Linux 4.19.140
[linux/fpc-iii.git] / block / blk-mq.c
blob684acaa96db7e11893b8ddd56b05de75e05ffaef
1 /*
2 * Block multiqueue core code
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
29 #include <trace/events/block.h>
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-stat.h"
37 #include "blk-mq-sched.h"
38 #include "blk-rq-qos.h"
40 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
41 static void blk_mq_poll_stats_start(struct request_queue *q);
42 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
44 static int blk_mq_poll_stats_bkt(const struct request *rq)
46 int ddir, bytes, bucket;
48 ddir = rq_data_dir(rq);
49 bytes = blk_rq_bytes(rq);
51 bucket = ddir + 2*(ilog2(bytes) - 9);
53 if (bucket < 0)
54 return -1;
55 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
56 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
58 return bucket;
62 * Check if any of the ctx's have pending work in this hardware queue
64 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
66 return !list_empty_careful(&hctx->dispatch) ||
67 sbitmap_any_bit_set(&hctx->ctx_map) ||
68 blk_mq_sched_has_work(hctx);
72 * Mark this ctx as having pending work in this hardware queue
74 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
75 struct blk_mq_ctx *ctx)
77 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
78 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
81 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
82 struct blk_mq_ctx *ctx)
84 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
87 struct mq_inflight {
88 struct hd_struct *part;
89 unsigned int *inflight;
92 static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
93 struct request *rq, void *priv,
94 bool reserved)
96 struct mq_inflight *mi = priv;
99 * index[0] counts the specific partition that was asked for. index[1]
100 * counts the ones that are active on the whole device, so increment
101 * that if mi->part is indeed a partition, and not a whole device.
103 if (rq->part == mi->part)
104 mi->inflight[0]++;
105 if (mi->part->partno)
106 mi->inflight[1]++;
109 void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
110 unsigned int inflight[2])
112 struct mq_inflight mi = { .part = part, .inflight = inflight, };
114 inflight[0] = inflight[1] = 0;
115 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
118 static void blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx,
119 struct request *rq, void *priv,
120 bool reserved)
122 struct mq_inflight *mi = priv;
124 if (rq->part == mi->part)
125 mi->inflight[rq_data_dir(rq)]++;
128 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
129 unsigned int inflight[2])
131 struct mq_inflight mi = { .part = part, .inflight = inflight, };
133 inflight[0] = inflight[1] = 0;
134 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi);
137 void blk_freeze_queue_start(struct request_queue *q)
139 int freeze_depth;
141 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
142 if (freeze_depth == 1) {
143 percpu_ref_kill(&q->q_usage_counter);
144 if (q->mq_ops)
145 blk_mq_run_hw_queues(q, false);
148 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
150 void blk_mq_freeze_queue_wait(struct request_queue *q)
152 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
154 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
156 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
157 unsigned long timeout)
159 return wait_event_timeout(q->mq_freeze_wq,
160 percpu_ref_is_zero(&q->q_usage_counter),
161 timeout);
163 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
166 * Guarantee no request is in use, so we can change any data structure of
167 * the queue afterward.
169 void blk_freeze_queue(struct request_queue *q)
172 * In the !blk_mq case we are only calling this to kill the
173 * q_usage_counter, otherwise this increases the freeze depth
174 * and waits for it to return to zero. For this reason there is
175 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
176 * exported to drivers as the only user for unfreeze is blk_mq.
178 blk_freeze_queue_start(q);
179 if (!q->mq_ops)
180 blk_drain_queue(q);
181 blk_mq_freeze_queue_wait(q);
184 void blk_mq_freeze_queue(struct request_queue *q)
187 * ...just an alias to keep freeze and unfreeze actions balanced
188 * in the blk_mq_* namespace
190 blk_freeze_queue(q);
192 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
194 void blk_mq_unfreeze_queue(struct request_queue *q)
196 int freeze_depth;
198 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
199 WARN_ON_ONCE(freeze_depth < 0);
200 if (!freeze_depth) {
201 percpu_ref_reinit(&q->q_usage_counter);
202 wake_up_all(&q->mq_freeze_wq);
205 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
208 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
209 * mpt3sas driver such that this function can be removed.
211 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
213 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
215 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
218 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
219 * @q: request queue.
221 * Note: this function does not prevent that the struct request end_io()
222 * callback function is invoked. Once this function is returned, we make
223 * sure no dispatch can happen until the queue is unquiesced via
224 * blk_mq_unquiesce_queue().
226 void blk_mq_quiesce_queue(struct request_queue *q)
228 struct blk_mq_hw_ctx *hctx;
229 unsigned int i;
230 bool rcu = false;
232 blk_mq_quiesce_queue_nowait(q);
234 queue_for_each_hw_ctx(q, hctx, i) {
235 if (hctx->flags & BLK_MQ_F_BLOCKING)
236 synchronize_srcu(hctx->srcu);
237 else
238 rcu = true;
240 if (rcu)
241 synchronize_rcu();
243 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
246 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
247 * @q: request queue.
249 * This function recovers queue into the state before quiescing
250 * which is done by blk_mq_quiesce_queue.
252 void blk_mq_unquiesce_queue(struct request_queue *q)
254 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
256 /* dispatch requests which are inserted during quiescing */
257 blk_mq_run_hw_queues(q, true);
259 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
261 void blk_mq_wake_waiters(struct request_queue *q)
263 struct blk_mq_hw_ctx *hctx;
264 unsigned int i;
266 queue_for_each_hw_ctx(q, hctx, i)
267 if (blk_mq_hw_queue_mapped(hctx))
268 blk_mq_tag_wakeup_all(hctx->tags, true);
271 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
273 return blk_mq_has_free_tags(hctx->tags);
275 EXPORT_SYMBOL(blk_mq_can_queue);
277 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
278 unsigned int tag, unsigned int op)
280 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
281 struct request *rq = tags->static_rqs[tag];
282 req_flags_t rq_flags = 0;
284 if (data->flags & BLK_MQ_REQ_INTERNAL) {
285 rq->tag = -1;
286 rq->internal_tag = tag;
287 } else {
288 if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) {
289 rq_flags = RQF_MQ_INFLIGHT;
290 atomic_inc(&data->hctx->nr_active);
292 rq->tag = tag;
293 rq->internal_tag = -1;
294 data->hctx->tags->rqs[rq->tag] = rq;
297 /* csd/requeue_work/fifo_time is initialized before use */
298 rq->q = data->q;
299 rq->mq_ctx = data->ctx;
300 rq->rq_flags = rq_flags;
301 rq->cpu = -1;
302 rq->cmd_flags = op;
303 if (data->flags & BLK_MQ_REQ_PREEMPT)
304 rq->rq_flags |= RQF_PREEMPT;
305 if (blk_queue_io_stat(data->q))
306 rq->rq_flags |= RQF_IO_STAT;
307 INIT_LIST_HEAD(&rq->queuelist);
308 INIT_HLIST_NODE(&rq->hash);
309 RB_CLEAR_NODE(&rq->rb_node);
310 rq->rq_disk = NULL;
311 rq->part = NULL;
312 rq->start_time_ns = ktime_get_ns();
313 rq->io_start_time_ns = 0;
314 rq->nr_phys_segments = 0;
315 #if defined(CONFIG_BLK_DEV_INTEGRITY)
316 rq->nr_integrity_segments = 0;
317 #endif
318 rq->special = NULL;
319 /* tag was already set */
320 rq->extra_len = 0;
321 rq->__deadline = 0;
323 INIT_LIST_HEAD(&rq->timeout_list);
324 rq->timeout = 0;
326 rq->end_io = NULL;
327 rq->end_io_data = NULL;
328 rq->next_rq = NULL;
330 #ifdef CONFIG_BLK_CGROUP
331 rq->rl = NULL;
332 #endif
334 data->ctx->rq_dispatched[op_is_sync(op)]++;
335 refcount_set(&rq->ref, 1);
336 return rq;
339 static struct request *blk_mq_get_request(struct request_queue *q,
340 struct bio *bio, unsigned int op,
341 struct blk_mq_alloc_data *data)
343 struct elevator_queue *e = q->elevator;
344 struct request *rq;
345 unsigned int tag;
346 bool put_ctx_on_error = false;
348 blk_queue_enter_live(q);
349 data->q = q;
350 if (likely(!data->ctx)) {
351 data->ctx = blk_mq_get_ctx(q);
352 put_ctx_on_error = true;
354 if (likely(!data->hctx))
355 data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
356 if (op & REQ_NOWAIT)
357 data->flags |= BLK_MQ_REQ_NOWAIT;
359 if (e) {
360 data->flags |= BLK_MQ_REQ_INTERNAL;
363 * Flush requests are special and go directly to the
364 * dispatch list. Don't include reserved tags in the
365 * limiting, as it isn't useful.
367 if (!op_is_flush(op) && e->type->ops.mq.limit_depth &&
368 !(data->flags & BLK_MQ_REQ_RESERVED))
369 e->type->ops.mq.limit_depth(op, data);
370 } else {
371 blk_mq_tag_busy(data->hctx);
374 tag = blk_mq_get_tag(data);
375 if (tag == BLK_MQ_TAG_FAIL) {
376 if (put_ctx_on_error) {
377 blk_mq_put_ctx(data->ctx);
378 data->ctx = NULL;
380 blk_queue_exit(q);
381 return NULL;
384 rq = blk_mq_rq_ctx_init(data, tag, op);
385 if (!op_is_flush(op)) {
386 rq->elv.icq = NULL;
387 if (e && e->type->ops.mq.prepare_request) {
388 if (e->type->icq_cache && rq_ioc(bio))
389 blk_mq_sched_assign_ioc(rq, bio);
391 e->type->ops.mq.prepare_request(rq, bio);
392 rq->rq_flags |= RQF_ELVPRIV;
395 data->hctx->queued++;
396 return rq;
399 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
400 blk_mq_req_flags_t flags)
402 struct blk_mq_alloc_data alloc_data = { .flags = flags };
403 struct request *rq;
404 int ret;
406 ret = blk_queue_enter(q, flags);
407 if (ret)
408 return ERR_PTR(ret);
410 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
411 blk_queue_exit(q);
413 if (!rq)
414 return ERR_PTR(-EWOULDBLOCK);
416 blk_mq_put_ctx(alloc_data.ctx);
418 rq->__data_len = 0;
419 rq->__sector = (sector_t) -1;
420 rq->bio = rq->biotail = NULL;
421 return rq;
423 EXPORT_SYMBOL(blk_mq_alloc_request);
425 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
426 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
428 struct blk_mq_alloc_data alloc_data = { .flags = flags };
429 struct request *rq;
430 unsigned int cpu;
431 int ret;
434 * If the tag allocator sleeps we could get an allocation for a
435 * different hardware context. No need to complicate the low level
436 * allocator for this for the rare use case of a command tied to
437 * a specific queue.
439 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
440 return ERR_PTR(-EINVAL);
442 if (hctx_idx >= q->nr_hw_queues)
443 return ERR_PTR(-EIO);
445 ret = blk_queue_enter(q, flags);
446 if (ret)
447 return ERR_PTR(ret);
450 * Check if the hardware context is actually mapped to anything.
451 * If not tell the caller that it should skip this queue.
453 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
454 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
455 blk_queue_exit(q);
456 return ERR_PTR(-EXDEV);
458 cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
459 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
461 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
462 blk_queue_exit(q);
464 if (!rq)
465 return ERR_PTR(-EWOULDBLOCK);
467 return rq;
469 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
471 static void __blk_mq_free_request(struct request *rq)
473 struct request_queue *q = rq->q;
474 struct blk_mq_ctx *ctx = rq->mq_ctx;
475 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
476 const int sched_tag = rq->internal_tag;
478 if (rq->tag != -1)
479 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
480 if (sched_tag != -1)
481 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
482 blk_mq_sched_restart(hctx);
483 blk_queue_exit(q);
486 void blk_mq_free_request(struct request *rq)
488 struct request_queue *q = rq->q;
489 struct elevator_queue *e = q->elevator;
490 struct blk_mq_ctx *ctx = rq->mq_ctx;
491 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
493 if (rq->rq_flags & RQF_ELVPRIV) {
494 if (e && e->type->ops.mq.finish_request)
495 e->type->ops.mq.finish_request(rq);
496 if (rq->elv.icq) {
497 put_io_context(rq->elv.icq->ioc);
498 rq->elv.icq = NULL;
502 ctx->rq_completed[rq_is_sync(rq)]++;
503 if (rq->rq_flags & RQF_MQ_INFLIGHT)
504 atomic_dec(&hctx->nr_active);
506 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
507 laptop_io_completion(q->backing_dev_info);
509 rq_qos_done(q, rq);
511 if (blk_rq_rl(rq))
512 blk_put_rl(blk_rq_rl(rq));
514 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
515 if (refcount_dec_and_test(&rq->ref))
516 __blk_mq_free_request(rq);
518 EXPORT_SYMBOL_GPL(blk_mq_free_request);
520 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
522 u64 now = ktime_get_ns();
524 if (rq->rq_flags & RQF_STATS) {
525 blk_mq_poll_stats_start(rq->q);
526 blk_stat_add(rq, now);
529 blk_account_io_done(rq, now);
531 if (rq->end_io) {
532 rq_qos_done(rq->q, rq);
533 rq->end_io(rq, error);
534 } else {
535 if (unlikely(blk_bidi_rq(rq)))
536 blk_mq_free_request(rq->next_rq);
537 blk_mq_free_request(rq);
540 EXPORT_SYMBOL(__blk_mq_end_request);
542 void blk_mq_end_request(struct request *rq, blk_status_t error)
544 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
545 BUG();
546 __blk_mq_end_request(rq, error);
548 EXPORT_SYMBOL(blk_mq_end_request);
550 static void __blk_mq_complete_request_remote(void *data)
552 struct request *rq = data;
554 rq->q->softirq_done_fn(rq);
557 static void __blk_mq_complete_request(struct request *rq)
559 struct blk_mq_ctx *ctx = rq->mq_ctx;
560 bool shared = false;
561 int cpu;
563 if (!blk_mq_mark_complete(rq))
564 return;
565 if (rq->internal_tag != -1)
566 blk_mq_sched_completed_request(rq);
568 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
569 rq->q->softirq_done_fn(rq);
570 return;
573 cpu = get_cpu();
574 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
575 shared = cpus_share_cache(cpu, ctx->cpu);
577 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
578 rq->csd.func = __blk_mq_complete_request_remote;
579 rq->csd.info = rq;
580 rq->csd.flags = 0;
581 smp_call_function_single_async(ctx->cpu, &rq->csd);
582 } else {
583 rq->q->softirq_done_fn(rq);
585 put_cpu();
588 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
589 __releases(hctx->srcu)
591 if (!(hctx->flags & BLK_MQ_F_BLOCKING))
592 rcu_read_unlock();
593 else
594 srcu_read_unlock(hctx->srcu, srcu_idx);
597 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
598 __acquires(hctx->srcu)
600 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
601 /* shut up gcc false positive */
602 *srcu_idx = 0;
603 rcu_read_lock();
604 } else
605 *srcu_idx = srcu_read_lock(hctx->srcu);
609 * blk_mq_complete_request - end I/O on a request
610 * @rq: the request being processed
612 * Description:
613 * Ends all I/O on a request. It does not handle partial completions.
614 * The actual completion happens out-of-order, through a IPI handler.
616 void blk_mq_complete_request(struct request *rq)
618 if (unlikely(blk_should_fake_timeout(rq->q)))
619 return;
620 __blk_mq_complete_request(rq);
622 EXPORT_SYMBOL(blk_mq_complete_request);
624 int blk_mq_request_started(struct request *rq)
626 return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
628 EXPORT_SYMBOL_GPL(blk_mq_request_started);
630 void blk_mq_start_request(struct request *rq)
632 struct request_queue *q = rq->q;
634 blk_mq_sched_started_request(rq);
636 trace_block_rq_issue(q, rq);
638 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
639 rq->io_start_time_ns = ktime_get_ns();
640 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
641 rq->throtl_size = blk_rq_sectors(rq);
642 #endif
643 rq->rq_flags |= RQF_STATS;
644 rq_qos_issue(q, rq);
647 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
649 blk_add_timer(rq);
650 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
652 if (q->dma_drain_size && blk_rq_bytes(rq)) {
654 * Make sure space for the drain appears. We know we can do
655 * this because max_hw_segments has been adjusted to be one
656 * fewer than the device can handle.
658 rq->nr_phys_segments++;
661 EXPORT_SYMBOL(blk_mq_start_request);
663 static void __blk_mq_requeue_request(struct request *rq)
665 struct request_queue *q = rq->q;
667 blk_mq_put_driver_tag(rq);
669 trace_block_rq_requeue(q, rq);
670 rq_qos_requeue(q, rq);
672 if (blk_mq_request_started(rq)) {
673 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
674 rq->rq_flags &= ~RQF_TIMED_OUT;
675 if (q->dma_drain_size && blk_rq_bytes(rq))
676 rq->nr_phys_segments--;
680 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
682 __blk_mq_requeue_request(rq);
684 /* this request will be re-inserted to io scheduler queue */
685 blk_mq_sched_requeue_request(rq);
687 BUG_ON(blk_queued_rq(rq));
688 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
690 EXPORT_SYMBOL(blk_mq_requeue_request);
692 static void blk_mq_requeue_work(struct work_struct *work)
694 struct request_queue *q =
695 container_of(work, struct request_queue, requeue_work.work);
696 LIST_HEAD(rq_list);
697 struct request *rq, *next;
699 spin_lock_irq(&q->requeue_lock);
700 list_splice_init(&q->requeue_list, &rq_list);
701 spin_unlock_irq(&q->requeue_lock);
703 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
704 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
705 continue;
707 rq->rq_flags &= ~RQF_SOFTBARRIER;
708 list_del_init(&rq->queuelist);
710 * If RQF_DONTPREP, rq has contained some driver specific
711 * data, so insert it to hctx dispatch list to avoid any
712 * merge.
714 if (rq->rq_flags & RQF_DONTPREP)
715 blk_mq_request_bypass_insert(rq, false);
716 else
717 blk_mq_sched_insert_request(rq, true, false, false);
720 while (!list_empty(&rq_list)) {
721 rq = list_entry(rq_list.next, struct request, queuelist);
722 list_del_init(&rq->queuelist);
723 blk_mq_sched_insert_request(rq, false, false, false);
726 blk_mq_run_hw_queues(q, false);
729 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
730 bool kick_requeue_list)
732 struct request_queue *q = rq->q;
733 unsigned long flags;
736 * We abuse this flag that is otherwise used by the I/O scheduler to
737 * request head insertion from the workqueue.
739 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
741 spin_lock_irqsave(&q->requeue_lock, flags);
742 if (at_head) {
743 rq->rq_flags |= RQF_SOFTBARRIER;
744 list_add(&rq->queuelist, &q->requeue_list);
745 } else {
746 list_add_tail(&rq->queuelist, &q->requeue_list);
748 spin_unlock_irqrestore(&q->requeue_lock, flags);
750 if (kick_requeue_list)
751 blk_mq_kick_requeue_list(q);
753 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
755 void blk_mq_kick_requeue_list(struct request_queue *q)
757 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
759 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
761 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
762 unsigned long msecs)
764 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
765 msecs_to_jiffies(msecs));
767 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
769 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
771 if (tag < tags->nr_tags) {
772 prefetch(tags->rqs[tag]);
773 return tags->rqs[tag];
776 return NULL;
778 EXPORT_SYMBOL(blk_mq_tag_to_rq);
780 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
782 req->rq_flags |= RQF_TIMED_OUT;
783 if (req->q->mq_ops->timeout) {
784 enum blk_eh_timer_return ret;
786 ret = req->q->mq_ops->timeout(req, reserved);
787 if (ret == BLK_EH_DONE)
788 return;
789 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
792 blk_add_timer(req);
795 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
797 unsigned long deadline;
799 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
800 return false;
801 if (rq->rq_flags & RQF_TIMED_OUT)
802 return false;
804 deadline = blk_rq_deadline(rq);
805 if (time_after_eq(jiffies, deadline))
806 return true;
808 if (*next == 0)
809 *next = deadline;
810 else if (time_after(*next, deadline))
811 *next = deadline;
812 return false;
815 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
816 struct request *rq, void *priv, bool reserved)
818 unsigned long *next = priv;
821 * Just do a quick check if it is expired before locking the request in
822 * so we're not unnecessarilly synchronizing across CPUs.
824 if (!blk_mq_req_expired(rq, next))
825 return;
828 * We have reason to believe the request may be expired. Take a
829 * reference on the request to lock this request lifetime into its
830 * currently allocated context to prevent it from being reallocated in
831 * the event the completion by-passes this timeout handler.
833 * If the reference was already released, then the driver beat the
834 * timeout handler to posting a natural completion.
836 if (!refcount_inc_not_zero(&rq->ref))
837 return;
840 * The request is now locked and cannot be reallocated underneath the
841 * timeout handler's processing. Re-verify this exact request is truly
842 * expired; if it is not expired, then the request was completed and
843 * reallocated as a new request.
845 if (blk_mq_req_expired(rq, next))
846 blk_mq_rq_timed_out(rq, reserved);
848 if (is_flush_rq(rq, hctx))
849 rq->end_io(rq, 0);
850 else if (refcount_dec_and_test(&rq->ref))
851 __blk_mq_free_request(rq);
854 static void blk_mq_timeout_work(struct work_struct *work)
856 struct request_queue *q =
857 container_of(work, struct request_queue, timeout_work);
858 unsigned long next = 0;
859 struct blk_mq_hw_ctx *hctx;
860 int i;
862 /* A deadlock might occur if a request is stuck requiring a
863 * timeout at the same time a queue freeze is waiting
864 * completion, since the timeout code would not be able to
865 * acquire the queue reference here.
867 * That's why we don't use blk_queue_enter here; instead, we use
868 * percpu_ref_tryget directly, because we need to be able to
869 * obtain a reference even in the short window between the queue
870 * starting to freeze, by dropping the first reference in
871 * blk_freeze_queue_start, and the moment the last request is
872 * consumed, marked by the instant q_usage_counter reaches
873 * zero.
875 if (!percpu_ref_tryget(&q->q_usage_counter))
876 return;
878 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
880 if (next != 0) {
881 mod_timer(&q->timeout, next);
882 } else {
884 * Request timeouts are handled as a forward rolling timer. If
885 * we end up here it means that no requests are pending and
886 * also that no request has been pending for a while. Mark
887 * each hctx as idle.
889 queue_for_each_hw_ctx(q, hctx, i) {
890 /* the hctx may be unmapped, so check it here */
891 if (blk_mq_hw_queue_mapped(hctx))
892 blk_mq_tag_idle(hctx);
895 blk_queue_exit(q);
898 struct flush_busy_ctx_data {
899 struct blk_mq_hw_ctx *hctx;
900 struct list_head *list;
903 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
905 struct flush_busy_ctx_data *flush_data = data;
906 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
907 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
909 spin_lock(&ctx->lock);
910 list_splice_tail_init(&ctx->rq_list, flush_data->list);
911 sbitmap_clear_bit(sb, bitnr);
912 spin_unlock(&ctx->lock);
913 return true;
917 * Process software queues that have been marked busy, splicing them
918 * to the for-dispatch
920 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
922 struct flush_busy_ctx_data data = {
923 .hctx = hctx,
924 .list = list,
927 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
929 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
931 struct dispatch_rq_data {
932 struct blk_mq_hw_ctx *hctx;
933 struct request *rq;
936 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
937 void *data)
939 struct dispatch_rq_data *dispatch_data = data;
940 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
941 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
943 spin_lock(&ctx->lock);
944 if (!list_empty(&ctx->rq_list)) {
945 dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
946 list_del_init(&dispatch_data->rq->queuelist);
947 if (list_empty(&ctx->rq_list))
948 sbitmap_clear_bit(sb, bitnr);
950 spin_unlock(&ctx->lock);
952 return !dispatch_data->rq;
955 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
956 struct blk_mq_ctx *start)
958 unsigned off = start ? start->index_hw : 0;
959 struct dispatch_rq_data data = {
960 .hctx = hctx,
961 .rq = NULL,
964 __sbitmap_for_each_set(&hctx->ctx_map, off,
965 dispatch_rq_from_ctx, &data);
967 return data.rq;
970 static inline unsigned int queued_to_index(unsigned int queued)
972 if (!queued)
973 return 0;
975 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
978 bool blk_mq_get_driver_tag(struct request *rq)
980 struct blk_mq_alloc_data data = {
981 .q = rq->q,
982 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
983 .flags = BLK_MQ_REQ_NOWAIT,
985 bool shared;
987 if (rq->tag != -1)
988 goto done;
990 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
991 data.flags |= BLK_MQ_REQ_RESERVED;
993 shared = blk_mq_tag_busy(data.hctx);
994 rq->tag = blk_mq_get_tag(&data);
995 if (rq->tag >= 0) {
996 if (shared) {
997 rq->rq_flags |= RQF_MQ_INFLIGHT;
998 atomic_inc(&data.hctx->nr_active);
1000 data.hctx->tags->rqs[rq->tag] = rq;
1003 done:
1004 return rq->tag != -1;
1007 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1008 int flags, void *key)
1010 struct blk_mq_hw_ctx *hctx;
1012 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1014 spin_lock(&hctx->dispatch_wait_lock);
1015 list_del_init(&wait->entry);
1016 spin_unlock(&hctx->dispatch_wait_lock);
1018 blk_mq_run_hw_queue(hctx, true);
1019 return 1;
1023 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1024 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1025 * restart. For both cases, take care to check the condition again after
1026 * marking us as waiting.
1028 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1029 struct request *rq)
1031 struct wait_queue_head *wq;
1032 wait_queue_entry_t *wait;
1033 bool ret;
1035 if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1036 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
1037 set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
1040 * It's possible that a tag was freed in the window between the
1041 * allocation failure and adding the hardware queue to the wait
1042 * queue.
1044 * Don't clear RESTART here, someone else could have set it.
1045 * At most this will cost an extra queue run.
1047 return blk_mq_get_driver_tag(rq);
1050 wait = &hctx->dispatch_wait;
1051 if (!list_empty_careful(&wait->entry))
1052 return false;
1054 wq = &bt_wait_ptr(&hctx->tags->bitmap_tags, hctx)->wait;
1056 spin_lock_irq(&wq->lock);
1057 spin_lock(&hctx->dispatch_wait_lock);
1058 if (!list_empty(&wait->entry)) {
1059 spin_unlock(&hctx->dispatch_wait_lock);
1060 spin_unlock_irq(&wq->lock);
1061 return false;
1064 wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1065 __add_wait_queue(wq, wait);
1068 * It's possible that a tag was freed in the window between the
1069 * allocation failure and adding the hardware queue to the wait
1070 * queue.
1072 ret = blk_mq_get_driver_tag(rq);
1073 if (!ret) {
1074 spin_unlock(&hctx->dispatch_wait_lock);
1075 spin_unlock_irq(&wq->lock);
1076 return false;
1080 * We got a tag, remove ourselves from the wait queue to ensure
1081 * someone else gets the wakeup.
1083 list_del_init(&wait->entry);
1084 spin_unlock(&hctx->dispatch_wait_lock);
1085 spin_unlock_irq(&wq->lock);
1087 return true;
1090 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8
1091 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4
1093 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1094 * - EWMA is one simple way to compute running average value
1095 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1096 * - take 4 as factor for avoiding to get too small(0) result, and this
1097 * factor doesn't matter because EWMA decreases exponentially
1099 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1101 unsigned int ewma;
1103 if (hctx->queue->elevator)
1104 return;
1106 ewma = hctx->dispatch_busy;
1108 if (!ewma && !busy)
1109 return;
1111 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1112 if (busy)
1113 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1114 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1116 hctx->dispatch_busy = ewma;
1119 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */
1122 * Returns true if we did some work AND can potentially do more.
1124 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1125 bool got_budget)
1127 struct blk_mq_hw_ctx *hctx;
1128 struct request *rq, *nxt;
1129 bool no_tag = false;
1130 int errors, queued;
1131 blk_status_t ret = BLK_STS_OK;
1133 if (list_empty(list))
1134 return false;
1136 WARN_ON(!list_is_singular(list) && got_budget);
1139 * Now process all the entries, sending them to the driver.
1141 errors = queued = 0;
1142 do {
1143 struct blk_mq_queue_data bd;
1145 rq = list_first_entry(list, struct request, queuelist);
1147 hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
1148 if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
1149 break;
1151 if (!blk_mq_get_driver_tag(rq)) {
1153 * The initial allocation attempt failed, so we need to
1154 * rerun the hardware queue when a tag is freed. The
1155 * waitqueue takes care of that. If the queue is run
1156 * before we add this entry back on the dispatch list,
1157 * we'll re-run it below.
1159 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1160 blk_mq_put_dispatch_budget(hctx);
1162 * For non-shared tags, the RESTART check
1163 * will suffice.
1165 if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1166 no_tag = true;
1167 break;
1171 list_del_init(&rq->queuelist);
1173 bd.rq = rq;
1176 * Flag last if we have no more requests, or if we have more
1177 * but can't assign a driver tag to it.
1179 if (list_empty(list))
1180 bd.last = true;
1181 else {
1182 nxt = list_first_entry(list, struct request, queuelist);
1183 bd.last = !blk_mq_get_driver_tag(nxt);
1186 ret = q->mq_ops->queue_rq(hctx, &bd);
1187 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1189 * If an I/O scheduler has been configured and we got a
1190 * driver tag for the next request already, free it
1191 * again.
1193 if (!list_empty(list)) {
1194 nxt = list_first_entry(list, struct request, queuelist);
1195 blk_mq_put_driver_tag(nxt);
1197 list_add(&rq->queuelist, list);
1198 __blk_mq_requeue_request(rq);
1199 break;
1202 if (unlikely(ret != BLK_STS_OK)) {
1203 errors++;
1204 blk_mq_end_request(rq, BLK_STS_IOERR);
1205 continue;
1208 queued++;
1209 } while (!list_empty(list));
1211 hctx->dispatched[queued_to_index(queued)]++;
1214 * Any items that need requeuing? Stuff them into hctx->dispatch,
1215 * that is where we will continue on next queue run.
1217 if (!list_empty(list)) {
1218 bool needs_restart;
1220 spin_lock(&hctx->lock);
1221 list_splice_init(list, &hctx->dispatch);
1222 spin_unlock(&hctx->lock);
1225 * If SCHED_RESTART was set by the caller of this function and
1226 * it is no longer set that means that it was cleared by another
1227 * thread and hence that a queue rerun is needed.
1229 * If 'no_tag' is set, that means that we failed getting
1230 * a driver tag with an I/O scheduler attached. If our dispatch
1231 * waitqueue is no longer active, ensure that we run the queue
1232 * AFTER adding our entries back to the list.
1234 * If no I/O scheduler has been configured it is possible that
1235 * the hardware queue got stopped and restarted before requests
1236 * were pushed back onto the dispatch list. Rerun the queue to
1237 * avoid starvation. Notes:
1238 * - blk_mq_run_hw_queue() checks whether or not a queue has
1239 * been stopped before rerunning a queue.
1240 * - Some but not all block drivers stop a queue before
1241 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1242 * and dm-rq.
1244 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1245 * bit is set, run queue after a delay to avoid IO stalls
1246 * that could otherwise occur if the queue is idle.
1248 needs_restart = blk_mq_sched_needs_restart(hctx);
1249 if (!needs_restart ||
1250 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1251 blk_mq_run_hw_queue(hctx, true);
1252 else if (needs_restart && (ret == BLK_STS_RESOURCE))
1253 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1255 blk_mq_update_dispatch_busy(hctx, true);
1256 return false;
1257 } else
1258 blk_mq_update_dispatch_busy(hctx, false);
1261 * If the host/device is unable to accept more work, inform the
1262 * caller of that.
1264 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1265 return false;
1267 return (queued + errors) != 0;
1270 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1272 int srcu_idx;
1275 * We should be running this queue from one of the CPUs that
1276 * are mapped to it.
1278 * There are at least two related races now between setting
1279 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1280 * __blk_mq_run_hw_queue():
1282 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1283 * but later it becomes online, then this warning is harmless
1284 * at all
1286 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1287 * but later it becomes offline, then the warning can't be
1288 * triggered, and we depend on blk-mq timeout handler to
1289 * handle dispatched requests to this hctx
1291 if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1292 cpu_online(hctx->next_cpu)) {
1293 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1294 raw_smp_processor_id(),
1295 cpumask_empty(hctx->cpumask) ? "inactive": "active");
1296 dump_stack();
1300 * We can't run the queue inline with ints disabled. Ensure that
1301 * we catch bad users of this early.
1303 WARN_ON_ONCE(in_interrupt());
1305 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1307 hctx_lock(hctx, &srcu_idx);
1308 blk_mq_sched_dispatch_requests(hctx);
1309 hctx_unlock(hctx, srcu_idx);
1312 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1314 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1316 if (cpu >= nr_cpu_ids)
1317 cpu = cpumask_first(hctx->cpumask);
1318 return cpu;
1322 * It'd be great if the workqueue API had a way to pass
1323 * in a mask and had some smarts for more clever placement.
1324 * For now we just round-robin here, switching for every
1325 * BLK_MQ_CPU_WORK_BATCH queued items.
1327 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1329 bool tried = false;
1330 int next_cpu = hctx->next_cpu;
1332 if (hctx->queue->nr_hw_queues == 1)
1333 return WORK_CPU_UNBOUND;
1335 if (--hctx->next_cpu_batch <= 0) {
1336 select_cpu:
1337 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1338 cpu_online_mask);
1339 if (next_cpu >= nr_cpu_ids)
1340 next_cpu = blk_mq_first_mapped_cpu(hctx);
1341 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1345 * Do unbound schedule if we can't find a online CPU for this hctx,
1346 * and it should only happen in the path of handling CPU DEAD.
1348 if (!cpu_online(next_cpu)) {
1349 if (!tried) {
1350 tried = true;
1351 goto select_cpu;
1355 * Make sure to re-select CPU next time once after CPUs
1356 * in hctx->cpumask become online again.
1358 hctx->next_cpu = next_cpu;
1359 hctx->next_cpu_batch = 1;
1360 return WORK_CPU_UNBOUND;
1363 hctx->next_cpu = next_cpu;
1364 return next_cpu;
1367 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1368 unsigned long msecs)
1370 if (unlikely(blk_mq_hctx_stopped(hctx)))
1371 return;
1373 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1374 int cpu = get_cpu();
1375 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1376 __blk_mq_run_hw_queue(hctx);
1377 put_cpu();
1378 return;
1381 put_cpu();
1384 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1385 msecs_to_jiffies(msecs));
1388 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1390 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1392 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1394 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1396 int srcu_idx;
1397 bool need_run;
1400 * When queue is quiesced, we may be switching io scheduler, or
1401 * updating nr_hw_queues, or other things, and we can't run queue
1402 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1404 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1405 * quiesced.
1407 hctx_lock(hctx, &srcu_idx);
1408 need_run = !blk_queue_quiesced(hctx->queue) &&
1409 blk_mq_hctx_has_pending(hctx);
1410 hctx_unlock(hctx, srcu_idx);
1412 if (need_run) {
1413 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1414 return true;
1417 return false;
1419 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1421 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1423 struct blk_mq_hw_ctx *hctx;
1424 int i;
1426 queue_for_each_hw_ctx(q, hctx, i) {
1427 if (blk_mq_hctx_stopped(hctx))
1428 continue;
1430 blk_mq_run_hw_queue(hctx, async);
1433 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1436 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1437 * @q: request queue.
1439 * The caller is responsible for serializing this function against
1440 * blk_mq_{start,stop}_hw_queue().
1442 bool blk_mq_queue_stopped(struct request_queue *q)
1444 struct blk_mq_hw_ctx *hctx;
1445 int i;
1447 queue_for_each_hw_ctx(q, hctx, i)
1448 if (blk_mq_hctx_stopped(hctx))
1449 return true;
1451 return false;
1453 EXPORT_SYMBOL(blk_mq_queue_stopped);
1456 * This function is often used for pausing .queue_rq() by driver when
1457 * there isn't enough resource or some conditions aren't satisfied, and
1458 * BLK_STS_RESOURCE is usually returned.
1460 * We do not guarantee that dispatch can be drained or blocked
1461 * after blk_mq_stop_hw_queue() returns. Please use
1462 * blk_mq_quiesce_queue() for that requirement.
1464 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1466 cancel_delayed_work(&hctx->run_work);
1468 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1470 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1473 * This function is often used for pausing .queue_rq() by driver when
1474 * there isn't enough resource or some conditions aren't satisfied, and
1475 * BLK_STS_RESOURCE is usually returned.
1477 * We do not guarantee that dispatch can be drained or blocked
1478 * after blk_mq_stop_hw_queues() returns. Please use
1479 * blk_mq_quiesce_queue() for that requirement.
1481 void blk_mq_stop_hw_queues(struct request_queue *q)
1483 struct blk_mq_hw_ctx *hctx;
1484 int i;
1486 queue_for_each_hw_ctx(q, hctx, i)
1487 blk_mq_stop_hw_queue(hctx);
1489 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1491 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1493 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1495 blk_mq_run_hw_queue(hctx, false);
1497 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1499 void blk_mq_start_hw_queues(struct request_queue *q)
1501 struct blk_mq_hw_ctx *hctx;
1502 int i;
1504 queue_for_each_hw_ctx(q, hctx, i)
1505 blk_mq_start_hw_queue(hctx);
1507 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1509 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1511 if (!blk_mq_hctx_stopped(hctx))
1512 return;
1514 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1515 blk_mq_run_hw_queue(hctx, async);
1517 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1519 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1521 struct blk_mq_hw_ctx *hctx;
1522 int i;
1524 queue_for_each_hw_ctx(q, hctx, i)
1525 blk_mq_start_stopped_hw_queue(hctx, async);
1527 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1529 static void blk_mq_run_work_fn(struct work_struct *work)
1531 struct blk_mq_hw_ctx *hctx;
1533 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1536 * If we are stopped, don't run the queue.
1538 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1539 return;
1541 __blk_mq_run_hw_queue(hctx);
1544 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1545 struct request *rq,
1546 bool at_head)
1548 struct blk_mq_ctx *ctx = rq->mq_ctx;
1550 lockdep_assert_held(&ctx->lock);
1552 trace_block_rq_insert(hctx->queue, rq);
1554 if (at_head)
1555 list_add(&rq->queuelist, &ctx->rq_list);
1556 else
1557 list_add_tail(&rq->queuelist, &ctx->rq_list);
1560 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1561 bool at_head)
1563 struct blk_mq_ctx *ctx = rq->mq_ctx;
1565 lockdep_assert_held(&ctx->lock);
1567 __blk_mq_insert_req_list(hctx, rq, at_head);
1568 blk_mq_hctx_mark_pending(hctx, ctx);
1572 * Should only be used carefully, when the caller knows we want to
1573 * bypass a potential IO scheduler on the target device.
1575 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1577 struct blk_mq_ctx *ctx = rq->mq_ctx;
1578 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1580 spin_lock(&hctx->lock);
1581 list_add_tail(&rq->queuelist, &hctx->dispatch);
1582 spin_unlock(&hctx->lock);
1584 if (run_queue)
1585 blk_mq_run_hw_queue(hctx, false);
1588 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1589 struct list_head *list)
1592 struct request *rq;
1595 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1596 * offline now
1598 list_for_each_entry(rq, list, queuelist) {
1599 BUG_ON(rq->mq_ctx != ctx);
1600 trace_block_rq_insert(hctx->queue, rq);
1603 spin_lock(&ctx->lock);
1604 list_splice_tail_init(list, &ctx->rq_list);
1605 blk_mq_hctx_mark_pending(hctx, ctx);
1606 spin_unlock(&ctx->lock);
1609 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1611 struct request *rqa = container_of(a, struct request, queuelist);
1612 struct request *rqb = container_of(b, struct request, queuelist);
1614 return !(rqa->mq_ctx < rqb->mq_ctx ||
1615 (rqa->mq_ctx == rqb->mq_ctx &&
1616 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1619 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1621 struct blk_mq_ctx *this_ctx;
1622 struct request_queue *this_q;
1623 struct request *rq;
1624 LIST_HEAD(list);
1625 LIST_HEAD(ctx_list);
1626 unsigned int depth;
1628 list_splice_init(&plug->mq_list, &list);
1630 list_sort(NULL, &list, plug_ctx_cmp);
1632 this_q = NULL;
1633 this_ctx = NULL;
1634 depth = 0;
1636 while (!list_empty(&list)) {
1637 rq = list_entry_rq(list.next);
1638 list_del_init(&rq->queuelist);
1639 BUG_ON(!rq->q);
1640 if (rq->mq_ctx != this_ctx) {
1641 if (this_ctx) {
1642 trace_block_unplug(this_q, depth, !from_schedule);
1643 blk_mq_sched_insert_requests(this_q, this_ctx,
1644 &ctx_list,
1645 from_schedule);
1648 this_ctx = rq->mq_ctx;
1649 this_q = rq->q;
1650 depth = 0;
1653 depth++;
1654 list_add_tail(&rq->queuelist, &ctx_list);
1658 * If 'this_ctx' is set, we know we have entries to complete
1659 * on 'ctx_list'. Do those.
1661 if (this_ctx) {
1662 trace_block_unplug(this_q, depth, !from_schedule);
1663 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1664 from_schedule);
1668 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1670 blk_init_request_from_bio(rq, bio);
1672 blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));
1674 blk_account_io_start(rq, true);
1677 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1679 if (rq->tag != -1)
1680 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1682 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1685 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1686 struct request *rq,
1687 blk_qc_t *cookie)
1689 struct request_queue *q = rq->q;
1690 struct blk_mq_queue_data bd = {
1691 .rq = rq,
1692 .last = true,
1694 blk_qc_t new_cookie;
1695 blk_status_t ret;
1697 new_cookie = request_to_qc_t(hctx, rq);
1700 * For OK queue, we are done. For error, caller may kill it.
1701 * Any other error (busy), just add it to our list as we
1702 * previously would have done.
1704 ret = q->mq_ops->queue_rq(hctx, &bd);
1705 switch (ret) {
1706 case BLK_STS_OK:
1707 blk_mq_update_dispatch_busy(hctx, false);
1708 *cookie = new_cookie;
1709 break;
1710 case BLK_STS_RESOURCE:
1711 case BLK_STS_DEV_RESOURCE:
1712 blk_mq_update_dispatch_busy(hctx, true);
1713 __blk_mq_requeue_request(rq);
1714 break;
1715 default:
1716 blk_mq_update_dispatch_busy(hctx, false);
1717 *cookie = BLK_QC_T_NONE;
1718 break;
1721 return ret;
1724 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1725 struct request *rq,
1726 blk_qc_t *cookie,
1727 bool bypass_insert)
1729 struct request_queue *q = rq->q;
1730 bool run_queue = true;
1733 * RCU or SRCU read lock is needed before checking quiesced flag.
1735 * When queue is stopped or quiesced, ignore 'bypass_insert' from
1736 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1737 * and avoid driver to try to dispatch again.
1739 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1740 run_queue = false;
1741 bypass_insert = false;
1742 goto insert;
1745 if (q->elevator && !bypass_insert)
1746 goto insert;
1748 if (!blk_mq_get_dispatch_budget(hctx))
1749 goto insert;
1751 if (!blk_mq_get_driver_tag(rq)) {
1752 blk_mq_put_dispatch_budget(hctx);
1753 goto insert;
1756 return __blk_mq_issue_directly(hctx, rq, cookie);
1757 insert:
1758 if (bypass_insert)
1759 return BLK_STS_RESOURCE;
1761 blk_mq_request_bypass_insert(rq, run_queue);
1762 return BLK_STS_OK;
1765 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1766 struct request *rq, blk_qc_t *cookie)
1768 blk_status_t ret;
1769 int srcu_idx;
1771 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1773 hctx_lock(hctx, &srcu_idx);
1775 ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1776 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1777 blk_mq_request_bypass_insert(rq, true);
1778 else if (ret != BLK_STS_OK)
1779 blk_mq_end_request(rq, ret);
1781 hctx_unlock(hctx, srcu_idx);
1784 blk_status_t blk_mq_request_issue_directly(struct request *rq)
1786 blk_status_t ret;
1787 int srcu_idx;
1788 blk_qc_t unused_cookie;
1789 struct blk_mq_ctx *ctx = rq->mq_ctx;
1790 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1792 hctx_lock(hctx, &srcu_idx);
1793 ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true);
1794 hctx_unlock(hctx, srcu_idx);
1796 return ret;
1799 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
1800 struct list_head *list)
1802 while (!list_empty(list)) {
1803 blk_status_t ret;
1804 struct request *rq = list_first_entry(list, struct request,
1805 queuelist);
1807 list_del_init(&rq->queuelist);
1808 ret = blk_mq_request_issue_directly(rq);
1809 if (ret != BLK_STS_OK) {
1810 if (ret == BLK_STS_RESOURCE ||
1811 ret == BLK_STS_DEV_RESOURCE) {
1812 blk_mq_request_bypass_insert(rq,
1813 list_empty(list));
1814 break;
1816 blk_mq_end_request(rq, ret);
1821 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1823 const int is_sync = op_is_sync(bio->bi_opf);
1824 const int is_flush_fua = op_is_flush(bio->bi_opf);
1825 struct blk_mq_alloc_data data = { .flags = 0 };
1826 struct request *rq;
1827 unsigned int request_count = 0;
1828 struct blk_plug *plug;
1829 struct request *same_queue_rq = NULL;
1830 blk_qc_t cookie;
1832 blk_queue_bounce(q, &bio);
1834 blk_queue_split(q, &bio);
1836 if (!bio_integrity_prep(bio))
1837 return BLK_QC_T_NONE;
1839 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1840 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1841 return BLK_QC_T_NONE;
1843 if (blk_mq_sched_bio_merge(q, bio))
1844 return BLK_QC_T_NONE;
1846 rq_qos_throttle(q, bio, NULL);
1848 trace_block_getrq(q, bio, bio->bi_opf);
1850 rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
1851 if (unlikely(!rq)) {
1852 rq_qos_cleanup(q, bio);
1853 if (bio->bi_opf & REQ_NOWAIT)
1854 bio_wouldblock_error(bio);
1855 return BLK_QC_T_NONE;
1858 rq_qos_track(q, rq, bio);
1860 cookie = request_to_qc_t(data.hctx, rq);
1862 plug = current->plug;
1863 if (unlikely(is_flush_fua)) {
1864 blk_mq_put_ctx(data.ctx);
1865 blk_mq_bio_to_request(rq, bio);
1867 /* bypass scheduler for flush rq */
1868 blk_insert_flush(rq);
1869 blk_mq_run_hw_queue(data.hctx, true);
1870 } else if (plug && q->nr_hw_queues == 1) {
1871 struct request *last = NULL;
1873 blk_mq_put_ctx(data.ctx);
1874 blk_mq_bio_to_request(rq, bio);
1877 * @request_count may become stale because of schedule
1878 * out, so check the list again.
1880 if (list_empty(&plug->mq_list))
1881 request_count = 0;
1882 else if (blk_queue_nomerges(q))
1883 request_count = blk_plug_queued_count(q);
1885 if (!request_count)
1886 trace_block_plug(q);
1887 else
1888 last = list_entry_rq(plug->mq_list.prev);
1890 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1891 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1892 blk_flush_plug_list(plug, false);
1893 trace_block_plug(q);
1896 list_add_tail(&rq->queuelist, &plug->mq_list);
1897 } else if (plug && !blk_queue_nomerges(q)) {
1898 blk_mq_bio_to_request(rq, bio);
1901 * We do limited plugging. If the bio can be merged, do that.
1902 * Otherwise the existing request in the plug list will be
1903 * issued. So the plug list will have one request at most
1904 * The plug list might get flushed before this. If that happens,
1905 * the plug list is empty, and same_queue_rq is invalid.
1907 if (list_empty(&plug->mq_list))
1908 same_queue_rq = NULL;
1909 if (same_queue_rq)
1910 list_del_init(&same_queue_rq->queuelist);
1911 list_add_tail(&rq->queuelist, &plug->mq_list);
1913 blk_mq_put_ctx(data.ctx);
1915 if (same_queue_rq) {
1916 data.hctx = blk_mq_map_queue(q,
1917 same_queue_rq->mq_ctx->cpu);
1918 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1919 &cookie);
1921 } else if ((q->nr_hw_queues > 1 && is_sync) || (!q->elevator &&
1922 !data.hctx->dispatch_busy)) {
1923 blk_mq_put_ctx(data.ctx);
1924 blk_mq_bio_to_request(rq, bio);
1925 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1926 } else {
1927 blk_mq_put_ctx(data.ctx);
1928 blk_mq_bio_to_request(rq, bio);
1929 blk_mq_sched_insert_request(rq, false, true, true);
1932 return cookie;
1935 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1936 unsigned int hctx_idx)
1938 struct page *page;
1940 if (tags->rqs && set->ops->exit_request) {
1941 int i;
1943 for (i = 0; i < tags->nr_tags; i++) {
1944 struct request *rq = tags->static_rqs[i];
1946 if (!rq)
1947 continue;
1948 set->ops->exit_request(set, rq, hctx_idx);
1949 tags->static_rqs[i] = NULL;
1953 while (!list_empty(&tags->page_list)) {
1954 page = list_first_entry(&tags->page_list, struct page, lru);
1955 list_del_init(&page->lru);
1957 * Remove kmemleak object previously allocated in
1958 * blk_mq_init_rq_map().
1960 kmemleak_free(page_address(page));
1961 __free_pages(page, page->private);
1965 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1967 kfree(tags->rqs);
1968 tags->rqs = NULL;
1969 kfree(tags->static_rqs);
1970 tags->static_rqs = NULL;
1972 blk_mq_free_tags(tags);
1975 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1976 unsigned int hctx_idx,
1977 unsigned int nr_tags,
1978 unsigned int reserved_tags)
1980 struct blk_mq_tags *tags;
1981 int node;
1983 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1984 if (node == NUMA_NO_NODE)
1985 node = set->numa_node;
1987 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
1988 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1989 if (!tags)
1990 return NULL;
1992 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
1993 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1994 node);
1995 if (!tags->rqs) {
1996 blk_mq_free_tags(tags);
1997 return NULL;
2000 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2001 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2002 node);
2003 if (!tags->static_rqs) {
2004 kfree(tags->rqs);
2005 blk_mq_free_tags(tags);
2006 return NULL;
2009 return tags;
2012 static size_t order_to_size(unsigned int order)
2014 return (size_t)PAGE_SIZE << order;
2017 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2018 unsigned int hctx_idx, int node)
2020 int ret;
2022 if (set->ops->init_request) {
2023 ret = set->ops->init_request(set, rq, hctx_idx, node);
2024 if (ret)
2025 return ret;
2028 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2029 return 0;
2032 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2033 unsigned int hctx_idx, unsigned int depth)
2035 unsigned int i, j, entries_per_page, max_order = 4;
2036 size_t rq_size, left;
2037 int node;
2039 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
2040 if (node == NUMA_NO_NODE)
2041 node = set->numa_node;
2043 INIT_LIST_HEAD(&tags->page_list);
2046 * rq_size is the size of the request plus driver payload, rounded
2047 * to the cacheline size
2049 rq_size = round_up(sizeof(struct request) + set->cmd_size,
2050 cache_line_size());
2051 left = rq_size * depth;
2053 for (i = 0; i < depth; ) {
2054 int this_order = max_order;
2055 struct page *page;
2056 int to_do;
2057 void *p;
2059 while (this_order && left < order_to_size(this_order - 1))
2060 this_order--;
2062 do {
2063 page = alloc_pages_node(node,
2064 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2065 this_order);
2066 if (page)
2067 break;
2068 if (!this_order--)
2069 break;
2070 if (order_to_size(this_order) < rq_size)
2071 break;
2072 } while (1);
2074 if (!page)
2075 goto fail;
2077 page->private = this_order;
2078 list_add_tail(&page->lru, &tags->page_list);
2080 p = page_address(page);
2082 * Allow kmemleak to scan these pages as they contain pointers
2083 * to additional allocations like via ops->init_request().
2085 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2086 entries_per_page = order_to_size(this_order) / rq_size;
2087 to_do = min(entries_per_page, depth - i);
2088 left -= to_do * rq_size;
2089 for (j = 0; j < to_do; j++) {
2090 struct request *rq = p;
2092 tags->static_rqs[i] = rq;
2093 if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2094 tags->static_rqs[i] = NULL;
2095 goto fail;
2098 p += rq_size;
2099 i++;
2102 return 0;
2104 fail:
2105 blk_mq_free_rqs(set, tags, hctx_idx);
2106 return -ENOMEM;
2110 * 'cpu' is going away. splice any existing rq_list entries from this
2111 * software queue to the hw queue dispatch list, and ensure that it
2112 * gets run.
2114 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2116 struct blk_mq_hw_ctx *hctx;
2117 struct blk_mq_ctx *ctx;
2118 LIST_HEAD(tmp);
2120 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2121 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2123 spin_lock(&ctx->lock);
2124 if (!list_empty(&ctx->rq_list)) {
2125 list_splice_init(&ctx->rq_list, &tmp);
2126 blk_mq_hctx_clear_pending(hctx, ctx);
2128 spin_unlock(&ctx->lock);
2130 if (list_empty(&tmp))
2131 return 0;
2133 spin_lock(&hctx->lock);
2134 list_splice_tail_init(&tmp, &hctx->dispatch);
2135 spin_unlock(&hctx->lock);
2137 blk_mq_run_hw_queue(hctx, true);
2138 return 0;
2141 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2143 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2144 &hctx->cpuhp_dead);
2147 /* hctx->ctxs will be freed in queue's release handler */
2148 static void blk_mq_exit_hctx(struct request_queue *q,
2149 struct blk_mq_tag_set *set,
2150 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2152 blk_mq_debugfs_unregister_hctx(hctx);
2154 if (blk_mq_hw_queue_mapped(hctx))
2155 blk_mq_tag_idle(hctx);
2157 if (set->ops->exit_request)
2158 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2160 if (set->ops->exit_hctx)
2161 set->ops->exit_hctx(hctx, hctx_idx);
2163 blk_mq_remove_cpuhp(hctx);
2166 static void blk_mq_exit_hw_queues(struct request_queue *q,
2167 struct blk_mq_tag_set *set, int nr_queue)
2169 struct blk_mq_hw_ctx *hctx;
2170 unsigned int i;
2172 queue_for_each_hw_ctx(q, hctx, i) {
2173 if (i == nr_queue)
2174 break;
2175 blk_mq_exit_hctx(q, set, hctx, i);
2179 static int blk_mq_init_hctx(struct request_queue *q,
2180 struct blk_mq_tag_set *set,
2181 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2183 int node;
2185 node = hctx->numa_node;
2186 if (node == NUMA_NO_NODE)
2187 node = hctx->numa_node = set->numa_node;
2189 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2190 spin_lock_init(&hctx->lock);
2191 INIT_LIST_HEAD(&hctx->dispatch);
2192 hctx->queue = q;
2193 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2195 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2197 hctx->tags = set->tags[hctx_idx];
2200 * Allocate space for all possible cpus to avoid allocation at
2201 * runtime
2203 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2204 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node);
2205 if (!hctx->ctxs)
2206 goto unregister_cpu_notifier;
2208 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2209 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node))
2210 goto free_ctxs;
2212 hctx->nr_ctx = 0;
2214 spin_lock_init(&hctx->dispatch_wait_lock);
2215 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2216 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2218 if (set->ops->init_hctx &&
2219 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2220 goto free_bitmap;
2222 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size,
2223 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
2224 if (!hctx->fq)
2225 goto exit_hctx;
2227 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node))
2228 goto free_fq;
2230 if (hctx->flags & BLK_MQ_F_BLOCKING)
2231 init_srcu_struct(hctx->srcu);
2233 blk_mq_debugfs_register_hctx(q, hctx);
2235 return 0;
2237 free_fq:
2238 blk_free_flush_queue(hctx->fq);
2239 exit_hctx:
2240 if (set->ops->exit_hctx)
2241 set->ops->exit_hctx(hctx, hctx_idx);
2242 free_bitmap:
2243 sbitmap_free(&hctx->ctx_map);
2244 free_ctxs:
2245 kfree(hctx->ctxs);
2246 unregister_cpu_notifier:
2247 blk_mq_remove_cpuhp(hctx);
2248 return -1;
2251 static void blk_mq_init_cpu_queues(struct request_queue *q,
2252 unsigned int nr_hw_queues)
2254 unsigned int i;
2256 for_each_possible_cpu(i) {
2257 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2258 struct blk_mq_hw_ctx *hctx;
2260 __ctx->cpu = i;
2261 spin_lock_init(&__ctx->lock);
2262 INIT_LIST_HEAD(&__ctx->rq_list);
2263 __ctx->queue = q;
2266 * Set local node, IFF we have more than one hw queue. If
2267 * not, we remain on the home node of the device
2269 hctx = blk_mq_map_queue(q, i);
2270 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2271 hctx->numa_node = local_memory_node(cpu_to_node(i));
2275 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2277 int ret = 0;
2279 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2280 set->queue_depth, set->reserved_tags);
2281 if (!set->tags[hctx_idx])
2282 return false;
2284 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2285 set->queue_depth);
2286 if (!ret)
2287 return true;
2289 blk_mq_free_rq_map(set->tags[hctx_idx]);
2290 set->tags[hctx_idx] = NULL;
2291 return false;
2294 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2295 unsigned int hctx_idx)
2297 if (set->tags[hctx_idx]) {
2298 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2299 blk_mq_free_rq_map(set->tags[hctx_idx]);
2300 set->tags[hctx_idx] = NULL;
2304 static void blk_mq_map_swqueue(struct request_queue *q)
2306 unsigned int i, hctx_idx;
2307 struct blk_mq_hw_ctx *hctx;
2308 struct blk_mq_ctx *ctx;
2309 struct blk_mq_tag_set *set = q->tag_set;
2312 * Avoid others reading imcomplete hctx->cpumask through sysfs
2314 mutex_lock(&q->sysfs_lock);
2316 queue_for_each_hw_ctx(q, hctx, i) {
2317 cpumask_clear(hctx->cpumask);
2318 hctx->nr_ctx = 0;
2319 hctx->dispatch_from = NULL;
2323 * Map software to hardware queues.
2325 * If the cpu isn't present, the cpu is mapped to first hctx.
2327 for_each_possible_cpu(i) {
2328 hctx_idx = q->mq_map[i];
2329 /* unmapped hw queue can be remapped after CPU topo changed */
2330 if (!set->tags[hctx_idx] &&
2331 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2333 * If tags initialization fail for some hctx,
2334 * that hctx won't be brought online. In this
2335 * case, remap the current ctx to hctx[0] which
2336 * is guaranteed to always have tags allocated
2338 q->mq_map[i] = 0;
2341 ctx = per_cpu_ptr(q->queue_ctx, i);
2342 hctx = blk_mq_map_queue(q, i);
2344 cpumask_set_cpu(i, hctx->cpumask);
2345 ctx->index_hw = hctx->nr_ctx;
2346 hctx->ctxs[hctx->nr_ctx++] = ctx;
2349 mutex_unlock(&q->sysfs_lock);
2351 queue_for_each_hw_ctx(q, hctx, i) {
2353 * If no software queues are mapped to this hardware queue,
2354 * disable it and free the request entries.
2356 if (!hctx->nr_ctx) {
2357 /* Never unmap queue 0. We need it as a
2358 * fallback in case of a new remap fails
2359 * allocation
2361 if (i && set->tags[i])
2362 blk_mq_free_map_and_requests(set, i);
2364 hctx->tags = NULL;
2365 continue;
2368 hctx->tags = set->tags[i];
2369 WARN_ON(!hctx->tags);
2372 * Set the map size to the number of mapped software queues.
2373 * This is more accurate and more efficient than looping
2374 * over all possibly mapped software queues.
2376 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2379 * Initialize batch roundrobin counts
2381 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2382 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2387 * Caller needs to ensure that we're either frozen/quiesced, or that
2388 * the queue isn't live yet.
2390 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2392 struct blk_mq_hw_ctx *hctx;
2393 int i;
2395 queue_for_each_hw_ctx(q, hctx, i) {
2396 if (shared)
2397 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2398 else
2399 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2403 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2404 bool shared)
2406 struct request_queue *q;
2408 lockdep_assert_held(&set->tag_list_lock);
2410 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2411 blk_mq_freeze_queue(q);
2412 queue_set_hctx_shared(q, shared);
2413 blk_mq_unfreeze_queue(q);
2417 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2419 struct blk_mq_tag_set *set = q->tag_set;
2421 mutex_lock(&set->tag_list_lock);
2422 list_del_rcu(&q->tag_set_list);
2423 if (list_is_singular(&set->tag_list)) {
2424 /* just transitioned to unshared */
2425 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2426 /* update existing queue */
2427 blk_mq_update_tag_set_depth(set, false);
2429 mutex_unlock(&set->tag_list_lock);
2430 INIT_LIST_HEAD(&q->tag_set_list);
2433 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2434 struct request_queue *q)
2436 q->tag_set = set;
2438 mutex_lock(&set->tag_list_lock);
2441 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2443 if (!list_empty(&set->tag_list) &&
2444 !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2445 set->flags |= BLK_MQ_F_TAG_SHARED;
2446 /* update existing queue */
2447 blk_mq_update_tag_set_depth(set, true);
2449 if (set->flags & BLK_MQ_F_TAG_SHARED)
2450 queue_set_hctx_shared(q, true);
2451 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2453 mutex_unlock(&set->tag_list_lock);
2457 * It is the actual release handler for mq, but we do it from
2458 * request queue's release handler for avoiding use-after-free
2459 * and headache because q->mq_kobj shouldn't have been introduced,
2460 * but we can't group ctx/kctx kobj without it.
2462 void blk_mq_release(struct request_queue *q)
2464 struct blk_mq_hw_ctx *hctx;
2465 unsigned int i;
2467 /* hctx kobj stays in hctx */
2468 queue_for_each_hw_ctx(q, hctx, i) {
2469 if (!hctx)
2470 continue;
2471 kobject_put(&hctx->kobj);
2474 q->mq_map = NULL;
2476 kfree(q->queue_hw_ctx);
2479 * release .mq_kobj and sw queue's kobject now because
2480 * both share lifetime with request queue.
2482 blk_mq_sysfs_deinit(q);
2484 free_percpu(q->queue_ctx);
2487 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2489 struct request_queue *uninit_q, *q;
2491 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node, NULL);
2492 if (!uninit_q)
2493 return ERR_PTR(-ENOMEM);
2495 q = blk_mq_init_allocated_queue(set, uninit_q);
2496 if (IS_ERR(q))
2497 blk_cleanup_queue(uninit_q);
2499 return q;
2501 EXPORT_SYMBOL(blk_mq_init_queue);
2503 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2505 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2507 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2508 __alignof__(struct blk_mq_hw_ctx)) !=
2509 sizeof(struct blk_mq_hw_ctx));
2511 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2512 hw_ctx_size += sizeof(struct srcu_struct);
2514 return hw_ctx_size;
2517 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2518 struct request_queue *q)
2520 int i, j;
2521 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2523 blk_mq_sysfs_unregister(q);
2525 /* protect against switching io scheduler */
2526 mutex_lock(&q->sysfs_lock);
2527 for (i = 0; i < set->nr_hw_queues; i++) {
2528 int node;
2530 if (hctxs[i])
2531 continue;
2533 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2534 hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2535 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2536 node);
2537 if (!hctxs[i])
2538 break;
2540 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask,
2541 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2542 node)) {
2543 kfree(hctxs[i]);
2544 hctxs[i] = NULL;
2545 break;
2548 atomic_set(&hctxs[i]->nr_active, 0);
2549 hctxs[i]->numa_node = node;
2550 hctxs[i]->queue_num = i;
2552 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2553 free_cpumask_var(hctxs[i]->cpumask);
2554 kfree(hctxs[i]);
2555 hctxs[i] = NULL;
2556 break;
2558 blk_mq_hctx_kobj_init(hctxs[i]);
2560 for (j = i; j < q->nr_hw_queues; j++) {
2561 struct blk_mq_hw_ctx *hctx = hctxs[j];
2563 if (hctx) {
2564 if (hctx->tags)
2565 blk_mq_free_map_and_requests(set, j);
2566 blk_mq_exit_hctx(q, set, hctx, j);
2567 kobject_put(&hctx->kobj);
2568 hctxs[j] = NULL;
2572 q->nr_hw_queues = i;
2573 mutex_unlock(&q->sysfs_lock);
2574 blk_mq_sysfs_register(q);
2577 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2578 struct request_queue *q)
2580 /* mark the queue as mq asap */
2581 q->mq_ops = set->ops;
2583 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2584 blk_mq_poll_stats_bkt,
2585 BLK_MQ_POLL_STATS_BKTS, q);
2586 if (!q->poll_cb)
2587 goto err_exit;
2589 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2590 if (!q->queue_ctx)
2591 goto err_exit;
2593 /* init q->mq_kobj and sw queues' kobjects */
2594 blk_mq_sysfs_init(q);
2596 q->queue_hw_ctx = kcalloc_node(nr_cpu_ids, sizeof(*(q->queue_hw_ctx)),
2597 GFP_KERNEL, set->numa_node);
2598 if (!q->queue_hw_ctx)
2599 goto err_percpu;
2601 q->mq_map = set->mq_map;
2603 blk_mq_realloc_hw_ctxs(set, q);
2604 if (!q->nr_hw_queues)
2605 goto err_hctxs;
2607 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2608 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2610 q->nr_queues = nr_cpu_ids;
2612 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2614 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2615 queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
2617 q->sg_reserved_size = INT_MAX;
2619 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2620 INIT_LIST_HEAD(&q->requeue_list);
2621 spin_lock_init(&q->requeue_lock);
2623 blk_queue_make_request(q, blk_mq_make_request);
2624 if (q->mq_ops->poll)
2625 q->poll_fn = blk_mq_poll;
2628 * Do this after blk_queue_make_request() overrides it...
2630 q->nr_requests = set->queue_depth;
2633 * Default to classic polling
2635 q->poll_nsec = -1;
2637 if (set->ops->complete)
2638 blk_queue_softirq_done(q, set->ops->complete);
2640 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2641 blk_mq_add_queue_tag_set(set, q);
2642 blk_mq_map_swqueue(q);
2644 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2645 int ret;
2647 ret = elevator_init_mq(q);
2648 if (ret)
2649 return ERR_PTR(ret);
2652 return q;
2654 err_hctxs:
2655 kfree(q->queue_hw_ctx);
2656 err_percpu:
2657 free_percpu(q->queue_ctx);
2658 err_exit:
2659 q->mq_ops = NULL;
2660 return ERR_PTR(-ENOMEM);
2662 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2664 /* tags can _not_ be used after returning from blk_mq_exit_queue */
2665 void blk_mq_exit_queue(struct request_queue *q)
2667 struct blk_mq_tag_set *set = q->tag_set;
2669 blk_mq_del_queue_tag_set(q);
2670 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2673 /* Basically redo blk_mq_init_queue with queue frozen */
2674 static void blk_mq_queue_reinit(struct request_queue *q)
2676 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2678 blk_mq_debugfs_unregister_hctxs(q);
2679 blk_mq_sysfs_unregister(q);
2682 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2683 * we should change hctx numa_node according to the new topology (this
2684 * involves freeing and re-allocating memory, worth doing?)
2686 blk_mq_map_swqueue(q);
2688 blk_mq_sysfs_register(q);
2689 blk_mq_debugfs_register_hctxs(q);
2692 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2694 int i;
2696 for (i = 0; i < set->nr_hw_queues; i++)
2697 if (!__blk_mq_alloc_rq_map(set, i))
2698 goto out_unwind;
2700 return 0;
2702 out_unwind:
2703 while (--i >= 0)
2704 blk_mq_free_rq_map(set->tags[i]);
2706 return -ENOMEM;
2710 * Allocate the request maps associated with this tag_set. Note that this
2711 * may reduce the depth asked for, if memory is tight. set->queue_depth
2712 * will be updated to reflect the allocated depth.
2714 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2716 unsigned int depth;
2717 int err;
2719 depth = set->queue_depth;
2720 do {
2721 err = __blk_mq_alloc_rq_maps(set);
2722 if (!err)
2723 break;
2725 set->queue_depth >>= 1;
2726 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2727 err = -ENOMEM;
2728 break;
2730 } while (set->queue_depth);
2732 if (!set->queue_depth || err) {
2733 pr_err("blk-mq: failed to allocate request map\n");
2734 return -ENOMEM;
2737 if (depth != set->queue_depth)
2738 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2739 depth, set->queue_depth);
2741 return 0;
2744 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2746 if (set->ops->map_queues) {
2748 * transport .map_queues is usually done in the following
2749 * way:
2751 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
2752 * mask = get_cpu_mask(queue)
2753 * for_each_cpu(cpu, mask)
2754 * set->mq_map[cpu] = queue;
2757 * When we need to remap, the table has to be cleared for
2758 * killing stale mapping since one CPU may not be mapped
2759 * to any hw queue.
2761 blk_mq_clear_mq_map(set);
2763 return set->ops->map_queues(set);
2764 } else
2765 return blk_mq_map_queues(set);
2769 * Alloc a tag set to be associated with one or more request queues.
2770 * May fail with EINVAL for various error conditions. May adjust the
2771 * requested depth down, if it's too large. In that case, the set
2772 * value will be stored in set->queue_depth.
2774 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2776 int ret;
2778 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2780 if (!set->nr_hw_queues)
2781 return -EINVAL;
2782 if (!set->queue_depth)
2783 return -EINVAL;
2784 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2785 return -EINVAL;
2787 if (!set->ops->queue_rq)
2788 return -EINVAL;
2790 if (!set->ops->get_budget ^ !set->ops->put_budget)
2791 return -EINVAL;
2793 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2794 pr_info("blk-mq: reduced tag depth to %u\n",
2795 BLK_MQ_MAX_DEPTH);
2796 set->queue_depth = BLK_MQ_MAX_DEPTH;
2800 * If a crashdump is active, then we are potentially in a very
2801 * memory constrained environment. Limit us to 1 queue and
2802 * 64 tags to prevent using too much memory.
2804 if (is_kdump_kernel()) {
2805 set->nr_hw_queues = 1;
2806 set->queue_depth = min(64U, set->queue_depth);
2809 * There is no use for more h/w queues than cpus.
2811 if (set->nr_hw_queues > nr_cpu_ids)
2812 set->nr_hw_queues = nr_cpu_ids;
2814 set->tags = kcalloc_node(nr_cpu_ids, sizeof(struct blk_mq_tags *),
2815 GFP_KERNEL, set->numa_node);
2816 if (!set->tags)
2817 return -ENOMEM;
2819 ret = -ENOMEM;
2820 set->mq_map = kcalloc_node(nr_cpu_ids, sizeof(*set->mq_map),
2821 GFP_KERNEL, set->numa_node);
2822 if (!set->mq_map)
2823 goto out_free_tags;
2825 ret = blk_mq_update_queue_map(set);
2826 if (ret)
2827 goto out_free_mq_map;
2829 ret = blk_mq_alloc_rq_maps(set);
2830 if (ret)
2831 goto out_free_mq_map;
2833 mutex_init(&set->tag_list_lock);
2834 INIT_LIST_HEAD(&set->tag_list);
2836 return 0;
2838 out_free_mq_map:
2839 kfree(set->mq_map);
2840 set->mq_map = NULL;
2841 out_free_tags:
2842 kfree(set->tags);
2843 set->tags = NULL;
2844 return ret;
2846 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2848 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2850 int i;
2852 for (i = 0; i < nr_cpu_ids; i++)
2853 blk_mq_free_map_and_requests(set, i);
2855 kfree(set->mq_map);
2856 set->mq_map = NULL;
2858 kfree(set->tags);
2859 set->tags = NULL;
2861 EXPORT_SYMBOL(blk_mq_free_tag_set);
2863 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2865 struct blk_mq_tag_set *set = q->tag_set;
2866 struct blk_mq_hw_ctx *hctx;
2867 int i, ret;
2869 if (!set)
2870 return -EINVAL;
2872 blk_mq_freeze_queue(q);
2873 blk_mq_quiesce_queue(q);
2875 ret = 0;
2876 queue_for_each_hw_ctx(q, hctx, i) {
2877 if (!hctx->tags)
2878 continue;
2880 * If we're using an MQ scheduler, just update the scheduler
2881 * queue depth. This is similar to what the old code would do.
2883 if (!hctx->sched_tags) {
2884 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
2885 false);
2886 } else {
2887 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2888 nr, true);
2890 if (ret)
2891 break;
2892 if (q->elevator && q->elevator->type->ops.mq.depth_updated)
2893 q->elevator->type->ops.mq.depth_updated(hctx);
2896 if (!ret)
2897 q->nr_requests = nr;
2899 blk_mq_unquiesce_queue(q);
2900 blk_mq_unfreeze_queue(q);
2902 return ret;
2906 * request_queue and elevator_type pair.
2907 * It is just used by __blk_mq_update_nr_hw_queues to cache
2908 * the elevator_type associated with a request_queue.
2910 struct blk_mq_qe_pair {
2911 struct list_head node;
2912 struct request_queue *q;
2913 struct elevator_type *type;
2917 * Cache the elevator_type in qe pair list and switch the
2918 * io scheduler to 'none'
2920 static bool blk_mq_elv_switch_none(struct list_head *head,
2921 struct request_queue *q)
2923 struct blk_mq_qe_pair *qe;
2925 if (!q->elevator)
2926 return true;
2928 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
2929 if (!qe)
2930 return false;
2932 INIT_LIST_HEAD(&qe->node);
2933 qe->q = q;
2934 qe->type = q->elevator->type;
2935 list_add(&qe->node, head);
2937 mutex_lock(&q->sysfs_lock);
2939 * After elevator_switch_mq, the previous elevator_queue will be
2940 * released by elevator_release. The reference of the io scheduler
2941 * module get by elevator_get will also be put. So we need to get
2942 * a reference of the io scheduler module here to prevent it to be
2943 * removed.
2945 __module_get(qe->type->elevator_owner);
2946 elevator_switch_mq(q, NULL);
2947 mutex_unlock(&q->sysfs_lock);
2949 return true;
2952 static void blk_mq_elv_switch_back(struct list_head *head,
2953 struct request_queue *q)
2955 struct blk_mq_qe_pair *qe;
2956 struct elevator_type *t = NULL;
2958 list_for_each_entry(qe, head, node)
2959 if (qe->q == q) {
2960 t = qe->type;
2961 break;
2964 if (!t)
2965 return;
2967 list_del(&qe->node);
2968 kfree(qe);
2970 mutex_lock(&q->sysfs_lock);
2971 elevator_switch_mq(q, t);
2972 mutex_unlock(&q->sysfs_lock);
2975 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2976 int nr_hw_queues)
2978 struct request_queue *q;
2979 LIST_HEAD(head);
2981 lockdep_assert_held(&set->tag_list_lock);
2983 if (nr_hw_queues > nr_cpu_ids)
2984 nr_hw_queues = nr_cpu_ids;
2985 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2986 return;
2988 list_for_each_entry(q, &set->tag_list, tag_set_list)
2989 blk_mq_freeze_queue(q);
2991 * Sync with blk_mq_queue_tag_busy_iter.
2993 synchronize_rcu();
2995 * Switch IO scheduler to 'none', cleaning up the data associated
2996 * with the previous scheduler. We will switch back once we are done
2997 * updating the new sw to hw queue mappings.
2999 list_for_each_entry(q, &set->tag_list, tag_set_list)
3000 if (!blk_mq_elv_switch_none(&head, q))
3001 goto switch_back;
3003 set->nr_hw_queues = nr_hw_queues;
3004 blk_mq_update_queue_map(set);
3005 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3006 blk_mq_realloc_hw_ctxs(set, q);
3007 blk_mq_queue_reinit(q);
3010 switch_back:
3011 list_for_each_entry(q, &set->tag_list, tag_set_list)
3012 blk_mq_elv_switch_back(&head, q);
3014 list_for_each_entry(q, &set->tag_list, tag_set_list)
3015 blk_mq_unfreeze_queue(q);
3018 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3020 mutex_lock(&set->tag_list_lock);
3021 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3022 mutex_unlock(&set->tag_list_lock);
3024 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3026 /* Enable polling stats and return whether they were already enabled. */
3027 static bool blk_poll_stats_enable(struct request_queue *q)
3029 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3030 blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3031 return true;
3032 blk_stat_add_callback(q, q->poll_cb);
3033 return false;
3036 static void blk_mq_poll_stats_start(struct request_queue *q)
3039 * We don't arm the callback if polling stats are not enabled or the
3040 * callback is already active.
3042 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3043 blk_stat_is_active(q->poll_cb))
3044 return;
3046 blk_stat_activate_msecs(q->poll_cb, 100);
3049 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3051 struct request_queue *q = cb->data;
3052 int bucket;
3054 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3055 if (cb->stat[bucket].nr_samples)
3056 q->poll_stat[bucket] = cb->stat[bucket];
3060 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3061 struct blk_mq_hw_ctx *hctx,
3062 struct request *rq)
3064 unsigned long ret = 0;
3065 int bucket;
3068 * If stats collection isn't on, don't sleep but turn it on for
3069 * future users
3071 if (!blk_poll_stats_enable(q))
3072 return 0;
3075 * As an optimistic guess, use half of the mean service time
3076 * for this type of request. We can (and should) make this smarter.
3077 * For instance, if the completion latencies are tight, we can
3078 * get closer than just half the mean. This is especially
3079 * important on devices where the completion latencies are longer
3080 * than ~10 usec. We do use the stats for the relevant IO size
3081 * if available which does lead to better estimates.
3083 bucket = blk_mq_poll_stats_bkt(rq);
3084 if (bucket < 0)
3085 return ret;
3087 if (q->poll_stat[bucket].nr_samples)
3088 ret = (q->poll_stat[bucket].mean + 1) / 2;
3090 return ret;
3093 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3094 struct blk_mq_hw_ctx *hctx,
3095 struct request *rq)
3097 struct hrtimer_sleeper hs;
3098 enum hrtimer_mode mode;
3099 unsigned int nsecs;
3100 ktime_t kt;
3102 if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3103 return false;
3106 * poll_nsec can be:
3108 * -1: don't ever hybrid sleep
3109 * 0: use half of prev avg
3110 * >0: use this specific value
3112 if (q->poll_nsec == -1)
3113 return false;
3114 else if (q->poll_nsec > 0)
3115 nsecs = q->poll_nsec;
3116 else
3117 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
3119 if (!nsecs)
3120 return false;
3122 rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3125 * This will be replaced with the stats tracking code, using
3126 * 'avg_completion_time / 2' as the pre-sleep target.
3128 kt = nsecs;
3130 mode = HRTIMER_MODE_REL;
3131 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
3132 hrtimer_set_expires(&hs.timer, kt);
3134 hrtimer_init_sleeper(&hs, current);
3135 do {
3136 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3137 break;
3138 set_current_state(TASK_UNINTERRUPTIBLE);
3139 hrtimer_start_expires(&hs.timer, mode);
3140 if (hs.task)
3141 io_schedule();
3142 hrtimer_cancel(&hs.timer);
3143 mode = HRTIMER_MODE_ABS;
3144 } while (hs.task && !signal_pending(current));
3146 __set_current_state(TASK_RUNNING);
3147 destroy_hrtimer_on_stack(&hs.timer);
3148 return true;
3151 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
3153 struct request_queue *q = hctx->queue;
3154 long state;
3157 * If we sleep, have the caller restart the poll loop to reset
3158 * the state. Like for the other success return cases, the
3159 * caller is responsible for checking if the IO completed. If
3160 * the IO isn't complete, we'll get called again and will go
3161 * straight to the busy poll loop.
3163 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
3164 return true;
3166 hctx->poll_considered++;
3168 state = current->state;
3169 while (!need_resched()) {
3170 int ret;
3172 hctx->poll_invoked++;
3174 ret = q->mq_ops->poll(hctx, rq->tag);
3175 if (ret > 0) {
3176 hctx->poll_success++;
3177 set_current_state(TASK_RUNNING);
3178 return true;
3181 if (signal_pending_state(state, current))
3182 set_current_state(TASK_RUNNING);
3184 if (current->state == TASK_RUNNING)
3185 return true;
3186 if (ret < 0)
3187 break;
3188 cpu_relax();
3191 __set_current_state(TASK_RUNNING);
3192 return false;
3195 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
3197 struct blk_mq_hw_ctx *hctx;
3198 struct request *rq;
3200 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3201 return false;
3203 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3204 if (!blk_qc_t_is_internal(cookie))
3205 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3206 else {
3207 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3209 * With scheduling, if the request has completed, we'll
3210 * get a NULL return here, as we clear the sched tag when
3211 * that happens. The request still remains valid, like always,
3212 * so we should be safe with just the NULL check.
3214 if (!rq)
3215 return false;
3218 return __blk_mq_poll(hctx, rq);
3221 static int __init blk_mq_init(void)
3223 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3224 blk_mq_hctx_notify_dead);
3225 return 0;
3227 subsys_initcall(blk_mq_init);