1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 1991, 1992 Linus Torvalds
4 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
5 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
6 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
7 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
13 * This handles all read/write requests to block devices
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/backing-dev.h>
18 #include <linux/bio.h>
19 #include <linux/blkdev.h>
20 #include <linux/blk-mq.h>
21 #include <linux/highmem.h>
23 #include <linux/pagemap.h>
24 #include <linux/kernel_stat.h>
25 #include <linux/string.h>
26 #include <linux/init.h>
27 #include <linux/completion.h>
28 #include <linux/slab.h>
29 #include <linux/swap.h>
30 #include <linux/writeback.h>
31 #include <linux/task_io_accounting_ops.h>
32 #include <linux/fault-inject.h>
33 #include <linux/list_sort.h>
34 #include <linux/delay.h>
35 #include <linux/ratelimit.h>
36 #include <linux/pm_runtime.h>
37 #include <linux/blk-cgroup.h>
38 #include <linux/t10-pi.h>
39 #include <linux/debugfs.h>
40 #include <linux/bpf.h>
41 #include <linux/psi.h>
42 #include <linux/sched/sysctl.h>
43 #include <linux/blk-crypto.h>
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/block.h>
50 #include "blk-mq-sched.h"
52 #include "blk-rq-qos.h"
54 #ifdef CONFIG_DEBUG_FS
55 struct dentry
*blk_debugfs_root
;
58 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap
);
59 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap
);
60 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete
);
61 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split
);
62 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug
);
64 DEFINE_IDA(blk_queue_ida
);
67 * For queue allocation
69 struct kmem_cache
*blk_requestq_cachep
;
72 * Controlling structure to kblockd
74 static struct workqueue_struct
*kblockd_workqueue
;
77 * blk_queue_flag_set - atomically set a queue flag
78 * @flag: flag to be set
81 void blk_queue_flag_set(unsigned int flag
, struct request_queue
*q
)
83 set_bit(flag
, &q
->queue_flags
);
85 EXPORT_SYMBOL(blk_queue_flag_set
);
88 * blk_queue_flag_clear - atomically clear a queue flag
89 * @flag: flag to be cleared
92 void blk_queue_flag_clear(unsigned int flag
, struct request_queue
*q
)
94 clear_bit(flag
, &q
->queue_flags
);
96 EXPORT_SYMBOL(blk_queue_flag_clear
);
99 * blk_queue_flag_test_and_set - atomically test and set a queue flag
100 * @flag: flag to be set
103 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
104 * the flag was already set.
106 bool blk_queue_flag_test_and_set(unsigned int flag
, struct request_queue
*q
)
108 return test_and_set_bit(flag
, &q
->queue_flags
);
110 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set
);
112 void blk_rq_init(struct request_queue
*q
, struct request
*rq
)
114 memset(rq
, 0, sizeof(*rq
));
116 INIT_LIST_HEAD(&rq
->queuelist
);
118 rq
->__sector
= (sector_t
) -1;
119 INIT_HLIST_NODE(&rq
->hash
);
120 RB_CLEAR_NODE(&rq
->rb_node
);
122 rq
->internal_tag
= -1;
123 rq
->start_time_ns
= ktime_get_ns();
125 refcount_set(&rq
->ref
, 1);
126 blk_crypto_rq_set_defaults(rq
);
128 EXPORT_SYMBOL(blk_rq_init
);
130 #define REQ_OP_NAME(name) [REQ_OP_##name] = #name
131 static const char *const blk_op_name
[] = {
135 REQ_OP_NAME(DISCARD
),
136 REQ_OP_NAME(SECURE_ERASE
),
137 REQ_OP_NAME(ZONE_RESET
),
138 REQ_OP_NAME(ZONE_RESET_ALL
),
139 REQ_OP_NAME(ZONE_OPEN
),
140 REQ_OP_NAME(ZONE_CLOSE
),
141 REQ_OP_NAME(ZONE_FINISH
),
142 REQ_OP_NAME(ZONE_APPEND
),
143 REQ_OP_NAME(WRITE_SAME
),
144 REQ_OP_NAME(WRITE_ZEROES
),
145 REQ_OP_NAME(SCSI_IN
),
146 REQ_OP_NAME(SCSI_OUT
),
148 REQ_OP_NAME(DRV_OUT
),
153 * blk_op_str - Return string XXX in the REQ_OP_XXX.
156 * Description: Centralize block layer function to convert REQ_OP_XXX into
157 * string format. Useful in the debugging and tracing bio or request. For
158 * invalid REQ_OP_XXX it returns string "UNKNOWN".
160 inline const char *blk_op_str(unsigned int op
)
162 const char *op_str
= "UNKNOWN";
164 if (op
< ARRAY_SIZE(blk_op_name
) && blk_op_name
[op
])
165 op_str
= blk_op_name
[op
];
169 EXPORT_SYMBOL_GPL(blk_op_str
);
171 static const struct {
175 [BLK_STS_OK
] = { 0, "" },
176 [BLK_STS_NOTSUPP
] = { -EOPNOTSUPP
, "operation not supported" },
177 [BLK_STS_TIMEOUT
] = { -ETIMEDOUT
, "timeout" },
178 [BLK_STS_NOSPC
] = { -ENOSPC
, "critical space allocation" },
179 [BLK_STS_TRANSPORT
] = { -ENOLINK
, "recoverable transport" },
180 [BLK_STS_TARGET
] = { -EREMOTEIO
, "critical target" },
181 [BLK_STS_NEXUS
] = { -EBADE
, "critical nexus" },
182 [BLK_STS_MEDIUM
] = { -ENODATA
, "critical medium" },
183 [BLK_STS_PROTECTION
] = { -EILSEQ
, "protection" },
184 [BLK_STS_RESOURCE
] = { -ENOMEM
, "kernel resource" },
185 [BLK_STS_DEV_RESOURCE
] = { -EBUSY
, "device resource" },
186 [BLK_STS_AGAIN
] = { -EAGAIN
, "nonblocking retry" },
188 /* device mapper special case, should not leak out: */
189 [BLK_STS_DM_REQUEUE
] = { -EREMCHG
, "dm internal retry" },
191 /* everything else not covered above: */
192 [BLK_STS_IOERR
] = { -EIO
, "I/O" },
195 blk_status_t
errno_to_blk_status(int errno
)
199 for (i
= 0; i
< ARRAY_SIZE(blk_errors
); i
++) {
200 if (blk_errors
[i
].errno
== errno
)
201 return (__force blk_status_t
)i
;
204 return BLK_STS_IOERR
;
206 EXPORT_SYMBOL_GPL(errno_to_blk_status
);
208 int blk_status_to_errno(blk_status_t status
)
210 int idx
= (__force
int)status
;
212 if (WARN_ON_ONCE(idx
>= ARRAY_SIZE(blk_errors
)))
214 return blk_errors
[idx
].errno
;
216 EXPORT_SYMBOL_GPL(blk_status_to_errno
);
218 static void print_req_error(struct request
*req
, blk_status_t status
,
221 int idx
= (__force
int)status
;
223 if (WARN_ON_ONCE(idx
>= ARRAY_SIZE(blk_errors
)))
226 printk_ratelimited(KERN_ERR
227 "%s: %s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
228 "phys_seg %u prio class %u\n",
229 caller
, blk_errors
[idx
].name
,
230 req
->rq_disk
? req
->rq_disk
->disk_name
: "?",
231 blk_rq_pos(req
), req_op(req
), blk_op_str(req_op(req
)),
232 req
->cmd_flags
& ~REQ_OP_MASK
,
233 req
->nr_phys_segments
,
234 IOPRIO_PRIO_CLASS(req
->ioprio
));
237 static void req_bio_endio(struct request
*rq
, struct bio
*bio
,
238 unsigned int nbytes
, blk_status_t error
)
241 bio
->bi_status
= error
;
243 if (unlikely(rq
->rq_flags
& RQF_QUIET
))
244 bio_set_flag(bio
, BIO_QUIET
);
246 bio_advance(bio
, nbytes
);
248 if (req_op(rq
) == REQ_OP_ZONE_APPEND
&& error
== BLK_STS_OK
) {
250 * Partial zone append completions cannot be supported as the
251 * BIO fragments may end up not being written sequentially.
253 if (bio
->bi_iter
.bi_size
)
254 bio
->bi_status
= BLK_STS_IOERR
;
256 bio
->bi_iter
.bi_sector
= rq
->__sector
;
259 /* don't actually finish bio if it's part of flush sequence */
260 if (bio
->bi_iter
.bi_size
== 0 && !(rq
->rq_flags
& RQF_FLUSH_SEQ
))
264 void blk_dump_rq_flags(struct request
*rq
, char *msg
)
266 printk(KERN_INFO
"%s: dev %s: flags=%llx\n", msg
,
267 rq
->rq_disk
? rq
->rq_disk
->disk_name
: "?",
268 (unsigned long long) rq
->cmd_flags
);
270 printk(KERN_INFO
" sector %llu, nr/cnr %u/%u\n",
271 (unsigned long long)blk_rq_pos(rq
),
272 blk_rq_sectors(rq
), blk_rq_cur_sectors(rq
));
273 printk(KERN_INFO
" bio %p, biotail %p, len %u\n",
274 rq
->bio
, rq
->biotail
, blk_rq_bytes(rq
));
276 EXPORT_SYMBOL(blk_dump_rq_flags
);
279 * blk_sync_queue - cancel any pending callbacks on a queue
283 * The block layer may perform asynchronous callback activity
284 * on a queue, such as calling the unplug function after a timeout.
285 * A block device may call blk_sync_queue to ensure that any
286 * such activity is cancelled, thus allowing it to release resources
287 * that the callbacks might use. The caller must already have made sure
288 * that its ->make_request_fn will not re-add plugging prior to calling
291 * This function does not cancel any asynchronous activity arising
292 * out of elevator or throttling code. That would require elevator_exit()
293 * and blkcg_exit_queue() to be called with queue lock initialized.
296 void blk_sync_queue(struct request_queue
*q
)
298 del_timer_sync(&q
->timeout
);
299 cancel_work_sync(&q
->timeout_work
);
301 EXPORT_SYMBOL(blk_sync_queue
);
304 * blk_set_pm_only - increment pm_only counter
305 * @q: request queue pointer
307 void blk_set_pm_only(struct request_queue
*q
)
309 atomic_inc(&q
->pm_only
);
311 EXPORT_SYMBOL_GPL(blk_set_pm_only
);
313 void blk_clear_pm_only(struct request_queue
*q
)
317 pm_only
= atomic_dec_return(&q
->pm_only
);
318 WARN_ON_ONCE(pm_only
< 0);
320 wake_up_all(&q
->mq_freeze_wq
);
322 EXPORT_SYMBOL_GPL(blk_clear_pm_only
);
324 void blk_put_queue(struct request_queue
*q
)
326 kobject_put(&q
->kobj
);
328 EXPORT_SYMBOL(blk_put_queue
);
330 void blk_set_queue_dying(struct request_queue
*q
)
332 blk_queue_flag_set(QUEUE_FLAG_DYING
, q
);
335 * When queue DYING flag is set, we need to block new req
336 * entering queue, so we call blk_freeze_queue_start() to
337 * prevent I/O from crossing blk_queue_enter().
339 blk_freeze_queue_start(q
);
342 blk_mq_wake_waiters(q
);
344 /* Make blk_queue_enter() reexamine the DYING flag. */
345 wake_up_all(&q
->mq_freeze_wq
);
347 EXPORT_SYMBOL_GPL(blk_set_queue_dying
);
350 * blk_cleanup_queue - shutdown a request queue
351 * @q: request queue to shutdown
353 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
354 * put it. All future requests will be failed immediately with -ENODEV.
356 void blk_cleanup_queue(struct request_queue
*q
)
358 WARN_ON_ONCE(blk_queue_registered(q
));
360 /* mark @q DYING, no new request or merges will be allowed afterwards */
361 blk_set_queue_dying(q
);
363 blk_queue_flag_set(QUEUE_FLAG_NOMERGES
, q
);
364 blk_queue_flag_set(QUEUE_FLAG_NOXMERGES
, q
);
367 * Drain all requests queued before DYING marking. Set DEAD flag to
368 * prevent that blk_mq_run_hw_queues() accesses the hardware queues
369 * after draining finished.
375 blk_queue_flag_set(QUEUE_FLAG_DEAD
, q
);
377 /* for synchronous bio-based driver finish in-flight integrity i/o */
378 blk_flush_integrity();
380 /* @q won't process any more request, flush async actions */
381 del_timer_sync(&q
->backing_dev_info
->laptop_mode_wb_timer
);
385 blk_mq_exit_queue(q
);
388 * In theory, request pool of sched_tags belongs to request queue.
389 * However, the current implementation requires tag_set for freeing
390 * requests, so free the pool now.
392 * Queue has become frozen, there can't be any in-queue requests, so
393 * it is safe to free requests now.
395 mutex_lock(&q
->sysfs_lock
);
397 blk_mq_sched_free_requests(q
);
398 mutex_unlock(&q
->sysfs_lock
);
400 percpu_ref_exit(&q
->q_usage_counter
);
402 /* @q is and will stay empty, shutdown and put */
405 EXPORT_SYMBOL(blk_cleanup_queue
);
408 * blk_queue_enter() - try to increase q->q_usage_counter
409 * @q: request queue pointer
410 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
412 int blk_queue_enter(struct request_queue
*q
, blk_mq_req_flags_t flags
)
414 const bool pm
= flags
& BLK_MQ_REQ_PREEMPT
;
417 bool success
= false;
420 if (percpu_ref_tryget_live(&q
->q_usage_counter
)) {
422 * The code that increments the pm_only counter is
423 * responsible for ensuring that that counter is
424 * globally visible before the queue is unfrozen.
426 if (pm
|| !blk_queue_pm_only(q
)) {
429 percpu_ref_put(&q
->q_usage_counter
);
437 if (flags
& BLK_MQ_REQ_NOWAIT
)
441 * read pair of barrier in blk_freeze_queue_start(),
442 * we need to order reading __PERCPU_REF_DEAD flag of
443 * .q_usage_counter and reading .mq_freeze_depth or
444 * queue dying flag, otherwise the following wait may
445 * never return if the two reads are reordered.
449 wait_event(q
->mq_freeze_wq
,
450 (!q
->mq_freeze_depth
&&
451 (pm
|| (blk_pm_request_resume(q
),
452 !blk_queue_pm_only(q
)))) ||
454 if (blk_queue_dying(q
))
459 static inline int bio_queue_enter(struct bio
*bio
)
461 struct request_queue
*q
= bio
->bi_disk
->queue
;
462 bool nowait
= bio
->bi_opf
& REQ_NOWAIT
;
465 ret
= blk_queue_enter(q
, nowait
? BLK_MQ_REQ_NOWAIT
: 0);
467 if (nowait
&& !blk_queue_dying(q
))
468 bio_wouldblock_error(bio
);
476 void blk_queue_exit(struct request_queue
*q
)
478 percpu_ref_put(&q
->q_usage_counter
);
481 static void blk_queue_usage_counter_release(struct percpu_ref
*ref
)
483 struct request_queue
*q
=
484 container_of(ref
, struct request_queue
, q_usage_counter
);
486 wake_up_all(&q
->mq_freeze_wq
);
489 static void blk_rq_timed_out_timer(struct timer_list
*t
)
491 struct request_queue
*q
= from_timer(q
, t
, timeout
);
493 kblockd_schedule_work(&q
->timeout_work
);
496 static void blk_timeout_work(struct work_struct
*work
)
500 struct request_queue
*__blk_alloc_queue(int node_id
)
502 struct request_queue
*q
;
505 q
= kmem_cache_alloc_node(blk_requestq_cachep
,
506 GFP_KERNEL
| __GFP_ZERO
, node_id
);
510 q
->last_merge
= NULL
;
512 q
->id
= ida_simple_get(&blk_queue_ida
, 0, 0, GFP_KERNEL
);
516 ret
= bioset_init(&q
->bio_split
, BIO_POOL_SIZE
, 0, BIOSET_NEED_BVECS
);
520 q
->backing_dev_info
= bdi_alloc(node_id
);
521 if (!q
->backing_dev_info
)
524 q
->stats
= blk_alloc_queue_stats();
528 q
->backing_dev_info
->ra_pages
= VM_READAHEAD_PAGES
;
529 q
->backing_dev_info
->capabilities
= BDI_CAP_CGROUP_WRITEBACK
;
532 timer_setup(&q
->backing_dev_info
->laptop_mode_wb_timer
,
533 laptop_mode_timer_fn
, 0);
534 timer_setup(&q
->timeout
, blk_rq_timed_out_timer
, 0);
535 INIT_WORK(&q
->timeout_work
, blk_timeout_work
);
536 INIT_LIST_HEAD(&q
->icq_list
);
537 #ifdef CONFIG_BLK_CGROUP
538 INIT_LIST_HEAD(&q
->blkg_list
);
541 kobject_init(&q
->kobj
, &blk_queue_ktype
);
543 #ifdef CONFIG_BLK_DEV_IO_TRACE
544 mutex_init(&q
->blk_trace_mutex
);
546 mutex_init(&q
->sysfs_lock
);
547 mutex_init(&q
->sysfs_dir_lock
);
548 spin_lock_init(&q
->queue_lock
);
550 init_waitqueue_head(&q
->mq_freeze_wq
);
551 mutex_init(&q
->mq_freeze_lock
);
554 * Init percpu_ref in atomic mode so that it's faster to shutdown.
555 * See blk_register_queue() for details.
557 if (percpu_ref_init(&q
->q_usage_counter
,
558 blk_queue_usage_counter_release
,
559 PERCPU_REF_INIT_ATOMIC
, GFP_KERNEL
))
562 if (blkcg_init_queue(q
))
565 blk_queue_dma_alignment(q
, 511);
566 blk_set_default_limits(&q
->limits
);
571 percpu_ref_exit(&q
->q_usage_counter
);
573 blk_free_queue_stats(q
->stats
);
575 bdi_put(q
->backing_dev_info
);
577 bioset_exit(&q
->bio_split
);
579 ida_simple_remove(&blk_queue_ida
, q
->id
);
581 kmem_cache_free(blk_requestq_cachep
, q
);
585 struct request_queue
*blk_alloc_queue(make_request_fn make_request
, int node_id
)
587 struct request_queue
*q
;
589 if (WARN_ON_ONCE(!make_request
))
592 q
= __blk_alloc_queue(node_id
);
595 q
->make_request_fn
= make_request
;
596 q
->nr_requests
= BLKDEV_MAX_RQ
;
599 EXPORT_SYMBOL(blk_alloc_queue
);
601 bool blk_get_queue(struct request_queue
*q
)
603 if (likely(!blk_queue_dying(q
))) {
610 EXPORT_SYMBOL(blk_get_queue
);
613 * blk_get_request - allocate a request
614 * @q: request queue to allocate a request for
615 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
616 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
618 struct request
*blk_get_request(struct request_queue
*q
, unsigned int op
,
619 blk_mq_req_flags_t flags
)
623 WARN_ON_ONCE(op
& REQ_NOWAIT
);
624 WARN_ON_ONCE(flags
& ~(BLK_MQ_REQ_NOWAIT
| BLK_MQ_REQ_PREEMPT
));
626 req
= blk_mq_alloc_request(q
, op
, flags
);
627 if (!IS_ERR(req
) && q
->mq_ops
->initialize_rq_fn
)
628 q
->mq_ops
->initialize_rq_fn(req
);
632 EXPORT_SYMBOL(blk_get_request
);
634 void blk_put_request(struct request
*req
)
636 blk_mq_free_request(req
);
638 EXPORT_SYMBOL(blk_put_request
);
640 static void blk_account_io_merge_bio(struct request
*req
)
642 if (!blk_do_io_stat(req
))
646 part_stat_inc(req
->part
, merges
[op_stat_group(req_op(req
))]);
650 bool bio_attempt_back_merge(struct request
*req
, struct bio
*bio
,
651 unsigned int nr_segs
)
653 const int ff
= bio
->bi_opf
& REQ_FAILFAST_MASK
;
655 if (!ll_back_merge_fn(req
, bio
, nr_segs
))
658 trace_block_bio_backmerge(req
->q
, req
, bio
);
659 rq_qos_merge(req
->q
, req
, bio
);
661 if ((req
->cmd_flags
& REQ_FAILFAST_MASK
) != ff
)
662 blk_rq_set_mixed_merge(req
);
664 req
->biotail
->bi_next
= bio
;
666 req
->__data_len
+= bio
->bi_iter
.bi_size
;
668 bio_crypt_free_ctx(bio
);
670 blk_account_io_merge_bio(req
);
674 bool bio_attempt_front_merge(struct request
*req
, struct bio
*bio
,
675 unsigned int nr_segs
)
677 const int ff
= bio
->bi_opf
& REQ_FAILFAST_MASK
;
679 if (!ll_front_merge_fn(req
, bio
, nr_segs
))
682 trace_block_bio_frontmerge(req
->q
, req
, bio
);
683 rq_qos_merge(req
->q
, req
, bio
);
685 if ((req
->cmd_flags
& REQ_FAILFAST_MASK
) != ff
)
686 blk_rq_set_mixed_merge(req
);
688 bio
->bi_next
= req
->bio
;
691 req
->__sector
= bio
->bi_iter
.bi_sector
;
692 req
->__data_len
+= bio
->bi_iter
.bi_size
;
694 bio_crypt_do_front_merge(req
, bio
);
696 blk_account_io_merge_bio(req
);
700 bool bio_attempt_discard_merge(struct request_queue
*q
, struct request
*req
,
703 unsigned short segments
= blk_rq_nr_discard_segments(req
);
705 if (segments
>= queue_max_discard_segments(q
))
707 if (blk_rq_sectors(req
) + bio_sectors(bio
) >
708 blk_rq_get_max_sectors(req
, blk_rq_pos(req
)))
711 rq_qos_merge(q
, req
, bio
);
713 req
->biotail
->bi_next
= bio
;
715 req
->__data_len
+= bio
->bi_iter
.bi_size
;
716 req
->nr_phys_segments
= segments
+ 1;
718 blk_account_io_merge_bio(req
);
721 req_set_nomerge(q
, req
);
726 * blk_attempt_plug_merge - try to merge with %current's plugged list
727 * @q: request_queue new bio is being queued at
728 * @bio: new bio being queued
729 * @nr_segs: number of segments in @bio
730 * @same_queue_rq: pointer to &struct request that gets filled in when
731 * another request associated with @q is found on the plug list
732 * (optional, may be %NULL)
734 * Determine whether @bio being queued on @q can be merged with a request
735 * on %current's plugged list. Returns %true if merge was successful,
738 * Plugging coalesces IOs from the same issuer for the same purpose without
739 * going through @q->queue_lock. As such it's more of an issuing mechanism
740 * than scheduling, and the request, while may have elvpriv data, is not
741 * added on the elevator at this point. In addition, we don't have
742 * reliable access to the elevator outside queue lock. Only check basic
743 * merging parameters without querying the elevator.
745 * Caller must ensure !blk_queue_nomerges(q) beforehand.
747 bool blk_attempt_plug_merge(struct request_queue
*q
, struct bio
*bio
,
748 unsigned int nr_segs
, struct request
**same_queue_rq
)
750 struct blk_plug
*plug
;
752 struct list_head
*plug_list
;
754 plug
= blk_mq_plug(q
, bio
);
758 plug_list
= &plug
->mq_list
;
760 list_for_each_entry_reverse(rq
, plug_list
, queuelist
) {
763 if (rq
->q
== q
&& same_queue_rq
) {
765 * Only blk-mq multiple hardware queues case checks the
766 * rq in the same queue, there should be only one such
772 if (rq
->q
!= q
|| !blk_rq_merge_ok(rq
, bio
))
775 switch (blk_try_merge(rq
, bio
)) {
776 case ELEVATOR_BACK_MERGE
:
777 merged
= bio_attempt_back_merge(rq
, bio
, nr_segs
);
779 case ELEVATOR_FRONT_MERGE
:
780 merged
= bio_attempt_front_merge(rq
, bio
, nr_segs
);
782 case ELEVATOR_DISCARD_MERGE
:
783 merged
= bio_attempt_discard_merge(q
, rq
, bio
);
796 static void handle_bad_sector(struct bio
*bio
, sector_t maxsector
)
798 char b
[BDEVNAME_SIZE
];
800 printk(KERN_INFO
"attempt to access beyond end of device\n");
801 printk(KERN_INFO
"%s: rw=%d, want=%Lu, limit=%Lu\n",
802 bio_devname(bio
, b
), bio
->bi_opf
,
803 (unsigned long long)bio_end_sector(bio
),
804 (long long)maxsector
);
807 #ifdef CONFIG_FAIL_MAKE_REQUEST
809 static DECLARE_FAULT_ATTR(fail_make_request
);
811 static int __init
setup_fail_make_request(char *str
)
813 return setup_fault_attr(&fail_make_request
, str
);
815 __setup("fail_make_request=", setup_fail_make_request
);
817 static bool should_fail_request(struct hd_struct
*part
, unsigned int bytes
)
819 return part
->make_it_fail
&& should_fail(&fail_make_request
, bytes
);
822 static int __init
fail_make_request_debugfs(void)
824 struct dentry
*dir
= fault_create_debugfs_attr("fail_make_request",
825 NULL
, &fail_make_request
);
827 return PTR_ERR_OR_ZERO(dir
);
830 late_initcall(fail_make_request_debugfs
);
832 #else /* CONFIG_FAIL_MAKE_REQUEST */
834 static inline bool should_fail_request(struct hd_struct
*part
,
840 #endif /* CONFIG_FAIL_MAKE_REQUEST */
842 static inline bool bio_check_ro(struct bio
*bio
, struct hd_struct
*part
)
844 const int op
= bio_op(bio
);
846 if (part
->policy
&& op_is_write(op
)) {
847 char b
[BDEVNAME_SIZE
];
849 if (op_is_flush(bio
->bi_opf
) && !bio_sectors(bio
))
853 "generic_make_request: Trying to write "
854 "to read-only block-device %s (partno %d)\n",
855 bio_devname(bio
, b
), part
->partno
);
856 /* Older lvm-tools actually trigger this */
863 static noinline
int should_fail_bio(struct bio
*bio
)
865 if (should_fail_request(&bio
->bi_disk
->part0
, bio
->bi_iter
.bi_size
))
869 ALLOW_ERROR_INJECTION(should_fail_bio
, ERRNO
);
872 * Check whether this bio extends beyond the end of the device or partition.
873 * This may well happen - the kernel calls bread() without checking the size of
874 * the device, e.g., when mounting a file system.
876 static inline int bio_check_eod(struct bio
*bio
, sector_t maxsector
)
878 unsigned int nr_sectors
= bio_sectors(bio
);
880 if (nr_sectors
&& maxsector
&&
881 (nr_sectors
> maxsector
||
882 bio
->bi_iter
.bi_sector
> maxsector
- nr_sectors
)) {
883 handle_bad_sector(bio
, maxsector
);
890 * Remap block n of partition p to block n+start(p) of the disk.
892 static inline int blk_partition_remap(struct bio
*bio
)
898 p
= __disk_get_part(bio
->bi_disk
, bio
->bi_partno
);
901 if (unlikely(should_fail_request(p
, bio
->bi_iter
.bi_size
)))
903 if (unlikely(bio_check_ro(bio
, p
)))
906 if (bio_sectors(bio
)) {
907 if (bio_check_eod(bio
, part_nr_sects_read(p
)))
909 bio
->bi_iter
.bi_sector
+= p
->start_sect
;
910 trace_block_bio_remap(bio
->bi_disk
->queue
, bio
, part_devt(p
),
911 bio
->bi_iter
.bi_sector
- p
->start_sect
);
921 * Check write append to a zoned block device.
923 static inline blk_status_t
blk_check_zone_append(struct request_queue
*q
,
926 sector_t pos
= bio
->bi_iter
.bi_sector
;
927 int nr_sectors
= bio_sectors(bio
);
929 /* Only applicable to zoned block devices */
930 if (!blk_queue_is_zoned(q
))
931 return BLK_STS_NOTSUPP
;
933 /* The bio sector must point to the start of a sequential zone */
934 if (pos
& (blk_queue_zone_sectors(q
) - 1) ||
935 !blk_queue_zone_is_seq(q
, pos
))
936 return BLK_STS_IOERR
;
939 * Not allowed to cross zone boundaries. Otherwise, the BIO will be
940 * split and could result in non-contiguous sectors being written in
943 if (nr_sectors
> q
->limits
.chunk_sectors
)
944 return BLK_STS_IOERR
;
946 /* Make sure the BIO is small enough and will not get split */
947 if (nr_sectors
> q
->limits
.max_zone_append_sectors
)
948 return BLK_STS_IOERR
;
950 bio
->bi_opf
|= REQ_NOMERGE
;
955 static noinline_for_stack
bool
956 generic_make_request_checks(struct bio
*bio
)
958 struct request_queue
*q
;
959 int nr_sectors
= bio_sectors(bio
);
960 blk_status_t status
= BLK_STS_IOERR
;
961 char b
[BDEVNAME_SIZE
];
965 q
= bio
->bi_disk
->queue
;
968 "generic_make_request: Trying to access "
969 "nonexistent block-device %s (%Lu)\n",
970 bio_devname(bio
, b
), (long long)bio
->bi_iter
.bi_sector
);
975 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
976 * if queue is not a request based queue.
978 if ((bio
->bi_opf
& REQ_NOWAIT
) && !queue_is_mq(q
))
981 if (should_fail_bio(bio
))
984 if (bio
->bi_partno
) {
985 if (unlikely(blk_partition_remap(bio
)))
988 if (unlikely(bio_check_ro(bio
, &bio
->bi_disk
->part0
)))
990 if (unlikely(bio_check_eod(bio
, get_capacity(bio
->bi_disk
))))
995 * Filter flush bio's early so that make_request based
996 * drivers without flush support don't have to worry
999 if (op_is_flush(bio
->bi_opf
) &&
1000 !test_bit(QUEUE_FLAG_WC
, &q
->queue_flags
)) {
1001 bio
->bi_opf
&= ~(REQ_PREFLUSH
| REQ_FUA
);
1003 status
= BLK_STS_OK
;
1008 if (!test_bit(QUEUE_FLAG_POLL
, &q
->queue_flags
))
1009 bio
->bi_opf
&= ~REQ_HIPRI
;
1011 switch (bio_op(bio
)) {
1012 case REQ_OP_DISCARD
:
1013 if (!blk_queue_discard(q
))
1016 case REQ_OP_SECURE_ERASE
:
1017 if (!blk_queue_secure_erase(q
))
1020 case REQ_OP_WRITE_SAME
:
1021 if (!q
->limits
.max_write_same_sectors
)
1024 case REQ_OP_ZONE_APPEND
:
1025 status
= blk_check_zone_append(q
, bio
);
1026 if (status
!= BLK_STS_OK
)
1029 case REQ_OP_ZONE_RESET
:
1030 case REQ_OP_ZONE_OPEN
:
1031 case REQ_OP_ZONE_CLOSE
:
1032 case REQ_OP_ZONE_FINISH
:
1033 if (!blk_queue_is_zoned(q
))
1036 case REQ_OP_ZONE_RESET_ALL
:
1037 if (!blk_queue_is_zoned(q
) || !blk_queue_zone_resetall(q
))
1040 case REQ_OP_WRITE_ZEROES
:
1041 if (!q
->limits
.max_write_zeroes_sectors
)
1049 * Various block parts want %current->io_context, so allocate it up
1050 * front rather than dealing with lots of pain to allocate it only
1051 * where needed. This may fail and the block layer knows how to live
1054 if (unlikely(!current
->io_context
))
1055 create_task_io_context(current
, GFP_ATOMIC
, q
->node
);
1057 if (!blkcg_bio_issue_check(q
, bio
))
1060 if (!bio_flagged(bio
, BIO_TRACE_COMPLETION
)) {
1061 trace_block_bio_queue(q
, bio
);
1062 /* Now that enqueuing has been traced, we need to trace
1063 * completion as well.
1065 bio_set_flag(bio
, BIO_TRACE_COMPLETION
);
1070 status
= BLK_STS_NOTSUPP
;
1072 bio
->bi_status
= status
;
1077 static blk_qc_t
do_make_request(struct bio
*bio
)
1079 struct request_queue
*q
= bio
->bi_disk
->queue
;
1080 blk_qc_t ret
= BLK_QC_T_NONE
;
1082 if (blk_crypto_bio_prep(&bio
)) {
1083 if (!q
->make_request_fn
)
1084 return blk_mq_make_request(q
, bio
);
1085 ret
= q
->make_request_fn(q
, bio
);
1092 * generic_make_request - re-submit a bio to the block device layer for I/O
1093 * @bio: The bio describing the location in memory and on the device.
1095 * This is a version of submit_bio() that shall only be used for I/O that is
1096 * resubmitted to lower level drivers by stacking block drivers. All file
1097 * systems and other upper level users of the block layer should use
1098 * submit_bio() instead.
1100 blk_qc_t
generic_make_request(struct bio
*bio
)
1103 * bio_list_on_stack[0] contains bios submitted by the current
1105 * bio_list_on_stack[1] contains bios that were submitted before
1106 * the current make_request_fn, but that haven't been processed
1109 struct bio_list bio_list_on_stack
[2];
1110 blk_qc_t ret
= BLK_QC_T_NONE
;
1112 if (!generic_make_request_checks(bio
))
1116 * We only want one ->make_request_fn to be active at a time, else
1117 * stack usage with stacked devices could be a problem. So use
1118 * current->bio_list to keep a list of requests submited by a
1119 * make_request_fn function. current->bio_list is also used as a
1120 * flag to say if generic_make_request is currently active in this
1121 * task or not. If it is NULL, then no make_request is active. If
1122 * it is non-NULL, then a make_request is active, and new requests
1123 * should be added at the tail
1125 if (current
->bio_list
) {
1126 bio_list_add(¤t
->bio_list
[0], bio
);
1130 /* following loop may be a bit non-obvious, and so deserves some
1132 * Before entering the loop, bio->bi_next is NULL (as all callers
1133 * ensure that) so we have a list with a single bio.
1134 * We pretend that we have just taken it off a longer list, so
1135 * we assign bio_list to a pointer to the bio_list_on_stack,
1136 * thus initialising the bio_list of new bios to be
1137 * added. ->make_request() may indeed add some more bios
1138 * through a recursive call to generic_make_request. If it
1139 * did, we find a non-NULL value in bio_list and re-enter the loop
1140 * from the top. In this case we really did just take the bio
1141 * of the top of the list (no pretending) and so remove it from
1142 * bio_list, and call into ->make_request() again.
1144 BUG_ON(bio
->bi_next
);
1145 bio_list_init(&bio_list_on_stack
[0]);
1146 current
->bio_list
= bio_list_on_stack
;
1148 struct request_queue
*q
= bio
->bi_disk
->queue
;
1150 if (likely(bio_queue_enter(bio
) == 0)) {
1151 struct bio_list lower
, same
;
1153 /* Create a fresh bio_list for all subordinate requests */
1154 bio_list_on_stack
[1] = bio_list_on_stack
[0];
1155 bio_list_init(&bio_list_on_stack
[0]);
1156 ret
= do_make_request(bio
);
1158 /* sort new bios into those for a lower level
1159 * and those for the same level
1161 bio_list_init(&lower
);
1162 bio_list_init(&same
);
1163 while ((bio
= bio_list_pop(&bio_list_on_stack
[0])) != NULL
)
1164 if (q
== bio
->bi_disk
->queue
)
1165 bio_list_add(&same
, bio
);
1167 bio_list_add(&lower
, bio
);
1168 /* now assemble so we handle the lowest level first */
1169 bio_list_merge(&bio_list_on_stack
[0], &lower
);
1170 bio_list_merge(&bio_list_on_stack
[0], &same
);
1171 bio_list_merge(&bio_list_on_stack
[0], &bio_list_on_stack
[1]);
1173 bio
= bio_list_pop(&bio_list_on_stack
[0]);
1175 current
->bio_list
= NULL
; /* deactivate */
1180 EXPORT_SYMBOL(generic_make_request
);
1183 * direct_make_request - hand a buffer directly to its device driver for I/O
1184 * @bio: The bio describing the location in memory and on the device.
1186 * This function behaves like generic_make_request(), but does not protect
1187 * against recursion. Must only be used if the called driver is known
1188 * to be blk-mq based.
1190 blk_qc_t
direct_make_request(struct bio
*bio
)
1192 struct request_queue
*q
= bio
->bi_disk
->queue
;
1194 if (WARN_ON_ONCE(q
->make_request_fn
)) {
1196 return BLK_QC_T_NONE
;
1198 if (!generic_make_request_checks(bio
))
1199 return BLK_QC_T_NONE
;
1200 if (unlikely(bio_queue_enter(bio
)))
1201 return BLK_QC_T_NONE
;
1202 if (!blk_crypto_bio_prep(&bio
)) {
1204 return BLK_QC_T_NONE
;
1206 return blk_mq_make_request(q
, bio
);
1208 EXPORT_SYMBOL_GPL(direct_make_request
);
1211 * submit_bio - submit a bio to the block device layer for I/O
1212 * @bio: The &struct bio which describes the I/O
1214 * submit_bio() is used to submit I/O requests to block devices. It is passed a
1215 * fully set up &struct bio that describes the I/O that needs to be done. The
1216 * bio will be send to the device described by the bi_disk and bi_partno fields.
1218 * The success/failure status of the request, along with notification of
1219 * completion, is delivered asynchronously through the ->bi_end_io() callback
1220 * in @bio. The bio must NOT be touched by thecaller until ->bi_end_io() has
1223 blk_qc_t
submit_bio(struct bio
*bio
)
1225 if (blkcg_punt_bio_submit(bio
))
1226 return BLK_QC_T_NONE
;
1229 * If it's a regular read/write or a barrier with data attached,
1230 * go through the normal accounting stuff before submission.
1232 if (bio_has_data(bio
)) {
1235 if (unlikely(bio_op(bio
) == REQ_OP_WRITE_SAME
))
1236 count
= queue_logical_block_size(bio
->bi_disk
->queue
) >> 9;
1238 count
= bio_sectors(bio
);
1240 if (op_is_write(bio_op(bio
))) {
1241 count_vm_events(PGPGOUT
, count
);
1243 task_io_account_read(bio
->bi_iter
.bi_size
);
1244 count_vm_events(PGPGIN
, count
);
1247 if (unlikely(block_dump
)) {
1248 char b
[BDEVNAME_SIZE
];
1249 printk(KERN_DEBUG
"%s(%d): %s block %Lu on %s (%u sectors)\n",
1250 current
->comm
, task_pid_nr(current
),
1251 op_is_write(bio_op(bio
)) ? "WRITE" : "READ",
1252 (unsigned long long)bio
->bi_iter
.bi_sector
,
1253 bio_devname(bio
, b
), count
);
1258 * If we're reading data that is part of the userspace workingset, count
1259 * submission time as memory stall. When the device is congested, or
1260 * the submitting cgroup IO-throttled, submission can be a significant
1261 * part of overall IO time.
1263 if (unlikely(bio_op(bio
) == REQ_OP_READ
&&
1264 bio_flagged(bio
, BIO_WORKINGSET
))) {
1265 unsigned long pflags
;
1268 psi_memstall_enter(&pflags
);
1269 ret
= generic_make_request(bio
);
1270 psi_memstall_leave(&pflags
);
1275 return generic_make_request(bio
);
1277 EXPORT_SYMBOL(submit_bio
);
1280 * blk_cloned_rq_check_limits - Helper function to check a cloned request
1281 * for the new queue limits
1283 * @rq: the request being checked
1286 * @rq may have been made based on weaker limitations of upper-level queues
1287 * in request stacking drivers, and it may violate the limitation of @q.
1288 * Since the block layer and the underlying device driver trust @rq
1289 * after it is inserted to @q, it should be checked against @q before
1290 * the insertion using this generic function.
1292 * Request stacking drivers like request-based dm may change the queue
1293 * limits when retrying requests on other queues. Those requests need
1294 * to be checked against the new queue limits again during dispatch.
1296 static int blk_cloned_rq_check_limits(struct request_queue
*q
,
1299 if (blk_rq_sectors(rq
) > blk_queue_get_max_sectors(q
, req_op(rq
))) {
1300 printk(KERN_ERR
"%s: over max size limit. (%u > %u)\n",
1301 __func__
, blk_rq_sectors(rq
),
1302 blk_queue_get_max_sectors(q
, req_op(rq
)));
1307 * queue's settings related to segment counting like q->bounce_pfn
1308 * may differ from that of other stacking queues.
1309 * Recalculate it to check the request correctly on this queue's
1312 rq
->nr_phys_segments
= blk_recalc_rq_segments(rq
);
1313 if (rq
->nr_phys_segments
> queue_max_segments(q
)) {
1314 printk(KERN_ERR
"%s: over max segments limit. (%hu > %hu)\n",
1315 __func__
, rq
->nr_phys_segments
, queue_max_segments(q
));
1323 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1324 * @q: the queue to submit the request
1325 * @rq: the request being queued
1327 blk_status_t
blk_insert_cloned_request(struct request_queue
*q
, struct request
*rq
)
1329 if (blk_cloned_rq_check_limits(q
, rq
))
1330 return BLK_STS_IOERR
;
1333 should_fail_request(&rq
->rq_disk
->part0
, blk_rq_bytes(rq
)))
1334 return BLK_STS_IOERR
;
1336 if (blk_crypto_insert_cloned_request(rq
))
1337 return BLK_STS_IOERR
;
1339 if (blk_queue_io_stat(q
))
1340 blk_account_io_start(rq
);
1343 * Since we have a scheduler attached on the top device,
1344 * bypass a potential scheduler on the bottom device for
1347 return blk_mq_request_issue_directly(rq
, true);
1349 EXPORT_SYMBOL_GPL(blk_insert_cloned_request
);
1352 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1353 * @rq: request to examine
1356 * A request could be merge of IOs which require different failure
1357 * handling. This function determines the number of bytes which
1358 * can be failed from the beginning of the request without
1359 * crossing into area which need to be retried further.
1362 * The number of bytes to fail.
1364 unsigned int blk_rq_err_bytes(const struct request
*rq
)
1366 unsigned int ff
= rq
->cmd_flags
& REQ_FAILFAST_MASK
;
1367 unsigned int bytes
= 0;
1370 if (!(rq
->rq_flags
& RQF_MIXED_MERGE
))
1371 return blk_rq_bytes(rq
);
1374 * Currently the only 'mixing' which can happen is between
1375 * different fastfail types. We can safely fail portions
1376 * which have all the failfast bits that the first one has -
1377 * the ones which are at least as eager to fail as the first
1380 for (bio
= rq
->bio
; bio
; bio
= bio
->bi_next
) {
1381 if ((bio
->bi_opf
& ff
) != ff
)
1383 bytes
+= bio
->bi_iter
.bi_size
;
1386 /* this could lead to infinite loop */
1387 BUG_ON(blk_rq_bytes(rq
) && !bytes
);
1390 EXPORT_SYMBOL_GPL(blk_rq_err_bytes
);
1392 static void update_io_ticks(struct hd_struct
*part
, unsigned long now
, bool end
)
1394 unsigned long stamp
;
1396 stamp
= READ_ONCE(part
->stamp
);
1397 if (unlikely(stamp
!= now
)) {
1398 if (likely(cmpxchg(&part
->stamp
, stamp
, now
) == stamp
))
1399 __part_stat_add(part
, io_ticks
, end
? now
- stamp
: 1);
1402 part
= &part_to_disk(part
)->part0
;
1407 static void blk_account_io_completion(struct request
*req
, unsigned int bytes
)
1409 if (req
->part
&& blk_do_io_stat(req
)) {
1410 const int sgrp
= op_stat_group(req_op(req
));
1411 struct hd_struct
*part
;
1415 part_stat_add(part
, sectors
[sgrp
], bytes
>> 9);
1420 void blk_account_io_done(struct request
*req
, u64 now
)
1423 * Account IO completion. flush_rq isn't accounted as a
1424 * normal IO on queueing nor completion. Accounting the
1425 * containing request is enough.
1427 if (req
->part
&& blk_do_io_stat(req
) &&
1428 !(req
->rq_flags
& RQF_FLUSH_SEQ
)) {
1429 const int sgrp
= op_stat_group(req_op(req
));
1430 struct hd_struct
*part
;
1435 update_io_ticks(part
, jiffies
, true);
1436 part_stat_inc(part
, ios
[sgrp
]);
1437 part_stat_add(part
, nsecs
[sgrp
], now
- req
->start_time_ns
);
1440 hd_struct_put(part
);
1444 void blk_account_io_start(struct request
*rq
)
1446 if (!blk_do_io_stat(rq
))
1449 rq
->part
= disk_map_sector_rcu(rq
->rq_disk
, blk_rq_pos(rq
));
1452 update_io_ticks(rq
->part
, jiffies
, false);
1456 unsigned long disk_start_io_acct(struct gendisk
*disk
, unsigned int sectors
,
1459 struct hd_struct
*part
= &disk
->part0
;
1460 const int sgrp
= op_stat_group(op
);
1461 unsigned long now
= READ_ONCE(jiffies
);
1464 update_io_ticks(part
, now
, false);
1465 part_stat_inc(part
, ios
[sgrp
]);
1466 part_stat_add(part
, sectors
[sgrp
], sectors
);
1467 part_stat_local_inc(part
, in_flight
[op_is_write(op
)]);
1472 EXPORT_SYMBOL(disk_start_io_acct
);
1474 void disk_end_io_acct(struct gendisk
*disk
, unsigned int op
,
1475 unsigned long start_time
)
1477 struct hd_struct
*part
= &disk
->part0
;
1478 const int sgrp
= op_stat_group(op
);
1479 unsigned long now
= READ_ONCE(jiffies
);
1480 unsigned long duration
= now
- start_time
;
1483 update_io_ticks(part
, now
, true);
1484 part_stat_add(part
, nsecs
[sgrp
], jiffies_to_nsecs(duration
));
1485 part_stat_local_dec(part
, in_flight
[op_is_write(op
)]);
1488 EXPORT_SYMBOL(disk_end_io_acct
);
1491 * Steal bios from a request and add them to a bio list.
1492 * The request must not have been partially completed before.
1494 void blk_steal_bios(struct bio_list
*list
, struct request
*rq
)
1498 list
->tail
->bi_next
= rq
->bio
;
1500 list
->head
= rq
->bio
;
1501 list
->tail
= rq
->biotail
;
1509 EXPORT_SYMBOL_GPL(blk_steal_bios
);
1512 * blk_update_request - Special helper function for request stacking drivers
1513 * @req: the request being processed
1514 * @error: block status code
1515 * @nr_bytes: number of bytes to complete @req
1518 * Ends I/O on a number of bytes attached to @req, but doesn't complete
1519 * the request structure even if @req doesn't have leftover.
1520 * If @req has leftover, sets it up for the next range of segments.
1522 * This special helper function is only for request stacking drivers
1523 * (e.g. request-based dm) so that they can handle partial completion.
1524 * Actual device drivers should use blk_mq_end_request instead.
1526 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1527 * %false return from this function.
1530 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both
1531 * blk_rq_bytes() and in blk_update_request().
1534 * %false - this request doesn't have any more data
1535 * %true - this request has more data
1537 bool blk_update_request(struct request
*req
, blk_status_t error
,
1538 unsigned int nr_bytes
)
1542 trace_block_rq_complete(req
, blk_status_to_errno(error
), nr_bytes
);
1547 #ifdef CONFIG_BLK_DEV_INTEGRITY
1548 if (blk_integrity_rq(req
) && req_op(req
) == REQ_OP_READ
&&
1549 error
== BLK_STS_OK
)
1550 req
->q
->integrity
.profile
->complete_fn(req
, nr_bytes
);
1553 if (unlikely(error
&& !blk_rq_is_passthrough(req
) &&
1554 !(req
->rq_flags
& RQF_QUIET
)))
1555 print_req_error(req
, error
, __func__
);
1557 blk_account_io_completion(req
, nr_bytes
);
1561 struct bio
*bio
= req
->bio
;
1562 unsigned bio_bytes
= min(bio
->bi_iter
.bi_size
, nr_bytes
);
1564 if (bio_bytes
== bio
->bi_iter
.bi_size
)
1565 req
->bio
= bio
->bi_next
;
1567 /* Completion has already been traced */
1568 bio_clear_flag(bio
, BIO_TRACE_COMPLETION
);
1569 req_bio_endio(req
, bio
, bio_bytes
, error
);
1571 total_bytes
+= bio_bytes
;
1572 nr_bytes
-= bio_bytes
;
1583 * Reset counters so that the request stacking driver
1584 * can find how many bytes remain in the request
1587 req
->__data_len
= 0;
1591 req
->__data_len
-= total_bytes
;
1593 /* update sector only for requests with clear definition of sector */
1594 if (!blk_rq_is_passthrough(req
))
1595 req
->__sector
+= total_bytes
>> 9;
1597 /* mixed attributes always follow the first bio */
1598 if (req
->rq_flags
& RQF_MIXED_MERGE
) {
1599 req
->cmd_flags
&= ~REQ_FAILFAST_MASK
;
1600 req
->cmd_flags
|= req
->bio
->bi_opf
& REQ_FAILFAST_MASK
;
1603 if (!(req
->rq_flags
& RQF_SPECIAL_PAYLOAD
)) {
1605 * If total number of sectors is less than the first segment
1606 * size, something has gone terribly wrong.
1608 if (blk_rq_bytes(req
) < blk_rq_cur_bytes(req
)) {
1609 blk_dump_rq_flags(req
, "request botched");
1610 req
->__data_len
= blk_rq_cur_bytes(req
);
1613 /* recalculate the number of segments */
1614 req
->nr_phys_segments
= blk_recalc_rq_segments(req
);
1619 EXPORT_SYMBOL_GPL(blk_update_request
);
1621 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1623 * rq_flush_dcache_pages - Helper function to flush all pages in a request
1624 * @rq: the request to be flushed
1627 * Flush all pages in @rq.
1629 void rq_flush_dcache_pages(struct request
*rq
)
1631 struct req_iterator iter
;
1632 struct bio_vec bvec
;
1634 rq_for_each_segment(bvec
, rq
, iter
)
1635 flush_dcache_page(bvec
.bv_page
);
1637 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages
);
1641 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1642 * @q : the queue of the device being checked
1645 * Check if underlying low-level drivers of a device are busy.
1646 * If the drivers want to export their busy state, they must set own
1647 * exporting function using blk_queue_lld_busy() first.
1649 * Basically, this function is used only by request stacking drivers
1650 * to stop dispatching requests to underlying devices when underlying
1651 * devices are busy. This behavior helps more I/O merging on the queue
1652 * of the request stacking driver and prevents I/O throughput regression
1653 * on burst I/O load.
1656 * 0 - Not busy (The request stacking driver should dispatch request)
1657 * 1 - Busy (The request stacking driver should stop dispatching request)
1659 int blk_lld_busy(struct request_queue
*q
)
1661 if (queue_is_mq(q
) && q
->mq_ops
->busy
)
1662 return q
->mq_ops
->busy(q
);
1666 EXPORT_SYMBOL_GPL(blk_lld_busy
);
1669 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
1670 * @rq: the clone request to be cleaned up
1673 * Free all bios in @rq for a cloned request.
1675 void blk_rq_unprep_clone(struct request
*rq
)
1679 while ((bio
= rq
->bio
) != NULL
) {
1680 rq
->bio
= bio
->bi_next
;
1685 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone
);
1688 * blk_rq_prep_clone - Helper function to setup clone request
1689 * @rq: the request to be setup
1690 * @rq_src: original request to be cloned
1691 * @bs: bio_set that bios for clone are allocated from
1692 * @gfp_mask: memory allocation mask for bio
1693 * @bio_ctr: setup function to be called for each clone bio.
1694 * Returns %0 for success, non %0 for failure.
1695 * @data: private data to be passed to @bio_ctr
1698 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
1699 * Also, pages which the original bios are pointing to are not copied
1700 * and the cloned bios just point same pages.
1701 * So cloned bios must be completed before original bios, which means
1702 * the caller must complete @rq before @rq_src.
1704 int blk_rq_prep_clone(struct request
*rq
, struct request
*rq_src
,
1705 struct bio_set
*bs
, gfp_t gfp_mask
,
1706 int (*bio_ctr
)(struct bio
*, struct bio
*, void *),
1709 struct bio
*bio
, *bio_src
;
1714 __rq_for_each_bio(bio_src
, rq_src
) {
1715 bio
= bio_clone_fast(bio_src
, gfp_mask
, bs
);
1719 if (bio_ctr
&& bio_ctr(bio
, bio_src
, data
))
1723 rq
->biotail
->bi_next
= bio
;
1726 rq
->bio
= rq
->biotail
= bio
;
1729 /* Copy attributes of the original request to the clone request. */
1730 rq
->__sector
= blk_rq_pos(rq_src
);
1731 rq
->__data_len
= blk_rq_bytes(rq_src
);
1732 if (rq_src
->rq_flags
& RQF_SPECIAL_PAYLOAD
) {
1733 rq
->rq_flags
|= RQF_SPECIAL_PAYLOAD
;
1734 rq
->special_vec
= rq_src
->special_vec
;
1736 rq
->nr_phys_segments
= rq_src
->nr_phys_segments
;
1737 rq
->ioprio
= rq_src
->ioprio
;
1740 blk_crypto_rq_bio_prep(rq
, rq
->bio
, gfp_mask
);
1747 blk_rq_unprep_clone(rq
);
1751 EXPORT_SYMBOL_GPL(blk_rq_prep_clone
);
1753 int kblockd_schedule_work(struct work_struct
*work
)
1755 return queue_work(kblockd_workqueue
, work
);
1757 EXPORT_SYMBOL(kblockd_schedule_work
);
1759 int kblockd_mod_delayed_work_on(int cpu
, struct delayed_work
*dwork
,
1760 unsigned long delay
)
1762 return mod_delayed_work_on(cpu
, kblockd_workqueue
, dwork
, delay
);
1764 EXPORT_SYMBOL(kblockd_mod_delayed_work_on
);
1767 * blk_start_plug - initialize blk_plug and track it inside the task_struct
1768 * @plug: The &struct blk_plug that needs to be initialized
1771 * blk_start_plug() indicates to the block layer an intent by the caller
1772 * to submit multiple I/O requests in a batch. The block layer may use
1773 * this hint to defer submitting I/Os from the caller until blk_finish_plug()
1774 * is called. However, the block layer may choose to submit requests
1775 * before a call to blk_finish_plug() if the number of queued I/Os
1776 * exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1777 * %BLK_PLUG_FLUSH_SIZE. The queued I/Os may also be submitted early if
1778 * the task schedules (see below).
1780 * Tracking blk_plug inside the task_struct will help with auto-flushing the
1781 * pending I/O should the task end up blocking between blk_start_plug() and
1782 * blk_finish_plug(). This is important from a performance perspective, but
1783 * also ensures that we don't deadlock. For instance, if the task is blocking
1784 * for a memory allocation, memory reclaim could end up wanting to free a
1785 * page belonging to that request that is currently residing in our private
1786 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
1787 * this kind of deadlock.
1789 void blk_start_plug(struct blk_plug
*plug
)
1791 struct task_struct
*tsk
= current
;
1794 * If this is a nested plug, don't actually assign it.
1799 INIT_LIST_HEAD(&plug
->mq_list
);
1800 INIT_LIST_HEAD(&plug
->cb_list
);
1802 plug
->multiple_queues
= false;
1805 * Store ordering should not be needed here, since a potential
1806 * preempt will imply a full memory barrier
1810 EXPORT_SYMBOL(blk_start_plug
);
1812 static void flush_plug_callbacks(struct blk_plug
*plug
, bool from_schedule
)
1814 LIST_HEAD(callbacks
);
1816 while (!list_empty(&plug
->cb_list
)) {
1817 list_splice_init(&plug
->cb_list
, &callbacks
);
1819 while (!list_empty(&callbacks
)) {
1820 struct blk_plug_cb
*cb
= list_first_entry(&callbacks
,
1823 list_del(&cb
->list
);
1824 cb
->callback(cb
, from_schedule
);
1829 struct blk_plug_cb
*blk_check_plugged(blk_plug_cb_fn unplug
, void *data
,
1832 struct blk_plug
*plug
= current
->plug
;
1833 struct blk_plug_cb
*cb
;
1838 list_for_each_entry(cb
, &plug
->cb_list
, list
)
1839 if (cb
->callback
== unplug
&& cb
->data
== data
)
1842 /* Not currently on the callback list */
1843 BUG_ON(size
< sizeof(*cb
));
1844 cb
= kzalloc(size
, GFP_ATOMIC
);
1847 cb
->callback
= unplug
;
1848 list_add(&cb
->list
, &plug
->cb_list
);
1852 EXPORT_SYMBOL(blk_check_plugged
);
1854 void blk_flush_plug_list(struct blk_plug
*plug
, bool from_schedule
)
1856 flush_plug_callbacks(plug
, from_schedule
);
1858 if (!list_empty(&plug
->mq_list
))
1859 blk_mq_flush_plug_list(plug
, from_schedule
);
1863 * blk_finish_plug - mark the end of a batch of submitted I/O
1864 * @plug: The &struct blk_plug passed to blk_start_plug()
1867 * Indicate that a batch of I/O submissions is complete. This function
1868 * must be paired with an initial call to blk_start_plug(). The intent
1869 * is to allow the block layer to optimize I/O submission. See the
1870 * documentation for blk_start_plug() for more information.
1872 void blk_finish_plug(struct blk_plug
*plug
)
1874 if (plug
!= current
->plug
)
1876 blk_flush_plug_list(plug
, false);
1878 current
->plug
= NULL
;
1880 EXPORT_SYMBOL(blk_finish_plug
);
1882 void blk_io_schedule(void)
1884 /* Prevent hang_check timer from firing at us during very long I/O */
1885 unsigned long timeout
= sysctl_hung_task_timeout_secs
* HZ
/ 2;
1888 io_schedule_timeout(timeout
);
1892 EXPORT_SYMBOL_GPL(blk_io_schedule
);
1894 int __init
blk_dev_init(void)
1896 BUILD_BUG_ON(REQ_OP_LAST
>= (1 << REQ_OP_BITS
));
1897 BUILD_BUG_ON(REQ_OP_BITS
+ REQ_FLAG_BITS
> 8 *
1898 sizeof_field(struct request
, cmd_flags
));
1899 BUILD_BUG_ON(REQ_OP_BITS
+ REQ_FLAG_BITS
> 8 *
1900 sizeof_field(struct bio
, bi_opf
));
1902 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
1903 kblockd_workqueue
= alloc_workqueue("kblockd",
1904 WQ_MEM_RECLAIM
| WQ_HIGHPRI
, 0);
1905 if (!kblockd_workqueue
)
1906 panic("Failed to create kblockd\n");
1908 blk_requestq_cachep
= kmem_cache_create("request_queue",
1909 sizeof(struct request_queue
), 0, SLAB_PANIC
, NULL
);
1911 #ifdef CONFIG_DEBUG_FS
1912 blk_debugfs_root
= debugfs_create_dir("block", NULL
);