USB: serial: qcserial: add EM7305 QDL product ID
[linux/fpc-iii.git] / block / blk-core.c
blob03252af8c82c82c5580f7f56cff092c75c441bf0
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1991, 1992 Linus Torvalds
4 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
5 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
6 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
7 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8 * - July2000
9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
13 * This handles all read/write requests to block devices
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/backing-dev.h>
18 #include <linux/bio.h>
19 #include <linux/blkdev.h>
20 #include <linux/blk-mq.h>
21 #include <linux/highmem.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kernel_stat.h>
25 #include <linux/string.h>
26 #include <linux/init.h>
27 #include <linux/completion.h>
28 #include <linux/slab.h>
29 #include <linux/swap.h>
30 #include <linux/writeback.h>
31 #include <linux/task_io_accounting_ops.h>
32 #include <linux/fault-inject.h>
33 #include <linux/list_sort.h>
34 #include <linux/delay.h>
35 #include <linux/ratelimit.h>
36 #include <linux/pm_runtime.h>
37 #include <linux/blk-cgroup.h>
38 #include <linux/t10-pi.h>
39 #include <linux/debugfs.h>
40 #include <linux/bpf.h>
41 #include <linux/psi.h>
42 #include <linux/sched/sysctl.h>
43 #include <linux/blk-crypto.h>
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/block.h>
48 #include "blk.h"
49 #include "blk-mq.h"
50 #include "blk-mq-sched.h"
51 #include "blk-pm.h"
52 #include "blk-rq-qos.h"
54 #ifdef CONFIG_DEBUG_FS
55 struct dentry *blk_debugfs_root;
56 #endif
58 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
59 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
60 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
61 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
62 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
64 DEFINE_IDA(blk_queue_ida);
67 * For queue allocation
69 struct kmem_cache *blk_requestq_cachep;
72 * Controlling structure to kblockd
74 static struct workqueue_struct *kblockd_workqueue;
76 /**
77 * blk_queue_flag_set - atomically set a queue flag
78 * @flag: flag to be set
79 * @q: request queue
81 void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
83 set_bit(flag, &q->queue_flags);
85 EXPORT_SYMBOL(blk_queue_flag_set);
87 /**
88 * blk_queue_flag_clear - atomically clear a queue flag
89 * @flag: flag to be cleared
90 * @q: request queue
92 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
94 clear_bit(flag, &q->queue_flags);
96 EXPORT_SYMBOL(blk_queue_flag_clear);
98 /**
99 * blk_queue_flag_test_and_set - atomically test and set a queue flag
100 * @flag: flag to be set
101 * @q: request queue
103 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
104 * the flag was already set.
106 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
108 return test_and_set_bit(flag, &q->queue_flags);
110 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
112 void blk_rq_init(struct request_queue *q, struct request *rq)
114 memset(rq, 0, sizeof(*rq));
116 INIT_LIST_HEAD(&rq->queuelist);
117 rq->q = q;
118 rq->__sector = (sector_t) -1;
119 INIT_HLIST_NODE(&rq->hash);
120 RB_CLEAR_NODE(&rq->rb_node);
121 rq->tag = -1;
122 rq->internal_tag = -1;
123 rq->start_time_ns = ktime_get_ns();
124 rq->part = NULL;
125 refcount_set(&rq->ref, 1);
126 blk_crypto_rq_set_defaults(rq);
128 EXPORT_SYMBOL(blk_rq_init);
130 #define REQ_OP_NAME(name) [REQ_OP_##name] = #name
131 static const char *const blk_op_name[] = {
132 REQ_OP_NAME(READ),
133 REQ_OP_NAME(WRITE),
134 REQ_OP_NAME(FLUSH),
135 REQ_OP_NAME(DISCARD),
136 REQ_OP_NAME(SECURE_ERASE),
137 REQ_OP_NAME(ZONE_RESET),
138 REQ_OP_NAME(ZONE_RESET_ALL),
139 REQ_OP_NAME(ZONE_OPEN),
140 REQ_OP_NAME(ZONE_CLOSE),
141 REQ_OP_NAME(ZONE_FINISH),
142 REQ_OP_NAME(ZONE_APPEND),
143 REQ_OP_NAME(WRITE_SAME),
144 REQ_OP_NAME(WRITE_ZEROES),
145 REQ_OP_NAME(SCSI_IN),
146 REQ_OP_NAME(SCSI_OUT),
147 REQ_OP_NAME(DRV_IN),
148 REQ_OP_NAME(DRV_OUT),
150 #undef REQ_OP_NAME
153 * blk_op_str - Return string XXX in the REQ_OP_XXX.
154 * @op: REQ_OP_XXX.
156 * Description: Centralize block layer function to convert REQ_OP_XXX into
157 * string format. Useful in the debugging and tracing bio or request. For
158 * invalid REQ_OP_XXX it returns string "UNKNOWN".
160 inline const char *blk_op_str(unsigned int op)
162 const char *op_str = "UNKNOWN";
164 if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
165 op_str = blk_op_name[op];
167 return op_str;
169 EXPORT_SYMBOL_GPL(blk_op_str);
171 static const struct {
172 int errno;
173 const char *name;
174 } blk_errors[] = {
175 [BLK_STS_OK] = { 0, "" },
176 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
177 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
178 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
179 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
180 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
181 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
182 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
183 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
184 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
185 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" },
186 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
188 /* device mapper special case, should not leak out: */
189 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
191 /* everything else not covered above: */
192 [BLK_STS_IOERR] = { -EIO, "I/O" },
195 blk_status_t errno_to_blk_status(int errno)
197 int i;
199 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
200 if (blk_errors[i].errno == errno)
201 return (__force blk_status_t)i;
204 return BLK_STS_IOERR;
206 EXPORT_SYMBOL_GPL(errno_to_blk_status);
208 int blk_status_to_errno(blk_status_t status)
210 int idx = (__force int)status;
212 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
213 return -EIO;
214 return blk_errors[idx].errno;
216 EXPORT_SYMBOL_GPL(blk_status_to_errno);
218 static void print_req_error(struct request *req, blk_status_t status,
219 const char *caller)
221 int idx = (__force int)status;
223 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
224 return;
226 printk_ratelimited(KERN_ERR
227 "%s: %s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
228 "phys_seg %u prio class %u\n",
229 caller, blk_errors[idx].name,
230 req->rq_disk ? req->rq_disk->disk_name : "?",
231 blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)),
232 req->cmd_flags & ~REQ_OP_MASK,
233 req->nr_phys_segments,
234 IOPRIO_PRIO_CLASS(req->ioprio));
237 static void req_bio_endio(struct request *rq, struct bio *bio,
238 unsigned int nbytes, blk_status_t error)
240 if (error)
241 bio->bi_status = error;
243 if (unlikely(rq->rq_flags & RQF_QUIET))
244 bio_set_flag(bio, BIO_QUIET);
246 bio_advance(bio, nbytes);
248 if (req_op(rq) == REQ_OP_ZONE_APPEND && error == BLK_STS_OK) {
250 * Partial zone append completions cannot be supported as the
251 * BIO fragments may end up not being written sequentially.
253 if (bio->bi_iter.bi_size)
254 bio->bi_status = BLK_STS_IOERR;
255 else
256 bio->bi_iter.bi_sector = rq->__sector;
259 /* don't actually finish bio if it's part of flush sequence */
260 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
261 bio_endio(bio);
264 void blk_dump_rq_flags(struct request *rq, char *msg)
266 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
267 rq->rq_disk ? rq->rq_disk->disk_name : "?",
268 (unsigned long long) rq->cmd_flags);
270 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
271 (unsigned long long)blk_rq_pos(rq),
272 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
273 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
274 rq->bio, rq->biotail, blk_rq_bytes(rq));
276 EXPORT_SYMBOL(blk_dump_rq_flags);
279 * blk_sync_queue - cancel any pending callbacks on a queue
280 * @q: the queue
282 * Description:
283 * The block layer may perform asynchronous callback activity
284 * on a queue, such as calling the unplug function after a timeout.
285 * A block device may call blk_sync_queue to ensure that any
286 * such activity is cancelled, thus allowing it to release resources
287 * that the callbacks might use. The caller must already have made sure
288 * that its ->make_request_fn will not re-add plugging prior to calling
289 * this function.
291 * This function does not cancel any asynchronous activity arising
292 * out of elevator or throttling code. That would require elevator_exit()
293 * and blkcg_exit_queue() to be called with queue lock initialized.
296 void blk_sync_queue(struct request_queue *q)
298 del_timer_sync(&q->timeout);
299 cancel_work_sync(&q->timeout_work);
301 EXPORT_SYMBOL(blk_sync_queue);
304 * blk_set_pm_only - increment pm_only counter
305 * @q: request queue pointer
307 void blk_set_pm_only(struct request_queue *q)
309 atomic_inc(&q->pm_only);
311 EXPORT_SYMBOL_GPL(blk_set_pm_only);
313 void blk_clear_pm_only(struct request_queue *q)
315 int pm_only;
317 pm_only = atomic_dec_return(&q->pm_only);
318 WARN_ON_ONCE(pm_only < 0);
319 if (pm_only == 0)
320 wake_up_all(&q->mq_freeze_wq);
322 EXPORT_SYMBOL_GPL(blk_clear_pm_only);
324 void blk_put_queue(struct request_queue *q)
326 kobject_put(&q->kobj);
328 EXPORT_SYMBOL(blk_put_queue);
330 void blk_set_queue_dying(struct request_queue *q)
332 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
335 * When queue DYING flag is set, we need to block new req
336 * entering queue, so we call blk_freeze_queue_start() to
337 * prevent I/O from crossing blk_queue_enter().
339 blk_freeze_queue_start(q);
341 if (queue_is_mq(q))
342 blk_mq_wake_waiters(q);
344 /* Make blk_queue_enter() reexamine the DYING flag. */
345 wake_up_all(&q->mq_freeze_wq);
347 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
350 * blk_cleanup_queue - shutdown a request queue
351 * @q: request queue to shutdown
353 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
354 * put it. All future requests will be failed immediately with -ENODEV.
356 void blk_cleanup_queue(struct request_queue *q)
358 WARN_ON_ONCE(blk_queue_registered(q));
360 /* mark @q DYING, no new request or merges will be allowed afterwards */
361 blk_set_queue_dying(q);
363 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q);
364 blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
367 * Drain all requests queued before DYING marking. Set DEAD flag to
368 * prevent that blk_mq_run_hw_queues() accesses the hardware queues
369 * after draining finished.
371 blk_freeze_queue(q);
373 rq_qos_exit(q);
375 blk_queue_flag_set(QUEUE_FLAG_DEAD, q);
377 /* for synchronous bio-based driver finish in-flight integrity i/o */
378 blk_flush_integrity();
380 /* @q won't process any more request, flush async actions */
381 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
382 blk_sync_queue(q);
384 if (queue_is_mq(q))
385 blk_mq_exit_queue(q);
388 * In theory, request pool of sched_tags belongs to request queue.
389 * However, the current implementation requires tag_set for freeing
390 * requests, so free the pool now.
392 * Queue has become frozen, there can't be any in-queue requests, so
393 * it is safe to free requests now.
395 mutex_lock(&q->sysfs_lock);
396 if (q->elevator)
397 blk_mq_sched_free_requests(q);
398 mutex_unlock(&q->sysfs_lock);
400 percpu_ref_exit(&q->q_usage_counter);
402 /* @q is and will stay empty, shutdown and put */
403 blk_put_queue(q);
405 EXPORT_SYMBOL(blk_cleanup_queue);
408 * blk_queue_enter() - try to increase q->q_usage_counter
409 * @q: request queue pointer
410 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
412 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
414 const bool pm = flags & BLK_MQ_REQ_PREEMPT;
416 while (true) {
417 bool success = false;
419 rcu_read_lock();
420 if (percpu_ref_tryget_live(&q->q_usage_counter)) {
422 * The code that increments the pm_only counter is
423 * responsible for ensuring that that counter is
424 * globally visible before the queue is unfrozen.
426 if (pm || !blk_queue_pm_only(q)) {
427 success = true;
428 } else {
429 percpu_ref_put(&q->q_usage_counter);
432 rcu_read_unlock();
434 if (success)
435 return 0;
437 if (flags & BLK_MQ_REQ_NOWAIT)
438 return -EBUSY;
441 * read pair of barrier in blk_freeze_queue_start(),
442 * we need to order reading __PERCPU_REF_DEAD flag of
443 * .q_usage_counter and reading .mq_freeze_depth or
444 * queue dying flag, otherwise the following wait may
445 * never return if the two reads are reordered.
447 smp_rmb();
449 wait_event(q->mq_freeze_wq,
450 (!q->mq_freeze_depth &&
451 (pm || (blk_pm_request_resume(q),
452 !blk_queue_pm_only(q)))) ||
453 blk_queue_dying(q));
454 if (blk_queue_dying(q))
455 return -ENODEV;
459 static inline int bio_queue_enter(struct bio *bio)
461 struct request_queue *q = bio->bi_disk->queue;
462 bool nowait = bio->bi_opf & REQ_NOWAIT;
463 int ret;
465 ret = blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0);
466 if (unlikely(ret)) {
467 if (nowait && !blk_queue_dying(q))
468 bio_wouldblock_error(bio);
469 else
470 bio_io_error(bio);
473 return ret;
476 void blk_queue_exit(struct request_queue *q)
478 percpu_ref_put(&q->q_usage_counter);
481 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
483 struct request_queue *q =
484 container_of(ref, struct request_queue, q_usage_counter);
486 wake_up_all(&q->mq_freeze_wq);
489 static void blk_rq_timed_out_timer(struct timer_list *t)
491 struct request_queue *q = from_timer(q, t, timeout);
493 kblockd_schedule_work(&q->timeout_work);
496 static void blk_timeout_work(struct work_struct *work)
500 struct request_queue *__blk_alloc_queue(int node_id)
502 struct request_queue *q;
503 int ret;
505 q = kmem_cache_alloc_node(blk_requestq_cachep,
506 GFP_KERNEL | __GFP_ZERO, node_id);
507 if (!q)
508 return NULL;
510 q->last_merge = NULL;
512 q->id = ida_simple_get(&blk_queue_ida, 0, 0, GFP_KERNEL);
513 if (q->id < 0)
514 goto fail_q;
516 ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
517 if (ret)
518 goto fail_id;
520 q->backing_dev_info = bdi_alloc(node_id);
521 if (!q->backing_dev_info)
522 goto fail_split;
524 q->stats = blk_alloc_queue_stats();
525 if (!q->stats)
526 goto fail_stats;
528 q->backing_dev_info->ra_pages = VM_READAHEAD_PAGES;
529 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
530 q->node = node_id;
532 timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
533 laptop_mode_timer_fn, 0);
534 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
535 INIT_WORK(&q->timeout_work, blk_timeout_work);
536 INIT_LIST_HEAD(&q->icq_list);
537 #ifdef CONFIG_BLK_CGROUP
538 INIT_LIST_HEAD(&q->blkg_list);
539 #endif
541 kobject_init(&q->kobj, &blk_queue_ktype);
543 #ifdef CONFIG_BLK_DEV_IO_TRACE
544 mutex_init(&q->blk_trace_mutex);
545 #endif
546 mutex_init(&q->sysfs_lock);
547 mutex_init(&q->sysfs_dir_lock);
548 spin_lock_init(&q->queue_lock);
550 init_waitqueue_head(&q->mq_freeze_wq);
551 mutex_init(&q->mq_freeze_lock);
554 * Init percpu_ref in atomic mode so that it's faster to shutdown.
555 * See blk_register_queue() for details.
557 if (percpu_ref_init(&q->q_usage_counter,
558 blk_queue_usage_counter_release,
559 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
560 goto fail_bdi;
562 if (blkcg_init_queue(q))
563 goto fail_ref;
565 blk_queue_dma_alignment(q, 511);
566 blk_set_default_limits(&q->limits);
568 return q;
570 fail_ref:
571 percpu_ref_exit(&q->q_usage_counter);
572 fail_bdi:
573 blk_free_queue_stats(q->stats);
574 fail_stats:
575 bdi_put(q->backing_dev_info);
576 fail_split:
577 bioset_exit(&q->bio_split);
578 fail_id:
579 ida_simple_remove(&blk_queue_ida, q->id);
580 fail_q:
581 kmem_cache_free(blk_requestq_cachep, q);
582 return NULL;
585 struct request_queue *blk_alloc_queue(make_request_fn make_request, int node_id)
587 struct request_queue *q;
589 if (WARN_ON_ONCE(!make_request))
590 return NULL;
592 q = __blk_alloc_queue(node_id);
593 if (!q)
594 return NULL;
595 q->make_request_fn = make_request;
596 q->nr_requests = BLKDEV_MAX_RQ;
597 return q;
599 EXPORT_SYMBOL(blk_alloc_queue);
601 bool blk_get_queue(struct request_queue *q)
603 if (likely(!blk_queue_dying(q))) {
604 __blk_get_queue(q);
605 return true;
608 return false;
610 EXPORT_SYMBOL(blk_get_queue);
613 * blk_get_request - allocate a request
614 * @q: request queue to allocate a request for
615 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
616 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
618 struct request *blk_get_request(struct request_queue *q, unsigned int op,
619 blk_mq_req_flags_t flags)
621 struct request *req;
623 WARN_ON_ONCE(op & REQ_NOWAIT);
624 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT));
626 req = blk_mq_alloc_request(q, op, flags);
627 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
628 q->mq_ops->initialize_rq_fn(req);
630 return req;
632 EXPORT_SYMBOL(blk_get_request);
634 void blk_put_request(struct request *req)
636 blk_mq_free_request(req);
638 EXPORT_SYMBOL(blk_put_request);
640 static void blk_account_io_merge_bio(struct request *req)
642 if (!blk_do_io_stat(req))
643 return;
645 part_stat_lock();
646 part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
647 part_stat_unlock();
650 bool bio_attempt_back_merge(struct request *req, struct bio *bio,
651 unsigned int nr_segs)
653 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
655 if (!ll_back_merge_fn(req, bio, nr_segs))
656 return false;
658 trace_block_bio_backmerge(req->q, req, bio);
659 rq_qos_merge(req->q, req, bio);
661 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
662 blk_rq_set_mixed_merge(req);
664 req->biotail->bi_next = bio;
665 req->biotail = bio;
666 req->__data_len += bio->bi_iter.bi_size;
668 bio_crypt_free_ctx(bio);
670 blk_account_io_merge_bio(req);
671 return true;
674 bool bio_attempt_front_merge(struct request *req, struct bio *bio,
675 unsigned int nr_segs)
677 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
679 if (!ll_front_merge_fn(req, bio, nr_segs))
680 return false;
682 trace_block_bio_frontmerge(req->q, req, bio);
683 rq_qos_merge(req->q, req, bio);
685 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
686 blk_rq_set_mixed_merge(req);
688 bio->bi_next = req->bio;
689 req->bio = bio;
691 req->__sector = bio->bi_iter.bi_sector;
692 req->__data_len += bio->bi_iter.bi_size;
694 bio_crypt_do_front_merge(req, bio);
696 blk_account_io_merge_bio(req);
697 return true;
700 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
701 struct bio *bio)
703 unsigned short segments = blk_rq_nr_discard_segments(req);
705 if (segments >= queue_max_discard_segments(q))
706 goto no_merge;
707 if (blk_rq_sectors(req) + bio_sectors(bio) >
708 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
709 goto no_merge;
711 rq_qos_merge(q, req, bio);
713 req->biotail->bi_next = bio;
714 req->biotail = bio;
715 req->__data_len += bio->bi_iter.bi_size;
716 req->nr_phys_segments = segments + 1;
718 blk_account_io_merge_bio(req);
719 return true;
720 no_merge:
721 req_set_nomerge(q, req);
722 return false;
726 * blk_attempt_plug_merge - try to merge with %current's plugged list
727 * @q: request_queue new bio is being queued at
728 * @bio: new bio being queued
729 * @nr_segs: number of segments in @bio
730 * @same_queue_rq: pointer to &struct request that gets filled in when
731 * another request associated with @q is found on the plug list
732 * (optional, may be %NULL)
734 * Determine whether @bio being queued on @q can be merged with a request
735 * on %current's plugged list. Returns %true if merge was successful,
736 * otherwise %false.
738 * Plugging coalesces IOs from the same issuer for the same purpose without
739 * going through @q->queue_lock. As such it's more of an issuing mechanism
740 * than scheduling, and the request, while may have elvpriv data, is not
741 * added on the elevator at this point. In addition, we don't have
742 * reliable access to the elevator outside queue lock. Only check basic
743 * merging parameters without querying the elevator.
745 * Caller must ensure !blk_queue_nomerges(q) beforehand.
747 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
748 unsigned int nr_segs, struct request **same_queue_rq)
750 struct blk_plug *plug;
751 struct request *rq;
752 struct list_head *plug_list;
754 plug = blk_mq_plug(q, bio);
755 if (!plug)
756 return false;
758 plug_list = &plug->mq_list;
760 list_for_each_entry_reverse(rq, plug_list, queuelist) {
761 bool merged = false;
763 if (rq->q == q && same_queue_rq) {
765 * Only blk-mq multiple hardware queues case checks the
766 * rq in the same queue, there should be only one such
767 * rq in a queue
769 *same_queue_rq = rq;
772 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
773 continue;
775 switch (blk_try_merge(rq, bio)) {
776 case ELEVATOR_BACK_MERGE:
777 merged = bio_attempt_back_merge(rq, bio, nr_segs);
778 break;
779 case ELEVATOR_FRONT_MERGE:
780 merged = bio_attempt_front_merge(rq, bio, nr_segs);
781 break;
782 case ELEVATOR_DISCARD_MERGE:
783 merged = bio_attempt_discard_merge(q, rq, bio);
784 break;
785 default:
786 break;
789 if (merged)
790 return true;
793 return false;
796 static void handle_bad_sector(struct bio *bio, sector_t maxsector)
798 char b[BDEVNAME_SIZE];
800 printk(KERN_INFO "attempt to access beyond end of device\n");
801 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
802 bio_devname(bio, b), bio->bi_opf,
803 (unsigned long long)bio_end_sector(bio),
804 (long long)maxsector);
807 #ifdef CONFIG_FAIL_MAKE_REQUEST
809 static DECLARE_FAULT_ATTR(fail_make_request);
811 static int __init setup_fail_make_request(char *str)
813 return setup_fault_attr(&fail_make_request, str);
815 __setup("fail_make_request=", setup_fail_make_request);
817 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
819 return part->make_it_fail && should_fail(&fail_make_request, bytes);
822 static int __init fail_make_request_debugfs(void)
824 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
825 NULL, &fail_make_request);
827 return PTR_ERR_OR_ZERO(dir);
830 late_initcall(fail_make_request_debugfs);
832 #else /* CONFIG_FAIL_MAKE_REQUEST */
834 static inline bool should_fail_request(struct hd_struct *part,
835 unsigned int bytes)
837 return false;
840 #endif /* CONFIG_FAIL_MAKE_REQUEST */
842 static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part)
844 const int op = bio_op(bio);
846 if (part->policy && op_is_write(op)) {
847 char b[BDEVNAME_SIZE];
849 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
850 return false;
852 WARN_ONCE(1,
853 "generic_make_request: Trying to write "
854 "to read-only block-device %s (partno %d)\n",
855 bio_devname(bio, b), part->partno);
856 /* Older lvm-tools actually trigger this */
857 return false;
860 return false;
863 static noinline int should_fail_bio(struct bio *bio)
865 if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
866 return -EIO;
867 return 0;
869 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
872 * Check whether this bio extends beyond the end of the device or partition.
873 * This may well happen - the kernel calls bread() without checking the size of
874 * the device, e.g., when mounting a file system.
876 static inline int bio_check_eod(struct bio *bio, sector_t maxsector)
878 unsigned int nr_sectors = bio_sectors(bio);
880 if (nr_sectors && maxsector &&
881 (nr_sectors > maxsector ||
882 bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
883 handle_bad_sector(bio, maxsector);
884 return -EIO;
886 return 0;
890 * Remap block n of partition p to block n+start(p) of the disk.
892 static inline int blk_partition_remap(struct bio *bio)
894 struct hd_struct *p;
895 int ret = -EIO;
897 rcu_read_lock();
898 p = __disk_get_part(bio->bi_disk, bio->bi_partno);
899 if (unlikely(!p))
900 goto out;
901 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
902 goto out;
903 if (unlikely(bio_check_ro(bio, p)))
904 goto out;
906 if (bio_sectors(bio)) {
907 if (bio_check_eod(bio, part_nr_sects_read(p)))
908 goto out;
909 bio->bi_iter.bi_sector += p->start_sect;
910 trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
911 bio->bi_iter.bi_sector - p->start_sect);
913 bio->bi_partno = 0;
914 ret = 0;
915 out:
916 rcu_read_unlock();
917 return ret;
921 * Check write append to a zoned block device.
923 static inline blk_status_t blk_check_zone_append(struct request_queue *q,
924 struct bio *bio)
926 sector_t pos = bio->bi_iter.bi_sector;
927 int nr_sectors = bio_sectors(bio);
929 /* Only applicable to zoned block devices */
930 if (!blk_queue_is_zoned(q))
931 return BLK_STS_NOTSUPP;
933 /* The bio sector must point to the start of a sequential zone */
934 if (pos & (blk_queue_zone_sectors(q) - 1) ||
935 !blk_queue_zone_is_seq(q, pos))
936 return BLK_STS_IOERR;
939 * Not allowed to cross zone boundaries. Otherwise, the BIO will be
940 * split and could result in non-contiguous sectors being written in
941 * different zones.
943 if (nr_sectors > q->limits.chunk_sectors)
944 return BLK_STS_IOERR;
946 /* Make sure the BIO is small enough and will not get split */
947 if (nr_sectors > q->limits.max_zone_append_sectors)
948 return BLK_STS_IOERR;
950 bio->bi_opf |= REQ_NOMERGE;
952 return BLK_STS_OK;
955 static noinline_for_stack bool
956 generic_make_request_checks(struct bio *bio)
958 struct request_queue *q;
959 int nr_sectors = bio_sectors(bio);
960 blk_status_t status = BLK_STS_IOERR;
961 char b[BDEVNAME_SIZE];
963 might_sleep();
965 q = bio->bi_disk->queue;
966 if (unlikely(!q)) {
967 printk(KERN_ERR
968 "generic_make_request: Trying to access "
969 "nonexistent block-device %s (%Lu)\n",
970 bio_devname(bio, b), (long long)bio->bi_iter.bi_sector);
971 goto end_io;
975 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
976 * if queue is not a request based queue.
978 if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_mq(q))
979 goto not_supported;
981 if (should_fail_bio(bio))
982 goto end_io;
984 if (bio->bi_partno) {
985 if (unlikely(blk_partition_remap(bio)))
986 goto end_io;
987 } else {
988 if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0)))
989 goto end_io;
990 if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk))))
991 goto end_io;
995 * Filter flush bio's early so that make_request based
996 * drivers without flush support don't have to worry
997 * about them.
999 if (op_is_flush(bio->bi_opf) &&
1000 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
1001 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
1002 if (!nr_sectors) {
1003 status = BLK_STS_OK;
1004 goto end_io;
1008 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
1009 bio->bi_opf &= ~REQ_HIPRI;
1011 switch (bio_op(bio)) {
1012 case REQ_OP_DISCARD:
1013 if (!blk_queue_discard(q))
1014 goto not_supported;
1015 break;
1016 case REQ_OP_SECURE_ERASE:
1017 if (!blk_queue_secure_erase(q))
1018 goto not_supported;
1019 break;
1020 case REQ_OP_WRITE_SAME:
1021 if (!q->limits.max_write_same_sectors)
1022 goto not_supported;
1023 break;
1024 case REQ_OP_ZONE_APPEND:
1025 status = blk_check_zone_append(q, bio);
1026 if (status != BLK_STS_OK)
1027 goto end_io;
1028 break;
1029 case REQ_OP_ZONE_RESET:
1030 case REQ_OP_ZONE_OPEN:
1031 case REQ_OP_ZONE_CLOSE:
1032 case REQ_OP_ZONE_FINISH:
1033 if (!blk_queue_is_zoned(q))
1034 goto not_supported;
1035 break;
1036 case REQ_OP_ZONE_RESET_ALL:
1037 if (!blk_queue_is_zoned(q) || !blk_queue_zone_resetall(q))
1038 goto not_supported;
1039 break;
1040 case REQ_OP_WRITE_ZEROES:
1041 if (!q->limits.max_write_zeroes_sectors)
1042 goto not_supported;
1043 break;
1044 default:
1045 break;
1049 * Various block parts want %current->io_context, so allocate it up
1050 * front rather than dealing with lots of pain to allocate it only
1051 * where needed. This may fail and the block layer knows how to live
1052 * with it.
1054 if (unlikely(!current->io_context))
1055 create_task_io_context(current, GFP_ATOMIC, q->node);
1057 if (!blkcg_bio_issue_check(q, bio))
1058 return false;
1060 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1061 trace_block_bio_queue(q, bio);
1062 /* Now that enqueuing has been traced, we need to trace
1063 * completion as well.
1065 bio_set_flag(bio, BIO_TRACE_COMPLETION);
1067 return true;
1069 not_supported:
1070 status = BLK_STS_NOTSUPP;
1071 end_io:
1072 bio->bi_status = status;
1073 bio_endio(bio);
1074 return false;
1077 static blk_qc_t do_make_request(struct bio *bio)
1079 struct request_queue *q = bio->bi_disk->queue;
1080 blk_qc_t ret = BLK_QC_T_NONE;
1082 if (blk_crypto_bio_prep(&bio)) {
1083 if (!q->make_request_fn)
1084 return blk_mq_make_request(q, bio);
1085 ret = q->make_request_fn(q, bio);
1087 blk_queue_exit(q);
1088 return ret;
1092 * generic_make_request - re-submit a bio to the block device layer for I/O
1093 * @bio: The bio describing the location in memory and on the device.
1095 * This is a version of submit_bio() that shall only be used for I/O that is
1096 * resubmitted to lower level drivers by stacking block drivers. All file
1097 * systems and other upper level users of the block layer should use
1098 * submit_bio() instead.
1100 blk_qc_t generic_make_request(struct bio *bio)
1103 * bio_list_on_stack[0] contains bios submitted by the current
1104 * make_request_fn.
1105 * bio_list_on_stack[1] contains bios that were submitted before
1106 * the current make_request_fn, but that haven't been processed
1107 * yet.
1109 struct bio_list bio_list_on_stack[2];
1110 blk_qc_t ret = BLK_QC_T_NONE;
1112 if (!generic_make_request_checks(bio))
1113 goto out;
1116 * We only want one ->make_request_fn to be active at a time, else
1117 * stack usage with stacked devices could be a problem. So use
1118 * current->bio_list to keep a list of requests submited by a
1119 * make_request_fn function. current->bio_list is also used as a
1120 * flag to say if generic_make_request is currently active in this
1121 * task or not. If it is NULL, then no make_request is active. If
1122 * it is non-NULL, then a make_request is active, and new requests
1123 * should be added at the tail
1125 if (current->bio_list) {
1126 bio_list_add(&current->bio_list[0], bio);
1127 goto out;
1130 /* following loop may be a bit non-obvious, and so deserves some
1131 * explanation.
1132 * Before entering the loop, bio->bi_next is NULL (as all callers
1133 * ensure that) so we have a list with a single bio.
1134 * We pretend that we have just taken it off a longer list, so
1135 * we assign bio_list to a pointer to the bio_list_on_stack,
1136 * thus initialising the bio_list of new bios to be
1137 * added. ->make_request() may indeed add some more bios
1138 * through a recursive call to generic_make_request. If it
1139 * did, we find a non-NULL value in bio_list and re-enter the loop
1140 * from the top. In this case we really did just take the bio
1141 * of the top of the list (no pretending) and so remove it from
1142 * bio_list, and call into ->make_request() again.
1144 BUG_ON(bio->bi_next);
1145 bio_list_init(&bio_list_on_stack[0]);
1146 current->bio_list = bio_list_on_stack;
1147 do {
1148 struct request_queue *q = bio->bi_disk->queue;
1150 if (likely(bio_queue_enter(bio) == 0)) {
1151 struct bio_list lower, same;
1153 /* Create a fresh bio_list for all subordinate requests */
1154 bio_list_on_stack[1] = bio_list_on_stack[0];
1155 bio_list_init(&bio_list_on_stack[0]);
1156 ret = do_make_request(bio);
1158 /* sort new bios into those for a lower level
1159 * and those for the same level
1161 bio_list_init(&lower);
1162 bio_list_init(&same);
1163 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
1164 if (q == bio->bi_disk->queue)
1165 bio_list_add(&same, bio);
1166 else
1167 bio_list_add(&lower, bio);
1168 /* now assemble so we handle the lowest level first */
1169 bio_list_merge(&bio_list_on_stack[0], &lower);
1170 bio_list_merge(&bio_list_on_stack[0], &same);
1171 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
1173 bio = bio_list_pop(&bio_list_on_stack[0]);
1174 } while (bio);
1175 current->bio_list = NULL; /* deactivate */
1177 out:
1178 return ret;
1180 EXPORT_SYMBOL(generic_make_request);
1183 * direct_make_request - hand a buffer directly to its device driver for I/O
1184 * @bio: The bio describing the location in memory and on the device.
1186 * This function behaves like generic_make_request(), but does not protect
1187 * against recursion. Must only be used if the called driver is known
1188 * to be blk-mq based.
1190 blk_qc_t direct_make_request(struct bio *bio)
1192 struct request_queue *q = bio->bi_disk->queue;
1194 if (WARN_ON_ONCE(q->make_request_fn)) {
1195 bio_io_error(bio);
1196 return BLK_QC_T_NONE;
1198 if (!generic_make_request_checks(bio))
1199 return BLK_QC_T_NONE;
1200 if (unlikely(bio_queue_enter(bio)))
1201 return BLK_QC_T_NONE;
1202 if (!blk_crypto_bio_prep(&bio)) {
1203 blk_queue_exit(q);
1204 return BLK_QC_T_NONE;
1206 return blk_mq_make_request(q, bio);
1208 EXPORT_SYMBOL_GPL(direct_make_request);
1211 * submit_bio - submit a bio to the block device layer for I/O
1212 * @bio: The &struct bio which describes the I/O
1214 * submit_bio() is used to submit I/O requests to block devices. It is passed a
1215 * fully set up &struct bio that describes the I/O that needs to be done. The
1216 * bio will be send to the device described by the bi_disk and bi_partno fields.
1218 * The success/failure status of the request, along with notification of
1219 * completion, is delivered asynchronously through the ->bi_end_io() callback
1220 * in @bio. The bio must NOT be touched by thecaller until ->bi_end_io() has
1221 * been called.
1223 blk_qc_t submit_bio(struct bio *bio)
1225 if (blkcg_punt_bio_submit(bio))
1226 return BLK_QC_T_NONE;
1229 * If it's a regular read/write or a barrier with data attached,
1230 * go through the normal accounting stuff before submission.
1232 if (bio_has_data(bio)) {
1233 unsigned int count;
1235 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1236 count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
1237 else
1238 count = bio_sectors(bio);
1240 if (op_is_write(bio_op(bio))) {
1241 count_vm_events(PGPGOUT, count);
1242 } else {
1243 task_io_account_read(bio->bi_iter.bi_size);
1244 count_vm_events(PGPGIN, count);
1247 if (unlikely(block_dump)) {
1248 char b[BDEVNAME_SIZE];
1249 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1250 current->comm, task_pid_nr(current),
1251 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
1252 (unsigned long long)bio->bi_iter.bi_sector,
1253 bio_devname(bio, b), count);
1258 * If we're reading data that is part of the userspace workingset, count
1259 * submission time as memory stall. When the device is congested, or
1260 * the submitting cgroup IO-throttled, submission can be a significant
1261 * part of overall IO time.
1263 if (unlikely(bio_op(bio) == REQ_OP_READ &&
1264 bio_flagged(bio, BIO_WORKINGSET))) {
1265 unsigned long pflags;
1266 blk_qc_t ret;
1268 psi_memstall_enter(&pflags);
1269 ret = generic_make_request(bio);
1270 psi_memstall_leave(&pflags);
1272 return ret;
1275 return generic_make_request(bio);
1277 EXPORT_SYMBOL(submit_bio);
1280 * blk_cloned_rq_check_limits - Helper function to check a cloned request
1281 * for the new queue limits
1282 * @q: the queue
1283 * @rq: the request being checked
1285 * Description:
1286 * @rq may have been made based on weaker limitations of upper-level queues
1287 * in request stacking drivers, and it may violate the limitation of @q.
1288 * Since the block layer and the underlying device driver trust @rq
1289 * after it is inserted to @q, it should be checked against @q before
1290 * the insertion using this generic function.
1292 * Request stacking drivers like request-based dm may change the queue
1293 * limits when retrying requests on other queues. Those requests need
1294 * to be checked against the new queue limits again during dispatch.
1296 static int blk_cloned_rq_check_limits(struct request_queue *q,
1297 struct request *rq)
1299 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
1300 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
1301 __func__, blk_rq_sectors(rq),
1302 blk_queue_get_max_sectors(q, req_op(rq)));
1303 return -EIO;
1307 * queue's settings related to segment counting like q->bounce_pfn
1308 * may differ from that of other stacking queues.
1309 * Recalculate it to check the request correctly on this queue's
1310 * limitation.
1312 rq->nr_phys_segments = blk_recalc_rq_segments(rq);
1313 if (rq->nr_phys_segments > queue_max_segments(q)) {
1314 printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
1315 __func__, rq->nr_phys_segments, queue_max_segments(q));
1316 return -EIO;
1319 return 0;
1323 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1324 * @q: the queue to submit the request
1325 * @rq: the request being queued
1327 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1329 if (blk_cloned_rq_check_limits(q, rq))
1330 return BLK_STS_IOERR;
1332 if (rq->rq_disk &&
1333 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
1334 return BLK_STS_IOERR;
1336 if (blk_crypto_insert_cloned_request(rq))
1337 return BLK_STS_IOERR;
1339 if (blk_queue_io_stat(q))
1340 blk_account_io_start(rq);
1343 * Since we have a scheduler attached on the top device,
1344 * bypass a potential scheduler on the bottom device for
1345 * insert.
1347 return blk_mq_request_issue_directly(rq, true);
1349 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1352 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1353 * @rq: request to examine
1355 * Description:
1356 * A request could be merge of IOs which require different failure
1357 * handling. This function determines the number of bytes which
1358 * can be failed from the beginning of the request without
1359 * crossing into area which need to be retried further.
1361 * Return:
1362 * The number of bytes to fail.
1364 unsigned int blk_rq_err_bytes(const struct request *rq)
1366 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1367 unsigned int bytes = 0;
1368 struct bio *bio;
1370 if (!(rq->rq_flags & RQF_MIXED_MERGE))
1371 return blk_rq_bytes(rq);
1374 * Currently the only 'mixing' which can happen is between
1375 * different fastfail types. We can safely fail portions
1376 * which have all the failfast bits that the first one has -
1377 * the ones which are at least as eager to fail as the first
1378 * one.
1380 for (bio = rq->bio; bio; bio = bio->bi_next) {
1381 if ((bio->bi_opf & ff) != ff)
1382 break;
1383 bytes += bio->bi_iter.bi_size;
1386 /* this could lead to infinite loop */
1387 BUG_ON(blk_rq_bytes(rq) && !bytes);
1388 return bytes;
1390 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1392 static void update_io_ticks(struct hd_struct *part, unsigned long now, bool end)
1394 unsigned long stamp;
1395 again:
1396 stamp = READ_ONCE(part->stamp);
1397 if (unlikely(stamp != now)) {
1398 if (likely(cmpxchg(&part->stamp, stamp, now) == stamp))
1399 __part_stat_add(part, io_ticks, end ? now - stamp : 1);
1401 if (part->partno) {
1402 part = &part_to_disk(part)->part0;
1403 goto again;
1407 static void blk_account_io_completion(struct request *req, unsigned int bytes)
1409 if (req->part && blk_do_io_stat(req)) {
1410 const int sgrp = op_stat_group(req_op(req));
1411 struct hd_struct *part;
1413 part_stat_lock();
1414 part = req->part;
1415 part_stat_add(part, sectors[sgrp], bytes >> 9);
1416 part_stat_unlock();
1420 void blk_account_io_done(struct request *req, u64 now)
1423 * Account IO completion. flush_rq isn't accounted as a
1424 * normal IO on queueing nor completion. Accounting the
1425 * containing request is enough.
1427 if (req->part && blk_do_io_stat(req) &&
1428 !(req->rq_flags & RQF_FLUSH_SEQ)) {
1429 const int sgrp = op_stat_group(req_op(req));
1430 struct hd_struct *part;
1432 part_stat_lock();
1433 part = req->part;
1435 update_io_ticks(part, jiffies, true);
1436 part_stat_inc(part, ios[sgrp]);
1437 part_stat_add(part, nsecs[sgrp], now - req->start_time_ns);
1438 part_stat_unlock();
1440 hd_struct_put(part);
1444 void blk_account_io_start(struct request *rq)
1446 if (!blk_do_io_stat(rq))
1447 return;
1449 rq->part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
1451 part_stat_lock();
1452 update_io_ticks(rq->part, jiffies, false);
1453 part_stat_unlock();
1456 unsigned long disk_start_io_acct(struct gendisk *disk, unsigned int sectors,
1457 unsigned int op)
1459 struct hd_struct *part = &disk->part0;
1460 const int sgrp = op_stat_group(op);
1461 unsigned long now = READ_ONCE(jiffies);
1463 part_stat_lock();
1464 update_io_ticks(part, now, false);
1465 part_stat_inc(part, ios[sgrp]);
1466 part_stat_add(part, sectors[sgrp], sectors);
1467 part_stat_local_inc(part, in_flight[op_is_write(op)]);
1468 part_stat_unlock();
1470 return now;
1472 EXPORT_SYMBOL(disk_start_io_acct);
1474 void disk_end_io_acct(struct gendisk *disk, unsigned int op,
1475 unsigned long start_time)
1477 struct hd_struct *part = &disk->part0;
1478 const int sgrp = op_stat_group(op);
1479 unsigned long now = READ_ONCE(jiffies);
1480 unsigned long duration = now - start_time;
1482 part_stat_lock();
1483 update_io_ticks(part, now, true);
1484 part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration));
1485 part_stat_local_dec(part, in_flight[op_is_write(op)]);
1486 part_stat_unlock();
1488 EXPORT_SYMBOL(disk_end_io_acct);
1491 * Steal bios from a request and add them to a bio list.
1492 * The request must not have been partially completed before.
1494 void blk_steal_bios(struct bio_list *list, struct request *rq)
1496 if (rq->bio) {
1497 if (list->tail)
1498 list->tail->bi_next = rq->bio;
1499 else
1500 list->head = rq->bio;
1501 list->tail = rq->biotail;
1503 rq->bio = NULL;
1504 rq->biotail = NULL;
1507 rq->__data_len = 0;
1509 EXPORT_SYMBOL_GPL(blk_steal_bios);
1512 * blk_update_request - Special helper function for request stacking drivers
1513 * @req: the request being processed
1514 * @error: block status code
1515 * @nr_bytes: number of bytes to complete @req
1517 * Description:
1518 * Ends I/O on a number of bytes attached to @req, but doesn't complete
1519 * the request structure even if @req doesn't have leftover.
1520 * If @req has leftover, sets it up for the next range of segments.
1522 * This special helper function is only for request stacking drivers
1523 * (e.g. request-based dm) so that they can handle partial completion.
1524 * Actual device drivers should use blk_mq_end_request instead.
1526 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1527 * %false return from this function.
1529 * Note:
1530 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both
1531 * blk_rq_bytes() and in blk_update_request().
1533 * Return:
1534 * %false - this request doesn't have any more data
1535 * %true - this request has more data
1537 bool blk_update_request(struct request *req, blk_status_t error,
1538 unsigned int nr_bytes)
1540 int total_bytes;
1542 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
1544 if (!req->bio)
1545 return false;
1547 #ifdef CONFIG_BLK_DEV_INTEGRITY
1548 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
1549 error == BLK_STS_OK)
1550 req->q->integrity.profile->complete_fn(req, nr_bytes);
1551 #endif
1553 if (unlikely(error && !blk_rq_is_passthrough(req) &&
1554 !(req->rq_flags & RQF_QUIET)))
1555 print_req_error(req, error, __func__);
1557 blk_account_io_completion(req, nr_bytes);
1559 total_bytes = 0;
1560 while (req->bio) {
1561 struct bio *bio = req->bio;
1562 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1564 if (bio_bytes == bio->bi_iter.bi_size)
1565 req->bio = bio->bi_next;
1567 /* Completion has already been traced */
1568 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1569 req_bio_endio(req, bio, bio_bytes, error);
1571 total_bytes += bio_bytes;
1572 nr_bytes -= bio_bytes;
1574 if (!nr_bytes)
1575 break;
1579 * completely done
1581 if (!req->bio) {
1583 * Reset counters so that the request stacking driver
1584 * can find how many bytes remain in the request
1585 * later.
1587 req->__data_len = 0;
1588 return false;
1591 req->__data_len -= total_bytes;
1593 /* update sector only for requests with clear definition of sector */
1594 if (!blk_rq_is_passthrough(req))
1595 req->__sector += total_bytes >> 9;
1597 /* mixed attributes always follow the first bio */
1598 if (req->rq_flags & RQF_MIXED_MERGE) {
1599 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1600 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
1603 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
1605 * If total number of sectors is less than the first segment
1606 * size, something has gone terribly wrong.
1608 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
1609 blk_dump_rq_flags(req, "request botched");
1610 req->__data_len = blk_rq_cur_bytes(req);
1613 /* recalculate the number of segments */
1614 req->nr_phys_segments = blk_recalc_rq_segments(req);
1617 return true;
1619 EXPORT_SYMBOL_GPL(blk_update_request);
1621 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1623 * rq_flush_dcache_pages - Helper function to flush all pages in a request
1624 * @rq: the request to be flushed
1626 * Description:
1627 * Flush all pages in @rq.
1629 void rq_flush_dcache_pages(struct request *rq)
1631 struct req_iterator iter;
1632 struct bio_vec bvec;
1634 rq_for_each_segment(bvec, rq, iter)
1635 flush_dcache_page(bvec.bv_page);
1637 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
1638 #endif
1641 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1642 * @q : the queue of the device being checked
1644 * Description:
1645 * Check if underlying low-level drivers of a device are busy.
1646 * If the drivers want to export their busy state, they must set own
1647 * exporting function using blk_queue_lld_busy() first.
1649 * Basically, this function is used only by request stacking drivers
1650 * to stop dispatching requests to underlying devices when underlying
1651 * devices are busy. This behavior helps more I/O merging on the queue
1652 * of the request stacking driver and prevents I/O throughput regression
1653 * on burst I/O load.
1655 * Return:
1656 * 0 - Not busy (The request stacking driver should dispatch request)
1657 * 1 - Busy (The request stacking driver should stop dispatching request)
1659 int blk_lld_busy(struct request_queue *q)
1661 if (queue_is_mq(q) && q->mq_ops->busy)
1662 return q->mq_ops->busy(q);
1664 return 0;
1666 EXPORT_SYMBOL_GPL(blk_lld_busy);
1669 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
1670 * @rq: the clone request to be cleaned up
1672 * Description:
1673 * Free all bios in @rq for a cloned request.
1675 void blk_rq_unprep_clone(struct request *rq)
1677 struct bio *bio;
1679 while ((bio = rq->bio) != NULL) {
1680 rq->bio = bio->bi_next;
1682 bio_put(bio);
1685 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
1688 * blk_rq_prep_clone - Helper function to setup clone request
1689 * @rq: the request to be setup
1690 * @rq_src: original request to be cloned
1691 * @bs: bio_set that bios for clone are allocated from
1692 * @gfp_mask: memory allocation mask for bio
1693 * @bio_ctr: setup function to be called for each clone bio.
1694 * Returns %0 for success, non %0 for failure.
1695 * @data: private data to be passed to @bio_ctr
1697 * Description:
1698 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
1699 * Also, pages which the original bios are pointing to are not copied
1700 * and the cloned bios just point same pages.
1701 * So cloned bios must be completed before original bios, which means
1702 * the caller must complete @rq before @rq_src.
1704 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
1705 struct bio_set *bs, gfp_t gfp_mask,
1706 int (*bio_ctr)(struct bio *, struct bio *, void *),
1707 void *data)
1709 struct bio *bio, *bio_src;
1711 if (!bs)
1712 bs = &fs_bio_set;
1714 __rq_for_each_bio(bio_src, rq_src) {
1715 bio = bio_clone_fast(bio_src, gfp_mask, bs);
1716 if (!bio)
1717 goto free_and_out;
1719 if (bio_ctr && bio_ctr(bio, bio_src, data))
1720 goto free_and_out;
1722 if (rq->bio) {
1723 rq->biotail->bi_next = bio;
1724 rq->biotail = bio;
1725 } else
1726 rq->bio = rq->biotail = bio;
1729 /* Copy attributes of the original request to the clone request. */
1730 rq->__sector = blk_rq_pos(rq_src);
1731 rq->__data_len = blk_rq_bytes(rq_src);
1732 if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
1733 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
1734 rq->special_vec = rq_src->special_vec;
1736 rq->nr_phys_segments = rq_src->nr_phys_segments;
1737 rq->ioprio = rq_src->ioprio;
1739 if (rq->bio)
1740 blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask);
1742 return 0;
1744 free_and_out:
1745 if (bio)
1746 bio_put(bio);
1747 blk_rq_unprep_clone(rq);
1749 return -ENOMEM;
1751 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
1753 int kblockd_schedule_work(struct work_struct *work)
1755 return queue_work(kblockd_workqueue, work);
1757 EXPORT_SYMBOL(kblockd_schedule_work);
1759 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1760 unsigned long delay)
1762 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1764 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1767 * blk_start_plug - initialize blk_plug and track it inside the task_struct
1768 * @plug: The &struct blk_plug that needs to be initialized
1770 * Description:
1771 * blk_start_plug() indicates to the block layer an intent by the caller
1772 * to submit multiple I/O requests in a batch. The block layer may use
1773 * this hint to defer submitting I/Os from the caller until blk_finish_plug()
1774 * is called. However, the block layer may choose to submit requests
1775 * before a call to blk_finish_plug() if the number of queued I/Os
1776 * exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1777 * %BLK_PLUG_FLUSH_SIZE. The queued I/Os may also be submitted early if
1778 * the task schedules (see below).
1780 * Tracking blk_plug inside the task_struct will help with auto-flushing the
1781 * pending I/O should the task end up blocking between blk_start_plug() and
1782 * blk_finish_plug(). This is important from a performance perspective, but
1783 * also ensures that we don't deadlock. For instance, if the task is blocking
1784 * for a memory allocation, memory reclaim could end up wanting to free a
1785 * page belonging to that request that is currently residing in our private
1786 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
1787 * this kind of deadlock.
1789 void blk_start_plug(struct blk_plug *plug)
1791 struct task_struct *tsk = current;
1794 * If this is a nested plug, don't actually assign it.
1796 if (tsk->plug)
1797 return;
1799 INIT_LIST_HEAD(&plug->mq_list);
1800 INIT_LIST_HEAD(&plug->cb_list);
1801 plug->rq_count = 0;
1802 plug->multiple_queues = false;
1805 * Store ordering should not be needed here, since a potential
1806 * preempt will imply a full memory barrier
1808 tsk->plug = plug;
1810 EXPORT_SYMBOL(blk_start_plug);
1812 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
1814 LIST_HEAD(callbacks);
1816 while (!list_empty(&plug->cb_list)) {
1817 list_splice_init(&plug->cb_list, &callbacks);
1819 while (!list_empty(&callbacks)) {
1820 struct blk_plug_cb *cb = list_first_entry(&callbacks,
1821 struct blk_plug_cb,
1822 list);
1823 list_del(&cb->list);
1824 cb->callback(cb, from_schedule);
1829 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1830 int size)
1832 struct blk_plug *plug = current->plug;
1833 struct blk_plug_cb *cb;
1835 if (!plug)
1836 return NULL;
1838 list_for_each_entry(cb, &plug->cb_list, list)
1839 if (cb->callback == unplug && cb->data == data)
1840 return cb;
1842 /* Not currently on the callback list */
1843 BUG_ON(size < sizeof(*cb));
1844 cb = kzalloc(size, GFP_ATOMIC);
1845 if (cb) {
1846 cb->data = data;
1847 cb->callback = unplug;
1848 list_add(&cb->list, &plug->cb_list);
1850 return cb;
1852 EXPORT_SYMBOL(blk_check_plugged);
1854 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1856 flush_plug_callbacks(plug, from_schedule);
1858 if (!list_empty(&plug->mq_list))
1859 blk_mq_flush_plug_list(plug, from_schedule);
1863 * blk_finish_plug - mark the end of a batch of submitted I/O
1864 * @plug: The &struct blk_plug passed to blk_start_plug()
1866 * Description:
1867 * Indicate that a batch of I/O submissions is complete. This function
1868 * must be paired with an initial call to blk_start_plug(). The intent
1869 * is to allow the block layer to optimize I/O submission. See the
1870 * documentation for blk_start_plug() for more information.
1872 void blk_finish_plug(struct blk_plug *plug)
1874 if (plug != current->plug)
1875 return;
1876 blk_flush_plug_list(plug, false);
1878 current->plug = NULL;
1880 EXPORT_SYMBOL(blk_finish_plug);
1882 void blk_io_schedule(void)
1884 /* Prevent hang_check timer from firing at us during very long I/O */
1885 unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2;
1887 if (timeout)
1888 io_schedule_timeout(timeout);
1889 else
1890 io_schedule();
1892 EXPORT_SYMBOL_GPL(blk_io_schedule);
1894 int __init blk_dev_init(void)
1896 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
1897 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1898 sizeof_field(struct request, cmd_flags));
1899 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1900 sizeof_field(struct bio, bi_opf));
1902 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
1903 kblockd_workqueue = alloc_workqueue("kblockd",
1904 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1905 if (!kblockd_workqueue)
1906 panic("Failed to create kblockd\n");
1908 blk_requestq_cachep = kmem_cache_create("request_queue",
1909 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1911 #ifdef CONFIG_DEBUG_FS
1912 blk_debugfs_root = debugfs_create_dir("block", NULL);
1913 #endif
1915 return 0;