 dl_rq->earliest_dl.next = 0;
704 cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0);
705 } else {
706 struct rb_node *leftmost = dl_rq->rb_leftmost;
707 struct sched_dl_entity *entry;
709 entry = rb_entry(leftmost, struct sched_dl_entity, rb_node);
710 dl_rq->earliest_dl.curr = entry->deadline;
711 dl_rq->earliest_dl.next = next_deadline(rq);
712 cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline, 1);
716 #else
718 static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
719 static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
721 #endif /* CONFIG_SMP */
723 static inline
724 void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
726 int prio = dl_task_of(dl_se)->prio;
727 u64 deadline = dl_se->deadline;
729 WARN_ON(!dl_prio(prio));
730 dl_rq->dl_nr_running++;
731 add_nr_running(rq_of_dl_rq(dl_rq), 1);
733 inc_dl_deadline(dl_rq, deadline);
734 inc_dl_migration(dl_se, dl_rq);
737 static inline
738 void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
740 int prio = dl_task_of(dl_se)->prio;
742 WARN_ON(!dl_prio(prio));
743 WARN_ON(!dl_rq->dl_nr_running);
744 dl_rq->dl_nr_running--;
745 sub_nr_running(rq_of_dl_rq(dl_rq), 1);
747 dec_dl_deadline(dl_rq, dl_se->deadline);
748 dec_dl_migration(dl_se, dl_rq);
751 static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
753 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
754 struct rb_node **link = &dl_rq->rb_root.rb_node;
755 struct rb_node *parent = NULL;
756 struct sched_dl_entity *entry;
757 int leftmost = 1;
759 BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node));
761 while (*link) {
762 parent = *link;
763 entry = rb_entry(parent, struct sched_dl_entity, rb_node);
764 if (dl_time_before(dl_se->deadline, entry->deadline))
765 link = &parent->rb_left;
766 else {
767 link = &parent->rb_right;
768 leftmost = 0;
772 if (leftmost)
773 dl_rq->rb_leftmost = &dl_se->rb_node;
775 rb_link_node(&dl_se->rb_node, parent, link);
776 rb_insert_color(&dl_se->rb_node, &dl_rq->rb_root);
778 inc_dl_tasks(dl_se, dl_rq);
781 static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
783 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
785 if (RB_EMPTY_NODE(&dl_se->rb_node))
786 return;
788 if (dl_rq->rb_leftmost == &dl_se->rb_node) {
789 struct rb_node *next_node;
791 next_node = rb_next(&dl_se->rb_node);
792 dl_rq->rb_leftmost = next_node;
795 rb_erase(&dl_se->rb_node, &dl_rq->rb_root);
796 RB_CLEAR_NODE(&dl_se->rb_node);
798 dec_dl_tasks(dl_se, dl_rq);
801 static void
802 enqueue_dl_entity(struct sched_dl_entity *dl_se,
803 struct sched_dl_entity *pi_se, int flags)
805 BUG_ON(on_dl_rq(dl_se));
808 * If this is a wakeup or a new instance, the scheduling
809 * parameters of the task might need updating. Otherwise,
810 * we want a replenishment of its runtime.
812 if (dl_se->dl_new || flags & ENQUEUE_WAKEUP)
813 update_dl_entity(dl_se, pi_se);
814 else if (flags & ENQUEUE_REPLENISH)
815 replenish_dl_entity(dl_se, pi_se);
817 __enqueue_dl_entity(dl_se);
820 static void dequeue_dl_entity(struct sched_dl_entity *dl_se)
822 __dequeue_dl_entity(dl_se);
825 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
827 struct task_struct *pi_task = rt_mutex_get_top_task(p);
828 struct sched_dl_entity *pi_se = &p->dl;
831 * Use the scheduling parameters of the top pi-waiter
832 * task if we have one and its (relative) deadline is
833 * smaller than our one... OTW we keep our runtime and
834 * deadline.
836 if (pi_task && p->dl.dl_boosted && dl_prio(pi_task->normal_prio)) {
837 pi_se = &pi_task->dl;
838 } else if (!dl_prio(p->normal_prio)) {
840 * Special case in which we have a !SCHED_DEADLINE task
841 * that is going to be deboosted, but exceedes its
842 * runtime while doing so. No point in replenishing
843 * it, as it's going to return back to its original
844 * scheduling class after this.
846 BUG_ON(!p->dl.dl_boosted || flags != ENQUEUE_REPLENISH);
847 return;
851 * If p is throttled, we do nothing. In fact, if it exhausted
852 * its budget it needs a replenishment and, since it now is on
853 * its rq, the bandwidth timer callback (which clearly has not
854 * run yet) will take care of this.
856 if (p->dl.dl_throttled)
857 return;
859 enqueue_dl_entity(&p->dl, pi_se, flags);
861 if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
862 enqueue_pushable_dl_task(rq, p);
865 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
867 dequeue_dl_entity(&p->dl);
868 dequeue_pushable_dl_task(rq, p);
871 static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
873 update_curr_dl(rq);
874 __dequeue_task_dl(rq, p, flags);
878 * Yield task semantic for -deadline tasks is:
880 * get off from the CPU until our next instance, with
881 * a new runtime. This is of little use now, since we
882 * don't have a bandwidth reclaiming mechanism. Anyway,
883 * bandwidth reclaiming is planned for the future, and
884 * yield_task_dl will indicate that some spare budget
885 * is available for other task instances to use it.
887 static void yield_task_dl(struct rq *rq)
889 struct task_struct *p = rq->curr;
892 * We make the task go to sleep until its current deadline by
893 * forcing its runtime to zero. This way, update_curr_dl() stops
894 * it and the bandwidth timer will wake it up and will give it
895 * new scheduling parameters (thanks to dl_yielded=1).
897 if (p->dl.runtime > 0) {
898 rq->curr->dl.dl_yielded = 1;
899 p->dl.runtime = 0;
901 update_curr_dl(rq);
904 #ifdef CONFIG_SMP
906 static int find_later_rq(struct task_struct *task);
908 static int
909 select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags)
911 struct task_struct *curr;
912 struct rq *rq;
914 if (sd_flag != SD_BALANCE_WAKE)
915 goto out;
917 rq = cpu_rq(cpu);
919 rcu_read_lock();
920 curr = ACCESS_ONCE(rq->curr); /* unlocked access */
923 * If we are dealing with a -deadline task, we must
924 * decide where to wake it up.
925 * If it has a later deadline and the current task
926 * on this rq can't move (provided the waking task
927 * can!) we prefer to send it somewhere else. On the
928 * other hand, if it has a shorter deadline, we
929 * try to make it stay here, it might be important.
931 if (unlikely(dl_task(curr)) &&
932 (curr->nr_cpus_allowed < 2 ||
933 !dl_entity_preempt(&p->dl, &curr->dl)) &&
934 (p->nr_cpus_allowed > 1)) {
935 int target = find_later_rq(p);
937 if (target != -1)
938 cpu = target;
940 rcu_read_unlock();
942 out:
943 return cpu;
946 static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
949 * Current can't be migrated, useless to reschedule,
950 * let's hope p can move out.
952 if (rq->curr->nr_cpus_allowed == 1 ||
953 cpudl_find(&rq->rd->cpudl, rq->curr, NULL) == -1)
954 return;
957 * p is migratable, so let's not schedule it and
958 * see if it is pushed or pulled somewhere else.
960 if (p->nr_cpus_allowed != 1 &&
961 cpudl_find(&rq->rd->cpudl, p, NULL) != -1)
962 return;
964 resched_curr(rq);
967 static int pull_dl_task(struct rq *this_rq);
969 #endif /* CONFIG_SMP */
972 * Only called when both the current and waking task are -deadline
973 * tasks.
975 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
976 int flags)
978 if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
979 resched_curr(rq);
980 return;
983 #ifdef CONFIG_SMP
985 * In the unlikely case current and p have the same deadline
986 * let us try to decide what's the best thing to do...
988 if ((p->dl.deadline == rq->curr->dl.deadline) &&
989 !test_tsk_need_resched(rq->curr))
990 check_preempt_equal_dl(rq, p);
991 #endif /* CONFIG_SMP */
994 #ifdef CONFIG_SCHED_HRTICK
995 static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
997 hrtick_start(rq, p->dl.runtime);
999 #else /* !CONFIG_SCHED_HRTICK */
1000 static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1003 #endif
1005 static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq,
1006 struct dl_rq *dl_rq)
1008 struct rb_node *left = dl_rq->rb_leftmost;
1010 if (!left)
1011 return NULL;
1013 return rb_entry(left, struct sched_dl_entity, rb_node);
1016 struct task_struct *pick_next_task_dl(struct rq *rq, struct task_struct *prev)
1018 struct sched_dl_entity *dl_se;
1019 struct task_struct *p;
1020 struct dl_rq *dl_rq;
1022 dl_rq = &rq->dl;
1024 if (need_pull_dl_task(rq, prev)) {
1025 pull_dl_task(rq);
1027 * pull_rt_task() can drop (and re-acquire) rq->lock; this
1028 * means a stop task can slip in, in which case we need to
1029 * re-start task selection.
1031 if (rq->stop && task_on_rq_queued(rq->stop))
1032 return RETRY_TASK;
1036 * When prev is DL, we may throttle it in put_prev_task().
1037 * So, we update time before we check for dl_nr_running.
1039 if (prev->sched_class == &dl_sched_class)
1040 update_curr_dl(rq);
1042 if (unlikely(!dl_rq->dl_nr_running))
1043 return NULL;
1045 put_prev_task(rq, prev);
1047 dl_se = pick_next_dl_entity(rq, dl_rq);
1048 BUG_ON(!dl_se);
1050 p = dl_task_of(dl_se);
1051 p->se.exec_start = rq_clock_task(rq);
1053 /* Running task will never be pushed. */
1054 dequeue_pushable_dl_task(rq, p);
1056 if (hrtick_enabled(rq))
1057 start_hrtick_dl(rq, p);
1059 set_post_schedule(rq);
1061 return p;
1064 static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
1066 update_curr_dl(rq);
1068 if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
1069 enqueue_pushable_dl_task(rq, p);
1072 static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
1074 update_curr_dl(rq);
1077 * Even when we have runtime, update_curr_dl() might have resulted in us
1078 * not being the leftmost task anymore. In that case NEED_RESCHED will
1079 * be set and schedule() will start a new hrtick for the next task.
1081 if (hrtick_enabled(rq) && queued && p->dl.runtime > 0 &&
1082 is_leftmost(p, &rq->dl))
1083 start_hrtick_dl(rq, p);
1086 static void task_fork_dl(struct task_struct *p)
1089 * SCHED_DEADLINE tasks cannot fork and this is achieved through
1090 * sched_fork()
1094 static void task_dead_dl(struct task_struct *p)
1096 struct hrtimer *timer = &p->dl.dl_timer;
1097 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1100 * Since we are TASK_DEAD we won't slip out of the domain!
1102 raw_spin_lock_irq(&dl_b->lock);
1103 /* XXX we should retain the bw until 0-lag */
1104 dl_b->total_bw -= p->dl.dl_bw;
1105 raw_spin_unlock_irq(&dl_b->lock);
1107 hrtimer_cancel(timer);
1110 static void set_curr_task_dl(struct rq *rq)
1112 struct task_struct *p = rq->curr;
1114 p->se.exec_start = rq_clock_task(rq);
1116 /* You can't push away the running task */
1117 dequeue_pushable_dl_task(rq, p);
1120 #ifdef CONFIG_SMP
1122 /* Only try algorithms three times */
1123 #define DL_MAX_TRIES 3
1125 static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
1127 if (!task_running(rq, p) &&
1128 cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
1129 return 1;
1130 return 0;
1133 /* Returns the second earliest -deadline task, NULL otherwise */
1134 static struct task_struct *pick_next_earliest_dl_task(struct rq *rq, int cpu)
1136 struct rb_node *next_node = rq->dl.rb_leftmost;
1137 struct sched_dl_entity *dl_se;
1138 struct task_struct *p = NULL;
1140 next_node:
1141 next_node = rb_next(next_node);
1142 if (next_node) {
1143 dl_se = rb_entry(next_node, struct sched_dl_entity, rb_node);
1144 p = dl_task_of(dl_se);
1146 if (pick_dl_task(rq, p, cpu))
1147 return p;
1149 goto next_node;
1152 return NULL;
1155 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
1157 static int find_later_rq(struct task_struct *task)
1159 struct sched_domain *sd;
1160 struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
1161 int this_cpu = smp_processor_id();
1162 int best_cpu, cpu = task_cpu(task);
1164 /* Make sure the mask is initialized first */
1165 if (unlikely(!later_mask))
1166 return -1;
1168 if (task->nr_cpus_allowed == 1)
1169 return -1;
1172 * We have to consider system topology and task affinity
1173 * first, then we can look for a suitable cpu.
1175 best_cpu = cpudl_find(&task_rq(task)->rd->cpudl,
1176 task, later_mask);
1177 if (best_cpu == -1)
1178 return -1;
1181 * If we are here, some target has been found,
1182 * the most suitable of which is cached in best_cpu.
1183 * This is, among the runqueues where the current tasks
1184 * have later deadlines than the task's one, the rq
1185 * with the latest possible one.
1187 * Now we check how well this matches with task's
1188 * affinity and system topology.
1190 * The last cpu where the task run is our first
1191 * guess, since it is most likely cache-hot there.
1193 if (cpumask_test_cpu(cpu, later_mask))
1194 return cpu;
1196 * Check if this_cpu is to be skipped (i.e., it is
1197 * not in the mask) or not.
1199 if (!cpumask_test_cpu(this_cpu, later_mask))
1200 this_cpu = -1;
1202 rcu_read_lock();
1203 for_each_domain(cpu, sd) {
1204 if (sd->flags & SD_WAKE_AFFINE) {
1207 * If possible, preempting this_cpu is
1208 * cheaper than migrating.
1210 if (this_cpu != -1 &&
1211 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1212 rcu_read_unlock();
1213 return this_cpu;
1217 * Last chance: if best_cpu is valid and is
1218 * in the mask, that becomes our choice.
1220 if (best_cpu < nr_cpu_ids &&
1221 cpumask_test_cpu(best_cpu, sched_domain_span(sd))) {
1222 rcu_read_unlock();
1223 return best_cpu;
1227 rcu_read_unlock();
1230 * At this point, all our guesses failed, we just return
1231 * 'something', and let the caller sort the things out.
1233 if (this_cpu != -1)
1234 return this_cpu;
1236 cpu = cpumask_any(later_mask);
1237 if (cpu < nr_cpu_ids)
1238 return cpu;
1240 return -1;
1243 /* Locks the rq it finds */
1244 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
1246 struct rq *later_rq = NULL;
1247 int tries;
1248 int cpu;
1250 for (tries = 0; tries < DL_MAX_TRIES; tries++) {
1251 cpu = find_later_rq(task);
1253 if ((cpu == -1) || (cpu == rq->cpu))
1254 break;
1256 later_rq = cpu_rq(cpu);
1258 /* Retry if something changed. */
1259 if (double_lock_balance(rq, later_rq)) {
1260 if (unlikely(task_rq(task) != rq ||
1261 !cpumask_test_cpu(later_rq->cpu,
1262 &task->cpus_allowed) ||
1263 task_running(rq, task) ||
1264 !task_on_rq_queued(task))) {
1265 double_unlock_balance(rq, later_rq);
1266 later_rq = NULL;
1267 break;
1272 * If the rq we found has no -deadline task, or
1273 * its earliest one has a later deadline than our
1274 * task, the rq is a good one.
1276 if (!later_rq->dl.dl_nr_running ||
1277 dl_time_before(task->dl.deadline,
1278 later_rq->dl.earliest_dl.curr))
1279 break;
1281 /* Otherwise we try again. */
1282 double_unlock_balance(rq, later_rq);
1283 later_rq = NULL;
1286 return later_rq;
1289 static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
1291 struct task_struct *p;
1293 if (!has_pushable_dl_tasks(rq))
1294 return NULL;
1296 p = rb_entry(rq->dl.pushable_dl_tasks_leftmost,
1297 struct task_struct, pushable_dl_tasks);
1299 BUG_ON(rq->cpu != task_cpu(p));
1300 BUG_ON(task_current(rq, p));
1301 BUG_ON(p->nr_cpus_allowed <= 1);
1303 BUG_ON(!task_on_rq_queued(p));
1304 BUG_ON(!dl_task(p));
1306 return p;
1310 * See if the non running -deadline tasks on this rq
1311 * can be sent to some other CPU where they can preempt
1312 * and start executing.
1314 static int push_dl_task(struct rq *rq)
1316 struct task_struct *next_task;
1317 struct rq *later_rq;
1318 int ret = 0;
1320 if (!rq->dl.overloaded)
1321 return 0;
1323 next_task = pick_next_pushable_dl_task(rq);
1324 if (!next_task)
1325 return 0;
1327 retry:
1328 if (unlikely(next_task == rq->curr)) {
1329 WARN_ON(1);
1330 return 0;
1334 * If next_task preempts rq->curr, and rq->curr
1335 * can move away, it makes sense to just reschedule
1336 * without going further in pushing next_task.
1338 if (dl_task(rq->curr) &&
1339 dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
1340 rq->curr->nr_cpus_allowed > 1) {
1341 resched_curr(rq);
1342 return 0;
1345 /* We might release rq lock */
1346 get_task_struct(next_task);
1348 /* Will lock the rq it'll find */
1349 later_rq = find_lock_later_rq(next_task, rq);
1350 if (!later_rq) {
1351 struct task_struct *task;
1354 * We must check all this again, since
1355 * find_lock_later_rq releases rq->lock and it is
1356 * then possible that next_task has migrated.
1358 task = pick_next_pushable_dl_task(rq);
1359 if (task_cpu(next_task) == rq->cpu && task == next_task) {
1361 * The task is still there. We don't try
1362 * again, some other cpu will pull it when ready.
1364 goto out;
1367 if (!task)
1368 /* No more tasks */
1369 goto out;
1371 put_task_struct(next_task);
1372 next_task = task;
1373 goto retry;
1376 deactivate_task(rq, next_task, 0);
1377 set_task_cpu(next_task, later_rq->cpu);
1378 activate_task(later_rq, next_task, 0);
1379 ret = 1;
1381 resched_curr(later_rq);
1383 double_unlock_balance(rq, later_rq);
1385 out:
1386 put_task_struct(next_task);
1388 return ret;
1391 static void push_dl_tasks(struct rq *rq)
1393 /* Terminates as it moves a -deadline task */
1394 while (push_dl_task(rq))
1398 static int pull_dl_task(struct rq *this_rq)
1400 int this_cpu = this_rq->cpu, ret = 0, cpu;
1401 struct task_struct *p;
1402 struct rq *src_rq;
1403 u64 dmin = LONG_MAX;
1405 if (likely(!dl_overloaded(this_rq)))
1406 return 0;
1409 * Match the barrier from dl_set_overloaded; this guarantees that if we
1410 * see overloaded we must also see the dlo_mask bit.
1412 smp_rmb();
1414 for_each_cpu(cpu, this_rq->rd->dlo_mask) {
1415 if (this_cpu == cpu)
1416 continue;
1418 src_rq = cpu_rq(cpu);
1421 * It looks racy, abd it is! However, as in sched_rt.c,
1422 * we are fine with this.
1424 if (this_rq->dl.dl_nr_running &&
1425 dl_time_before(this_rq->dl.earliest_dl.curr,
1426 src_rq->dl.earliest_dl.next))
1427 continue;
1429 /* Might drop this_rq->lock */
1430 double_lock_balance(this_rq, src_rq);
1433 * If there are no more pullable tasks on the
1434 * rq, we're done with it.
1436 if (src_rq->dl.dl_nr_running <= 1)
1437 goto skip;
1439 p = pick_next_earliest_dl_task(src_rq, this_cpu);
1442 * We found a task to be pulled if:
1443 * - it preempts our current (if there's one),
1444 * - it will preempt the last one we pulled (if any).
1446 if (p && dl_time_before(p->dl.deadline, dmin) &&
1447 (!this_rq->dl.dl_nr_running ||
1448 dl_time_before(p->dl.deadline,
1449 this_rq->dl.earliest_dl.curr))) {
1450 WARN_ON(p == src_rq->curr);
1451 WARN_ON(!task_on_rq_queued(p));
1454 * Then we pull iff p has actually an earlier
1455 * deadline than the current task of its runqueue.
1457 if (dl_time_before(p->dl.deadline,
1458 src_rq->curr->dl.deadline))
1459 goto skip;
1461 ret = 1;
1463 deactivate_task(src_rq, p, 0);
1464 set_task_cpu(p, this_cpu);
1465 activate_task(this_rq, p, 0);
1466 dmin = p->dl.deadline;
1468 /* Is there any other task even earlier? */
1470 skip:
1471 double_unlock_balance(this_rq, src_rq);
1474 return ret;
1477 static void post_schedule_dl(struct rq *rq)
1479 push_dl_tasks(rq);
1483 * Since the task is not running and a reschedule is not going to happen
1484 * anytime soon on its runqueue, we try pushing it away now.
1486 static void task_woken_dl(struct rq *rq, struct task_struct *p)
1488 if (!task_running(rq, p) &&
1489 !test_tsk_need_resched(rq->curr) &&
1490 has_pushable_dl_tasks(rq) &&
1491 p->nr_cpus_allowed > 1 &&
1492 dl_task(rq->curr) &&
1493 (rq->curr->nr_cpus_allowed < 2 ||
1494 !dl_entity_preempt(&p->dl, &rq->curr->dl))) {
1495 push_dl_tasks(rq);
1499 static void set_cpus_allowed_dl(struct task_struct *p,
1500 const struct cpumask *new_mask)
1502 struct rq *rq;
1503 struct root_domain *src_rd;
1504 int weight;
1506 BUG_ON(!dl_task(p));
1508 rq = task_rq(p);
1509 src_rd = rq->rd;
1511 * Migrating a SCHED_DEADLINE task between exclusive
1512 * cpusets (different root_domains) entails a bandwidth
1513 * update. We already made space for us in the destination
1514 * domain (see cpuset_can_attach()).
1516 if (!cpumask_intersects(src_rd->span, new_mask)) {
1517 struct dl_bw *src_dl_b;
1519 src_dl_b = dl_bw_of(cpu_of(rq));
1521 * We now free resources of the root_domain we are migrating
1522 * off. In the worst case, sched_setattr() may temporary fail
1523 * until we complete the update.
1525 raw_spin_lock(&src_dl_b->lock);
1526 __dl_clear(src_dl_b, p->dl.dl_bw);
1527 raw_spin_unlock(&src_dl_b->lock);
1531 * Update only if the task is actually running (i.e.,
1532 * it is on the rq AND it is not throttled).
1534 if (!on_dl_rq(&p->dl))
1535 return;
1537 weight = cpumask_weight(new_mask);
1540 * Only update if the process changes its state from whether it
1541 * can migrate or not.
1543 if ((p->nr_cpus_allowed > 1) == (weight > 1))
1544 return;
1547 * The process used to be able to migrate OR it can now migrate
1549 if (weight <= 1) {
1550 if (!task_current(rq, p))
1551 dequeue_pushable_dl_task(rq, p);
1552 BUG_ON(!rq->dl.dl_nr_migratory);
1553 rq->dl.dl_nr_migratory--;
1554 } else {
1555 if (!task_current(rq, p))
1556 enqueue_pushable_dl_task(rq, p);
1557 rq->dl.dl_nr_migratory++;
1560 update_dl_migration(&rq->dl);
1563 /* Assumes rq->lock is held */
1564 static void rq_online_dl(struct rq *rq)
1566 if (rq->dl.overloaded)
1567 dl_set_overload(rq);
1569 cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
1570 if (rq->dl.dl_nr_running > 0)
1571 cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr, 1);
1574 /* Assumes rq->lock is held */
1575 static void rq_offline_dl(struct rq *rq)
1577 if (rq->dl.overloaded)
1578 dl_clear_overload(rq);
1580 cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0);
1581 cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
1584 void init_sched_dl_class(void)
1586 unsigned int i;
1588 for_each_possible_cpu(i)
1589 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
1590 GFP_KERNEL, cpu_to_node(i));
1593 #endif /* CONFIG_SMP */
1596 * Ensure p's dl_timer is cancelled. May drop rq->lock for a while.
1598 static void cancel_dl_timer(struct rq *rq, struct task_struct *p)
1600 struct hrtimer *dl_timer = &p->dl.dl_timer;
1602 /* Nobody will change task's class if pi_lock is held */
1603 lockdep_assert_held(&p->pi_lock);
1605 if (hrtimer_active(dl_timer)) {
1606 int ret = hrtimer_try_to_cancel(dl_timer);
1608 if (unlikely(ret == -1)) {
1610 * Note, p may migrate OR new deadline tasks
1611 * may appear in rq when we are unlocking it.
1612 * A caller of us must be fine with that.
1614 raw_spin_unlock(&rq->lock);
1615 hrtimer_cancel(dl_timer);
1616 raw_spin_lock(&rq->lock);
1621 static void switched_from_dl(struct rq *rq, struct task_struct *p)
1623 /* XXX we should retain the bw until 0-lag */
1624 cancel_dl_timer(rq, p);
1625 __dl_clear_params(p);
1628 * Since this might be the only -deadline task on the rq,
1629 * this is the right place to try to pull some other one
1630 * from an overloaded cpu, if any.
1632 if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
1633 return;
1635 if (pull_dl_task(rq))
1636 resched_curr(rq);
1640 * When switching to -deadline, we may overload the rq, then
1641 * we try to push someone off, if possible.
1643 static void switched_to_dl(struct rq *rq, struct task_struct *p)
1645 int check_resched = 1;
1648 * If p is throttled, don't consider the possibility
1649 * of preempting rq->curr, the check will be done right
1650 * after its runtime will get replenished.
1652 if (unlikely(p->dl.dl_throttled))
1653 return;
1655 if (task_on_rq_queued(p) && rq->curr != p) {
1656 #ifdef CONFIG_SMP
1657 if (p->nr_cpus_allowed > 1 && rq->dl.overloaded &&
1658 push_dl_task(rq) && rq != task_rq(p))
1659 /* Only reschedule if pushing failed */
1660 check_resched = 0;
1661 #endif /* CONFIG_SMP */
1662 if (check_resched) {
1663 if (dl_task(rq->curr))
1664 check_preempt_curr_dl(rq, p, 0);
1665 else
1666 resched_curr(rq);
1672 * If the scheduling parameters of a -deadline task changed,
1673 * a push or pull operation might be needed.
1675 static void prio_changed_dl(struct rq *rq, struct task_struct *p,
1676 int oldprio)
1678 if (task_on_rq_queued(p) || rq->curr == p) {
1679 #ifdef CONFIG_SMP
1681 * This might be too much, but unfortunately
1682 * we don't have the old deadline value, and
1683 * we can't argue if the task is increasing
1684 * or lowering its prio, so...
1686 if (!rq->dl.overloaded)
1687 pull_dl_task(rq);
1690 * If we now have a earlier deadline task than p,
1691 * then reschedule, provided p is still on this
1692 * runqueue.
1694 if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline) &&
1695 rq->curr == p)
1696 resched_curr(rq);
1697 #else
1699 * Again, we don't know if p has a earlier
1700 * or later deadline, so let's blindly set a
1701 * (maybe not needed) rescheduling point.
1703 resched_curr(rq);
1704 #endif /* CONFIG_SMP */
1705 } else
1706 switched_to_dl(rq, p);
1709 const struct sched_class dl_sched_class = {
1710 .next = &rt_sched_class,
1711 .enqueue_task = enqueue_task_dl,
1712 .dequeue_task = dequeue_task_dl,
1713 .yield_task = yield_task_dl,
1715 .check_preempt_curr = check_preempt_curr_dl,
1717 .pick_next_task = pick_next_task_dl,
1718 .put_prev_task = put_prev_task_dl,
1720 #ifdef CONFIG_SMP
1721 .select_task_rq = select_task_rq_dl,
1722 .set_cpus_allowed = set_cpus_allowed_dl,
1723 .rq_online = rq_online_dl,
1724 .rq_offline = rq_offline_dl,
1725 .post_schedule = post_schedule_dl,
1726 .task_woken = task_woken_dl,
1727 #endif
1729 .set_curr_task = set_curr_task_dl,
1730 .task_tick = task_tick_dl,
1731 .task_fork = task_fork_dl,
1732 .task_dead = task_dead_dl,
1734 .prio_changed = prio_changed_dl,
1735 .switched_from = switched_from_dl,
1736 .switched_to = switched_to_dl,
1738 .update_curr = update_curr_dl,
1741 #ifdef CONFIG_SCHED_DEBUG
1742 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
1744 void print_dl_stats(struct seq_file *m, int cpu)
1746 print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
1748 #endif /* CONFIG_SCHED_DEBUG */