2 * Block multiqueue core code
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
29 #include <trace/events/block.h>
31 #include <linux/blk-mq.h>
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
37 #include "blk-mq-sched.h"
38 #include "blk-rq-qos.h"
40 static bool blk_mq_poll(struct request_queue
*q
, blk_qc_t cookie
);
41 static void blk_mq_poll_stats_start(struct request_queue
*q
);
42 static void blk_mq_poll_stats_fn(struct blk_stat_callback
*cb
);
44 static int blk_mq_poll_stats_bkt(const struct request
*rq
)
46 int ddir
, bytes
, bucket
;
48 ddir
= rq_data_dir(rq
);
49 bytes
= blk_rq_bytes(rq
);
51 bucket
= ddir
+ 2*(ilog2(bytes
) - 9);
55 else if (bucket
>= BLK_MQ_POLL_STATS_BKTS
)
56 return ddir
+ BLK_MQ_POLL_STATS_BKTS
- 2;
62 * Check if any of the ctx's have pending work in this hardware queue
64 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx
*hctx
)
66 return !list_empty_careful(&hctx
->dispatch
) ||
67 sbitmap_any_bit_set(&hctx
->ctx_map
) ||
68 blk_mq_sched_has_work(hctx
);
72 * Mark this ctx as having pending work in this hardware queue
74 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx
*hctx
,
75 struct blk_mq_ctx
*ctx
)
77 if (!sbitmap_test_bit(&hctx
->ctx_map
, ctx
->index_hw
))
78 sbitmap_set_bit(&hctx
->ctx_map
, ctx
->index_hw
);
81 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx
*hctx
,
82 struct blk_mq_ctx
*ctx
)
84 sbitmap_clear_bit(&hctx
->ctx_map
, ctx
->index_hw
);
88 struct hd_struct
*part
;
89 unsigned int *inflight
;
92 static void blk_mq_check_inflight(struct blk_mq_hw_ctx
*hctx
,
93 struct request
*rq
, void *priv
,
96 struct mq_inflight
*mi
= priv
;
99 * index[0] counts the specific partition that was asked for. index[1]
100 * counts the ones that are active on the whole device, so increment
101 * that if mi->part is indeed a partition, and not a whole device.
103 if (rq
->part
== mi
->part
)
105 if (mi
->part
->partno
)
109 void blk_mq_in_flight(struct request_queue
*q
, struct hd_struct
*part
,
110 unsigned int inflight
[2])
112 struct mq_inflight mi
= { .part
= part
, .inflight
= inflight
, };
114 inflight
[0] = inflight
[1] = 0;
115 blk_mq_queue_tag_busy_iter(q
, blk_mq_check_inflight
, &mi
);
118 static void blk_mq_check_inflight_rw(struct blk_mq_hw_ctx
*hctx
,
119 struct request
*rq
, void *priv
,
122 struct mq_inflight
*mi
= priv
;
124 if (rq
->part
== mi
->part
)
125 mi
->inflight
[rq_data_dir(rq
)]++;
128 void blk_mq_in_flight_rw(struct request_queue
*q
, struct hd_struct
*part
,
129 unsigned int inflight
[2])
131 struct mq_inflight mi
= { .part
= part
, .inflight
= inflight
, };
133 inflight
[0] = inflight
[1] = 0;
134 blk_mq_queue_tag_busy_iter(q
, blk_mq_check_inflight_rw
, &mi
);
137 void blk_freeze_queue_start(struct request_queue
*q
)
141 freeze_depth
= atomic_inc_return(&q
->mq_freeze_depth
);
142 if (freeze_depth
== 1) {
143 percpu_ref_kill(&q
->q_usage_counter
);
145 blk_mq_run_hw_queues(q
, false);
148 EXPORT_SYMBOL_GPL(blk_freeze_queue_start
);
150 void blk_mq_freeze_queue_wait(struct request_queue
*q
)
152 wait_event(q
->mq_freeze_wq
, percpu_ref_is_zero(&q
->q_usage_counter
));
154 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait
);
156 int blk_mq_freeze_queue_wait_timeout(struct request_queue
*q
,
157 unsigned long timeout
)
159 return wait_event_timeout(q
->mq_freeze_wq
,
160 percpu_ref_is_zero(&q
->q_usage_counter
),
163 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout
);
166 * Guarantee no request is in use, so we can change any data structure of
167 * the queue afterward.
169 void blk_freeze_queue(struct request_queue
*q
)
172 * In the !blk_mq case we are only calling this to kill the
173 * q_usage_counter, otherwise this increases the freeze depth
174 * and waits for it to return to zero. For this reason there is
175 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
176 * exported to drivers as the only user for unfreeze is blk_mq.
178 blk_freeze_queue_start(q
);
181 blk_mq_freeze_queue_wait(q
);
184 void blk_mq_freeze_queue(struct request_queue
*q
)
187 * ...just an alias to keep freeze and unfreeze actions balanced
188 * in the blk_mq_* namespace
192 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue
);
194 void blk_mq_unfreeze_queue(struct request_queue
*q
)
198 freeze_depth
= atomic_dec_return(&q
->mq_freeze_depth
);
199 WARN_ON_ONCE(freeze_depth
< 0);
201 percpu_ref_reinit(&q
->q_usage_counter
);
202 wake_up_all(&q
->mq_freeze_wq
);
205 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue
);
208 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
209 * mpt3sas driver such that this function can be removed.
211 void blk_mq_quiesce_queue_nowait(struct request_queue
*q
)
213 blk_queue_flag_set(QUEUE_FLAG_QUIESCED
, q
);
215 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait
);
218 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
221 * Note: this function does not prevent that the struct request end_io()
222 * callback function is invoked. Once this function is returned, we make
223 * sure no dispatch can happen until the queue is unquiesced via
224 * blk_mq_unquiesce_queue().
226 void blk_mq_quiesce_queue(struct request_queue
*q
)
228 struct blk_mq_hw_ctx
*hctx
;
232 blk_mq_quiesce_queue_nowait(q
);
234 queue_for_each_hw_ctx(q
, hctx
, i
) {
235 if (hctx
->flags
& BLK_MQ_F_BLOCKING
)
236 synchronize_srcu(hctx
->srcu
);
243 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue
);
246 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
249 * This function recovers queue into the state before quiescing
250 * which is done by blk_mq_quiesce_queue.
252 void blk_mq_unquiesce_queue(struct request_queue
*q
)
254 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED
, q
);
256 /* dispatch requests which are inserted during quiescing */
257 blk_mq_run_hw_queues(q
, true);
259 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue
);
261 void blk_mq_wake_waiters(struct request_queue
*q
)
263 struct blk_mq_hw_ctx
*hctx
;
266 queue_for_each_hw_ctx(q
, hctx
, i
)
267 if (blk_mq_hw_queue_mapped(hctx
))
268 blk_mq_tag_wakeup_all(hctx
->tags
, true);
271 bool blk_mq_can_queue(struct blk_mq_hw_ctx
*hctx
)
273 return blk_mq_has_free_tags(hctx
->tags
);
275 EXPORT_SYMBOL(blk_mq_can_queue
);
277 static struct request
*blk_mq_rq_ctx_init(struct blk_mq_alloc_data
*data
,
278 unsigned int tag
, unsigned int op
)
280 struct blk_mq_tags
*tags
= blk_mq_tags_from_data(data
);
281 struct request
*rq
= tags
->static_rqs
[tag
];
282 req_flags_t rq_flags
= 0;
284 if (data
->flags
& BLK_MQ_REQ_INTERNAL
) {
286 rq
->internal_tag
= tag
;
288 if (data
->hctx
->flags
& BLK_MQ_F_TAG_SHARED
) {
289 rq_flags
= RQF_MQ_INFLIGHT
;
290 atomic_inc(&data
->hctx
->nr_active
);
293 rq
->internal_tag
= -1;
294 data
->hctx
->tags
->rqs
[rq
->tag
] = rq
;
297 /* csd/requeue_work/fifo_time is initialized before use */
299 rq
->mq_ctx
= data
->ctx
;
300 rq
->rq_flags
= rq_flags
;
303 if (data
->flags
& BLK_MQ_REQ_PREEMPT
)
304 rq
->rq_flags
|= RQF_PREEMPT
;
305 if (blk_queue_io_stat(data
->q
))
306 rq
->rq_flags
|= RQF_IO_STAT
;
307 INIT_LIST_HEAD(&rq
->queuelist
);
308 INIT_HLIST_NODE(&rq
->hash
);
309 RB_CLEAR_NODE(&rq
->rb_node
);
312 rq
->start_time_ns
= ktime_get_ns();
313 rq
->io_start_time_ns
= 0;
314 rq
->nr_phys_segments
= 0;
315 #if defined(CONFIG_BLK_DEV_INTEGRITY)
316 rq
->nr_integrity_segments
= 0;
319 /* tag was already set */
323 INIT_LIST_HEAD(&rq
->timeout_list
);
327 rq
->end_io_data
= NULL
;
330 #ifdef CONFIG_BLK_CGROUP
334 data
->ctx
->rq_dispatched
[op_is_sync(op
)]++;
335 refcount_set(&rq
->ref
, 1);
339 static struct request
*blk_mq_get_request(struct request_queue
*q
,
340 struct bio
*bio
, unsigned int op
,
341 struct blk_mq_alloc_data
*data
)
343 struct elevator_queue
*e
= q
->elevator
;
346 bool put_ctx_on_error
= false;
348 blk_queue_enter_live(q
);
350 if (likely(!data
->ctx
)) {
351 data
->ctx
= blk_mq_get_ctx(q
);
352 put_ctx_on_error
= true;
354 if (likely(!data
->hctx
))
355 data
->hctx
= blk_mq_map_queue(q
, data
->ctx
->cpu
);
357 data
->flags
|= BLK_MQ_REQ_NOWAIT
;
360 data
->flags
|= BLK_MQ_REQ_INTERNAL
;
363 * Flush requests are special and go directly to the
364 * dispatch list. Don't include reserved tags in the
365 * limiting, as it isn't useful.
367 if (!op_is_flush(op
) && e
->type
->ops
.mq
.limit_depth
&&
368 !(data
->flags
& BLK_MQ_REQ_RESERVED
))
369 e
->type
->ops
.mq
.limit_depth(op
, data
);
371 blk_mq_tag_busy(data
->hctx
);
374 tag
= blk_mq_get_tag(data
);
375 if (tag
== BLK_MQ_TAG_FAIL
) {
376 if (put_ctx_on_error
) {
377 blk_mq_put_ctx(data
->ctx
);
384 rq
= blk_mq_rq_ctx_init(data
, tag
, op
);
385 if (!op_is_flush(op
)) {
387 if (e
&& e
->type
->ops
.mq
.prepare_request
) {
388 if (e
->type
->icq_cache
&& rq_ioc(bio
))
389 blk_mq_sched_assign_ioc(rq
, bio
);
391 e
->type
->ops
.mq
.prepare_request(rq
, bio
);
392 rq
->rq_flags
|= RQF_ELVPRIV
;
395 data
->hctx
->queued
++;
399 struct request
*blk_mq_alloc_request(struct request_queue
*q
, unsigned int op
,
400 blk_mq_req_flags_t flags
)
402 struct blk_mq_alloc_data alloc_data
= { .flags
= flags
};
406 ret
= blk_queue_enter(q
, flags
);
410 rq
= blk_mq_get_request(q
, NULL
, op
, &alloc_data
);
414 return ERR_PTR(-EWOULDBLOCK
);
416 blk_mq_put_ctx(alloc_data
.ctx
);
419 rq
->__sector
= (sector_t
) -1;
420 rq
->bio
= rq
->biotail
= NULL
;
423 EXPORT_SYMBOL(blk_mq_alloc_request
);
425 struct request
*blk_mq_alloc_request_hctx(struct request_queue
*q
,
426 unsigned int op
, blk_mq_req_flags_t flags
, unsigned int hctx_idx
)
428 struct blk_mq_alloc_data alloc_data
= { .flags
= flags
};
434 * If the tag allocator sleeps we could get an allocation for a
435 * different hardware context. No need to complicate the low level
436 * allocator for this for the rare use case of a command tied to
439 if (WARN_ON_ONCE(!(flags
& BLK_MQ_REQ_NOWAIT
)))
440 return ERR_PTR(-EINVAL
);
442 if (hctx_idx
>= q
->nr_hw_queues
)
443 return ERR_PTR(-EIO
);
445 ret
= blk_queue_enter(q
, flags
);
450 * Check if the hardware context is actually mapped to anything.
451 * If not tell the caller that it should skip this queue.
453 alloc_data
.hctx
= q
->queue_hw_ctx
[hctx_idx
];
454 if (!blk_mq_hw_queue_mapped(alloc_data
.hctx
)) {
456 return ERR_PTR(-EXDEV
);
458 cpu
= cpumask_first_and(alloc_data
.hctx
->cpumask
, cpu_online_mask
);
459 alloc_data
.ctx
= __blk_mq_get_ctx(q
, cpu
);
461 rq
= blk_mq_get_request(q
, NULL
, op
, &alloc_data
);
465 return ERR_PTR(-EWOULDBLOCK
);
469 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx
);
471 static void __blk_mq_free_request(struct request
*rq
)
473 struct request_queue
*q
= rq
->q
;
474 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
475 struct blk_mq_hw_ctx
*hctx
= blk_mq_map_queue(q
, ctx
->cpu
);
476 const int sched_tag
= rq
->internal_tag
;
479 blk_mq_put_tag(hctx
, hctx
->tags
, ctx
, rq
->tag
);
481 blk_mq_put_tag(hctx
, hctx
->sched_tags
, ctx
, sched_tag
);
482 blk_mq_sched_restart(hctx
);
486 void blk_mq_free_request(struct request
*rq
)
488 struct request_queue
*q
= rq
->q
;
489 struct elevator_queue
*e
= q
->elevator
;
490 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
491 struct blk_mq_hw_ctx
*hctx
= blk_mq_map_queue(q
, ctx
->cpu
);
493 if (rq
->rq_flags
& RQF_ELVPRIV
) {
494 if (e
&& e
->type
->ops
.mq
.finish_request
)
495 e
->type
->ops
.mq
.finish_request(rq
);
497 put_io_context(rq
->elv
.icq
->ioc
);
502 ctx
->rq_completed
[rq_is_sync(rq
)]++;
503 if (rq
->rq_flags
& RQF_MQ_INFLIGHT
)
504 atomic_dec(&hctx
->nr_active
);
506 if (unlikely(laptop_mode
&& !blk_rq_is_passthrough(rq
)))
507 laptop_io_completion(q
->backing_dev_info
);
512 blk_put_rl(blk_rq_rl(rq
));
514 WRITE_ONCE(rq
->state
, MQ_RQ_IDLE
);
515 if (refcount_dec_and_test(&rq
->ref
))
516 __blk_mq_free_request(rq
);
518 EXPORT_SYMBOL_GPL(blk_mq_free_request
);
520 inline void __blk_mq_end_request(struct request
*rq
, blk_status_t error
)
522 u64 now
= ktime_get_ns();
524 if (rq
->rq_flags
& RQF_STATS
) {
525 blk_mq_poll_stats_start(rq
->q
);
526 blk_stat_add(rq
, now
);
529 blk_account_io_done(rq
, now
);
532 rq_qos_done(rq
->q
, rq
);
533 rq
->end_io(rq
, error
);
535 if (unlikely(blk_bidi_rq(rq
)))
536 blk_mq_free_request(rq
->next_rq
);
537 blk_mq_free_request(rq
);
540 EXPORT_SYMBOL(__blk_mq_end_request
);
542 void blk_mq_end_request(struct request
*rq
, blk_status_t error
)
544 if (blk_update_request(rq
, error
, blk_rq_bytes(rq
)))
546 __blk_mq_end_request(rq
, error
);
548 EXPORT_SYMBOL(blk_mq_end_request
);
550 static void __blk_mq_complete_request_remote(void *data
)
552 struct request
*rq
= data
;
554 rq
->q
->softirq_done_fn(rq
);
557 static void __blk_mq_complete_request(struct request
*rq
)
559 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
563 if (!blk_mq_mark_complete(rq
))
565 if (rq
->internal_tag
!= -1)
566 blk_mq_sched_completed_request(rq
);
568 if (!test_bit(QUEUE_FLAG_SAME_COMP
, &rq
->q
->queue_flags
)) {
569 rq
->q
->softirq_done_fn(rq
);
574 if (!test_bit(QUEUE_FLAG_SAME_FORCE
, &rq
->q
->queue_flags
))
575 shared
= cpus_share_cache(cpu
, ctx
->cpu
);
577 if (cpu
!= ctx
->cpu
&& !shared
&& cpu_online(ctx
->cpu
)) {
578 rq
->csd
.func
= __blk_mq_complete_request_remote
;
581 smp_call_function_single_async(ctx
->cpu
, &rq
->csd
);
583 rq
->q
->softirq_done_fn(rq
);
588 static void hctx_unlock(struct blk_mq_hw_ctx
*hctx
, int srcu_idx
)
589 __releases(hctx
->srcu
)
591 if (!(hctx
->flags
& BLK_MQ_F_BLOCKING
))
594 srcu_read_unlock(hctx
->srcu
, srcu_idx
);
597 static void hctx_lock(struct blk_mq_hw_ctx
*hctx
, int *srcu_idx
)
598 __acquires(hctx
->srcu
)
600 if (!(hctx
->flags
& BLK_MQ_F_BLOCKING
)) {
601 /* shut up gcc false positive */
605 *srcu_idx
= srcu_read_lock(hctx
->srcu
);
609 * blk_mq_complete_request - end I/O on a request
610 * @rq: the request being processed
613 * Ends all I/O on a request. It does not handle partial completions.
614 * The actual completion happens out-of-order, through a IPI handler.
616 void blk_mq_complete_request(struct request
*rq
)
618 if (unlikely(blk_should_fake_timeout(rq
->q
)))
620 __blk_mq_complete_request(rq
);
622 EXPORT_SYMBOL(blk_mq_complete_request
);
624 int blk_mq_request_started(struct request
*rq
)
626 return blk_mq_rq_state(rq
) != MQ_RQ_IDLE
;
628 EXPORT_SYMBOL_GPL(blk_mq_request_started
);
630 void blk_mq_start_request(struct request
*rq
)
632 struct request_queue
*q
= rq
->q
;
634 blk_mq_sched_started_request(rq
);
636 trace_block_rq_issue(q
, rq
);
638 if (test_bit(QUEUE_FLAG_STATS
, &q
->queue_flags
)) {
639 rq
->io_start_time_ns
= ktime_get_ns();
640 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
641 rq
->throtl_size
= blk_rq_sectors(rq
);
643 rq
->rq_flags
|= RQF_STATS
;
647 WARN_ON_ONCE(blk_mq_rq_state(rq
) != MQ_RQ_IDLE
);
650 WRITE_ONCE(rq
->state
, MQ_RQ_IN_FLIGHT
);
652 if (q
->dma_drain_size
&& blk_rq_bytes(rq
)) {
654 * Make sure space for the drain appears. We know we can do
655 * this because max_hw_segments has been adjusted to be one
656 * fewer than the device can handle.
658 rq
->nr_phys_segments
++;
661 EXPORT_SYMBOL(blk_mq_start_request
);
663 static void __blk_mq_requeue_request(struct request
*rq
)
665 struct request_queue
*q
= rq
->q
;
667 blk_mq_put_driver_tag(rq
);
669 trace_block_rq_requeue(q
, rq
);
670 rq_qos_requeue(q
, rq
);
672 if (blk_mq_request_started(rq
)) {
673 WRITE_ONCE(rq
->state
, MQ_RQ_IDLE
);
674 rq
->rq_flags
&= ~RQF_TIMED_OUT
;
675 if (q
->dma_drain_size
&& blk_rq_bytes(rq
))
676 rq
->nr_phys_segments
--;
680 void blk_mq_requeue_request(struct request
*rq
, bool kick_requeue_list
)
682 __blk_mq_requeue_request(rq
);
684 /* this request will be re-inserted to io scheduler queue */
685 blk_mq_sched_requeue_request(rq
);
687 BUG_ON(blk_queued_rq(rq
));
688 blk_mq_add_to_requeue_list(rq
, true, kick_requeue_list
);
690 EXPORT_SYMBOL(blk_mq_requeue_request
);
692 static void blk_mq_requeue_work(struct work_struct
*work
)
694 struct request_queue
*q
=
695 container_of(work
, struct request_queue
, requeue_work
.work
);
697 struct request
*rq
, *next
;
699 spin_lock_irq(&q
->requeue_lock
);
700 list_splice_init(&q
->requeue_list
, &rq_list
);
701 spin_unlock_irq(&q
->requeue_lock
);
703 list_for_each_entry_safe(rq
, next
, &rq_list
, queuelist
) {
704 if (!(rq
->rq_flags
& (RQF_SOFTBARRIER
| RQF_DONTPREP
)))
707 rq
->rq_flags
&= ~RQF_SOFTBARRIER
;
708 list_del_init(&rq
->queuelist
);
710 * If RQF_DONTPREP, rq has contained some driver specific
711 * data, so insert it to hctx dispatch list to avoid any
714 if (rq
->rq_flags
& RQF_DONTPREP
)
715 blk_mq_request_bypass_insert(rq
, false);
717 blk_mq_sched_insert_request(rq
, true, false, false);
720 while (!list_empty(&rq_list
)) {
721 rq
= list_entry(rq_list
.next
, struct request
, queuelist
);
722 list_del_init(&rq
->queuelist
);
723 blk_mq_sched_insert_request(rq
, false, false, false);
726 blk_mq_run_hw_queues(q
, false);
729 void blk_mq_add_to_requeue_list(struct request
*rq
, bool at_head
,
730 bool kick_requeue_list
)
732 struct request_queue
*q
= rq
->q
;
736 * We abuse this flag that is otherwise used by the I/O scheduler to
737 * request head insertion from the workqueue.
739 BUG_ON(rq
->rq_flags
& RQF_SOFTBARRIER
);
741 spin_lock_irqsave(&q
->requeue_lock
, flags
);
743 rq
->rq_flags
|= RQF_SOFTBARRIER
;
744 list_add(&rq
->queuelist
, &q
->requeue_list
);
746 list_add_tail(&rq
->queuelist
, &q
->requeue_list
);
748 spin_unlock_irqrestore(&q
->requeue_lock
, flags
);
750 if (kick_requeue_list
)
751 blk_mq_kick_requeue_list(q
);
753 EXPORT_SYMBOL(blk_mq_add_to_requeue_list
);
755 void blk_mq_kick_requeue_list(struct request_queue
*q
)
757 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND
, &q
->requeue_work
, 0);
759 EXPORT_SYMBOL(blk_mq_kick_requeue_list
);
761 void blk_mq_delay_kick_requeue_list(struct request_queue
*q
,
764 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND
, &q
->requeue_work
,
765 msecs_to_jiffies(msecs
));
767 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list
);
769 struct request
*blk_mq_tag_to_rq(struct blk_mq_tags
*tags
, unsigned int tag
)
771 if (tag
< tags
->nr_tags
) {
772 prefetch(tags
->rqs
[tag
]);
773 return tags
->rqs
[tag
];
778 EXPORT_SYMBOL(blk_mq_tag_to_rq
);
780 static void blk_mq_rq_timed_out(struct request
*req
, bool reserved
)
782 req
->rq_flags
|= RQF_TIMED_OUT
;
783 if (req
->q
->mq_ops
->timeout
) {
784 enum blk_eh_timer_return ret
;
786 ret
= req
->q
->mq_ops
->timeout(req
, reserved
);
787 if (ret
== BLK_EH_DONE
)
789 WARN_ON_ONCE(ret
!= BLK_EH_RESET_TIMER
);
795 static bool blk_mq_req_expired(struct request
*rq
, unsigned long *next
)
797 unsigned long deadline
;
799 if (blk_mq_rq_state(rq
) != MQ_RQ_IN_FLIGHT
)
801 if (rq
->rq_flags
& RQF_TIMED_OUT
)
804 deadline
= blk_rq_deadline(rq
);
805 if (time_after_eq(jiffies
, deadline
))
810 else if (time_after(*next
, deadline
))
815 static void blk_mq_check_expired(struct blk_mq_hw_ctx
*hctx
,
816 struct request
*rq
, void *priv
, bool reserved
)
818 unsigned long *next
= priv
;
821 * Just do a quick check if it is expired before locking the request in
822 * so we're not unnecessarilly synchronizing across CPUs.
824 if (!blk_mq_req_expired(rq
, next
))
828 * We have reason to believe the request may be expired. Take a
829 * reference on the request to lock this request lifetime into its
830 * currently allocated context to prevent it from being reallocated in
831 * the event the completion by-passes this timeout handler.
833 * If the reference was already released, then the driver beat the
834 * timeout handler to posting a natural completion.
836 if (!refcount_inc_not_zero(&rq
->ref
))
840 * The request is now locked and cannot be reallocated underneath the
841 * timeout handler's processing. Re-verify this exact request is truly
842 * expired; if it is not expired, then the request was completed and
843 * reallocated as a new request.
845 if (blk_mq_req_expired(rq
, next
))
846 blk_mq_rq_timed_out(rq
, reserved
);
848 if (is_flush_rq(rq
, hctx
))
850 else if (refcount_dec_and_test(&rq
->ref
))
851 __blk_mq_free_request(rq
);
854 static void blk_mq_timeout_work(struct work_struct
*work
)
856 struct request_queue
*q
=
857 container_of(work
, struct request_queue
, timeout_work
);
858 unsigned long next
= 0;
859 struct blk_mq_hw_ctx
*hctx
;
862 /* A deadlock might occur if a request is stuck requiring a
863 * timeout at the same time a queue freeze is waiting
864 * completion, since the timeout code would not be able to
865 * acquire the queue reference here.
867 * That's why we don't use blk_queue_enter here; instead, we use
868 * percpu_ref_tryget directly, because we need to be able to
869 * obtain a reference even in the short window between the queue
870 * starting to freeze, by dropping the first reference in
871 * blk_freeze_queue_start, and the moment the last request is
872 * consumed, marked by the instant q_usage_counter reaches
875 if (!percpu_ref_tryget(&q
->q_usage_counter
))
878 blk_mq_queue_tag_busy_iter(q
, blk_mq_check_expired
, &next
);
881 mod_timer(&q
->timeout
, next
);
884 * Request timeouts are handled as a forward rolling timer. If
885 * we end up here it means that no requests are pending and
886 * also that no request has been pending for a while. Mark
889 queue_for_each_hw_ctx(q
, hctx
, i
) {
890 /* the hctx may be unmapped, so check it here */
891 if (blk_mq_hw_queue_mapped(hctx
))
892 blk_mq_tag_idle(hctx
);
898 struct flush_busy_ctx_data
{
899 struct blk_mq_hw_ctx
*hctx
;
900 struct list_head
*list
;
903 static bool flush_busy_ctx(struct sbitmap
*sb
, unsigned int bitnr
, void *data
)
905 struct flush_busy_ctx_data
*flush_data
= data
;
906 struct blk_mq_hw_ctx
*hctx
= flush_data
->hctx
;
907 struct blk_mq_ctx
*ctx
= hctx
->ctxs
[bitnr
];
909 spin_lock(&ctx
->lock
);
910 list_splice_tail_init(&ctx
->rq_list
, flush_data
->list
);
911 sbitmap_clear_bit(sb
, bitnr
);
912 spin_unlock(&ctx
->lock
);
917 * Process software queues that have been marked busy, splicing them
918 * to the for-dispatch
920 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx
*hctx
, struct list_head
*list
)
922 struct flush_busy_ctx_data data
= {
927 sbitmap_for_each_set(&hctx
->ctx_map
, flush_busy_ctx
, &data
);
929 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs
);
931 struct dispatch_rq_data
{
932 struct blk_mq_hw_ctx
*hctx
;
936 static bool dispatch_rq_from_ctx(struct sbitmap
*sb
, unsigned int bitnr
,
939 struct dispatch_rq_data
*dispatch_data
= data
;
940 struct blk_mq_hw_ctx
*hctx
= dispatch_data
->hctx
;
941 struct blk_mq_ctx
*ctx
= hctx
->ctxs
[bitnr
];
943 spin_lock(&ctx
->lock
);
944 if (!list_empty(&ctx
->rq_list
)) {
945 dispatch_data
->rq
= list_entry_rq(ctx
->rq_list
.next
);
946 list_del_init(&dispatch_data
->rq
->queuelist
);
947 if (list_empty(&ctx
->rq_list
))
948 sbitmap_clear_bit(sb
, bitnr
);
950 spin_unlock(&ctx
->lock
);
952 return !dispatch_data
->rq
;
955 struct request
*blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx
*hctx
,
956 struct blk_mq_ctx
*start
)
958 unsigned off
= start
? start
->index_hw
: 0;
959 struct dispatch_rq_data data
= {
964 __sbitmap_for_each_set(&hctx
->ctx_map
, off
,
965 dispatch_rq_from_ctx
, &data
);
970 static inline unsigned int queued_to_index(unsigned int queued
)
975 return min(BLK_MQ_MAX_DISPATCH_ORDER
- 1, ilog2(queued
) + 1);
978 bool blk_mq_get_driver_tag(struct request
*rq
)
980 struct blk_mq_alloc_data data
= {
982 .hctx
= blk_mq_map_queue(rq
->q
, rq
->mq_ctx
->cpu
),
983 .flags
= BLK_MQ_REQ_NOWAIT
,
990 if (blk_mq_tag_is_reserved(data
.hctx
->sched_tags
, rq
->internal_tag
))
991 data
.flags
|= BLK_MQ_REQ_RESERVED
;
993 shared
= blk_mq_tag_busy(data
.hctx
);
994 rq
->tag
= blk_mq_get_tag(&data
);
997 rq
->rq_flags
|= RQF_MQ_INFLIGHT
;
998 atomic_inc(&data
.hctx
->nr_active
);
1000 data
.hctx
->tags
->rqs
[rq
->tag
] = rq
;
1004 return rq
->tag
!= -1;
1007 static int blk_mq_dispatch_wake(wait_queue_entry_t
*wait
, unsigned mode
,
1008 int flags
, void *key
)
1010 struct blk_mq_hw_ctx
*hctx
;
1012 hctx
= container_of(wait
, struct blk_mq_hw_ctx
, dispatch_wait
);
1014 spin_lock(&hctx
->dispatch_wait_lock
);
1015 list_del_init(&wait
->entry
);
1016 spin_unlock(&hctx
->dispatch_wait_lock
);
1018 blk_mq_run_hw_queue(hctx
, true);
1023 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1024 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1025 * restart. For both cases, take care to check the condition again after
1026 * marking us as waiting.
1028 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx
*hctx
,
1031 struct wait_queue_head
*wq
;
1032 wait_queue_entry_t
*wait
;
1035 if (!(hctx
->flags
& BLK_MQ_F_TAG_SHARED
)) {
1036 if (!test_bit(BLK_MQ_S_SCHED_RESTART
, &hctx
->state
))
1037 set_bit(BLK_MQ_S_SCHED_RESTART
, &hctx
->state
);
1040 * It's possible that a tag was freed in the window between the
1041 * allocation failure and adding the hardware queue to the wait
1044 * Don't clear RESTART here, someone else could have set it.
1045 * At most this will cost an extra queue run.
1047 return blk_mq_get_driver_tag(rq
);
1050 wait
= &hctx
->dispatch_wait
;
1051 if (!list_empty_careful(&wait
->entry
))
1054 wq
= &bt_wait_ptr(&hctx
->tags
->bitmap_tags
, hctx
)->wait
;
1056 spin_lock_irq(&wq
->lock
);
1057 spin_lock(&hctx
->dispatch_wait_lock
);
1058 if (!list_empty(&wait
->entry
)) {
1059 spin_unlock(&hctx
->dispatch_wait_lock
);
1060 spin_unlock_irq(&wq
->lock
);
1064 wait
->flags
&= ~WQ_FLAG_EXCLUSIVE
;
1065 __add_wait_queue(wq
, wait
);
1068 * It's possible that a tag was freed in the window between the
1069 * allocation failure and adding the hardware queue to the wait
1072 ret
= blk_mq_get_driver_tag(rq
);
1074 spin_unlock(&hctx
->dispatch_wait_lock
);
1075 spin_unlock_irq(&wq
->lock
);
1080 * We got a tag, remove ourselves from the wait queue to ensure
1081 * someone else gets the wakeup.
1083 list_del_init(&wait
->entry
);
1084 spin_unlock(&hctx
->dispatch_wait_lock
);
1085 spin_unlock_irq(&wq
->lock
);
1090 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8
1091 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4
1093 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1094 * - EWMA is one simple way to compute running average value
1095 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1096 * - take 4 as factor for avoiding to get too small(0) result, and this
1097 * factor doesn't matter because EWMA decreases exponentially
1099 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx
*hctx
, bool busy
)
1103 if (hctx
->queue
->elevator
)
1106 ewma
= hctx
->dispatch_busy
;
1111 ewma
*= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT
- 1;
1113 ewma
+= 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR
;
1114 ewma
/= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT
;
1116 hctx
->dispatch_busy
= ewma
;
1119 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */
1122 * Returns true if we did some work AND can potentially do more.
1124 bool blk_mq_dispatch_rq_list(struct request_queue
*q
, struct list_head
*list
,
1127 struct blk_mq_hw_ctx
*hctx
;
1128 struct request
*rq
, *nxt
;
1129 bool no_tag
= false;
1131 blk_status_t ret
= BLK_STS_OK
;
1133 if (list_empty(list
))
1136 WARN_ON(!list_is_singular(list
) && got_budget
);
1139 * Now process all the entries, sending them to the driver.
1141 errors
= queued
= 0;
1143 struct blk_mq_queue_data bd
;
1145 rq
= list_first_entry(list
, struct request
, queuelist
);
1147 hctx
= blk_mq_map_queue(rq
->q
, rq
->mq_ctx
->cpu
);
1148 if (!got_budget
&& !blk_mq_get_dispatch_budget(hctx
))
1151 if (!blk_mq_get_driver_tag(rq
)) {
1153 * The initial allocation attempt failed, so we need to
1154 * rerun the hardware queue when a tag is freed. The
1155 * waitqueue takes care of that. If the queue is run
1156 * before we add this entry back on the dispatch list,
1157 * we'll re-run it below.
1159 if (!blk_mq_mark_tag_wait(hctx
, rq
)) {
1160 blk_mq_put_dispatch_budget(hctx
);
1162 * For non-shared tags, the RESTART check
1165 if (hctx
->flags
& BLK_MQ_F_TAG_SHARED
)
1171 list_del_init(&rq
->queuelist
);
1176 * Flag last if we have no more requests, or if we have more
1177 * but can't assign a driver tag to it.
1179 if (list_empty(list
))
1182 nxt
= list_first_entry(list
, struct request
, queuelist
);
1183 bd
.last
= !blk_mq_get_driver_tag(nxt
);
1186 ret
= q
->mq_ops
->queue_rq(hctx
, &bd
);
1187 if (ret
== BLK_STS_RESOURCE
|| ret
== BLK_STS_DEV_RESOURCE
) {
1189 * If an I/O scheduler has been configured and we got a
1190 * driver tag for the next request already, free it
1193 if (!list_empty(list
)) {
1194 nxt
= list_first_entry(list
, struct request
, queuelist
);
1195 blk_mq_put_driver_tag(nxt
);
1197 list_add(&rq
->queuelist
, list
);
1198 __blk_mq_requeue_request(rq
);
1202 if (unlikely(ret
!= BLK_STS_OK
)) {
1204 blk_mq_end_request(rq
, BLK_STS_IOERR
);
1209 } while (!list_empty(list
));
1211 hctx
->dispatched
[queued_to_index(queued
)]++;
1214 * Any items that need requeuing? Stuff them into hctx->dispatch,
1215 * that is where we will continue on next queue run.
1217 if (!list_empty(list
)) {
1220 spin_lock(&hctx
->lock
);
1221 list_splice_init(list
, &hctx
->dispatch
);
1222 spin_unlock(&hctx
->lock
);
1225 * If SCHED_RESTART was set by the caller of this function and
1226 * it is no longer set that means that it was cleared by another
1227 * thread and hence that a queue rerun is needed.
1229 * If 'no_tag' is set, that means that we failed getting
1230 * a driver tag with an I/O scheduler attached. If our dispatch
1231 * waitqueue is no longer active, ensure that we run the queue
1232 * AFTER adding our entries back to the list.
1234 * If no I/O scheduler has been configured it is possible that
1235 * the hardware queue got stopped and restarted before requests
1236 * were pushed back onto the dispatch list. Rerun the queue to
1237 * avoid starvation. Notes:
1238 * - blk_mq_run_hw_queue() checks whether or not a queue has
1239 * been stopped before rerunning a queue.
1240 * - Some but not all block drivers stop a queue before
1241 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1244 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1245 * bit is set, run queue after a delay to avoid IO stalls
1246 * that could otherwise occur if the queue is idle.
1248 needs_restart
= blk_mq_sched_needs_restart(hctx
);
1249 if (!needs_restart
||
1250 (no_tag
&& list_empty_careful(&hctx
->dispatch_wait
.entry
)))
1251 blk_mq_run_hw_queue(hctx
, true);
1252 else if (needs_restart
&& (ret
== BLK_STS_RESOURCE
))
1253 blk_mq_delay_run_hw_queue(hctx
, BLK_MQ_RESOURCE_DELAY
);
1255 blk_mq_update_dispatch_busy(hctx
, true);
1258 blk_mq_update_dispatch_busy(hctx
, false);
1261 * If the host/device is unable to accept more work, inform the
1264 if (ret
== BLK_STS_RESOURCE
|| ret
== BLK_STS_DEV_RESOURCE
)
1267 return (queued
+ errors
) != 0;
1270 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx
*hctx
)
1275 * We should be running this queue from one of the CPUs that
1278 * There are at least two related races now between setting
1279 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1280 * __blk_mq_run_hw_queue():
1282 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1283 * but later it becomes online, then this warning is harmless
1286 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1287 * but later it becomes offline, then the warning can't be
1288 * triggered, and we depend on blk-mq timeout handler to
1289 * handle dispatched requests to this hctx
1291 if (!cpumask_test_cpu(raw_smp_processor_id(), hctx
->cpumask
) &&
1292 cpu_online(hctx
->next_cpu
)) {
1293 printk(KERN_WARNING
"run queue from wrong CPU %d, hctx %s\n",
1294 raw_smp_processor_id(),
1295 cpumask_empty(hctx
->cpumask
) ? "inactive": "active");
1300 * We can't run the queue inline with ints disabled. Ensure that
1301 * we catch bad users of this early.
1303 WARN_ON_ONCE(in_interrupt());
1305 might_sleep_if(hctx
->flags
& BLK_MQ_F_BLOCKING
);
1307 hctx_lock(hctx
, &srcu_idx
);
1308 blk_mq_sched_dispatch_requests(hctx
);
1309 hctx_unlock(hctx
, srcu_idx
);
1312 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx
*hctx
)
1314 int cpu
= cpumask_first_and(hctx
->cpumask
, cpu_online_mask
);
1316 if (cpu
>= nr_cpu_ids
)
1317 cpu
= cpumask_first(hctx
->cpumask
);
1322 * It'd be great if the workqueue API had a way to pass
1323 * in a mask and had some smarts for more clever placement.
1324 * For now we just round-robin here, switching for every
1325 * BLK_MQ_CPU_WORK_BATCH queued items.
1327 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx
*hctx
)
1330 int next_cpu
= hctx
->next_cpu
;
1332 if (hctx
->queue
->nr_hw_queues
== 1)
1333 return WORK_CPU_UNBOUND
;
1335 if (--hctx
->next_cpu_batch
<= 0) {
1337 next_cpu
= cpumask_next_and(next_cpu
, hctx
->cpumask
,
1339 if (next_cpu
>= nr_cpu_ids
)
1340 next_cpu
= blk_mq_first_mapped_cpu(hctx
);
1341 hctx
->next_cpu_batch
= BLK_MQ_CPU_WORK_BATCH
;
1345 * Do unbound schedule if we can't find a online CPU for this hctx,
1346 * and it should only happen in the path of handling CPU DEAD.
1348 if (!cpu_online(next_cpu
)) {
1355 * Make sure to re-select CPU next time once after CPUs
1356 * in hctx->cpumask become online again.
1358 hctx
->next_cpu
= next_cpu
;
1359 hctx
->next_cpu_batch
= 1;
1360 return WORK_CPU_UNBOUND
;
1363 hctx
->next_cpu
= next_cpu
;
1367 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx
*hctx
, bool async
,
1368 unsigned long msecs
)
1370 if (unlikely(blk_mq_hctx_stopped(hctx
)))
1373 if (!async
&& !(hctx
->flags
& BLK_MQ_F_BLOCKING
)) {
1374 int cpu
= get_cpu();
1375 if (cpumask_test_cpu(cpu
, hctx
->cpumask
)) {
1376 __blk_mq_run_hw_queue(hctx
);
1384 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx
), &hctx
->run_work
,
1385 msecs_to_jiffies(msecs
));
1388 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx
*hctx
, unsigned long msecs
)
1390 __blk_mq_delay_run_hw_queue(hctx
, true, msecs
);
1392 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue
);
1394 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx
*hctx
, bool async
)
1400 * When queue is quiesced, we may be switching io scheduler, or
1401 * updating nr_hw_queues, or other things, and we can't run queue
1402 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1404 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1407 hctx_lock(hctx
, &srcu_idx
);
1408 need_run
= !blk_queue_quiesced(hctx
->queue
) &&
1409 blk_mq_hctx_has_pending(hctx
);
1410 hctx_unlock(hctx
, srcu_idx
);
1413 __blk_mq_delay_run_hw_queue(hctx
, async
, 0);
1419 EXPORT_SYMBOL(blk_mq_run_hw_queue
);
1421 void blk_mq_run_hw_queues(struct request_queue
*q
, bool async
)
1423 struct blk_mq_hw_ctx
*hctx
;
1426 queue_for_each_hw_ctx(q
, hctx
, i
) {
1427 if (blk_mq_hctx_stopped(hctx
))
1430 blk_mq_run_hw_queue(hctx
, async
);
1433 EXPORT_SYMBOL(blk_mq_run_hw_queues
);
1436 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1437 * @q: request queue.
1439 * The caller is responsible for serializing this function against
1440 * blk_mq_{start,stop}_hw_queue().
1442 bool blk_mq_queue_stopped(struct request_queue
*q
)
1444 struct blk_mq_hw_ctx
*hctx
;
1447 queue_for_each_hw_ctx(q
, hctx
, i
)
1448 if (blk_mq_hctx_stopped(hctx
))
1453 EXPORT_SYMBOL(blk_mq_queue_stopped
);
1456 * This function is often used for pausing .queue_rq() by driver when
1457 * there isn't enough resource or some conditions aren't satisfied, and
1458 * BLK_STS_RESOURCE is usually returned.
1460 * We do not guarantee that dispatch can be drained or blocked
1461 * after blk_mq_stop_hw_queue() returns. Please use
1462 * blk_mq_quiesce_queue() for that requirement.
1464 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx
*hctx
)
1466 cancel_delayed_work(&hctx
->run_work
);
1468 set_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
1470 EXPORT_SYMBOL(blk_mq_stop_hw_queue
);
1473 * This function is often used for pausing .queue_rq() by driver when
1474 * there isn't enough resource or some conditions aren't satisfied, and
1475 * BLK_STS_RESOURCE is usually returned.
1477 * We do not guarantee that dispatch can be drained or blocked
1478 * after blk_mq_stop_hw_queues() returns. Please use
1479 * blk_mq_quiesce_queue() for that requirement.
1481 void blk_mq_stop_hw_queues(struct request_queue
*q
)
1483 struct blk_mq_hw_ctx
*hctx
;
1486 queue_for_each_hw_ctx(q
, hctx
, i
)
1487 blk_mq_stop_hw_queue(hctx
);
1489 EXPORT_SYMBOL(blk_mq_stop_hw_queues
);
1491 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx
*hctx
)
1493 clear_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
1495 blk_mq_run_hw_queue(hctx
, false);
1497 EXPORT_SYMBOL(blk_mq_start_hw_queue
);
1499 void blk_mq_start_hw_queues(struct request_queue
*q
)
1501 struct blk_mq_hw_ctx
*hctx
;
1504 queue_for_each_hw_ctx(q
, hctx
, i
)
1505 blk_mq_start_hw_queue(hctx
);
1507 EXPORT_SYMBOL(blk_mq_start_hw_queues
);
1509 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx
*hctx
, bool async
)
1511 if (!blk_mq_hctx_stopped(hctx
))
1514 clear_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
1515 blk_mq_run_hw_queue(hctx
, async
);
1517 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue
);
1519 void blk_mq_start_stopped_hw_queues(struct request_queue
*q
, bool async
)
1521 struct blk_mq_hw_ctx
*hctx
;
1524 queue_for_each_hw_ctx(q
, hctx
, i
)
1525 blk_mq_start_stopped_hw_queue(hctx
, async
);
1527 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues
);
1529 static void blk_mq_run_work_fn(struct work_struct
*work
)
1531 struct blk_mq_hw_ctx
*hctx
;
1533 hctx
= container_of(work
, struct blk_mq_hw_ctx
, run_work
.work
);
1536 * If we are stopped, don't run the queue.
1538 if (test_bit(BLK_MQ_S_STOPPED
, &hctx
->state
))
1541 __blk_mq_run_hw_queue(hctx
);
1544 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx
*hctx
,
1548 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
1550 lockdep_assert_held(&ctx
->lock
);
1552 trace_block_rq_insert(hctx
->queue
, rq
);
1555 list_add(&rq
->queuelist
, &ctx
->rq_list
);
1557 list_add_tail(&rq
->queuelist
, &ctx
->rq_list
);
1560 void __blk_mq_insert_request(struct blk_mq_hw_ctx
*hctx
, struct request
*rq
,
1563 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
1565 lockdep_assert_held(&ctx
->lock
);
1567 __blk_mq_insert_req_list(hctx
, rq
, at_head
);
1568 blk_mq_hctx_mark_pending(hctx
, ctx
);
1572 * Should only be used carefully, when the caller knows we want to
1573 * bypass a potential IO scheduler on the target device.
1575 void blk_mq_request_bypass_insert(struct request
*rq
, bool run_queue
)
1577 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
1578 struct blk_mq_hw_ctx
*hctx
= blk_mq_map_queue(rq
->q
, ctx
->cpu
);
1580 spin_lock(&hctx
->lock
);
1581 list_add_tail(&rq
->queuelist
, &hctx
->dispatch
);
1582 spin_unlock(&hctx
->lock
);
1585 blk_mq_run_hw_queue(hctx
, false);
1588 void blk_mq_insert_requests(struct blk_mq_hw_ctx
*hctx
, struct blk_mq_ctx
*ctx
,
1589 struct list_head
*list
)
1595 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1598 list_for_each_entry(rq
, list
, queuelist
) {
1599 BUG_ON(rq
->mq_ctx
!= ctx
);
1600 trace_block_rq_insert(hctx
->queue
, rq
);
1603 spin_lock(&ctx
->lock
);
1604 list_splice_tail_init(list
, &ctx
->rq_list
);
1605 blk_mq_hctx_mark_pending(hctx
, ctx
);
1606 spin_unlock(&ctx
->lock
);
1609 static int plug_ctx_cmp(void *priv
, struct list_head
*a
, struct list_head
*b
)
1611 struct request
*rqa
= container_of(a
, struct request
, queuelist
);
1612 struct request
*rqb
= container_of(b
, struct request
, queuelist
);
1614 return !(rqa
->mq_ctx
< rqb
->mq_ctx
||
1615 (rqa
->mq_ctx
== rqb
->mq_ctx
&&
1616 blk_rq_pos(rqa
) < blk_rq_pos(rqb
)));
1619 void blk_mq_flush_plug_list(struct blk_plug
*plug
, bool from_schedule
)
1621 struct blk_mq_ctx
*this_ctx
;
1622 struct request_queue
*this_q
;
1625 LIST_HEAD(ctx_list
);
1628 list_splice_init(&plug
->mq_list
, &list
);
1630 list_sort(NULL
, &list
, plug_ctx_cmp
);
1636 while (!list_empty(&list
)) {
1637 rq
= list_entry_rq(list
.next
);
1638 list_del_init(&rq
->queuelist
);
1640 if (rq
->mq_ctx
!= this_ctx
) {
1642 trace_block_unplug(this_q
, depth
, !from_schedule
);
1643 blk_mq_sched_insert_requests(this_q
, this_ctx
,
1648 this_ctx
= rq
->mq_ctx
;
1654 list_add_tail(&rq
->queuelist
, &ctx_list
);
1658 * If 'this_ctx' is set, we know we have entries to complete
1659 * on 'ctx_list'. Do those.
1662 trace_block_unplug(this_q
, depth
, !from_schedule
);
1663 blk_mq_sched_insert_requests(this_q
, this_ctx
, &ctx_list
,
1668 static void blk_mq_bio_to_request(struct request
*rq
, struct bio
*bio
)
1670 blk_init_request_from_bio(rq
, bio
);
1672 blk_rq_set_rl(rq
, blk_get_rl(rq
->q
, bio
));
1674 blk_account_io_start(rq
, true);
1677 static blk_qc_t
request_to_qc_t(struct blk_mq_hw_ctx
*hctx
, struct request
*rq
)
1680 return blk_tag_to_qc_t(rq
->tag
, hctx
->queue_num
, false);
1682 return blk_tag_to_qc_t(rq
->internal_tag
, hctx
->queue_num
, true);
1685 static blk_status_t
__blk_mq_issue_directly(struct blk_mq_hw_ctx
*hctx
,
1689 struct request_queue
*q
= rq
->q
;
1690 struct blk_mq_queue_data bd
= {
1694 blk_qc_t new_cookie
;
1697 new_cookie
= request_to_qc_t(hctx
, rq
);
1700 * For OK queue, we are done. For error, caller may kill it.
1701 * Any other error (busy), just add it to our list as we
1702 * previously would have done.
1704 ret
= q
->mq_ops
->queue_rq(hctx
, &bd
);
1707 blk_mq_update_dispatch_busy(hctx
, false);
1708 *cookie
= new_cookie
;
1710 case BLK_STS_RESOURCE
:
1711 case BLK_STS_DEV_RESOURCE
:
1712 blk_mq_update_dispatch_busy(hctx
, true);
1713 __blk_mq_requeue_request(rq
);
1716 blk_mq_update_dispatch_busy(hctx
, false);
1717 *cookie
= BLK_QC_T_NONE
;
1724 static blk_status_t
__blk_mq_try_issue_directly(struct blk_mq_hw_ctx
*hctx
,
1729 struct request_queue
*q
= rq
->q
;
1730 bool run_queue
= true;
1733 * RCU or SRCU read lock is needed before checking quiesced flag.
1735 * When queue is stopped or quiesced, ignore 'bypass_insert' from
1736 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1737 * and avoid driver to try to dispatch again.
1739 if (blk_mq_hctx_stopped(hctx
) || blk_queue_quiesced(q
)) {
1741 bypass_insert
= false;
1745 if (q
->elevator
&& !bypass_insert
)
1748 if (!blk_mq_get_dispatch_budget(hctx
))
1751 if (!blk_mq_get_driver_tag(rq
)) {
1752 blk_mq_put_dispatch_budget(hctx
);
1756 return __blk_mq_issue_directly(hctx
, rq
, cookie
);
1759 return BLK_STS_RESOURCE
;
1761 blk_mq_request_bypass_insert(rq
, run_queue
);
1765 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx
*hctx
,
1766 struct request
*rq
, blk_qc_t
*cookie
)
1771 might_sleep_if(hctx
->flags
& BLK_MQ_F_BLOCKING
);
1773 hctx_lock(hctx
, &srcu_idx
);
1775 ret
= __blk_mq_try_issue_directly(hctx
, rq
, cookie
, false);
1776 if (ret
== BLK_STS_RESOURCE
|| ret
== BLK_STS_DEV_RESOURCE
)
1777 blk_mq_request_bypass_insert(rq
, true);
1778 else if (ret
!= BLK_STS_OK
)
1779 blk_mq_end_request(rq
, ret
);
1781 hctx_unlock(hctx
, srcu_idx
);
1784 blk_status_t
blk_mq_request_issue_directly(struct request
*rq
)
1788 blk_qc_t unused_cookie
;
1789 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
1790 struct blk_mq_hw_ctx
*hctx
= blk_mq_map_queue(rq
->q
, ctx
->cpu
);
1792 hctx_lock(hctx
, &srcu_idx
);
1793 ret
= __blk_mq_try_issue_directly(hctx
, rq
, &unused_cookie
, true);
1794 hctx_unlock(hctx
, srcu_idx
);
1799 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx
*hctx
,
1800 struct list_head
*list
)
1802 while (!list_empty(list
)) {
1804 struct request
*rq
= list_first_entry(list
, struct request
,
1807 list_del_init(&rq
->queuelist
);
1808 ret
= blk_mq_request_issue_directly(rq
);
1809 if (ret
!= BLK_STS_OK
) {
1810 if (ret
== BLK_STS_RESOURCE
||
1811 ret
== BLK_STS_DEV_RESOURCE
) {
1812 blk_mq_request_bypass_insert(rq
,
1816 blk_mq_end_request(rq
, ret
);
1821 static blk_qc_t
blk_mq_make_request(struct request_queue
*q
, struct bio
*bio
)
1823 const int is_sync
= op_is_sync(bio
->bi_opf
);
1824 const int is_flush_fua
= op_is_flush(bio
->bi_opf
);
1825 struct blk_mq_alloc_data data
= { .flags
= 0 };
1827 unsigned int request_count
= 0;
1828 struct blk_plug
*plug
;
1829 struct request
*same_queue_rq
= NULL
;
1832 blk_queue_bounce(q
, &bio
);
1834 blk_queue_split(q
, &bio
);
1836 if (!bio_integrity_prep(bio
))
1837 return BLK_QC_T_NONE
;
1839 if (!is_flush_fua
&& !blk_queue_nomerges(q
) &&
1840 blk_attempt_plug_merge(q
, bio
, &request_count
, &same_queue_rq
))
1841 return BLK_QC_T_NONE
;
1843 if (blk_mq_sched_bio_merge(q
, bio
))
1844 return BLK_QC_T_NONE
;
1846 rq_qos_throttle(q
, bio
, NULL
);
1848 trace_block_getrq(q
, bio
, bio
->bi_opf
);
1850 rq
= blk_mq_get_request(q
, bio
, bio
->bi_opf
, &data
);
1851 if (unlikely(!rq
)) {
1852 rq_qos_cleanup(q
, bio
);
1853 if (bio
->bi_opf
& REQ_NOWAIT
)
1854 bio_wouldblock_error(bio
);
1855 return BLK_QC_T_NONE
;
1858 rq_qos_track(q
, rq
, bio
);
1860 cookie
= request_to_qc_t(data
.hctx
, rq
);
1862 plug
= current
->plug
;
1863 if (unlikely(is_flush_fua
)) {
1864 blk_mq_put_ctx(data
.ctx
);
1865 blk_mq_bio_to_request(rq
, bio
);
1867 /* bypass scheduler for flush rq */
1868 blk_insert_flush(rq
);
1869 blk_mq_run_hw_queue(data
.hctx
, true);
1870 } else if (plug
&& q
->nr_hw_queues
== 1) {
1871 struct request
*last
= NULL
;
1873 blk_mq_put_ctx(data
.ctx
);
1874 blk_mq_bio_to_request(rq
, bio
);
1877 * @request_count may become stale because of schedule
1878 * out, so check the list again.
1880 if (list_empty(&plug
->mq_list
))
1882 else if (blk_queue_nomerges(q
))
1883 request_count
= blk_plug_queued_count(q
);
1886 trace_block_plug(q
);
1888 last
= list_entry_rq(plug
->mq_list
.prev
);
1890 if (request_count
>= BLK_MAX_REQUEST_COUNT
|| (last
&&
1891 blk_rq_bytes(last
) >= BLK_PLUG_FLUSH_SIZE
)) {
1892 blk_flush_plug_list(plug
, false);
1893 trace_block_plug(q
);
1896 list_add_tail(&rq
->queuelist
, &plug
->mq_list
);
1897 } else if (plug
&& !blk_queue_nomerges(q
)) {
1898 blk_mq_bio_to_request(rq
, bio
);
1901 * We do limited plugging. If the bio can be merged, do that.
1902 * Otherwise the existing request in the plug list will be
1903 * issued. So the plug list will have one request at most
1904 * The plug list might get flushed before this. If that happens,
1905 * the plug list is empty, and same_queue_rq is invalid.
1907 if (list_empty(&plug
->mq_list
))
1908 same_queue_rq
= NULL
;
1910 list_del_init(&same_queue_rq
->queuelist
);
1911 list_add_tail(&rq
->queuelist
, &plug
->mq_list
);
1913 blk_mq_put_ctx(data
.ctx
);
1915 if (same_queue_rq
) {
1916 data
.hctx
= blk_mq_map_queue(q
,
1917 same_queue_rq
->mq_ctx
->cpu
);
1918 blk_mq_try_issue_directly(data
.hctx
, same_queue_rq
,
1921 } else if ((q
->nr_hw_queues
> 1 && is_sync
) || (!q
->elevator
&&
1922 !data
.hctx
->dispatch_busy
)) {
1923 blk_mq_put_ctx(data
.ctx
);
1924 blk_mq_bio_to_request(rq
, bio
);
1925 blk_mq_try_issue_directly(data
.hctx
, rq
, &cookie
);
1927 blk_mq_put_ctx(data
.ctx
);
1928 blk_mq_bio_to_request(rq
, bio
);
1929 blk_mq_sched_insert_request(rq
, false, true, true);
1935 void blk_mq_free_rqs(struct blk_mq_tag_set
*set
, struct blk_mq_tags
*tags
,
1936 unsigned int hctx_idx
)
1940 if (tags
->rqs
&& set
->ops
->exit_request
) {
1943 for (i
= 0; i
< tags
->nr_tags
; i
++) {
1944 struct request
*rq
= tags
->static_rqs
[i
];
1948 set
->ops
->exit_request(set
, rq
, hctx_idx
);
1949 tags
->static_rqs
[i
] = NULL
;
1953 while (!list_empty(&tags
->page_list
)) {
1954 page
= list_first_entry(&tags
->page_list
, struct page
, lru
);
1955 list_del_init(&page
->lru
);
1957 * Remove kmemleak object previously allocated in
1958 * blk_mq_init_rq_map().
1960 kmemleak_free(page_address(page
));
1961 __free_pages(page
, page
->private);
1965 void blk_mq_free_rq_map(struct blk_mq_tags
*tags
)
1969 kfree(tags
->static_rqs
);
1970 tags
->static_rqs
= NULL
;
1972 blk_mq_free_tags(tags
);
1975 struct blk_mq_tags
*blk_mq_alloc_rq_map(struct blk_mq_tag_set
*set
,
1976 unsigned int hctx_idx
,
1977 unsigned int nr_tags
,
1978 unsigned int reserved_tags
)
1980 struct blk_mq_tags
*tags
;
1983 node
= blk_mq_hw_queue_to_node(set
->mq_map
, hctx_idx
);
1984 if (node
== NUMA_NO_NODE
)
1985 node
= set
->numa_node
;
1987 tags
= blk_mq_init_tags(nr_tags
, reserved_tags
, node
,
1988 BLK_MQ_FLAG_TO_ALLOC_POLICY(set
->flags
));
1992 tags
->rqs
= kcalloc_node(nr_tags
, sizeof(struct request
*),
1993 GFP_NOIO
| __GFP_NOWARN
| __GFP_NORETRY
,
1996 blk_mq_free_tags(tags
);
2000 tags
->static_rqs
= kcalloc_node(nr_tags
, sizeof(struct request
*),
2001 GFP_NOIO
| __GFP_NOWARN
| __GFP_NORETRY
,
2003 if (!tags
->static_rqs
) {
2005 blk_mq_free_tags(tags
);
2012 static size_t order_to_size(unsigned int order
)
2014 return (size_t)PAGE_SIZE
<< order
;
2017 static int blk_mq_init_request(struct blk_mq_tag_set
*set
, struct request
*rq
,
2018 unsigned int hctx_idx
, int node
)
2022 if (set
->ops
->init_request
) {
2023 ret
= set
->ops
->init_request(set
, rq
, hctx_idx
, node
);
2028 WRITE_ONCE(rq
->state
, MQ_RQ_IDLE
);
2032 int blk_mq_alloc_rqs(struct blk_mq_tag_set
*set
, struct blk_mq_tags
*tags
,
2033 unsigned int hctx_idx
, unsigned int depth
)
2035 unsigned int i
, j
, entries_per_page
, max_order
= 4;
2036 size_t rq_size
, left
;
2039 node
= blk_mq_hw_queue_to_node(set
->mq_map
, hctx_idx
);
2040 if (node
== NUMA_NO_NODE
)
2041 node
= set
->numa_node
;
2043 INIT_LIST_HEAD(&tags
->page_list
);
2046 * rq_size is the size of the request plus driver payload, rounded
2047 * to the cacheline size
2049 rq_size
= round_up(sizeof(struct request
) + set
->cmd_size
,
2051 left
= rq_size
* depth
;
2053 for (i
= 0; i
< depth
; ) {
2054 int this_order
= max_order
;
2059 while (this_order
&& left
< order_to_size(this_order
- 1))
2063 page
= alloc_pages_node(node
,
2064 GFP_NOIO
| __GFP_NOWARN
| __GFP_NORETRY
| __GFP_ZERO
,
2070 if (order_to_size(this_order
) < rq_size
)
2077 page
->private = this_order
;
2078 list_add_tail(&page
->lru
, &tags
->page_list
);
2080 p
= page_address(page
);
2082 * Allow kmemleak to scan these pages as they contain pointers
2083 * to additional allocations like via ops->init_request().
2085 kmemleak_alloc(p
, order_to_size(this_order
), 1, GFP_NOIO
);
2086 entries_per_page
= order_to_size(this_order
) / rq_size
;
2087 to_do
= min(entries_per_page
, depth
- i
);
2088 left
-= to_do
* rq_size
;
2089 for (j
= 0; j
< to_do
; j
++) {
2090 struct request
*rq
= p
;
2092 tags
->static_rqs
[i
] = rq
;
2093 if (blk_mq_init_request(set
, rq
, hctx_idx
, node
)) {
2094 tags
->static_rqs
[i
] = NULL
;
2105 blk_mq_free_rqs(set
, tags
, hctx_idx
);
2110 * 'cpu' is going away. splice any existing rq_list entries from this
2111 * software queue to the hw queue dispatch list, and ensure that it
2114 static int blk_mq_hctx_notify_dead(unsigned int cpu
, struct hlist_node
*node
)
2116 struct blk_mq_hw_ctx
*hctx
;
2117 struct blk_mq_ctx
*ctx
;
2120 hctx
= hlist_entry_safe(node
, struct blk_mq_hw_ctx
, cpuhp_dead
);
2121 ctx
= __blk_mq_get_ctx(hctx
->queue
, cpu
);
2123 spin_lock(&ctx
->lock
);
2124 if (!list_empty(&ctx
->rq_list
)) {
2125 list_splice_init(&ctx
->rq_list
, &tmp
);
2126 blk_mq_hctx_clear_pending(hctx
, ctx
);
2128 spin_unlock(&ctx
->lock
);
2130 if (list_empty(&tmp
))
2133 spin_lock(&hctx
->lock
);
2134 list_splice_tail_init(&tmp
, &hctx
->dispatch
);
2135 spin_unlock(&hctx
->lock
);
2137 blk_mq_run_hw_queue(hctx
, true);
2141 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx
*hctx
)
2143 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD
,
2147 /* hctx->ctxs will be freed in queue's release handler */
2148 static void blk_mq_exit_hctx(struct request_queue
*q
,
2149 struct blk_mq_tag_set
*set
,
2150 struct blk_mq_hw_ctx
*hctx
, unsigned int hctx_idx
)
2152 blk_mq_debugfs_unregister_hctx(hctx
);
2154 if (blk_mq_hw_queue_mapped(hctx
))
2155 blk_mq_tag_idle(hctx
);
2157 if (set
->ops
->exit_request
)
2158 set
->ops
->exit_request(set
, hctx
->fq
->flush_rq
, hctx_idx
);
2160 if (set
->ops
->exit_hctx
)
2161 set
->ops
->exit_hctx(hctx
, hctx_idx
);
2163 blk_mq_remove_cpuhp(hctx
);
2166 static void blk_mq_exit_hw_queues(struct request_queue
*q
,
2167 struct blk_mq_tag_set
*set
, int nr_queue
)
2169 struct blk_mq_hw_ctx
*hctx
;
2172 queue_for_each_hw_ctx(q
, hctx
, i
) {
2175 blk_mq_exit_hctx(q
, set
, hctx
, i
);
2179 static int blk_mq_init_hctx(struct request_queue
*q
,
2180 struct blk_mq_tag_set
*set
,
2181 struct blk_mq_hw_ctx
*hctx
, unsigned hctx_idx
)
2185 node
= hctx
->numa_node
;
2186 if (node
== NUMA_NO_NODE
)
2187 node
= hctx
->numa_node
= set
->numa_node
;
2189 INIT_DELAYED_WORK(&hctx
->run_work
, blk_mq_run_work_fn
);
2190 spin_lock_init(&hctx
->lock
);
2191 INIT_LIST_HEAD(&hctx
->dispatch
);
2193 hctx
->flags
= set
->flags
& ~BLK_MQ_F_TAG_SHARED
;
2195 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD
, &hctx
->cpuhp_dead
);
2197 hctx
->tags
= set
->tags
[hctx_idx
];
2200 * Allocate space for all possible cpus to avoid allocation at
2203 hctx
->ctxs
= kmalloc_array_node(nr_cpu_ids
, sizeof(void *),
2204 GFP_NOIO
| __GFP_NOWARN
| __GFP_NORETRY
, node
);
2206 goto unregister_cpu_notifier
;
2208 if (sbitmap_init_node(&hctx
->ctx_map
, nr_cpu_ids
, ilog2(8),
2209 GFP_NOIO
| __GFP_NOWARN
| __GFP_NORETRY
, node
))
2214 spin_lock_init(&hctx
->dispatch_wait_lock
);
2215 init_waitqueue_func_entry(&hctx
->dispatch_wait
, blk_mq_dispatch_wake
);
2216 INIT_LIST_HEAD(&hctx
->dispatch_wait
.entry
);
2218 if (set
->ops
->init_hctx
&&
2219 set
->ops
->init_hctx(hctx
, set
->driver_data
, hctx_idx
))
2222 hctx
->fq
= blk_alloc_flush_queue(q
, hctx
->numa_node
, set
->cmd_size
,
2223 GFP_NOIO
| __GFP_NOWARN
| __GFP_NORETRY
);
2227 if (blk_mq_init_request(set
, hctx
->fq
->flush_rq
, hctx_idx
, node
))
2230 if (hctx
->flags
& BLK_MQ_F_BLOCKING
)
2231 init_srcu_struct(hctx
->srcu
);
2233 blk_mq_debugfs_register_hctx(q
, hctx
);
2238 blk_free_flush_queue(hctx
->fq
);
2240 if (set
->ops
->exit_hctx
)
2241 set
->ops
->exit_hctx(hctx
, hctx_idx
);
2243 sbitmap_free(&hctx
->ctx_map
);
2246 unregister_cpu_notifier
:
2247 blk_mq_remove_cpuhp(hctx
);
2251 static void blk_mq_init_cpu_queues(struct request_queue
*q
,
2252 unsigned int nr_hw_queues
)
2256 for_each_possible_cpu(i
) {
2257 struct blk_mq_ctx
*__ctx
= per_cpu_ptr(q
->queue_ctx
, i
);
2258 struct blk_mq_hw_ctx
*hctx
;
2261 spin_lock_init(&__ctx
->lock
);
2262 INIT_LIST_HEAD(&__ctx
->rq_list
);
2266 * Set local node, IFF we have more than one hw queue. If
2267 * not, we remain on the home node of the device
2269 hctx
= blk_mq_map_queue(q
, i
);
2270 if (nr_hw_queues
> 1 && hctx
->numa_node
== NUMA_NO_NODE
)
2271 hctx
->numa_node
= local_memory_node(cpu_to_node(i
));
2275 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set
*set
, int hctx_idx
)
2279 set
->tags
[hctx_idx
] = blk_mq_alloc_rq_map(set
, hctx_idx
,
2280 set
->queue_depth
, set
->reserved_tags
);
2281 if (!set
->tags
[hctx_idx
])
2284 ret
= blk_mq_alloc_rqs(set
, set
->tags
[hctx_idx
], hctx_idx
,
2289 blk_mq_free_rq_map(set
->tags
[hctx_idx
]);
2290 set
->tags
[hctx_idx
] = NULL
;
2294 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set
*set
,
2295 unsigned int hctx_idx
)
2297 if (set
->tags
[hctx_idx
]) {
2298 blk_mq_free_rqs(set
, set
->tags
[hctx_idx
], hctx_idx
);
2299 blk_mq_free_rq_map(set
->tags
[hctx_idx
]);
2300 set
->tags
[hctx_idx
] = NULL
;
2304 static void blk_mq_map_swqueue(struct request_queue
*q
)
2306 unsigned int i
, hctx_idx
;
2307 struct blk_mq_hw_ctx
*hctx
;
2308 struct blk_mq_ctx
*ctx
;
2309 struct blk_mq_tag_set
*set
= q
->tag_set
;
2312 * Avoid others reading imcomplete hctx->cpumask through sysfs
2314 mutex_lock(&q
->sysfs_lock
);
2316 queue_for_each_hw_ctx(q
, hctx
, i
) {
2317 cpumask_clear(hctx
->cpumask
);
2319 hctx
->dispatch_from
= NULL
;
2323 * Map software to hardware queues.
2325 * If the cpu isn't present, the cpu is mapped to first hctx.
2327 for_each_possible_cpu(i
) {
2328 hctx_idx
= q
->mq_map
[i
];
2329 /* unmapped hw queue can be remapped after CPU topo changed */
2330 if (!set
->tags
[hctx_idx
] &&
2331 !__blk_mq_alloc_rq_map(set
, hctx_idx
)) {
2333 * If tags initialization fail for some hctx,
2334 * that hctx won't be brought online. In this
2335 * case, remap the current ctx to hctx[0] which
2336 * is guaranteed to always have tags allocated
2341 ctx
= per_cpu_ptr(q
->queue_ctx
, i
);
2342 hctx
= blk_mq_map_queue(q
, i
);
2344 cpumask_set_cpu(i
, hctx
->cpumask
);
2345 ctx
->index_hw
= hctx
->nr_ctx
;
2346 hctx
->ctxs
[hctx
->nr_ctx
++] = ctx
;
2349 mutex_unlock(&q
->sysfs_lock
);
2351 queue_for_each_hw_ctx(q
, hctx
, i
) {
2353 * If no software queues are mapped to this hardware queue,
2354 * disable it and free the request entries.
2356 if (!hctx
->nr_ctx
) {
2357 /* Never unmap queue 0. We need it as a
2358 * fallback in case of a new remap fails
2361 if (i
&& set
->tags
[i
])
2362 blk_mq_free_map_and_requests(set
, i
);
2368 hctx
->tags
= set
->tags
[i
];
2369 WARN_ON(!hctx
->tags
);
2372 * Set the map size to the number of mapped software queues.
2373 * This is more accurate and more efficient than looping
2374 * over all possibly mapped software queues.
2376 sbitmap_resize(&hctx
->ctx_map
, hctx
->nr_ctx
);
2379 * Initialize batch roundrobin counts
2381 hctx
->next_cpu
= blk_mq_first_mapped_cpu(hctx
);
2382 hctx
->next_cpu_batch
= BLK_MQ_CPU_WORK_BATCH
;
2387 * Caller needs to ensure that we're either frozen/quiesced, or that
2388 * the queue isn't live yet.
2390 static void queue_set_hctx_shared(struct request_queue
*q
, bool shared
)
2392 struct blk_mq_hw_ctx
*hctx
;
2395 queue_for_each_hw_ctx(q
, hctx
, i
) {
2397 hctx
->flags
|= BLK_MQ_F_TAG_SHARED
;
2399 hctx
->flags
&= ~BLK_MQ_F_TAG_SHARED
;
2403 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set
*set
,
2406 struct request_queue
*q
;
2408 lockdep_assert_held(&set
->tag_list_lock
);
2410 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
) {
2411 blk_mq_freeze_queue(q
);
2412 queue_set_hctx_shared(q
, shared
);
2413 blk_mq_unfreeze_queue(q
);
2417 static void blk_mq_del_queue_tag_set(struct request_queue
*q
)
2419 struct blk_mq_tag_set
*set
= q
->tag_set
;
2421 mutex_lock(&set
->tag_list_lock
);
2422 list_del_rcu(&q
->tag_set_list
);
2423 if (list_is_singular(&set
->tag_list
)) {
2424 /* just transitioned to unshared */
2425 set
->flags
&= ~BLK_MQ_F_TAG_SHARED
;
2426 /* update existing queue */
2427 blk_mq_update_tag_set_depth(set
, false);
2429 mutex_unlock(&set
->tag_list_lock
);
2430 INIT_LIST_HEAD(&q
->tag_set_list
);
2433 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set
*set
,
2434 struct request_queue
*q
)
2438 mutex_lock(&set
->tag_list_lock
);
2441 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2443 if (!list_empty(&set
->tag_list
) &&
2444 !(set
->flags
& BLK_MQ_F_TAG_SHARED
)) {
2445 set
->flags
|= BLK_MQ_F_TAG_SHARED
;
2446 /* update existing queue */
2447 blk_mq_update_tag_set_depth(set
, true);
2449 if (set
->flags
& BLK_MQ_F_TAG_SHARED
)
2450 queue_set_hctx_shared(q
, true);
2451 list_add_tail_rcu(&q
->tag_set_list
, &set
->tag_list
);
2453 mutex_unlock(&set
->tag_list_lock
);
2457 * It is the actual release handler for mq, but we do it from
2458 * request queue's release handler for avoiding use-after-free
2459 * and headache because q->mq_kobj shouldn't have been introduced,
2460 * but we can't group ctx/kctx kobj without it.
2462 void blk_mq_release(struct request_queue
*q
)
2464 struct blk_mq_hw_ctx
*hctx
;
2467 /* hctx kobj stays in hctx */
2468 queue_for_each_hw_ctx(q
, hctx
, i
) {
2471 kobject_put(&hctx
->kobj
);
2476 kfree(q
->queue_hw_ctx
);
2479 * release .mq_kobj and sw queue's kobject now because
2480 * both share lifetime with request queue.
2482 blk_mq_sysfs_deinit(q
);
2484 free_percpu(q
->queue_ctx
);
2487 struct request_queue
*blk_mq_init_queue(struct blk_mq_tag_set
*set
)
2489 struct request_queue
*uninit_q
, *q
;
2491 uninit_q
= blk_alloc_queue_node(GFP_KERNEL
, set
->numa_node
, NULL
);
2493 return ERR_PTR(-ENOMEM
);
2495 q
= blk_mq_init_allocated_queue(set
, uninit_q
);
2497 blk_cleanup_queue(uninit_q
);
2501 EXPORT_SYMBOL(blk_mq_init_queue
);
2503 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set
*tag_set
)
2505 int hw_ctx_size
= sizeof(struct blk_mq_hw_ctx
);
2507 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx
, srcu
),
2508 __alignof__(struct blk_mq_hw_ctx
)) !=
2509 sizeof(struct blk_mq_hw_ctx
));
2511 if (tag_set
->flags
& BLK_MQ_F_BLOCKING
)
2512 hw_ctx_size
+= sizeof(struct srcu_struct
);
2517 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set
*set
,
2518 struct request_queue
*q
)
2521 struct blk_mq_hw_ctx
**hctxs
= q
->queue_hw_ctx
;
2523 blk_mq_sysfs_unregister(q
);
2525 /* protect against switching io scheduler */
2526 mutex_lock(&q
->sysfs_lock
);
2527 for (i
= 0; i
< set
->nr_hw_queues
; i
++) {
2533 node
= blk_mq_hw_queue_to_node(q
->mq_map
, i
);
2534 hctxs
[i
] = kzalloc_node(blk_mq_hw_ctx_size(set
),
2535 GFP_NOIO
| __GFP_NOWARN
| __GFP_NORETRY
,
2540 if (!zalloc_cpumask_var_node(&hctxs
[i
]->cpumask
,
2541 GFP_NOIO
| __GFP_NOWARN
| __GFP_NORETRY
,
2548 atomic_set(&hctxs
[i
]->nr_active
, 0);
2549 hctxs
[i
]->numa_node
= node
;
2550 hctxs
[i
]->queue_num
= i
;
2552 if (blk_mq_init_hctx(q
, set
, hctxs
[i
], i
)) {
2553 free_cpumask_var(hctxs
[i
]->cpumask
);
2558 blk_mq_hctx_kobj_init(hctxs
[i
]);
2560 for (j
= i
; j
< q
->nr_hw_queues
; j
++) {
2561 struct blk_mq_hw_ctx
*hctx
= hctxs
[j
];
2565 blk_mq_free_map_and_requests(set
, j
);
2566 blk_mq_exit_hctx(q
, set
, hctx
, j
);
2567 kobject_put(&hctx
->kobj
);
2572 q
->nr_hw_queues
= i
;
2573 mutex_unlock(&q
->sysfs_lock
);
2574 blk_mq_sysfs_register(q
);
2577 struct request_queue
*blk_mq_init_allocated_queue(struct blk_mq_tag_set
*set
,
2578 struct request_queue
*q
)
2580 /* mark the queue as mq asap */
2581 q
->mq_ops
= set
->ops
;
2583 q
->poll_cb
= blk_stat_alloc_callback(blk_mq_poll_stats_fn
,
2584 blk_mq_poll_stats_bkt
,
2585 BLK_MQ_POLL_STATS_BKTS
, q
);
2589 q
->queue_ctx
= alloc_percpu(struct blk_mq_ctx
);
2593 /* init q->mq_kobj and sw queues' kobjects */
2594 blk_mq_sysfs_init(q
);
2596 q
->queue_hw_ctx
= kcalloc_node(nr_cpu_ids
, sizeof(*(q
->queue_hw_ctx
)),
2597 GFP_KERNEL
, set
->numa_node
);
2598 if (!q
->queue_hw_ctx
)
2601 q
->mq_map
= set
->mq_map
;
2603 blk_mq_realloc_hw_ctxs(set
, q
);
2604 if (!q
->nr_hw_queues
)
2607 INIT_WORK(&q
->timeout_work
, blk_mq_timeout_work
);
2608 blk_queue_rq_timeout(q
, set
->timeout
? set
->timeout
: 30 * HZ
);
2610 q
->nr_queues
= nr_cpu_ids
;
2612 q
->queue_flags
|= QUEUE_FLAG_MQ_DEFAULT
;
2614 if (!(set
->flags
& BLK_MQ_F_SG_MERGE
))
2615 queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE
, q
);
2617 q
->sg_reserved_size
= INT_MAX
;
2619 INIT_DELAYED_WORK(&q
->requeue_work
, blk_mq_requeue_work
);
2620 INIT_LIST_HEAD(&q
->requeue_list
);
2621 spin_lock_init(&q
->requeue_lock
);
2623 blk_queue_make_request(q
, blk_mq_make_request
);
2624 if (q
->mq_ops
->poll
)
2625 q
->poll_fn
= blk_mq_poll
;
2628 * Do this after blk_queue_make_request() overrides it...
2630 q
->nr_requests
= set
->queue_depth
;
2633 * Default to classic polling
2637 if (set
->ops
->complete
)
2638 blk_queue_softirq_done(q
, set
->ops
->complete
);
2640 blk_mq_init_cpu_queues(q
, set
->nr_hw_queues
);
2641 blk_mq_add_queue_tag_set(set
, q
);
2642 blk_mq_map_swqueue(q
);
2644 if (!(set
->flags
& BLK_MQ_F_NO_SCHED
)) {
2647 ret
= elevator_init_mq(q
);
2649 return ERR_PTR(ret
);
2655 kfree(q
->queue_hw_ctx
);
2657 free_percpu(q
->queue_ctx
);
2660 return ERR_PTR(-ENOMEM
);
2662 EXPORT_SYMBOL(blk_mq_init_allocated_queue
);
2664 /* tags can _not_ be used after returning from blk_mq_exit_queue */
2665 void blk_mq_exit_queue(struct request_queue
*q
)
2667 struct blk_mq_tag_set
*set
= q
->tag_set
;
2669 blk_mq_del_queue_tag_set(q
);
2670 blk_mq_exit_hw_queues(q
, set
, set
->nr_hw_queues
);
2673 /* Basically redo blk_mq_init_queue with queue frozen */
2674 static void blk_mq_queue_reinit(struct request_queue
*q
)
2676 WARN_ON_ONCE(!atomic_read(&q
->mq_freeze_depth
));
2678 blk_mq_debugfs_unregister_hctxs(q
);
2679 blk_mq_sysfs_unregister(q
);
2682 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2683 * we should change hctx numa_node according to the new topology (this
2684 * involves freeing and re-allocating memory, worth doing?)
2686 blk_mq_map_swqueue(q
);
2688 blk_mq_sysfs_register(q
);
2689 blk_mq_debugfs_register_hctxs(q
);
2692 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set
*set
)
2696 for (i
= 0; i
< set
->nr_hw_queues
; i
++)
2697 if (!__blk_mq_alloc_rq_map(set
, i
))
2704 blk_mq_free_rq_map(set
->tags
[i
]);
2710 * Allocate the request maps associated with this tag_set. Note that this
2711 * may reduce the depth asked for, if memory is tight. set->queue_depth
2712 * will be updated to reflect the allocated depth.
2714 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set
*set
)
2719 depth
= set
->queue_depth
;
2721 err
= __blk_mq_alloc_rq_maps(set
);
2725 set
->queue_depth
>>= 1;
2726 if (set
->queue_depth
< set
->reserved_tags
+ BLK_MQ_TAG_MIN
) {
2730 } while (set
->queue_depth
);
2732 if (!set
->queue_depth
|| err
) {
2733 pr_err("blk-mq: failed to allocate request map\n");
2737 if (depth
!= set
->queue_depth
)
2738 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2739 depth
, set
->queue_depth
);
2744 static int blk_mq_update_queue_map(struct blk_mq_tag_set
*set
)
2746 if (set
->ops
->map_queues
) {
2748 * transport .map_queues is usually done in the following
2751 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
2752 * mask = get_cpu_mask(queue)
2753 * for_each_cpu(cpu, mask)
2754 * set->mq_map[cpu] = queue;
2757 * When we need to remap, the table has to be cleared for
2758 * killing stale mapping since one CPU may not be mapped
2761 blk_mq_clear_mq_map(set
);
2763 return set
->ops
->map_queues(set
);
2765 return blk_mq_map_queues(set
);
2769 * Alloc a tag set to be associated with one or more request queues.
2770 * May fail with EINVAL for various error conditions. May adjust the
2771 * requested depth down, if it's too large. In that case, the set
2772 * value will be stored in set->queue_depth.
2774 int blk_mq_alloc_tag_set(struct blk_mq_tag_set
*set
)
2778 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH
> 1 << BLK_MQ_UNIQUE_TAG_BITS
);
2780 if (!set
->nr_hw_queues
)
2782 if (!set
->queue_depth
)
2784 if (set
->queue_depth
< set
->reserved_tags
+ BLK_MQ_TAG_MIN
)
2787 if (!set
->ops
->queue_rq
)
2790 if (!set
->ops
->get_budget
^ !set
->ops
->put_budget
)
2793 if (set
->queue_depth
> BLK_MQ_MAX_DEPTH
) {
2794 pr_info("blk-mq: reduced tag depth to %u\n",
2796 set
->queue_depth
= BLK_MQ_MAX_DEPTH
;
2800 * If a crashdump is active, then we are potentially in a very
2801 * memory constrained environment. Limit us to 1 queue and
2802 * 64 tags to prevent using too much memory.
2804 if (is_kdump_kernel()) {
2805 set
->nr_hw_queues
= 1;
2806 set
->queue_depth
= min(64U, set
->queue_depth
);
2809 * There is no use for more h/w queues than cpus.
2811 if (set
->nr_hw_queues
> nr_cpu_ids
)
2812 set
->nr_hw_queues
= nr_cpu_ids
;
2814 set
->tags
= kcalloc_node(nr_cpu_ids
, sizeof(struct blk_mq_tags
*),
2815 GFP_KERNEL
, set
->numa_node
);
2820 set
->mq_map
= kcalloc_node(nr_cpu_ids
, sizeof(*set
->mq_map
),
2821 GFP_KERNEL
, set
->numa_node
);
2825 ret
= blk_mq_update_queue_map(set
);
2827 goto out_free_mq_map
;
2829 ret
= blk_mq_alloc_rq_maps(set
);
2831 goto out_free_mq_map
;
2833 mutex_init(&set
->tag_list_lock
);
2834 INIT_LIST_HEAD(&set
->tag_list
);
2846 EXPORT_SYMBOL(blk_mq_alloc_tag_set
);
2848 void blk_mq_free_tag_set(struct blk_mq_tag_set
*set
)
2852 for (i
= 0; i
< nr_cpu_ids
; i
++)
2853 blk_mq_free_map_and_requests(set
, i
);
2861 EXPORT_SYMBOL(blk_mq_free_tag_set
);
2863 int blk_mq_update_nr_requests(struct request_queue
*q
, unsigned int nr
)
2865 struct blk_mq_tag_set
*set
= q
->tag_set
;
2866 struct blk_mq_hw_ctx
*hctx
;
2872 blk_mq_freeze_queue(q
);
2873 blk_mq_quiesce_queue(q
);
2876 queue_for_each_hw_ctx(q
, hctx
, i
) {
2880 * If we're using an MQ scheduler, just update the scheduler
2881 * queue depth. This is similar to what the old code would do.
2883 if (!hctx
->sched_tags
) {
2884 ret
= blk_mq_tag_update_depth(hctx
, &hctx
->tags
, nr
,
2887 ret
= blk_mq_tag_update_depth(hctx
, &hctx
->sched_tags
,
2892 if (q
->elevator
&& q
->elevator
->type
->ops
.mq
.depth_updated
)
2893 q
->elevator
->type
->ops
.mq
.depth_updated(hctx
);
2897 q
->nr_requests
= nr
;
2899 blk_mq_unquiesce_queue(q
);
2900 blk_mq_unfreeze_queue(q
);
2906 * request_queue and elevator_type pair.
2907 * It is just used by __blk_mq_update_nr_hw_queues to cache
2908 * the elevator_type associated with a request_queue.
2910 struct blk_mq_qe_pair
{
2911 struct list_head node
;
2912 struct request_queue
*q
;
2913 struct elevator_type
*type
;
2917 * Cache the elevator_type in qe pair list and switch the
2918 * io scheduler to 'none'
2920 static bool blk_mq_elv_switch_none(struct list_head
*head
,
2921 struct request_queue
*q
)
2923 struct blk_mq_qe_pair
*qe
;
2928 qe
= kmalloc(sizeof(*qe
), GFP_NOIO
| __GFP_NOWARN
| __GFP_NORETRY
);
2932 INIT_LIST_HEAD(&qe
->node
);
2934 qe
->type
= q
->elevator
->type
;
2935 list_add(&qe
->node
, head
);
2937 mutex_lock(&q
->sysfs_lock
);
2939 * After elevator_switch_mq, the previous elevator_queue will be
2940 * released by elevator_release. The reference of the io scheduler
2941 * module get by elevator_get will also be put. So we need to get
2942 * a reference of the io scheduler module here to prevent it to be
2945 __module_get(qe
->type
->elevator_owner
);
2946 elevator_switch_mq(q
, NULL
);
2947 mutex_unlock(&q
->sysfs_lock
);
2952 static void blk_mq_elv_switch_back(struct list_head
*head
,
2953 struct request_queue
*q
)
2955 struct blk_mq_qe_pair
*qe
;
2956 struct elevator_type
*t
= NULL
;
2958 list_for_each_entry(qe
, head
, node
)
2967 list_del(&qe
->node
);
2970 mutex_lock(&q
->sysfs_lock
);
2971 elevator_switch_mq(q
, t
);
2972 mutex_unlock(&q
->sysfs_lock
);
2975 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set
*set
,
2978 struct request_queue
*q
;
2981 lockdep_assert_held(&set
->tag_list_lock
);
2983 if (nr_hw_queues
> nr_cpu_ids
)
2984 nr_hw_queues
= nr_cpu_ids
;
2985 if (nr_hw_queues
< 1 || nr_hw_queues
== set
->nr_hw_queues
)
2988 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
)
2989 blk_mq_freeze_queue(q
);
2991 * Sync with blk_mq_queue_tag_busy_iter.
2995 * Switch IO scheduler to 'none', cleaning up the data associated
2996 * with the previous scheduler. We will switch back once we are done
2997 * updating the new sw to hw queue mappings.
2999 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
)
3000 if (!blk_mq_elv_switch_none(&head
, q
))
3003 set
->nr_hw_queues
= nr_hw_queues
;
3004 blk_mq_update_queue_map(set
);
3005 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
) {
3006 blk_mq_realloc_hw_ctxs(set
, q
);
3007 blk_mq_queue_reinit(q
);
3011 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
)
3012 blk_mq_elv_switch_back(&head
, q
);
3014 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
)
3015 blk_mq_unfreeze_queue(q
);
3018 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set
*set
, int nr_hw_queues
)
3020 mutex_lock(&set
->tag_list_lock
);
3021 __blk_mq_update_nr_hw_queues(set
, nr_hw_queues
);
3022 mutex_unlock(&set
->tag_list_lock
);
3024 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues
);
3026 /* Enable polling stats and return whether they were already enabled. */
3027 static bool blk_poll_stats_enable(struct request_queue
*q
)
3029 if (test_bit(QUEUE_FLAG_POLL_STATS
, &q
->queue_flags
) ||
3030 blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS
, q
))
3032 blk_stat_add_callback(q
, q
->poll_cb
);
3036 static void blk_mq_poll_stats_start(struct request_queue
*q
)
3039 * We don't arm the callback if polling stats are not enabled or the
3040 * callback is already active.
3042 if (!test_bit(QUEUE_FLAG_POLL_STATS
, &q
->queue_flags
) ||
3043 blk_stat_is_active(q
->poll_cb
))
3046 blk_stat_activate_msecs(q
->poll_cb
, 100);
3049 static void blk_mq_poll_stats_fn(struct blk_stat_callback
*cb
)
3051 struct request_queue
*q
= cb
->data
;
3054 for (bucket
= 0; bucket
< BLK_MQ_POLL_STATS_BKTS
; bucket
++) {
3055 if (cb
->stat
[bucket
].nr_samples
)
3056 q
->poll_stat
[bucket
] = cb
->stat
[bucket
];
3060 static unsigned long blk_mq_poll_nsecs(struct request_queue
*q
,
3061 struct blk_mq_hw_ctx
*hctx
,
3064 unsigned long ret
= 0;
3068 * If stats collection isn't on, don't sleep but turn it on for
3071 if (!blk_poll_stats_enable(q
))
3075 * As an optimistic guess, use half of the mean service time
3076 * for this type of request. We can (and should) make this smarter.
3077 * For instance, if the completion latencies are tight, we can
3078 * get closer than just half the mean. This is especially
3079 * important on devices where the completion latencies are longer
3080 * than ~10 usec. We do use the stats for the relevant IO size
3081 * if available which does lead to better estimates.
3083 bucket
= blk_mq_poll_stats_bkt(rq
);
3087 if (q
->poll_stat
[bucket
].nr_samples
)
3088 ret
= (q
->poll_stat
[bucket
].mean
+ 1) / 2;
3093 static bool blk_mq_poll_hybrid_sleep(struct request_queue
*q
,
3094 struct blk_mq_hw_ctx
*hctx
,
3097 struct hrtimer_sleeper hs
;
3098 enum hrtimer_mode mode
;
3102 if (rq
->rq_flags
& RQF_MQ_POLL_SLEPT
)
3108 * -1: don't ever hybrid sleep
3109 * 0: use half of prev avg
3110 * >0: use this specific value
3112 if (q
->poll_nsec
== -1)
3114 else if (q
->poll_nsec
> 0)
3115 nsecs
= q
->poll_nsec
;
3117 nsecs
= blk_mq_poll_nsecs(q
, hctx
, rq
);
3122 rq
->rq_flags
|= RQF_MQ_POLL_SLEPT
;
3125 * This will be replaced with the stats tracking code, using
3126 * 'avg_completion_time / 2' as the pre-sleep target.
3130 mode
= HRTIMER_MODE_REL
;
3131 hrtimer_init_on_stack(&hs
.timer
, CLOCK_MONOTONIC
, mode
);
3132 hrtimer_set_expires(&hs
.timer
, kt
);
3134 hrtimer_init_sleeper(&hs
, current
);
3136 if (blk_mq_rq_state(rq
) == MQ_RQ_COMPLETE
)
3138 set_current_state(TASK_UNINTERRUPTIBLE
);
3139 hrtimer_start_expires(&hs
.timer
, mode
);
3142 hrtimer_cancel(&hs
.timer
);
3143 mode
= HRTIMER_MODE_ABS
;
3144 } while (hs
.task
&& !signal_pending(current
));
3146 __set_current_state(TASK_RUNNING
);
3147 destroy_hrtimer_on_stack(&hs
.timer
);
3151 static bool __blk_mq_poll(struct blk_mq_hw_ctx
*hctx
, struct request
*rq
)
3153 struct request_queue
*q
= hctx
->queue
;
3157 * If we sleep, have the caller restart the poll loop to reset
3158 * the state. Like for the other success return cases, the
3159 * caller is responsible for checking if the IO completed. If
3160 * the IO isn't complete, we'll get called again and will go
3161 * straight to the busy poll loop.
3163 if (blk_mq_poll_hybrid_sleep(q
, hctx
, rq
))
3166 hctx
->poll_considered
++;
3168 state
= current
->state
;
3169 while (!need_resched()) {
3172 hctx
->poll_invoked
++;
3174 ret
= q
->mq_ops
->poll(hctx
, rq
->tag
);
3176 hctx
->poll_success
++;
3177 set_current_state(TASK_RUNNING
);
3181 if (signal_pending_state(state
, current
))
3182 set_current_state(TASK_RUNNING
);
3184 if (current
->state
== TASK_RUNNING
)
3191 __set_current_state(TASK_RUNNING
);
3195 static bool blk_mq_poll(struct request_queue
*q
, blk_qc_t cookie
)
3197 struct blk_mq_hw_ctx
*hctx
;
3200 if (!test_bit(QUEUE_FLAG_POLL
, &q
->queue_flags
))
3203 hctx
= q
->queue_hw_ctx
[blk_qc_t_to_queue_num(cookie
)];
3204 if (!blk_qc_t_is_internal(cookie
))
3205 rq
= blk_mq_tag_to_rq(hctx
->tags
, blk_qc_t_to_tag(cookie
));
3207 rq
= blk_mq_tag_to_rq(hctx
->sched_tags
, blk_qc_t_to_tag(cookie
));
3209 * With scheduling, if the request has completed, we'll
3210 * get a NULL return here, as we clear the sched tag when
3211 * that happens. The request still remains valid, like always,
3212 * so we should be safe with just the NULL check.
3218 return __blk_mq_poll(hctx
, rq
);
3221 static int __init
blk_mq_init(void)
3223 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD
, "block/mq:dead", NULL
,
3224 blk_mq_hctx_notify_dead
);
3227 subsys_initcall(blk_mq_init
);