Linux 4.14.158
[linux/fpc-iii.git] / mm / hugetlb.c
blob310656b4ede612635e0169ebdbabef81933fb5c7
1 /*
2 * Generic hugetlb support.
3 * (C) Nadia Yvette Chambers, April 2004
4 */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/mm.h>
8 #include <linux/seq_file.h>
9 #include <linux/sysctl.h>
10 #include <linux/highmem.h>
11 #include <linux/mmu_notifier.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/compiler.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/mmdebug.h>
22 #include <linux/sched/signal.h>
23 #include <linux/rmap.h>
24 #include <linux/string_helpers.h>
25 #include <linux/swap.h>
26 #include <linux/swapops.h>
27 #include <linux/jhash.h>
29 #include <asm/page.h>
30 #include <asm/pgtable.h>
31 #include <asm/tlb.h>
33 #include <linux/io.h>
34 #include <linux/hugetlb.h>
35 #include <linux/hugetlb_cgroup.h>
36 #include <linux/node.h>
37 #include <linux/userfaultfd_k.h>
38 #include "internal.h"
40 int hugepages_treat_as_movable;
42 int hugetlb_max_hstate __read_mostly;
43 unsigned int default_hstate_idx;
44 struct hstate hstates[HUGE_MAX_HSTATE];
46 * Minimum page order among possible hugepage sizes, set to a proper value
47 * at boot time.
49 static unsigned int minimum_order __read_mostly = UINT_MAX;
51 __initdata LIST_HEAD(huge_boot_pages);
53 /* for command line parsing */
54 static struct hstate * __initdata parsed_hstate;
55 static unsigned long __initdata default_hstate_max_huge_pages;
56 static unsigned long __initdata default_hstate_size;
57 static bool __initdata parsed_valid_hugepagesz = true;
60 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
61 * free_huge_pages, and surplus_huge_pages.
63 DEFINE_SPINLOCK(hugetlb_lock);
66 * Serializes faults on the same logical page. This is used to
67 * prevent spurious OOMs when the hugepage pool is fully utilized.
69 static int num_fault_mutexes;
70 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
72 /* Forward declaration */
73 static int hugetlb_acct_memory(struct hstate *h, long delta);
75 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
77 bool free = (spool->count == 0) && (spool->used_hpages == 0);
79 spin_unlock(&spool->lock);
81 /* If no pages are used, and no other handles to the subpool
82 * remain, give up any reservations mased on minimum size and
83 * free the subpool */
84 if (free) {
85 if (spool->min_hpages != -1)
86 hugetlb_acct_memory(spool->hstate,
87 -spool->min_hpages);
88 kfree(spool);
92 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
93 long min_hpages)
95 struct hugepage_subpool *spool;
97 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
98 if (!spool)
99 return NULL;
101 spin_lock_init(&spool->lock);
102 spool->count = 1;
103 spool->max_hpages = max_hpages;
104 spool->hstate = h;
105 spool->min_hpages = min_hpages;
107 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
108 kfree(spool);
109 return NULL;
111 spool->rsv_hpages = min_hpages;
113 return spool;
116 void hugepage_put_subpool(struct hugepage_subpool *spool)
118 spin_lock(&spool->lock);
119 BUG_ON(!spool->count);
120 spool->count--;
121 unlock_or_release_subpool(spool);
125 * Subpool accounting for allocating and reserving pages.
126 * Return -ENOMEM if there are not enough resources to satisfy the
127 * the request. Otherwise, return the number of pages by which the
128 * global pools must be adjusted (upward). The returned value may
129 * only be different than the passed value (delta) in the case where
130 * a subpool minimum size must be manitained.
132 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
133 long delta)
135 long ret = delta;
137 if (!spool)
138 return ret;
140 spin_lock(&spool->lock);
142 if (spool->max_hpages != -1) { /* maximum size accounting */
143 if ((spool->used_hpages + delta) <= spool->max_hpages)
144 spool->used_hpages += delta;
145 else {
146 ret = -ENOMEM;
147 goto unlock_ret;
151 /* minimum size accounting */
152 if (spool->min_hpages != -1 && spool->rsv_hpages) {
153 if (delta > spool->rsv_hpages) {
155 * Asking for more reserves than those already taken on
156 * behalf of subpool. Return difference.
158 ret = delta - spool->rsv_hpages;
159 spool->rsv_hpages = 0;
160 } else {
161 ret = 0; /* reserves already accounted for */
162 spool->rsv_hpages -= delta;
166 unlock_ret:
167 spin_unlock(&spool->lock);
168 return ret;
172 * Subpool accounting for freeing and unreserving pages.
173 * Return the number of global page reservations that must be dropped.
174 * The return value may only be different than the passed value (delta)
175 * in the case where a subpool minimum size must be maintained.
177 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
178 long delta)
180 long ret = delta;
182 if (!spool)
183 return delta;
185 spin_lock(&spool->lock);
187 if (spool->max_hpages != -1) /* maximum size accounting */
188 spool->used_hpages -= delta;
190 /* minimum size accounting */
191 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
192 if (spool->rsv_hpages + delta <= spool->min_hpages)
193 ret = 0;
194 else
195 ret = spool->rsv_hpages + delta - spool->min_hpages;
197 spool->rsv_hpages += delta;
198 if (spool->rsv_hpages > spool->min_hpages)
199 spool->rsv_hpages = spool->min_hpages;
203 * If hugetlbfs_put_super couldn't free spool due to an outstanding
204 * quota reference, free it now.
206 unlock_or_release_subpool(spool);
208 return ret;
211 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
213 return HUGETLBFS_SB(inode->i_sb)->spool;
216 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
218 return subpool_inode(file_inode(vma->vm_file));
222 * Region tracking -- allows tracking of reservations and instantiated pages
223 * across the pages in a mapping.
225 * The region data structures are embedded into a resv_map and protected
226 * by a resv_map's lock. The set of regions within the resv_map represent
227 * reservations for huge pages, or huge pages that have already been
228 * instantiated within the map. The from and to elements are huge page
229 * indicies into the associated mapping. from indicates the starting index
230 * of the region. to represents the first index past the end of the region.
232 * For example, a file region structure with from == 0 and to == 4 represents
233 * four huge pages in a mapping. It is important to note that the to element
234 * represents the first element past the end of the region. This is used in
235 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
237 * Interval notation of the form [from, to) will be used to indicate that
238 * the endpoint from is inclusive and to is exclusive.
240 struct file_region {
241 struct list_head link;
242 long from;
243 long to;
247 * Add the huge page range represented by [f, t) to the reserve
248 * map. In the normal case, existing regions will be expanded
249 * to accommodate the specified range. Sufficient regions should
250 * exist for expansion due to the previous call to region_chg
251 * with the same range. However, it is possible that region_del
252 * could have been called after region_chg and modifed the map
253 * in such a way that no region exists to be expanded. In this
254 * case, pull a region descriptor from the cache associated with
255 * the map and use that for the new range.
257 * Return the number of new huge pages added to the map. This
258 * number is greater than or equal to zero.
260 static long region_add(struct resv_map *resv, long f, long t)
262 struct list_head *head = &resv->regions;
263 struct file_region *rg, *nrg, *trg;
264 long add = 0;
266 spin_lock(&resv->lock);
267 /* Locate the region we are either in or before. */
268 list_for_each_entry(rg, head, link)
269 if (f <= rg->to)
270 break;
273 * If no region exists which can be expanded to include the
274 * specified range, the list must have been modified by an
275 * interleving call to region_del(). Pull a region descriptor
276 * from the cache and use it for this range.
278 if (&rg->link == head || t < rg->from) {
279 VM_BUG_ON(resv->region_cache_count <= 0);
281 resv->region_cache_count--;
282 nrg = list_first_entry(&resv->region_cache, struct file_region,
283 link);
284 list_del(&nrg->link);
286 nrg->from = f;
287 nrg->to = t;
288 list_add(&nrg->link, rg->link.prev);
290 add += t - f;
291 goto out_locked;
294 /* Round our left edge to the current segment if it encloses us. */
295 if (f > rg->from)
296 f = rg->from;
298 /* Check for and consume any regions we now overlap with. */
299 nrg = rg;
300 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
301 if (&rg->link == head)
302 break;
303 if (rg->from > t)
304 break;
306 /* If this area reaches higher then extend our area to
307 * include it completely. If this is not the first area
308 * which we intend to reuse, free it. */
309 if (rg->to > t)
310 t = rg->to;
311 if (rg != nrg) {
312 /* Decrement return value by the deleted range.
313 * Another range will span this area so that by
314 * end of routine add will be >= zero
316 add -= (rg->to - rg->from);
317 list_del(&rg->link);
318 kfree(rg);
322 add += (nrg->from - f); /* Added to beginning of region */
323 nrg->from = f;
324 add += t - nrg->to; /* Added to end of region */
325 nrg->to = t;
327 out_locked:
328 resv->adds_in_progress--;
329 spin_unlock(&resv->lock);
330 VM_BUG_ON(add < 0);
331 return add;
335 * Examine the existing reserve map and determine how many
336 * huge pages in the specified range [f, t) are NOT currently
337 * represented. This routine is called before a subsequent
338 * call to region_add that will actually modify the reserve
339 * map to add the specified range [f, t). region_chg does
340 * not change the number of huge pages represented by the
341 * map. However, if the existing regions in the map can not
342 * be expanded to represent the new range, a new file_region
343 * structure is added to the map as a placeholder. This is
344 * so that the subsequent region_add call will have all the
345 * regions it needs and will not fail.
347 * Upon entry, region_chg will also examine the cache of region descriptors
348 * associated with the map. If there are not enough descriptors cached, one
349 * will be allocated for the in progress add operation.
351 * Returns the number of huge pages that need to be added to the existing
352 * reservation map for the range [f, t). This number is greater or equal to
353 * zero. -ENOMEM is returned if a new file_region structure or cache entry
354 * is needed and can not be allocated.
356 static long region_chg(struct resv_map *resv, long f, long t)
358 struct list_head *head = &resv->regions;
359 struct file_region *rg, *nrg = NULL;
360 long chg = 0;
362 retry:
363 spin_lock(&resv->lock);
364 retry_locked:
365 resv->adds_in_progress++;
368 * Check for sufficient descriptors in the cache to accommodate
369 * the number of in progress add operations.
371 if (resv->adds_in_progress > resv->region_cache_count) {
372 struct file_region *trg;
374 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
375 /* Must drop lock to allocate a new descriptor. */
376 resv->adds_in_progress--;
377 spin_unlock(&resv->lock);
379 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
380 if (!trg) {
381 kfree(nrg);
382 return -ENOMEM;
385 spin_lock(&resv->lock);
386 list_add(&trg->link, &resv->region_cache);
387 resv->region_cache_count++;
388 goto retry_locked;
391 /* Locate the region we are before or in. */
392 list_for_each_entry(rg, head, link)
393 if (f <= rg->to)
394 break;
396 /* If we are below the current region then a new region is required.
397 * Subtle, allocate a new region at the position but make it zero
398 * size such that we can guarantee to record the reservation. */
399 if (&rg->link == head || t < rg->from) {
400 if (!nrg) {
401 resv->adds_in_progress--;
402 spin_unlock(&resv->lock);
403 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
404 if (!nrg)
405 return -ENOMEM;
407 nrg->from = f;
408 nrg->to = f;
409 INIT_LIST_HEAD(&nrg->link);
410 goto retry;
413 list_add(&nrg->link, rg->link.prev);
414 chg = t - f;
415 goto out_nrg;
418 /* Round our left edge to the current segment if it encloses us. */
419 if (f > rg->from)
420 f = rg->from;
421 chg = t - f;
423 /* Check for and consume any regions we now overlap with. */
424 list_for_each_entry(rg, rg->link.prev, link) {
425 if (&rg->link == head)
426 break;
427 if (rg->from > t)
428 goto out;
430 /* We overlap with this area, if it extends further than
431 * us then we must extend ourselves. Account for its
432 * existing reservation. */
433 if (rg->to > t) {
434 chg += rg->to - t;
435 t = rg->to;
437 chg -= rg->to - rg->from;
440 out:
441 spin_unlock(&resv->lock);
442 /* We already know we raced and no longer need the new region */
443 kfree(nrg);
444 return chg;
445 out_nrg:
446 spin_unlock(&resv->lock);
447 return chg;
451 * Abort the in progress add operation. The adds_in_progress field
452 * of the resv_map keeps track of the operations in progress between
453 * calls to region_chg and region_add. Operations are sometimes
454 * aborted after the call to region_chg. In such cases, region_abort
455 * is called to decrement the adds_in_progress counter.
457 * NOTE: The range arguments [f, t) are not needed or used in this
458 * routine. They are kept to make reading the calling code easier as
459 * arguments will match the associated region_chg call.
461 static void region_abort(struct resv_map *resv, long f, long t)
463 spin_lock(&resv->lock);
464 VM_BUG_ON(!resv->region_cache_count);
465 resv->adds_in_progress--;
466 spin_unlock(&resv->lock);
470 * Delete the specified range [f, t) from the reserve map. If the
471 * t parameter is LONG_MAX, this indicates that ALL regions after f
472 * should be deleted. Locate the regions which intersect [f, t)
473 * and either trim, delete or split the existing regions.
475 * Returns the number of huge pages deleted from the reserve map.
476 * In the normal case, the return value is zero or more. In the
477 * case where a region must be split, a new region descriptor must
478 * be allocated. If the allocation fails, -ENOMEM will be returned.
479 * NOTE: If the parameter t == LONG_MAX, then we will never split
480 * a region and possibly return -ENOMEM. Callers specifying
481 * t == LONG_MAX do not need to check for -ENOMEM error.
483 static long region_del(struct resv_map *resv, long f, long t)
485 struct list_head *head = &resv->regions;
486 struct file_region *rg, *trg;
487 struct file_region *nrg = NULL;
488 long del = 0;
490 retry:
491 spin_lock(&resv->lock);
492 list_for_each_entry_safe(rg, trg, head, link) {
494 * Skip regions before the range to be deleted. file_region
495 * ranges are normally of the form [from, to). However, there
496 * may be a "placeholder" entry in the map which is of the form
497 * (from, to) with from == to. Check for placeholder entries
498 * at the beginning of the range to be deleted.
500 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
501 continue;
503 if (rg->from >= t)
504 break;
506 if (f > rg->from && t < rg->to) { /* Must split region */
508 * Check for an entry in the cache before dropping
509 * lock and attempting allocation.
511 if (!nrg &&
512 resv->region_cache_count > resv->adds_in_progress) {
513 nrg = list_first_entry(&resv->region_cache,
514 struct file_region,
515 link);
516 list_del(&nrg->link);
517 resv->region_cache_count--;
520 if (!nrg) {
521 spin_unlock(&resv->lock);
522 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
523 if (!nrg)
524 return -ENOMEM;
525 goto retry;
528 del += t - f;
530 /* New entry for end of split region */
531 nrg->from = t;
532 nrg->to = rg->to;
533 INIT_LIST_HEAD(&nrg->link);
535 /* Original entry is trimmed */
536 rg->to = f;
538 list_add(&nrg->link, &rg->link);
539 nrg = NULL;
540 break;
543 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
544 del += rg->to - rg->from;
545 list_del(&rg->link);
546 kfree(rg);
547 continue;
550 if (f <= rg->from) { /* Trim beginning of region */
551 del += t - rg->from;
552 rg->from = t;
553 } else { /* Trim end of region */
554 del += rg->to - f;
555 rg->to = f;
559 spin_unlock(&resv->lock);
560 kfree(nrg);
561 return del;
565 * A rare out of memory error was encountered which prevented removal of
566 * the reserve map region for a page. The huge page itself was free'ed
567 * and removed from the page cache. This routine will adjust the subpool
568 * usage count, and the global reserve count if needed. By incrementing
569 * these counts, the reserve map entry which could not be deleted will
570 * appear as a "reserved" entry instead of simply dangling with incorrect
571 * counts.
573 void hugetlb_fix_reserve_counts(struct inode *inode)
575 struct hugepage_subpool *spool = subpool_inode(inode);
576 long rsv_adjust;
578 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
579 if (rsv_adjust) {
580 struct hstate *h = hstate_inode(inode);
582 hugetlb_acct_memory(h, 1);
587 * Count and return the number of huge pages in the reserve map
588 * that intersect with the range [f, t).
590 static long region_count(struct resv_map *resv, long f, long t)
592 struct list_head *head = &resv->regions;
593 struct file_region *rg;
594 long chg = 0;
596 spin_lock(&resv->lock);
597 /* Locate each segment we overlap with, and count that overlap. */
598 list_for_each_entry(rg, head, link) {
599 long seg_from;
600 long seg_to;
602 if (rg->to <= f)
603 continue;
604 if (rg->from >= t)
605 break;
607 seg_from = max(rg->from, f);
608 seg_to = min(rg->to, t);
610 chg += seg_to - seg_from;
612 spin_unlock(&resv->lock);
614 return chg;
618 * Convert the address within this vma to the page offset within
619 * the mapping, in pagecache page units; huge pages here.
621 static pgoff_t vma_hugecache_offset(struct hstate *h,
622 struct vm_area_struct *vma, unsigned long address)
624 return ((address - vma->vm_start) >> huge_page_shift(h)) +
625 (vma->vm_pgoff >> huge_page_order(h));
628 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
629 unsigned long address)
631 return vma_hugecache_offset(hstate_vma(vma), vma, address);
633 EXPORT_SYMBOL_GPL(linear_hugepage_index);
636 * Return the size of the pages allocated when backing a VMA. In the majority
637 * cases this will be same size as used by the page table entries.
639 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
641 struct hstate *hstate;
643 if (!is_vm_hugetlb_page(vma))
644 return PAGE_SIZE;
646 hstate = hstate_vma(vma);
648 return 1UL << huge_page_shift(hstate);
650 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
653 * Return the page size being used by the MMU to back a VMA. In the majority
654 * of cases, the page size used by the kernel matches the MMU size. On
655 * architectures where it differs, an architecture-specific version of this
656 * function is required.
658 #ifndef vma_mmu_pagesize
659 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
661 return vma_kernel_pagesize(vma);
663 #endif
666 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
667 * bits of the reservation map pointer, which are always clear due to
668 * alignment.
670 #define HPAGE_RESV_OWNER (1UL << 0)
671 #define HPAGE_RESV_UNMAPPED (1UL << 1)
672 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
675 * These helpers are used to track how many pages are reserved for
676 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
677 * is guaranteed to have their future faults succeed.
679 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
680 * the reserve counters are updated with the hugetlb_lock held. It is safe
681 * to reset the VMA at fork() time as it is not in use yet and there is no
682 * chance of the global counters getting corrupted as a result of the values.
684 * The private mapping reservation is represented in a subtly different
685 * manner to a shared mapping. A shared mapping has a region map associated
686 * with the underlying file, this region map represents the backing file
687 * pages which have ever had a reservation assigned which this persists even
688 * after the page is instantiated. A private mapping has a region map
689 * associated with the original mmap which is attached to all VMAs which
690 * reference it, this region map represents those offsets which have consumed
691 * reservation ie. where pages have been instantiated.
693 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
695 return (unsigned long)vma->vm_private_data;
698 static void set_vma_private_data(struct vm_area_struct *vma,
699 unsigned long value)
701 vma->vm_private_data = (void *)value;
704 struct resv_map *resv_map_alloc(void)
706 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
707 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
709 if (!resv_map || !rg) {
710 kfree(resv_map);
711 kfree(rg);
712 return NULL;
715 kref_init(&resv_map->refs);
716 spin_lock_init(&resv_map->lock);
717 INIT_LIST_HEAD(&resv_map->regions);
719 resv_map->adds_in_progress = 0;
721 INIT_LIST_HEAD(&resv_map->region_cache);
722 list_add(&rg->link, &resv_map->region_cache);
723 resv_map->region_cache_count = 1;
725 return resv_map;
728 void resv_map_release(struct kref *ref)
730 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
731 struct list_head *head = &resv_map->region_cache;
732 struct file_region *rg, *trg;
734 /* Clear out any active regions before we release the map. */
735 region_del(resv_map, 0, LONG_MAX);
737 /* ... and any entries left in the cache */
738 list_for_each_entry_safe(rg, trg, head, link) {
739 list_del(&rg->link);
740 kfree(rg);
743 VM_BUG_ON(resv_map->adds_in_progress);
745 kfree(resv_map);
748 static inline struct resv_map *inode_resv_map(struct inode *inode)
750 return inode->i_mapping->private_data;
753 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
755 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
756 if (vma->vm_flags & VM_MAYSHARE) {
757 struct address_space *mapping = vma->vm_file->f_mapping;
758 struct inode *inode = mapping->host;
760 return inode_resv_map(inode);
762 } else {
763 return (struct resv_map *)(get_vma_private_data(vma) &
764 ~HPAGE_RESV_MASK);
768 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
770 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
771 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
773 set_vma_private_data(vma, (get_vma_private_data(vma) &
774 HPAGE_RESV_MASK) | (unsigned long)map);
777 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
779 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
780 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
782 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
785 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
787 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
789 return (get_vma_private_data(vma) & flag) != 0;
792 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
793 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
795 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
796 if (!(vma->vm_flags & VM_MAYSHARE))
797 vma->vm_private_data = (void *)0;
800 /* Returns true if the VMA has associated reserve pages */
801 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
803 if (vma->vm_flags & VM_NORESERVE) {
805 * This address is already reserved by other process(chg == 0),
806 * so, we should decrement reserved count. Without decrementing,
807 * reserve count remains after releasing inode, because this
808 * allocated page will go into page cache and is regarded as
809 * coming from reserved pool in releasing step. Currently, we
810 * don't have any other solution to deal with this situation
811 * properly, so add work-around here.
813 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
814 return true;
815 else
816 return false;
819 /* Shared mappings always use reserves */
820 if (vma->vm_flags & VM_MAYSHARE) {
822 * We know VM_NORESERVE is not set. Therefore, there SHOULD
823 * be a region map for all pages. The only situation where
824 * there is no region map is if a hole was punched via
825 * fallocate. In this case, there really are no reverves to
826 * use. This situation is indicated if chg != 0.
828 if (chg)
829 return false;
830 else
831 return true;
835 * Only the process that called mmap() has reserves for
836 * private mappings.
838 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
840 * Like the shared case above, a hole punch or truncate
841 * could have been performed on the private mapping.
842 * Examine the value of chg to determine if reserves
843 * actually exist or were previously consumed.
844 * Very Subtle - The value of chg comes from a previous
845 * call to vma_needs_reserves(). The reserve map for
846 * private mappings has different (opposite) semantics
847 * than that of shared mappings. vma_needs_reserves()
848 * has already taken this difference in semantics into
849 * account. Therefore, the meaning of chg is the same
850 * as in the shared case above. Code could easily be
851 * combined, but keeping it separate draws attention to
852 * subtle differences.
854 if (chg)
855 return false;
856 else
857 return true;
860 return false;
863 static void enqueue_huge_page(struct hstate *h, struct page *page)
865 int nid = page_to_nid(page);
866 list_move(&page->lru, &h->hugepage_freelists[nid]);
867 h->free_huge_pages++;
868 h->free_huge_pages_node[nid]++;
871 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
873 struct page *page;
875 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
876 if (!PageHWPoison(page))
877 break;
879 * if 'non-isolated free hugepage' not found on the list,
880 * the allocation fails.
882 if (&h->hugepage_freelists[nid] == &page->lru)
883 return NULL;
884 list_move(&page->lru, &h->hugepage_activelist);
885 set_page_refcounted(page);
886 h->free_huge_pages--;
887 h->free_huge_pages_node[nid]--;
888 return page;
891 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
892 nodemask_t *nmask)
894 unsigned int cpuset_mems_cookie;
895 struct zonelist *zonelist;
896 struct zone *zone;
897 struct zoneref *z;
898 int node = -1;
900 zonelist = node_zonelist(nid, gfp_mask);
902 retry_cpuset:
903 cpuset_mems_cookie = read_mems_allowed_begin();
904 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
905 struct page *page;
907 if (!cpuset_zone_allowed(zone, gfp_mask))
908 continue;
910 * no need to ask again on the same node. Pool is node rather than
911 * zone aware
913 if (zone_to_nid(zone) == node)
914 continue;
915 node = zone_to_nid(zone);
917 page = dequeue_huge_page_node_exact(h, node);
918 if (page)
919 return page;
921 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
922 goto retry_cpuset;
924 return NULL;
927 /* Movability of hugepages depends on migration support. */
928 static inline gfp_t htlb_alloc_mask(struct hstate *h)
930 if (hugepages_treat_as_movable || hugepage_migration_supported(h))
931 return GFP_HIGHUSER_MOVABLE;
932 else
933 return GFP_HIGHUSER;
936 static struct page *dequeue_huge_page_vma(struct hstate *h,
937 struct vm_area_struct *vma,
938 unsigned long address, int avoid_reserve,
939 long chg)
941 struct page *page;
942 struct mempolicy *mpol;
943 gfp_t gfp_mask;
944 nodemask_t *nodemask;
945 int nid;
948 * A child process with MAP_PRIVATE mappings created by their parent
949 * have no page reserves. This check ensures that reservations are
950 * not "stolen". The child may still get SIGKILLed
952 if (!vma_has_reserves(vma, chg) &&
953 h->free_huge_pages - h->resv_huge_pages == 0)
954 goto err;
956 /* If reserves cannot be used, ensure enough pages are in the pool */
957 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
958 goto err;
960 gfp_mask = htlb_alloc_mask(h);
961 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
962 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
963 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
964 SetPagePrivate(page);
965 h->resv_huge_pages--;
968 mpol_cond_put(mpol);
969 return page;
971 err:
972 return NULL;
976 * common helper functions for hstate_next_node_to_{alloc|free}.
977 * We may have allocated or freed a huge page based on a different
978 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
979 * be outside of *nodes_allowed. Ensure that we use an allowed
980 * node for alloc or free.
982 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
984 nid = next_node_in(nid, *nodes_allowed);
985 VM_BUG_ON(nid >= MAX_NUMNODES);
987 return nid;
990 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
992 if (!node_isset(nid, *nodes_allowed))
993 nid = next_node_allowed(nid, nodes_allowed);
994 return nid;
998 * returns the previously saved node ["this node"] from which to
999 * allocate a persistent huge page for the pool and advance the
1000 * next node from which to allocate, handling wrap at end of node
1001 * mask.
1003 static int hstate_next_node_to_alloc(struct hstate *h,
1004 nodemask_t *nodes_allowed)
1006 int nid;
1008 VM_BUG_ON(!nodes_allowed);
1010 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1011 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1013 return nid;
1017 * helper for free_pool_huge_page() - return the previously saved
1018 * node ["this node"] from which to free a huge page. Advance the
1019 * next node id whether or not we find a free huge page to free so
1020 * that the next attempt to free addresses the next node.
1022 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1024 int nid;
1026 VM_BUG_ON(!nodes_allowed);
1028 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1029 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1031 return nid;
1034 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1035 for (nr_nodes = nodes_weight(*mask); \
1036 nr_nodes > 0 && \
1037 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1038 nr_nodes--)
1040 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1041 for (nr_nodes = nodes_weight(*mask); \
1042 nr_nodes > 0 && \
1043 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1044 nr_nodes--)
1046 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1047 static void destroy_compound_gigantic_page(struct page *page,
1048 unsigned int order)
1050 int i;
1051 int nr_pages = 1 << order;
1052 struct page *p = page + 1;
1054 atomic_set(compound_mapcount_ptr(page), 0);
1055 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1056 clear_compound_head(p);
1057 set_page_refcounted(p);
1060 set_compound_order(page, 0);
1061 __ClearPageHead(page);
1064 static void free_gigantic_page(struct page *page, unsigned int order)
1066 free_contig_range(page_to_pfn(page), 1 << order);
1069 static int __alloc_gigantic_page(unsigned long start_pfn,
1070 unsigned long nr_pages, gfp_t gfp_mask)
1072 unsigned long end_pfn = start_pfn + nr_pages;
1073 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
1074 gfp_mask);
1077 static bool pfn_range_valid_gigantic(struct zone *z,
1078 unsigned long start_pfn, unsigned long nr_pages)
1080 unsigned long i, end_pfn = start_pfn + nr_pages;
1081 struct page *page;
1083 for (i = start_pfn; i < end_pfn; i++) {
1084 page = pfn_to_online_page(i);
1085 if (!page)
1086 return false;
1088 if (page_zone(page) != z)
1089 return false;
1091 if (PageReserved(page))
1092 return false;
1094 if (page_count(page) > 0)
1095 return false;
1097 if (PageHuge(page))
1098 return false;
1101 return true;
1104 static bool zone_spans_last_pfn(const struct zone *zone,
1105 unsigned long start_pfn, unsigned long nr_pages)
1107 unsigned long last_pfn = start_pfn + nr_pages - 1;
1108 return zone_spans_pfn(zone, last_pfn);
1111 static struct page *alloc_gigantic_page(int nid, struct hstate *h)
1113 unsigned int order = huge_page_order(h);
1114 unsigned long nr_pages = 1 << order;
1115 unsigned long ret, pfn, flags;
1116 struct zonelist *zonelist;
1117 struct zone *zone;
1118 struct zoneref *z;
1119 gfp_t gfp_mask;
1121 gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1122 zonelist = node_zonelist(nid, gfp_mask);
1123 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), NULL) {
1124 spin_lock_irqsave(&zone->lock, flags);
1126 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
1127 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
1128 if (pfn_range_valid_gigantic(zone, pfn, nr_pages)) {
1130 * We release the zone lock here because
1131 * alloc_contig_range() will also lock the zone
1132 * at some point. If there's an allocation
1133 * spinning on this lock, it may win the race
1134 * and cause alloc_contig_range() to fail...
1136 spin_unlock_irqrestore(&zone->lock, flags);
1137 ret = __alloc_gigantic_page(pfn, nr_pages, gfp_mask);
1138 if (!ret)
1139 return pfn_to_page(pfn);
1140 spin_lock_irqsave(&zone->lock, flags);
1142 pfn += nr_pages;
1145 spin_unlock_irqrestore(&zone->lock, flags);
1148 return NULL;
1151 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1152 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1154 static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
1156 struct page *page;
1158 page = alloc_gigantic_page(nid, h);
1159 if (page) {
1160 prep_compound_gigantic_page(page, huge_page_order(h));
1161 prep_new_huge_page(h, page, nid);
1164 return page;
1167 static int alloc_fresh_gigantic_page(struct hstate *h,
1168 nodemask_t *nodes_allowed)
1170 struct page *page = NULL;
1171 int nr_nodes, node;
1173 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1174 page = alloc_fresh_gigantic_page_node(h, node);
1175 if (page)
1176 return 1;
1179 return 0;
1182 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1183 static inline bool gigantic_page_supported(void) { return false; }
1184 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1185 static inline void destroy_compound_gigantic_page(struct page *page,
1186 unsigned int order) { }
1187 static inline int alloc_fresh_gigantic_page(struct hstate *h,
1188 nodemask_t *nodes_allowed) { return 0; }
1189 #endif
1191 static void update_and_free_page(struct hstate *h, struct page *page)
1193 int i;
1195 if (hstate_is_gigantic(h) && !gigantic_page_supported())
1196 return;
1198 h->nr_huge_pages--;
1199 h->nr_huge_pages_node[page_to_nid(page)]--;
1200 for (i = 0; i < pages_per_huge_page(h); i++) {
1201 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1202 1 << PG_referenced | 1 << PG_dirty |
1203 1 << PG_active | 1 << PG_private |
1204 1 << PG_writeback);
1206 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1207 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1208 set_page_refcounted(page);
1209 if (hstate_is_gigantic(h)) {
1210 destroy_compound_gigantic_page(page, huge_page_order(h));
1211 free_gigantic_page(page, huge_page_order(h));
1212 } else {
1213 __free_pages(page, huge_page_order(h));
1217 struct hstate *size_to_hstate(unsigned long size)
1219 struct hstate *h;
1221 for_each_hstate(h) {
1222 if (huge_page_size(h) == size)
1223 return h;
1225 return NULL;
1229 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1230 * to hstate->hugepage_activelist.)
1232 * This function can be called for tail pages, but never returns true for them.
1234 bool page_huge_active(struct page *page)
1236 VM_BUG_ON_PAGE(!PageHuge(page), page);
1237 return PageHead(page) && PagePrivate(&page[1]);
1240 /* never called for tail page */
1241 static void set_page_huge_active(struct page *page)
1243 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1244 SetPagePrivate(&page[1]);
1247 static void clear_page_huge_active(struct page *page)
1249 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1250 ClearPagePrivate(&page[1]);
1253 void free_huge_page(struct page *page)
1256 * Can't pass hstate in here because it is called from the
1257 * compound page destructor.
1259 struct hstate *h = page_hstate(page);
1260 int nid = page_to_nid(page);
1261 struct hugepage_subpool *spool =
1262 (struct hugepage_subpool *)page_private(page);
1263 bool restore_reserve;
1265 set_page_private(page, 0);
1266 page->mapping = NULL;
1267 VM_BUG_ON_PAGE(page_count(page), page);
1268 VM_BUG_ON_PAGE(page_mapcount(page), page);
1269 restore_reserve = PagePrivate(page);
1270 ClearPagePrivate(page);
1273 * If PagePrivate() was set on page, page allocation consumed a
1274 * reservation. If the page was associated with a subpool, there
1275 * would have been a page reserved in the subpool before allocation
1276 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
1277 * reservtion, do not call hugepage_subpool_put_pages() as this will
1278 * remove the reserved page from the subpool.
1280 if (!restore_reserve) {
1282 * A return code of zero implies that the subpool will be
1283 * under its minimum size if the reservation is not restored
1284 * after page is free. Therefore, force restore_reserve
1285 * operation.
1287 if (hugepage_subpool_put_pages(spool, 1) == 0)
1288 restore_reserve = true;
1291 spin_lock(&hugetlb_lock);
1292 clear_page_huge_active(page);
1293 hugetlb_cgroup_uncharge_page(hstate_index(h),
1294 pages_per_huge_page(h), page);
1295 if (restore_reserve)
1296 h->resv_huge_pages++;
1298 if (h->surplus_huge_pages_node[nid]) {
1299 /* remove the page from active list */
1300 list_del(&page->lru);
1301 update_and_free_page(h, page);
1302 h->surplus_huge_pages--;
1303 h->surplus_huge_pages_node[nid]--;
1304 } else {
1305 arch_clear_hugepage_flags(page);
1306 enqueue_huge_page(h, page);
1308 spin_unlock(&hugetlb_lock);
1311 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1313 INIT_LIST_HEAD(&page->lru);
1314 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1315 spin_lock(&hugetlb_lock);
1316 set_hugetlb_cgroup(page, NULL);
1317 h->nr_huge_pages++;
1318 h->nr_huge_pages_node[nid]++;
1319 spin_unlock(&hugetlb_lock);
1320 put_page(page); /* free it into the hugepage allocator */
1323 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1325 int i;
1326 int nr_pages = 1 << order;
1327 struct page *p = page + 1;
1329 /* we rely on prep_new_huge_page to set the destructor */
1330 set_compound_order(page, order);
1331 __ClearPageReserved(page);
1332 __SetPageHead(page);
1333 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1335 * For gigantic hugepages allocated through bootmem at
1336 * boot, it's safer to be consistent with the not-gigantic
1337 * hugepages and clear the PG_reserved bit from all tail pages
1338 * too. Otherwse drivers using get_user_pages() to access tail
1339 * pages may get the reference counting wrong if they see
1340 * PG_reserved set on a tail page (despite the head page not
1341 * having PG_reserved set). Enforcing this consistency between
1342 * head and tail pages allows drivers to optimize away a check
1343 * on the head page when they need know if put_page() is needed
1344 * after get_user_pages().
1346 __ClearPageReserved(p);
1347 set_page_count(p, 0);
1348 set_compound_head(p, page);
1350 atomic_set(compound_mapcount_ptr(page), -1);
1354 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1355 * transparent huge pages. See the PageTransHuge() documentation for more
1356 * details.
1358 int PageHuge(struct page *page)
1360 if (!PageCompound(page))
1361 return 0;
1363 page = compound_head(page);
1364 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1366 EXPORT_SYMBOL_GPL(PageHuge);
1369 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1370 * normal or transparent huge pages.
1372 int PageHeadHuge(struct page *page_head)
1374 if (!PageHead(page_head))
1375 return 0;
1377 return get_compound_page_dtor(page_head) == free_huge_page;
1380 pgoff_t __basepage_index(struct page *page)
1382 struct page *page_head = compound_head(page);
1383 pgoff_t index = page_index(page_head);
1384 unsigned long compound_idx;
1386 if (!PageHuge(page_head))
1387 return page_index(page);
1389 if (compound_order(page_head) >= MAX_ORDER)
1390 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1391 else
1392 compound_idx = page - page_head;
1394 return (index << compound_order(page_head)) + compound_idx;
1397 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1399 struct page *page;
1401 page = __alloc_pages_node(nid,
1402 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1403 __GFP_RETRY_MAYFAIL|__GFP_NOWARN,
1404 huge_page_order(h));
1405 if (page) {
1406 prep_new_huge_page(h, page, nid);
1409 return page;
1412 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1414 struct page *page;
1415 int nr_nodes, node;
1416 int ret = 0;
1418 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1419 page = alloc_fresh_huge_page_node(h, node);
1420 if (page) {
1421 ret = 1;
1422 break;
1426 if (ret)
1427 count_vm_event(HTLB_BUDDY_PGALLOC);
1428 else
1429 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1431 return ret;
1435 * Free huge page from pool from next node to free.
1436 * Attempt to keep persistent huge pages more or less
1437 * balanced over allowed nodes.
1438 * Called with hugetlb_lock locked.
1440 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1441 bool acct_surplus)
1443 int nr_nodes, node;
1444 int ret = 0;
1446 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1448 * If we're returning unused surplus pages, only examine
1449 * nodes with surplus pages.
1451 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1452 !list_empty(&h->hugepage_freelists[node])) {
1453 struct page *page =
1454 list_entry(h->hugepage_freelists[node].next,
1455 struct page, lru);
1456 list_del(&page->lru);
1457 h->free_huge_pages--;
1458 h->free_huge_pages_node[node]--;
1459 if (acct_surplus) {
1460 h->surplus_huge_pages--;
1461 h->surplus_huge_pages_node[node]--;
1463 update_and_free_page(h, page);
1464 ret = 1;
1465 break;
1469 return ret;
1473 * Dissolve a given free hugepage into free buddy pages. This function does
1474 * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
1475 * number of free hugepages would be reduced below the number of reserved
1476 * hugepages.
1478 int dissolve_free_huge_page(struct page *page)
1480 int rc = 0;
1482 spin_lock(&hugetlb_lock);
1483 if (PageHuge(page) && !page_count(page)) {
1484 struct page *head = compound_head(page);
1485 struct hstate *h = page_hstate(head);
1486 int nid = page_to_nid(head);
1487 if (h->free_huge_pages - h->resv_huge_pages == 0) {
1488 rc = -EBUSY;
1489 goto out;
1492 * Move PageHWPoison flag from head page to the raw error page,
1493 * which makes any subpages rather than the error page reusable.
1495 if (PageHWPoison(head) && page != head) {
1496 SetPageHWPoison(page);
1497 ClearPageHWPoison(head);
1499 list_del(&head->lru);
1500 h->free_huge_pages--;
1501 h->free_huge_pages_node[nid]--;
1502 h->max_huge_pages--;
1503 update_and_free_page(h, head);
1505 out:
1506 spin_unlock(&hugetlb_lock);
1507 return rc;
1511 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1512 * make specified memory blocks removable from the system.
1513 * Note that this will dissolve a free gigantic hugepage completely, if any
1514 * part of it lies within the given range.
1515 * Also note that if dissolve_free_huge_page() returns with an error, all
1516 * free hugepages that were dissolved before that error are lost.
1518 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1520 unsigned long pfn;
1521 struct page *page;
1522 int rc = 0;
1524 if (!hugepages_supported())
1525 return rc;
1527 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1528 page = pfn_to_page(pfn);
1529 if (PageHuge(page) && !page_count(page)) {
1530 rc = dissolve_free_huge_page(page);
1531 if (rc)
1532 break;
1536 return rc;
1539 static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
1540 gfp_t gfp_mask, int nid, nodemask_t *nmask)
1542 int order = huge_page_order(h);
1544 gfp_mask |= __GFP_COMP|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
1545 if (nid == NUMA_NO_NODE)
1546 nid = numa_mem_id();
1547 return __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1550 static struct page *__alloc_buddy_huge_page(struct hstate *h, gfp_t gfp_mask,
1551 int nid, nodemask_t *nmask)
1553 struct page *page;
1554 unsigned int r_nid;
1556 if (hstate_is_gigantic(h))
1557 return NULL;
1560 * Assume we will successfully allocate the surplus page to
1561 * prevent racing processes from causing the surplus to exceed
1562 * overcommit
1564 * This however introduces a different race, where a process B
1565 * tries to grow the static hugepage pool while alloc_pages() is
1566 * called by process A. B will only examine the per-node
1567 * counters in determining if surplus huge pages can be
1568 * converted to normal huge pages in adjust_pool_surplus(). A
1569 * won't be able to increment the per-node counter, until the
1570 * lock is dropped by B, but B doesn't drop hugetlb_lock until
1571 * no more huge pages can be converted from surplus to normal
1572 * state (and doesn't try to convert again). Thus, we have a
1573 * case where a surplus huge page exists, the pool is grown, and
1574 * the surplus huge page still exists after, even though it
1575 * should just have been converted to a normal huge page. This
1576 * does not leak memory, though, as the hugepage will be freed
1577 * once it is out of use. It also does not allow the counters to
1578 * go out of whack in adjust_pool_surplus() as we don't modify
1579 * the node values until we've gotten the hugepage and only the
1580 * per-node value is checked there.
1582 spin_lock(&hugetlb_lock);
1583 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1584 spin_unlock(&hugetlb_lock);
1585 return NULL;
1586 } else {
1587 h->nr_huge_pages++;
1588 h->surplus_huge_pages++;
1590 spin_unlock(&hugetlb_lock);
1592 page = __hugetlb_alloc_buddy_huge_page(h, gfp_mask, nid, nmask);
1594 spin_lock(&hugetlb_lock);
1595 if (page) {
1596 INIT_LIST_HEAD(&page->lru);
1597 r_nid = page_to_nid(page);
1598 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1599 set_hugetlb_cgroup(page, NULL);
1601 * We incremented the global counters already
1603 h->nr_huge_pages_node[r_nid]++;
1604 h->surplus_huge_pages_node[r_nid]++;
1605 __count_vm_event(HTLB_BUDDY_PGALLOC);
1606 } else {
1607 h->nr_huge_pages--;
1608 h->surplus_huge_pages--;
1609 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1611 spin_unlock(&hugetlb_lock);
1613 return page;
1617 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1619 static
1620 struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
1621 struct vm_area_struct *vma, unsigned long addr)
1623 struct page *page;
1624 struct mempolicy *mpol;
1625 gfp_t gfp_mask = htlb_alloc_mask(h);
1626 int nid;
1627 nodemask_t *nodemask;
1629 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1630 page = __alloc_buddy_huge_page(h, gfp_mask, nid, nodemask);
1631 mpol_cond_put(mpol);
1633 return page;
1637 * This allocation function is useful in the context where vma is irrelevant.
1638 * E.g. soft-offlining uses this function because it only cares physical
1639 * address of error page.
1641 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1643 gfp_t gfp_mask = htlb_alloc_mask(h);
1644 struct page *page = NULL;
1646 if (nid != NUMA_NO_NODE)
1647 gfp_mask |= __GFP_THISNODE;
1649 spin_lock(&hugetlb_lock);
1650 if (h->free_huge_pages - h->resv_huge_pages > 0)
1651 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
1652 spin_unlock(&hugetlb_lock);
1654 if (!page)
1655 page = __alloc_buddy_huge_page(h, gfp_mask, nid, NULL);
1657 return page;
1661 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1662 nodemask_t *nmask)
1664 gfp_t gfp_mask = htlb_alloc_mask(h);
1666 spin_lock(&hugetlb_lock);
1667 if (h->free_huge_pages - h->resv_huge_pages > 0) {
1668 struct page *page;
1670 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1671 if (page) {
1672 spin_unlock(&hugetlb_lock);
1673 return page;
1676 spin_unlock(&hugetlb_lock);
1678 /* No reservations, try to overcommit */
1680 return __alloc_buddy_huge_page(h, gfp_mask, preferred_nid, nmask);
1684 * Increase the hugetlb pool such that it can accommodate a reservation
1685 * of size 'delta'.
1687 static int gather_surplus_pages(struct hstate *h, int delta)
1689 struct list_head surplus_list;
1690 struct page *page, *tmp;
1691 int ret, i;
1692 int needed, allocated;
1693 bool alloc_ok = true;
1695 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1696 if (needed <= 0) {
1697 h->resv_huge_pages += delta;
1698 return 0;
1701 allocated = 0;
1702 INIT_LIST_HEAD(&surplus_list);
1704 ret = -ENOMEM;
1705 retry:
1706 spin_unlock(&hugetlb_lock);
1707 for (i = 0; i < needed; i++) {
1708 page = __alloc_buddy_huge_page(h, htlb_alloc_mask(h),
1709 NUMA_NO_NODE, NULL);
1710 if (!page) {
1711 alloc_ok = false;
1712 break;
1714 list_add(&page->lru, &surplus_list);
1715 cond_resched();
1717 allocated += i;
1720 * After retaking hugetlb_lock, we need to recalculate 'needed'
1721 * because either resv_huge_pages or free_huge_pages may have changed.
1723 spin_lock(&hugetlb_lock);
1724 needed = (h->resv_huge_pages + delta) -
1725 (h->free_huge_pages + allocated);
1726 if (needed > 0) {
1727 if (alloc_ok)
1728 goto retry;
1730 * We were not able to allocate enough pages to
1731 * satisfy the entire reservation so we free what
1732 * we've allocated so far.
1734 goto free;
1737 * The surplus_list now contains _at_least_ the number of extra pages
1738 * needed to accommodate the reservation. Add the appropriate number
1739 * of pages to the hugetlb pool and free the extras back to the buddy
1740 * allocator. Commit the entire reservation here to prevent another
1741 * process from stealing the pages as they are added to the pool but
1742 * before they are reserved.
1744 needed += allocated;
1745 h->resv_huge_pages += delta;
1746 ret = 0;
1748 /* Free the needed pages to the hugetlb pool */
1749 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1750 if ((--needed) < 0)
1751 break;
1753 * This page is now managed by the hugetlb allocator and has
1754 * no users -- drop the buddy allocator's reference.
1756 put_page_testzero(page);
1757 VM_BUG_ON_PAGE(page_count(page), page);
1758 enqueue_huge_page(h, page);
1760 free:
1761 spin_unlock(&hugetlb_lock);
1763 /* Free unnecessary surplus pages to the buddy allocator */
1764 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1765 put_page(page);
1766 spin_lock(&hugetlb_lock);
1768 return ret;
1772 * This routine has two main purposes:
1773 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1774 * in unused_resv_pages. This corresponds to the prior adjustments made
1775 * to the associated reservation map.
1776 * 2) Free any unused surplus pages that may have been allocated to satisfy
1777 * the reservation. As many as unused_resv_pages may be freed.
1779 * Called with hugetlb_lock held. However, the lock could be dropped (and
1780 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
1781 * we must make sure nobody else can claim pages we are in the process of
1782 * freeing. Do this by ensuring resv_huge_page always is greater than the
1783 * number of huge pages we plan to free when dropping the lock.
1785 static void return_unused_surplus_pages(struct hstate *h,
1786 unsigned long unused_resv_pages)
1788 unsigned long nr_pages;
1790 /* Cannot return gigantic pages currently */
1791 if (hstate_is_gigantic(h))
1792 goto out;
1795 * Part (or even all) of the reservation could have been backed
1796 * by pre-allocated pages. Only free surplus pages.
1798 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1801 * We want to release as many surplus pages as possible, spread
1802 * evenly across all nodes with memory. Iterate across these nodes
1803 * until we can no longer free unreserved surplus pages. This occurs
1804 * when the nodes with surplus pages have no free pages.
1805 * free_pool_huge_page() will balance the the freed pages across the
1806 * on-line nodes with memory and will handle the hstate accounting.
1808 * Note that we decrement resv_huge_pages as we free the pages. If
1809 * we drop the lock, resv_huge_pages will still be sufficiently large
1810 * to cover subsequent pages we may free.
1812 while (nr_pages--) {
1813 h->resv_huge_pages--;
1814 unused_resv_pages--;
1815 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1816 goto out;
1817 cond_resched_lock(&hugetlb_lock);
1820 out:
1821 /* Fully uncommit the reservation */
1822 h->resv_huge_pages -= unused_resv_pages;
1827 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1828 * are used by the huge page allocation routines to manage reservations.
1830 * vma_needs_reservation is called to determine if the huge page at addr
1831 * within the vma has an associated reservation. If a reservation is
1832 * needed, the value 1 is returned. The caller is then responsible for
1833 * managing the global reservation and subpool usage counts. After
1834 * the huge page has been allocated, vma_commit_reservation is called
1835 * to add the page to the reservation map. If the page allocation fails,
1836 * the reservation must be ended instead of committed. vma_end_reservation
1837 * is called in such cases.
1839 * In the normal case, vma_commit_reservation returns the same value
1840 * as the preceding vma_needs_reservation call. The only time this
1841 * is not the case is if a reserve map was changed between calls. It
1842 * is the responsibility of the caller to notice the difference and
1843 * take appropriate action.
1845 * vma_add_reservation is used in error paths where a reservation must
1846 * be restored when a newly allocated huge page must be freed. It is
1847 * to be called after calling vma_needs_reservation to determine if a
1848 * reservation exists.
1850 enum vma_resv_mode {
1851 VMA_NEEDS_RESV,
1852 VMA_COMMIT_RESV,
1853 VMA_END_RESV,
1854 VMA_ADD_RESV,
1856 static long __vma_reservation_common(struct hstate *h,
1857 struct vm_area_struct *vma, unsigned long addr,
1858 enum vma_resv_mode mode)
1860 struct resv_map *resv;
1861 pgoff_t idx;
1862 long ret;
1864 resv = vma_resv_map(vma);
1865 if (!resv)
1866 return 1;
1868 idx = vma_hugecache_offset(h, vma, addr);
1869 switch (mode) {
1870 case VMA_NEEDS_RESV:
1871 ret = region_chg(resv, idx, idx + 1);
1872 break;
1873 case VMA_COMMIT_RESV:
1874 ret = region_add(resv, idx, idx + 1);
1875 break;
1876 case VMA_END_RESV:
1877 region_abort(resv, idx, idx + 1);
1878 ret = 0;
1879 break;
1880 case VMA_ADD_RESV:
1881 if (vma->vm_flags & VM_MAYSHARE)
1882 ret = region_add(resv, idx, idx + 1);
1883 else {
1884 region_abort(resv, idx, idx + 1);
1885 ret = region_del(resv, idx, idx + 1);
1887 break;
1888 default:
1889 BUG();
1892 if (vma->vm_flags & VM_MAYSHARE)
1893 return ret;
1894 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1896 * In most cases, reserves always exist for private mappings.
1897 * However, a file associated with mapping could have been
1898 * hole punched or truncated after reserves were consumed.
1899 * As subsequent fault on such a range will not use reserves.
1900 * Subtle - The reserve map for private mappings has the
1901 * opposite meaning than that of shared mappings. If NO
1902 * entry is in the reserve map, it means a reservation exists.
1903 * If an entry exists in the reserve map, it means the
1904 * reservation has already been consumed. As a result, the
1905 * return value of this routine is the opposite of the
1906 * value returned from reserve map manipulation routines above.
1908 if (ret)
1909 return 0;
1910 else
1911 return 1;
1913 else
1914 return ret < 0 ? ret : 0;
1917 static long vma_needs_reservation(struct hstate *h,
1918 struct vm_area_struct *vma, unsigned long addr)
1920 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1923 static long vma_commit_reservation(struct hstate *h,
1924 struct vm_area_struct *vma, unsigned long addr)
1926 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1929 static void vma_end_reservation(struct hstate *h,
1930 struct vm_area_struct *vma, unsigned long addr)
1932 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1935 static long vma_add_reservation(struct hstate *h,
1936 struct vm_area_struct *vma, unsigned long addr)
1938 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
1942 * This routine is called to restore a reservation on error paths. In the
1943 * specific error paths, a huge page was allocated (via alloc_huge_page)
1944 * and is about to be freed. If a reservation for the page existed,
1945 * alloc_huge_page would have consumed the reservation and set PagePrivate
1946 * in the newly allocated page. When the page is freed via free_huge_page,
1947 * the global reservation count will be incremented if PagePrivate is set.
1948 * However, free_huge_page can not adjust the reserve map. Adjust the
1949 * reserve map here to be consistent with global reserve count adjustments
1950 * to be made by free_huge_page.
1952 static void restore_reserve_on_error(struct hstate *h,
1953 struct vm_area_struct *vma, unsigned long address,
1954 struct page *page)
1956 if (unlikely(PagePrivate(page))) {
1957 long rc = vma_needs_reservation(h, vma, address);
1959 if (unlikely(rc < 0)) {
1961 * Rare out of memory condition in reserve map
1962 * manipulation. Clear PagePrivate so that
1963 * global reserve count will not be incremented
1964 * by free_huge_page. This will make it appear
1965 * as though the reservation for this page was
1966 * consumed. This may prevent the task from
1967 * faulting in the page at a later time. This
1968 * is better than inconsistent global huge page
1969 * accounting of reserve counts.
1971 ClearPagePrivate(page);
1972 } else if (rc) {
1973 rc = vma_add_reservation(h, vma, address);
1974 if (unlikely(rc < 0))
1976 * See above comment about rare out of
1977 * memory condition.
1979 ClearPagePrivate(page);
1980 } else
1981 vma_end_reservation(h, vma, address);
1985 struct page *alloc_huge_page(struct vm_area_struct *vma,
1986 unsigned long addr, int avoid_reserve)
1988 struct hugepage_subpool *spool = subpool_vma(vma);
1989 struct hstate *h = hstate_vma(vma);
1990 struct page *page;
1991 long map_chg, map_commit;
1992 long gbl_chg;
1993 int ret, idx;
1994 struct hugetlb_cgroup *h_cg;
1996 idx = hstate_index(h);
1998 * Examine the region/reserve map to determine if the process
1999 * has a reservation for the page to be allocated. A return
2000 * code of zero indicates a reservation exists (no change).
2002 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2003 if (map_chg < 0)
2004 return ERR_PTR(-ENOMEM);
2007 * Processes that did not create the mapping will have no
2008 * reserves as indicated by the region/reserve map. Check
2009 * that the allocation will not exceed the subpool limit.
2010 * Allocations for MAP_NORESERVE mappings also need to be
2011 * checked against any subpool limit.
2013 if (map_chg || avoid_reserve) {
2014 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2015 if (gbl_chg < 0) {
2016 vma_end_reservation(h, vma, addr);
2017 return ERR_PTR(-ENOSPC);
2021 * Even though there was no reservation in the region/reserve
2022 * map, there could be reservations associated with the
2023 * subpool that can be used. This would be indicated if the
2024 * return value of hugepage_subpool_get_pages() is zero.
2025 * However, if avoid_reserve is specified we still avoid even
2026 * the subpool reservations.
2028 if (avoid_reserve)
2029 gbl_chg = 1;
2032 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2033 if (ret)
2034 goto out_subpool_put;
2036 spin_lock(&hugetlb_lock);
2038 * glb_chg is passed to indicate whether or not a page must be taken
2039 * from the global free pool (global change). gbl_chg == 0 indicates
2040 * a reservation exists for the allocation.
2042 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2043 if (!page) {
2044 spin_unlock(&hugetlb_lock);
2045 page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
2046 if (!page)
2047 goto out_uncharge_cgroup;
2048 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2049 SetPagePrivate(page);
2050 h->resv_huge_pages--;
2052 spin_lock(&hugetlb_lock);
2053 list_move(&page->lru, &h->hugepage_activelist);
2054 /* Fall through */
2056 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2057 spin_unlock(&hugetlb_lock);
2059 set_page_private(page, (unsigned long)spool);
2061 map_commit = vma_commit_reservation(h, vma, addr);
2062 if (unlikely(map_chg > map_commit)) {
2064 * The page was added to the reservation map between
2065 * vma_needs_reservation and vma_commit_reservation.
2066 * This indicates a race with hugetlb_reserve_pages.
2067 * Adjust for the subpool count incremented above AND
2068 * in hugetlb_reserve_pages for the same page. Also,
2069 * the reservation count added in hugetlb_reserve_pages
2070 * no longer applies.
2072 long rsv_adjust;
2074 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2075 hugetlb_acct_memory(h, -rsv_adjust);
2077 return page;
2079 out_uncharge_cgroup:
2080 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2081 out_subpool_put:
2082 if (map_chg || avoid_reserve)
2083 hugepage_subpool_put_pages(spool, 1);
2084 vma_end_reservation(h, vma, addr);
2085 return ERR_PTR(-ENOSPC);
2089 * alloc_huge_page()'s wrapper which simply returns the page if allocation
2090 * succeeds, otherwise NULL. This function is called from new_vma_page(),
2091 * where no ERR_VALUE is expected to be returned.
2093 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
2094 unsigned long addr, int avoid_reserve)
2096 struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
2097 if (IS_ERR(page))
2098 page = NULL;
2099 return page;
2102 int alloc_bootmem_huge_page(struct hstate *h)
2103 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2104 int __alloc_bootmem_huge_page(struct hstate *h)
2106 struct huge_bootmem_page *m;
2107 int nr_nodes, node;
2109 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2110 void *addr;
2112 addr = memblock_virt_alloc_try_nid_nopanic(
2113 huge_page_size(h), huge_page_size(h),
2114 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
2115 if (addr) {
2117 * Use the beginning of the huge page to store the
2118 * huge_bootmem_page struct (until gather_bootmem
2119 * puts them into the mem_map).
2121 m = addr;
2122 goto found;
2125 return 0;
2127 found:
2128 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2129 /* Put them into a private list first because mem_map is not up yet */
2130 list_add(&m->list, &huge_boot_pages);
2131 m->hstate = h;
2132 return 1;
2135 static void __init prep_compound_huge_page(struct page *page,
2136 unsigned int order)
2138 if (unlikely(order > (MAX_ORDER - 1)))
2139 prep_compound_gigantic_page(page, order);
2140 else
2141 prep_compound_page(page, order);
2144 /* Put bootmem huge pages into the standard lists after mem_map is up */
2145 static void __init gather_bootmem_prealloc(void)
2147 struct huge_bootmem_page *m;
2149 list_for_each_entry(m, &huge_boot_pages, list) {
2150 struct hstate *h = m->hstate;
2151 struct page *page;
2153 #ifdef CONFIG_HIGHMEM
2154 page = pfn_to_page(m->phys >> PAGE_SHIFT);
2155 memblock_free_late(__pa(m),
2156 sizeof(struct huge_bootmem_page));
2157 #else
2158 page = virt_to_page(m);
2159 #endif
2160 WARN_ON(page_count(page) != 1);
2161 prep_compound_huge_page(page, h->order);
2162 WARN_ON(PageReserved(page));
2163 prep_new_huge_page(h, page, page_to_nid(page));
2165 * If we had gigantic hugepages allocated at boot time, we need
2166 * to restore the 'stolen' pages to totalram_pages in order to
2167 * fix confusing memory reports from free(1) and another
2168 * side-effects, like CommitLimit going negative.
2170 if (hstate_is_gigantic(h))
2171 adjust_managed_page_count(page, 1 << h->order);
2172 cond_resched();
2176 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2178 unsigned long i;
2180 for (i = 0; i < h->max_huge_pages; ++i) {
2181 if (hstate_is_gigantic(h)) {
2182 if (!alloc_bootmem_huge_page(h))
2183 break;
2184 } else if (!alloc_fresh_huge_page(h,
2185 &node_states[N_MEMORY]))
2186 break;
2187 cond_resched();
2189 if (i < h->max_huge_pages) {
2190 char buf[32];
2192 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2193 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
2194 h->max_huge_pages, buf, i);
2195 h->max_huge_pages = i;
2199 static void __init hugetlb_init_hstates(void)
2201 struct hstate *h;
2203 for_each_hstate(h) {
2204 if (minimum_order > huge_page_order(h))
2205 minimum_order = huge_page_order(h);
2207 /* oversize hugepages were init'ed in early boot */
2208 if (!hstate_is_gigantic(h))
2209 hugetlb_hstate_alloc_pages(h);
2211 VM_BUG_ON(minimum_order == UINT_MAX);
2214 static void __init report_hugepages(void)
2216 struct hstate *h;
2218 for_each_hstate(h) {
2219 char buf[32];
2221 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2222 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2223 buf, h->free_huge_pages);
2227 #ifdef CONFIG_HIGHMEM
2228 static void try_to_free_low(struct hstate *h, unsigned long count,
2229 nodemask_t *nodes_allowed)
2231 int i;
2233 if (hstate_is_gigantic(h))
2234 return;
2236 for_each_node_mask(i, *nodes_allowed) {
2237 struct page *page, *next;
2238 struct list_head *freel = &h->hugepage_freelists[i];
2239 list_for_each_entry_safe(page, next, freel, lru) {
2240 if (count >= h->nr_huge_pages)
2241 return;
2242 if (PageHighMem(page))
2243 continue;
2244 list_del(&page->lru);
2245 update_and_free_page(h, page);
2246 h->free_huge_pages--;
2247 h->free_huge_pages_node[page_to_nid(page)]--;
2251 #else
2252 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2253 nodemask_t *nodes_allowed)
2256 #endif
2259 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2260 * balanced by operating on them in a round-robin fashion.
2261 * Returns 1 if an adjustment was made.
2263 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2264 int delta)
2266 int nr_nodes, node;
2268 VM_BUG_ON(delta != -1 && delta != 1);
2270 if (delta < 0) {
2271 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2272 if (h->surplus_huge_pages_node[node])
2273 goto found;
2275 } else {
2276 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2277 if (h->surplus_huge_pages_node[node] <
2278 h->nr_huge_pages_node[node])
2279 goto found;
2282 return 0;
2284 found:
2285 h->surplus_huge_pages += delta;
2286 h->surplus_huge_pages_node[node] += delta;
2287 return 1;
2290 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2291 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2292 nodemask_t *nodes_allowed)
2294 unsigned long min_count, ret;
2296 if (hstate_is_gigantic(h) && !gigantic_page_supported())
2297 return h->max_huge_pages;
2300 * Increase the pool size
2301 * First take pages out of surplus state. Then make up the
2302 * remaining difference by allocating fresh huge pages.
2304 * We might race with __alloc_buddy_huge_page() here and be unable
2305 * to convert a surplus huge page to a normal huge page. That is
2306 * not critical, though, it just means the overall size of the
2307 * pool might be one hugepage larger than it needs to be, but
2308 * within all the constraints specified by the sysctls.
2310 spin_lock(&hugetlb_lock);
2311 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2312 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2313 break;
2316 while (count > persistent_huge_pages(h)) {
2318 * If this allocation races such that we no longer need the
2319 * page, free_huge_page will handle it by freeing the page
2320 * and reducing the surplus.
2322 spin_unlock(&hugetlb_lock);
2324 /* yield cpu to avoid soft lockup */
2325 cond_resched();
2327 if (hstate_is_gigantic(h))
2328 ret = alloc_fresh_gigantic_page(h, nodes_allowed);
2329 else
2330 ret = alloc_fresh_huge_page(h, nodes_allowed);
2331 spin_lock(&hugetlb_lock);
2332 if (!ret)
2333 goto out;
2335 /* Bail for signals. Probably ctrl-c from user */
2336 if (signal_pending(current))
2337 goto out;
2341 * Decrease the pool size
2342 * First return free pages to the buddy allocator (being careful
2343 * to keep enough around to satisfy reservations). Then place
2344 * pages into surplus state as needed so the pool will shrink
2345 * to the desired size as pages become free.
2347 * By placing pages into the surplus state independent of the
2348 * overcommit value, we are allowing the surplus pool size to
2349 * exceed overcommit. There are few sane options here. Since
2350 * __alloc_buddy_huge_page() is checking the global counter,
2351 * though, we'll note that we're not allowed to exceed surplus
2352 * and won't grow the pool anywhere else. Not until one of the
2353 * sysctls are changed, or the surplus pages go out of use.
2355 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2356 min_count = max(count, min_count);
2357 try_to_free_low(h, min_count, nodes_allowed);
2358 while (min_count < persistent_huge_pages(h)) {
2359 if (!free_pool_huge_page(h, nodes_allowed, 0))
2360 break;
2361 cond_resched_lock(&hugetlb_lock);
2363 while (count < persistent_huge_pages(h)) {
2364 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2365 break;
2367 out:
2368 ret = persistent_huge_pages(h);
2369 spin_unlock(&hugetlb_lock);
2370 return ret;
2373 #define HSTATE_ATTR_RO(_name) \
2374 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2376 #define HSTATE_ATTR(_name) \
2377 static struct kobj_attribute _name##_attr = \
2378 __ATTR(_name, 0644, _name##_show, _name##_store)
2380 static struct kobject *hugepages_kobj;
2381 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2383 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2385 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2387 int i;
2389 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2390 if (hstate_kobjs[i] == kobj) {
2391 if (nidp)
2392 *nidp = NUMA_NO_NODE;
2393 return &hstates[i];
2396 return kobj_to_node_hstate(kobj, nidp);
2399 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2400 struct kobj_attribute *attr, char *buf)
2402 struct hstate *h;
2403 unsigned long nr_huge_pages;
2404 int nid;
2406 h = kobj_to_hstate(kobj, &nid);
2407 if (nid == NUMA_NO_NODE)
2408 nr_huge_pages = h->nr_huge_pages;
2409 else
2410 nr_huge_pages = h->nr_huge_pages_node[nid];
2412 return sprintf(buf, "%lu\n", nr_huge_pages);
2415 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2416 struct hstate *h, int nid,
2417 unsigned long count, size_t len)
2419 int err;
2420 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2422 if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2423 err = -EINVAL;
2424 goto out;
2427 if (nid == NUMA_NO_NODE) {
2429 * global hstate attribute
2431 if (!(obey_mempolicy &&
2432 init_nodemask_of_mempolicy(nodes_allowed))) {
2433 NODEMASK_FREE(nodes_allowed);
2434 nodes_allowed = &node_states[N_MEMORY];
2436 } else if (nodes_allowed) {
2438 * per node hstate attribute: adjust count to global,
2439 * but restrict alloc/free to the specified node.
2441 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2442 init_nodemask_of_node(nodes_allowed, nid);
2443 } else
2444 nodes_allowed = &node_states[N_MEMORY];
2446 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2448 if (nodes_allowed != &node_states[N_MEMORY])
2449 NODEMASK_FREE(nodes_allowed);
2451 return len;
2452 out:
2453 NODEMASK_FREE(nodes_allowed);
2454 return err;
2457 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2458 struct kobject *kobj, const char *buf,
2459 size_t len)
2461 struct hstate *h;
2462 unsigned long count;
2463 int nid;
2464 int err;
2466 err = kstrtoul(buf, 10, &count);
2467 if (err)
2468 return err;
2470 h = kobj_to_hstate(kobj, &nid);
2471 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2474 static ssize_t nr_hugepages_show(struct kobject *kobj,
2475 struct kobj_attribute *attr, char *buf)
2477 return nr_hugepages_show_common(kobj, attr, buf);
2480 static ssize_t nr_hugepages_store(struct kobject *kobj,
2481 struct kobj_attribute *attr, const char *buf, size_t len)
2483 return nr_hugepages_store_common(false, kobj, buf, len);
2485 HSTATE_ATTR(nr_hugepages);
2487 #ifdef CONFIG_NUMA
2490 * hstate attribute for optionally mempolicy-based constraint on persistent
2491 * huge page alloc/free.
2493 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2494 struct kobj_attribute *attr, char *buf)
2496 return nr_hugepages_show_common(kobj, attr, buf);
2499 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2500 struct kobj_attribute *attr, const char *buf, size_t len)
2502 return nr_hugepages_store_common(true, kobj, buf, len);
2504 HSTATE_ATTR(nr_hugepages_mempolicy);
2505 #endif
2508 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2509 struct kobj_attribute *attr, char *buf)
2511 struct hstate *h = kobj_to_hstate(kobj, NULL);
2512 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2515 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2516 struct kobj_attribute *attr, const char *buf, size_t count)
2518 int err;
2519 unsigned long input;
2520 struct hstate *h = kobj_to_hstate(kobj, NULL);
2522 if (hstate_is_gigantic(h))
2523 return -EINVAL;
2525 err = kstrtoul(buf, 10, &input);
2526 if (err)
2527 return err;
2529 spin_lock(&hugetlb_lock);
2530 h->nr_overcommit_huge_pages = input;
2531 spin_unlock(&hugetlb_lock);
2533 return count;
2535 HSTATE_ATTR(nr_overcommit_hugepages);
2537 static ssize_t free_hugepages_show(struct kobject *kobj,
2538 struct kobj_attribute *attr, char *buf)
2540 struct hstate *h;
2541 unsigned long free_huge_pages;
2542 int nid;
2544 h = kobj_to_hstate(kobj, &nid);
2545 if (nid == NUMA_NO_NODE)
2546 free_huge_pages = h->free_huge_pages;
2547 else
2548 free_huge_pages = h->free_huge_pages_node[nid];
2550 return sprintf(buf, "%lu\n", free_huge_pages);
2552 HSTATE_ATTR_RO(free_hugepages);
2554 static ssize_t resv_hugepages_show(struct kobject *kobj,
2555 struct kobj_attribute *attr, char *buf)
2557 struct hstate *h = kobj_to_hstate(kobj, NULL);
2558 return sprintf(buf, "%lu\n", h->resv_huge_pages);
2560 HSTATE_ATTR_RO(resv_hugepages);
2562 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2563 struct kobj_attribute *attr, char *buf)
2565 struct hstate *h;
2566 unsigned long surplus_huge_pages;
2567 int nid;
2569 h = kobj_to_hstate(kobj, &nid);
2570 if (nid == NUMA_NO_NODE)
2571 surplus_huge_pages = h->surplus_huge_pages;
2572 else
2573 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2575 return sprintf(buf, "%lu\n", surplus_huge_pages);
2577 HSTATE_ATTR_RO(surplus_hugepages);
2579 static struct attribute *hstate_attrs[] = {
2580 &nr_hugepages_attr.attr,
2581 &nr_overcommit_hugepages_attr.attr,
2582 &free_hugepages_attr.attr,
2583 &resv_hugepages_attr.attr,
2584 &surplus_hugepages_attr.attr,
2585 #ifdef CONFIG_NUMA
2586 &nr_hugepages_mempolicy_attr.attr,
2587 #endif
2588 NULL,
2591 static const struct attribute_group hstate_attr_group = {
2592 .attrs = hstate_attrs,
2595 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2596 struct kobject **hstate_kobjs,
2597 const struct attribute_group *hstate_attr_group)
2599 int retval;
2600 int hi = hstate_index(h);
2602 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2603 if (!hstate_kobjs[hi])
2604 return -ENOMEM;
2606 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2607 if (retval)
2608 kobject_put(hstate_kobjs[hi]);
2610 return retval;
2613 static void __init hugetlb_sysfs_init(void)
2615 struct hstate *h;
2616 int err;
2618 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2619 if (!hugepages_kobj)
2620 return;
2622 for_each_hstate(h) {
2623 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2624 hstate_kobjs, &hstate_attr_group);
2625 if (err)
2626 pr_err("Hugetlb: Unable to add hstate %s", h->name);
2630 #ifdef CONFIG_NUMA
2633 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2634 * with node devices in node_devices[] using a parallel array. The array
2635 * index of a node device or _hstate == node id.
2636 * This is here to avoid any static dependency of the node device driver, in
2637 * the base kernel, on the hugetlb module.
2639 struct node_hstate {
2640 struct kobject *hugepages_kobj;
2641 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2643 static struct node_hstate node_hstates[MAX_NUMNODES];
2646 * A subset of global hstate attributes for node devices
2648 static struct attribute *per_node_hstate_attrs[] = {
2649 &nr_hugepages_attr.attr,
2650 &free_hugepages_attr.attr,
2651 &surplus_hugepages_attr.attr,
2652 NULL,
2655 static const struct attribute_group per_node_hstate_attr_group = {
2656 .attrs = per_node_hstate_attrs,
2660 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2661 * Returns node id via non-NULL nidp.
2663 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2665 int nid;
2667 for (nid = 0; nid < nr_node_ids; nid++) {
2668 struct node_hstate *nhs = &node_hstates[nid];
2669 int i;
2670 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2671 if (nhs->hstate_kobjs[i] == kobj) {
2672 if (nidp)
2673 *nidp = nid;
2674 return &hstates[i];
2678 BUG();
2679 return NULL;
2683 * Unregister hstate attributes from a single node device.
2684 * No-op if no hstate attributes attached.
2686 static void hugetlb_unregister_node(struct node *node)
2688 struct hstate *h;
2689 struct node_hstate *nhs = &node_hstates[node->dev.id];
2691 if (!nhs->hugepages_kobj)
2692 return; /* no hstate attributes */
2694 for_each_hstate(h) {
2695 int idx = hstate_index(h);
2696 if (nhs->hstate_kobjs[idx]) {
2697 kobject_put(nhs->hstate_kobjs[idx]);
2698 nhs->hstate_kobjs[idx] = NULL;
2702 kobject_put(nhs->hugepages_kobj);
2703 nhs->hugepages_kobj = NULL;
2708 * Register hstate attributes for a single node device.
2709 * No-op if attributes already registered.
2711 static void hugetlb_register_node(struct node *node)
2713 struct hstate *h;
2714 struct node_hstate *nhs = &node_hstates[node->dev.id];
2715 int err;
2717 if (nhs->hugepages_kobj)
2718 return; /* already allocated */
2720 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2721 &node->dev.kobj);
2722 if (!nhs->hugepages_kobj)
2723 return;
2725 for_each_hstate(h) {
2726 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2727 nhs->hstate_kobjs,
2728 &per_node_hstate_attr_group);
2729 if (err) {
2730 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2731 h->name, node->dev.id);
2732 hugetlb_unregister_node(node);
2733 break;
2739 * hugetlb init time: register hstate attributes for all registered node
2740 * devices of nodes that have memory. All on-line nodes should have
2741 * registered their associated device by this time.
2743 static void __init hugetlb_register_all_nodes(void)
2745 int nid;
2747 for_each_node_state(nid, N_MEMORY) {
2748 struct node *node = node_devices[nid];
2749 if (node->dev.id == nid)
2750 hugetlb_register_node(node);
2754 * Let the node device driver know we're here so it can
2755 * [un]register hstate attributes on node hotplug.
2757 register_hugetlbfs_with_node(hugetlb_register_node,
2758 hugetlb_unregister_node);
2760 #else /* !CONFIG_NUMA */
2762 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2764 BUG();
2765 if (nidp)
2766 *nidp = -1;
2767 return NULL;
2770 static void hugetlb_register_all_nodes(void) { }
2772 #endif
2774 static int __init hugetlb_init(void)
2776 int i;
2778 if (!hugepages_supported())
2779 return 0;
2781 if (!size_to_hstate(default_hstate_size)) {
2782 if (default_hstate_size != 0) {
2783 pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
2784 default_hstate_size, HPAGE_SIZE);
2787 default_hstate_size = HPAGE_SIZE;
2788 if (!size_to_hstate(default_hstate_size))
2789 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2791 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2792 if (default_hstate_max_huge_pages) {
2793 if (!default_hstate.max_huge_pages)
2794 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2797 hugetlb_init_hstates();
2798 gather_bootmem_prealloc();
2799 report_hugepages();
2801 hugetlb_sysfs_init();
2802 hugetlb_register_all_nodes();
2803 hugetlb_cgroup_file_init();
2805 #ifdef CONFIG_SMP
2806 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2807 #else
2808 num_fault_mutexes = 1;
2809 #endif
2810 hugetlb_fault_mutex_table =
2811 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2812 BUG_ON(!hugetlb_fault_mutex_table);
2814 for (i = 0; i < num_fault_mutexes; i++)
2815 mutex_init(&hugetlb_fault_mutex_table[i]);
2816 return 0;
2818 subsys_initcall(hugetlb_init);
2820 /* Should be called on processing a hugepagesz=... option */
2821 void __init hugetlb_bad_size(void)
2823 parsed_valid_hugepagesz = false;
2826 void __init hugetlb_add_hstate(unsigned int order)
2828 struct hstate *h;
2829 unsigned long i;
2831 if (size_to_hstate(PAGE_SIZE << order)) {
2832 pr_warn("hugepagesz= specified twice, ignoring\n");
2833 return;
2835 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2836 BUG_ON(order == 0);
2837 h = &hstates[hugetlb_max_hstate++];
2838 h->order = order;
2839 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2840 h->nr_huge_pages = 0;
2841 h->free_huge_pages = 0;
2842 for (i = 0; i < MAX_NUMNODES; ++i)
2843 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2844 INIT_LIST_HEAD(&h->hugepage_activelist);
2845 h->next_nid_to_alloc = first_memory_node;
2846 h->next_nid_to_free = first_memory_node;
2847 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2848 huge_page_size(h)/1024);
2850 parsed_hstate = h;
2853 static int __init hugetlb_nrpages_setup(char *s)
2855 unsigned long *mhp;
2856 static unsigned long *last_mhp;
2858 if (!parsed_valid_hugepagesz) {
2859 pr_warn("hugepages = %s preceded by "
2860 "an unsupported hugepagesz, ignoring\n", s);
2861 parsed_valid_hugepagesz = true;
2862 return 1;
2865 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2866 * so this hugepages= parameter goes to the "default hstate".
2868 else if (!hugetlb_max_hstate)
2869 mhp = &default_hstate_max_huge_pages;
2870 else
2871 mhp = &parsed_hstate->max_huge_pages;
2873 if (mhp == last_mhp) {
2874 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2875 return 1;
2878 if (sscanf(s, "%lu", mhp) <= 0)
2879 *mhp = 0;
2882 * Global state is always initialized later in hugetlb_init.
2883 * But we need to allocate >= MAX_ORDER hstates here early to still
2884 * use the bootmem allocator.
2886 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2887 hugetlb_hstate_alloc_pages(parsed_hstate);
2889 last_mhp = mhp;
2891 return 1;
2893 __setup("hugepages=", hugetlb_nrpages_setup);
2895 static int __init hugetlb_default_setup(char *s)
2897 default_hstate_size = memparse(s, &s);
2898 return 1;
2900 __setup("default_hugepagesz=", hugetlb_default_setup);
2902 static unsigned int cpuset_mems_nr(unsigned int *array)
2904 int node;
2905 unsigned int nr = 0;
2907 for_each_node_mask(node, cpuset_current_mems_allowed)
2908 nr += array[node];
2910 return nr;
2913 #ifdef CONFIG_SYSCTL
2914 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2915 struct ctl_table *table, int write,
2916 void __user *buffer, size_t *length, loff_t *ppos)
2918 struct hstate *h = &default_hstate;
2919 unsigned long tmp = h->max_huge_pages;
2920 int ret;
2922 if (!hugepages_supported())
2923 return -EOPNOTSUPP;
2925 table->data = &tmp;
2926 table->maxlen = sizeof(unsigned long);
2927 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2928 if (ret)
2929 goto out;
2931 if (write)
2932 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2933 NUMA_NO_NODE, tmp, *length);
2934 out:
2935 return ret;
2938 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2939 void __user *buffer, size_t *length, loff_t *ppos)
2942 return hugetlb_sysctl_handler_common(false, table, write,
2943 buffer, length, ppos);
2946 #ifdef CONFIG_NUMA
2947 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2948 void __user *buffer, size_t *length, loff_t *ppos)
2950 return hugetlb_sysctl_handler_common(true, table, write,
2951 buffer, length, ppos);
2953 #endif /* CONFIG_NUMA */
2955 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2956 void __user *buffer,
2957 size_t *length, loff_t *ppos)
2959 struct hstate *h = &default_hstate;
2960 unsigned long tmp;
2961 int ret;
2963 if (!hugepages_supported())
2964 return -EOPNOTSUPP;
2966 tmp = h->nr_overcommit_huge_pages;
2968 if (write && hstate_is_gigantic(h))
2969 return -EINVAL;
2971 table->data = &tmp;
2972 table->maxlen = sizeof(unsigned long);
2973 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2974 if (ret)
2975 goto out;
2977 if (write) {
2978 spin_lock(&hugetlb_lock);
2979 h->nr_overcommit_huge_pages = tmp;
2980 spin_unlock(&hugetlb_lock);
2982 out:
2983 return ret;
2986 #endif /* CONFIG_SYSCTL */
2988 void hugetlb_report_meminfo(struct seq_file *m)
2990 struct hstate *h = &default_hstate;
2991 if (!hugepages_supported())
2992 return;
2993 seq_printf(m,
2994 "HugePages_Total: %5lu\n"
2995 "HugePages_Free: %5lu\n"
2996 "HugePages_Rsvd: %5lu\n"
2997 "HugePages_Surp: %5lu\n"
2998 "Hugepagesize: %8lu kB\n",
2999 h->nr_huge_pages,
3000 h->free_huge_pages,
3001 h->resv_huge_pages,
3002 h->surplus_huge_pages,
3003 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3006 int hugetlb_report_node_meminfo(int nid, char *buf)
3008 struct hstate *h = &default_hstate;
3009 if (!hugepages_supported())
3010 return 0;
3011 return sprintf(buf,
3012 "Node %d HugePages_Total: %5u\n"
3013 "Node %d HugePages_Free: %5u\n"
3014 "Node %d HugePages_Surp: %5u\n",
3015 nid, h->nr_huge_pages_node[nid],
3016 nid, h->free_huge_pages_node[nid],
3017 nid, h->surplus_huge_pages_node[nid]);
3020 void hugetlb_show_meminfo(void)
3022 struct hstate *h;
3023 int nid;
3025 if (!hugepages_supported())
3026 return;
3028 for_each_node_state(nid, N_MEMORY)
3029 for_each_hstate(h)
3030 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3031 nid,
3032 h->nr_huge_pages_node[nid],
3033 h->free_huge_pages_node[nid],
3034 h->surplus_huge_pages_node[nid],
3035 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3038 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3040 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3041 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3044 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3045 unsigned long hugetlb_total_pages(void)
3047 struct hstate *h;
3048 unsigned long nr_total_pages = 0;
3050 for_each_hstate(h)
3051 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3052 return nr_total_pages;
3055 static int hugetlb_acct_memory(struct hstate *h, long delta)
3057 int ret = -ENOMEM;
3059 spin_lock(&hugetlb_lock);
3061 * When cpuset is configured, it breaks the strict hugetlb page
3062 * reservation as the accounting is done on a global variable. Such
3063 * reservation is completely rubbish in the presence of cpuset because
3064 * the reservation is not checked against page availability for the
3065 * current cpuset. Application can still potentially OOM'ed by kernel
3066 * with lack of free htlb page in cpuset that the task is in.
3067 * Attempt to enforce strict accounting with cpuset is almost
3068 * impossible (or too ugly) because cpuset is too fluid that
3069 * task or memory node can be dynamically moved between cpusets.
3071 * The change of semantics for shared hugetlb mapping with cpuset is
3072 * undesirable. However, in order to preserve some of the semantics,
3073 * we fall back to check against current free page availability as
3074 * a best attempt and hopefully to minimize the impact of changing
3075 * semantics that cpuset has.
3077 if (delta > 0) {
3078 if (gather_surplus_pages(h, delta) < 0)
3079 goto out;
3081 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3082 return_unused_surplus_pages(h, delta);
3083 goto out;
3087 ret = 0;
3088 if (delta < 0)
3089 return_unused_surplus_pages(h, (unsigned long) -delta);
3091 out:
3092 spin_unlock(&hugetlb_lock);
3093 return ret;
3096 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3098 struct resv_map *resv = vma_resv_map(vma);
3101 * This new VMA should share its siblings reservation map if present.
3102 * The VMA will only ever have a valid reservation map pointer where
3103 * it is being copied for another still existing VMA. As that VMA
3104 * has a reference to the reservation map it cannot disappear until
3105 * after this open call completes. It is therefore safe to take a
3106 * new reference here without additional locking.
3108 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3109 kref_get(&resv->refs);
3112 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3114 struct hstate *h = hstate_vma(vma);
3115 struct resv_map *resv = vma_resv_map(vma);
3116 struct hugepage_subpool *spool = subpool_vma(vma);
3117 unsigned long reserve, start, end;
3118 long gbl_reserve;
3120 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3121 return;
3123 start = vma_hugecache_offset(h, vma, vma->vm_start);
3124 end = vma_hugecache_offset(h, vma, vma->vm_end);
3126 reserve = (end - start) - region_count(resv, start, end);
3128 kref_put(&resv->refs, resv_map_release);
3130 if (reserve) {
3132 * Decrement reserve counts. The global reserve count may be
3133 * adjusted if the subpool has a minimum size.
3135 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3136 hugetlb_acct_memory(h, -gbl_reserve);
3140 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3142 if (addr & ~(huge_page_mask(hstate_vma(vma))))
3143 return -EINVAL;
3144 return 0;
3148 * We cannot handle pagefaults against hugetlb pages at all. They cause
3149 * handle_mm_fault() to try to instantiate regular-sized pages in the
3150 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3151 * this far.
3153 static int hugetlb_vm_op_fault(struct vm_fault *vmf)
3155 BUG();
3156 return 0;
3159 const struct vm_operations_struct hugetlb_vm_ops = {
3160 .fault = hugetlb_vm_op_fault,
3161 .open = hugetlb_vm_op_open,
3162 .close = hugetlb_vm_op_close,
3163 .split = hugetlb_vm_op_split,
3166 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3167 int writable)
3169 pte_t entry;
3171 if (writable) {
3172 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3173 vma->vm_page_prot)));
3174 } else {
3175 entry = huge_pte_wrprotect(mk_huge_pte(page,
3176 vma->vm_page_prot));
3178 entry = pte_mkyoung(entry);
3179 entry = pte_mkhuge(entry);
3180 entry = arch_make_huge_pte(entry, vma, page, writable);
3182 return entry;
3185 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3186 unsigned long address, pte_t *ptep)
3188 pte_t entry;
3190 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3191 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3192 update_mmu_cache(vma, address, ptep);
3195 bool is_hugetlb_entry_migration(pte_t pte)
3197 swp_entry_t swp;
3199 if (huge_pte_none(pte) || pte_present(pte))
3200 return false;
3201 swp = pte_to_swp_entry(pte);
3202 if (non_swap_entry(swp) && is_migration_entry(swp))
3203 return true;
3204 else
3205 return false;
3208 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3210 swp_entry_t swp;
3212 if (huge_pte_none(pte) || pte_present(pte))
3213 return 0;
3214 swp = pte_to_swp_entry(pte);
3215 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3216 return 1;
3217 else
3218 return 0;
3221 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3222 struct vm_area_struct *vma)
3224 pte_t *src_pte, *dst_pte, entry, dst_entry;
3225 struct page *ptepage;
3226 unsigned long addr;
3227 int cow;
3228 struct hstate *h = hstate_vma(vma);
3229 unsigned long sz = huge_page_size(h);
3230 unsigned long mmun_start; /* For mmu_notifiers */
3231 unsigned long mmun_end; /* For mmu_notifiers */
3232 int ret = 0;
3234 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3236 mmun_start = vma->vm_start;
3237 mmun_end = vma->vm_end;
3238 if (cow)
3239 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3241 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3242 spinlock_t *src_ptl, *dst_ptl;
3243 src_pte = huge_pte_offset(src, addr, sz);
3244 if (!src_pte)
3245 continue;
3246 dst_pte = huge_pte_alloc(dst, addr, sz);
3247 if (!dst_pte) {
3248 ret = -ENOMEM;
3249 break;
3253 * If the pagetables are shared don't copy or take references.
3254 * dst_pte == src_pte is the common case of src/dest sharing.
3256 * However, src could have 'unshared' and dst shares with
3257 * another vma. If dst_pte !none, this implies sharing.
3258 * Check here before taking page table lock, and once again
3259 * after taking the lock below.
3261 dst_entry = huge_ptep_get(dst_pte);
3262 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3263 continue;
3265 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3266 src_ptl = huge_pte_lockptr(h, src, src_pte);
3267 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3268 entry = huge_ptep_get(src_pte);
3269 dst_entry = huge_ptep_get(dst_pte);
3270 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3272 * Skip if src entry none. Also, skip in the
3273 * unlikely case dst entry !none as this implies
3274 * sharing with another vma.
3277 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3278 is_hugetlb_entry_hwpoisoned(entry))) {
3279 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3281 if (is_write_migration_entry(swp_entry) && cow) {
3283 * COW mappings require pages in both
3284 * parent and child to be set to read.
3286 make_migration_entry_read(&swp_entry);
3287 entry = swp_entry_to_pte(swp_entry);
3288 set_huge_swap_pte_at(src, addr, src_pte,
3289 entry, sz);
3291 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3292 } else {
3293 if (cow) {
3294 huge_ptep_set_wrprotect(src, addr, src_pte);
3295 mmu_notifier_invalidate_range(src, mmun_start,
3296 mmun_end);
3298 entry = huge_ptep_get(src_pte);
3299 ptepage = pte_page(entry);
3300 get_page(ptepage);
3301 page_dup_rmap(ptepage, true);
3302 set_huge_pte_at(dst, addr, dst_pte, entry);
3303 hugetlb_count_add(pages_per_huge_page(h), dst);
3305 spin_unlock(src_ptl);
3306 spin_unlock(dst_ptl);
3309 if (cow)
3310 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3312 return ret;
3315 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3316 unsigned long start, unsigned long end,
3317 struct page *ref_page)
3319 struct mm_struct *mm = vma->vm_mm;
3320 unsigned long address;
3321 pte_t *ptep;
3322 pte_t pte;
3323 spinlock_t *ptl;
3324 struct page *page;
3325 struct hstate *h = hstate_vma(vma);
3326 unsigned long sz = huge_page_size(h);
3327 const unsigned long mmun_start = start; /* For mmu_notifiers */
3328 const unsigned long mmun_end = end; /* For mmu_notifiers */
3330 WARN_ON(!is_vm_hugetlb_page(vma));
3331 BUG_ON(start & ~huge_page_mask(h));
3332 BUG_ON(end & ~huge_page_mask(h));
3335 * This is a hugetlb vma, all the pte entries should point
3336 * to huge page.
3338 tlb_remove_check_page_size_change(tlb, sz);
3339 tlb_start_vma(tlb, vma);
3340 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3341 address = start;
3342 for (; address < end; address += sz) {
3343 ptep = huge_pte_offset(mm, address, sz);
3344 if (!ptep)
3345 continue;
3347 ptl = huge_pte_lock(h, mm, ptep);
3348 if (huge_pmd_unshare(mm, &address, ptep)) {
3349 spin_unlock(ptl);
3350 continue;
3353 pte = huge_ptep_get(ptep);
3354 if (huge_pte_none(pte)) {
3355 spin_unlock(ptl);
3356 continue;
3360 * Migrating hugepage or HWPoisoned hugepage is already
3361 * unmapped and its refcount is dropped, so just clear pte here.
3363 if (unlikely(!pte_present(pte))) {
3364 huge_pte_clear(mm, address, ptep, sz);
3365 spin_unlock(ptl);
3366 continue;
3369 page = pte_page(pte);
3371 * If a reference page is supplied, it is because a specific
3372 * page is being unmapped, not a range. Ensure the page we
3373 * are about to unmap is the actual page of interest.
3375 if (ref_page) {
3376 if (page != ref_page) {
3377 spin_unlock(ptl);
3378 continue;
3381 * Mark the VMA as having unmapped its page so that
3382 * future faults in this VMA will fail rather than
3383 * looking like data was lost
3385 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3388 pte = huge_ptep_get_and_clear(mm, address, ptep);
3389 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3390 if (huge_pte_dirty(pte))
3391 set_page_dirty(page);
3393 hugetlb_count_sub(pages_per_huge_page(h), mm);
3394 page_remove_rmap(page, true);
3396 spin_unlock(ptl);
3397 tlb_remove_page_size(tlb, page, huge_page_size(h));
3399 * Bail out after unmapping reference page if supplied
3401 if (ref_page)
3402 break;
3404 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3405 tlb_end_vma(tlb, vma);
3408 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3409 struct vm_area_struct *vma, unsigned long start,
3410 unsigned long end, struct page *ref_page)
3412 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3415 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3416 * test will fail on a vma being torn down, and not grab a page table
3417 * on its way out. We're lucky that the flag has such an appropriate
3418 * name, and can in fact be safely cleared here. We could clear it
3419 * before the __unmap_hugepage_range above, but all that's necessary
3420 * is to clear it before releasing the i_mmap_rwsem. This works
3421 * because in the context this is called, the VMA is about to be
3422 * destroyed and the i_mmap_rwsem is held.
3424 vma->vm_flags &= ~VM_MAYSHARE;
3427 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3428 unsigned long end, struct page *ref_page)
3430 struct mm_struct *mm;
3431 struct mmu_gather tlb;
3433 mm = vma->vm_mm;
3435 tlb_gather_mmu(&tlb, mm, start, end);
3436 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3437 tlb_finish_mmu(&tlb, start, end);
3441 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3442 * mappping it owns the reserve page for. The intention is to unmap the page
3443 * from other VMAs and let the children be SIGKILLed if they are faulting the
3444 * same region.
3446 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3447 struct page *page, unsigned long address)
3449 struct hstate *h = hstate_vma(vma);
3450 struct vm_area_struct *iter_vma;
3451 struct address_space *mapping;
3452 pgoff_t pgoff;
3455 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3456 * from page cache lookup which is in HPAGE_SIZE units.
3458 address = address & huge_page_mask(h);
3459 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3460 vma->vm_pgoff;
3461 mapping = vma->vm_file->f_mapping;
3464 * Take the mapping lock for the duration of the table walk. As
3465 * this mapping should be shared between all the VMAs,
3466 * __unmap_hugepage_range() is called as the lock is already held
3468 i_mmap_lock_write(mapping);
3469 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3470 /* Do not unmap the current VMA */
3471 if (iter_vma == vma)
3472 continue;
3475 * Shared VMAs have their own reserves and do not affect
3476 * MAP_PRIVATE accounting but it is possible that a shared
3477 * VMA is using the same page so check and skip such VMAs.
3479 if (iter_vma->vm_flags & VM_MAYSHARE)
3480 continue;
3483 * Unmap the page from other VMAs without their own reserves.
3484 * They get marked to be SIGKILLed if they fault in these
3485 * areas. This is because a future no-page fault on this VMA
3486 * could insert a zeroed page instead of the data existing
3487 * from the time of fork. This would look like data corruption
3489 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3490 unmap_hugepage_range(iter_vma, address,
3491 address + huge_page_size(h), page);
3493 i_mmap_unlock_write(mapping);
3497 * Hugetlb_cow() should be called with page lock of the original hugepage held.
3498 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3499 * cannot race with other handlers or page migration.
3500 * Keep the pte_same checks anyway to make transition from the mutex easier.
3502 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3503 unsigned long address, pte_t *ptep,
3504 struct page *pagecache_page, spinlock_t *ptl)
3506 pte_t pte;
3507 struct hstate *h = hstate_vma(vma);
3508 struct page *old_page, *new_page;
3509 int ret = 0, outside_reserve = 0;
3510 unsigned long mmun_start; /* For mmu_notifiers */
3511 unsigned long mmun_end; /* For mmu_notifiers */
3513 pte = huge_ptep_get(ptep);
3514 old_page = pte_page(pte);
3516 retry_avoidcopy:
3517 /* If no-one else is actually using this page, avoid the copy
3518 * and just make the page writable */
3519 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3520 page_move_anon_rmap(old_page, vma);
3521 set_huge_ptep_writable(vma, address, ptep);
3522 return 0;
3526 * If the process that created a MAP_PRIVATE mapping is about to
3527 * perform a COW due to a shared page count, attempt to satisfy
3528 * the allocation without using the existing reserves. The pagecache
3529 * page is used to determine if the reserve at this address was
3530 * consumed or not. If reserves were used, a partial faulted mapping
3531 * at the time of fork() could consume its reserves on COW instead
3532 * of the full address range.
3534 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3535 old_page != pagecache_page)
3536 outside_reserve = 1;
3538 get_page(old_page);
3541 * Drop page table lock as buddy allocator may be called. It will
3542 * be acquired again before returning to the caller, as expected.
3544 spin_unlock(ptl);
3545 new_page = alloc_huge_page(vma, address, outside_reserve);
3547 if (IS_ERR(new_page)) {
3549 * If a process owning a MAP_PRIVATE mapping fails to COW,
3550 * it is due to references held by a child and an insufficient
3551 * huge page pool. To guarantee the original mappers
3552 * reliability, unmap the page from child processes. The child
3553 * may get SIGKILLed if it later faults.
3555 if (outside_reserve) {
3556 put_page(old_page);
3557 BUG_ON(huge_pte_none(pte));
3558 unmap_ref_private(mm, vma, old_page, address);
3559 BUG_ON(huge_pte_none(pte));
3560 spin_lock(ptl);
3561 ptep = huge_pte_offset(mm, address & huge_page_mask(h),
3562 huge_page_size(h));
3563 if (likely(ptep &&
3564 pte_same(huge_ptep_get(ptep), pte)))
3565 goto retry_avoidcopy;
3567 * race occurs while re-acquiring page table
3568 * lock, and our job is done.
3570 return 0;
3573 ret = (PTR_ERR(new_page) == -ENOMEM) ?
3574 VM_FAULT_OOM : VM_FAULT_SIGBUS;
3575 goto out_release_old;
3579 * When the original hugepage is shared one, it does not have
3580 * anon_vma prepared.
3582 if (unlikely(anon_vma_prepare(vma))) {
3583 ret = VM_FAULT_OOM;
3584 goto out_release_all;
3587 copy_user_huge_page(new_page, old_page, address, vma,
3588 pages_per_huge_page(h));
3589 __SetPageUptodate(new_page);
3591 mmun_start = address & huge_page_mask(h);
3592 mmun_end = mmun_start + huge_page_size(h);
3593 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3596 * Retake the page table lock to check for racing updates
3597 * before the page tables are altered
3599 spin_lock(ptl);
3600 ptep = huge_pte_offset(mm, address & huge_page_mask(h),
3601 huge_page_size(h));
3602 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3603 ClearPagePrivate(new_page);
3605 /* Break COW */
3606 huge_ptep_clear_flush(vma, address, ptep);
3607 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3608 set_huge_pte_at(mm, address, ptep,
3609 make_huge_pte(vma, new_page, 1));
3610 page_remove_rmap(old_page, true);
3611 hugepage_add_new_anon_rmap(new_page, vma, address);
3612 set_page_huge_active(new_page);
3613 /* Make the old page be freed below */
3614 new_page = old_page;
3616 spin_unlock(ptl);
3617 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3618 out_release_all:
3619 restore_reserve_on_error(h, vma, address, new_page);
3620 put_page(new_page);
3621 out_release_old:
3622 put_page(old_page);
3624 spin_lock(ptl); /* Caller expects lock to be held */
3625 return ret;
3628 /* Return the pagecache page at a given address within a VMA */
3629 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3630 struct vm_area_struct *vma, unsigned long address)
3632 struct address_space *mapping;
3633 pgoff_t idx;
3635 mapping = vma->vm_file->f_mapping;
3636 idx = vma_hugecache_offset(h, vma, address);
3638 return find_lock_page(mapping, idx);
3642 * Return whether there is a pagecache page to back given address within VMA.
3643 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3645 static bool hugetlbfs_pagecache_present(struct hstate *h,
3646 struct vm_area_struct *vma, unsigned long address)
3648 struct address_space *mapping;
3649 pgoff_t idx;
3650 struct page *page;
3652 mapping = vma->vm_file->f_mapping;
3653 idx = vma_hugecache_offset(h, vma, address);
3655 page = find_get_page(mapping, idx);
3656 if (page)
3657 put_page(page);
3658 return page != NULL;
3661 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3662 pgoff_t idx)
3664 struct inode *inode = mapping->host;
3665 struct hstate *h = hstate_inode(inode);
3666 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3668 if (err)
3669 return err;
3670 ClearPagePrivate(page);
3673 * set page dirty so that it will not be removed from cache/file
3674 * by non-hugetlbfs specific code paths.
3676 set_page_dirty(page);
3678 spin_lock(&inode->i_lock);
3679 inode->i_blocks += blocks_per_huge_page(h);
3680 spin_unlock(&inode->i_lock);
3681 return 0;
3684 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3685 struct address_space *mapping, pgoff_t idx,
3686 unsigned long address, pte_t *ptep, unsigned int flags)
3688 struct hstate *h = hstate_vma(vma);
3689 int ret = VM_FAULT_SIGBUS;
3690 int anon_rmap = 0;
3691 unsigned long size;
3692 struct page *page;
3693 pte_t new_pte;
3694 spinlock_t *ptl;
3695 bool new_page = false;
3698 * Currently, we are forced to kill the process in the event the
3699 * original mapper has unmapped pages from the child due to a failed
3700 * COW. Warn that such a situation has occurred as it may not be obvious
3702 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3703 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3704 current->pid);
3705 return ret;
3709 * Use page lock to guard against racing truncation
3710 * before we get page_table_lock.
3712 retry:
3713 page = find_lock_page(mapping, idx);
3714 if (!page) {
3715 size = i_size_read(mapping->host) >> huge_page_shift(h);
3716 if (idx >= size)
3717 goto out;
3720 * Check for page in userfault range
3722 if (userfaultfd_missing(vma)) {
3723 u32 hash;
3724 struct vm_fault vmf = {
3725 .vma = vma,
3726 .address = address,
3727 .flags = flags,
3729 * Hard to debug if it ends up being
3730 * used by a callee that assumes
3731 * something about the other
3732 * uninitialized fields... same as in
3733 * memory.c
3738 * hugetlb_fault_mutex must be dropped before
3739 * handling userfault. Reacquire after handling
3740 * fault to make calling code simpler.
3742 hash = hugetlb_fault_mutex_hash(h, mapping, idx,
3743 address);
3744 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3745 ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3746 mutex_lock(&hugetlb_fault_mutex_table[hash]);
3747 goto out;
3750 page = alloc_huge_page(vma, address, 0);
3751 if (IS_ERR(page)) {
3752 ret = PTR_ERR(page);
3753 if (ret == -ENOMEM)
3754 ret = VM_FAULT_OOM;
3755 else
3756 ret = VM_FAULT_SIGBUS;
3757 goto out;
3759 clear_huge_page(page, address, pages_per_huge_page(h));
3760 __SetPageUptodate(page);
3761 new_page = true;
3763 if (vma->vm_flags & VM_MAYSHARE) {
3764 int err = huge_add_to_page_cache(page, mapping, idx);
3765 if (err) {
3766 put_page(page);
3767 if (err == -EEXIST)
3768 goto retry;
3769 goto out;
3771 } else {
3772 lock_page(page);
3773 if (unlikely(anon_vma_prepare(vma))) {
3774 ret = VM_FAULT_OOM;
3775 goto backout_unlocked;
3777 anon_rmap = 1;
3779 } else {
3781 * If memory error occurs between mmap() and fault, some process
3782 * don't have hwpoisoned swap entry for errored virtual address.
3783 * So we need to block hugepage fault by PG_hwpoison bit check.
3785 if (unlikely(PageHWPoison(page))) {
3786 ret = VM_FAULT_HWPOISON |
3787 VM_FAULT_SET_HINDEX(hstate_index(h));
3788 goto backout_unlocked;
3793 * If we are going to COW a private mapping later, we examine the
3794 * pending reservations for this page now. This will ensure that
3795 * any allocations necessary to record that reservation occur outside
3796 * the spinlock.
3798 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3799 if (vma_needs_reservation(h, vma, address) < 0) {
3800 ret = VM_FAULT_OOM;
3801 goto backout_unlocked;
3803 /* Just decrements count, does not deallocate */
3804 vma_end_reservation(h, vma, address);
3807 ptl = huge_pte_lock(h, mm, ptep);
3808 size = i_size_read(mapping->host) >> huge_page_shift(h);
3809 if (idx >= size)
3810 goto backout;
3812 ret = 0;
3813 if (!huge_pte_none(huge_ptep_get(ptep)))
3814 goto backout;
3816 if (anon_rmap) {
3817 ClearPagePrivate(page);
3818 hugepage_add_new_anon_rmap(page, vma, address);
3819 } else
3820 page_dup_rmap(page, true);
3821 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3822 && (vma->vm_flags & VM_SHARED)));
3823 set_huge_pte_at(mm, address, ptep, new_pte);
3825 hugetlb_count_add(pages_per_huge_page(h), mm);
3826 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3827 /* Optimization, do the COW without a second fault */
3828 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
3831 spin_unlock(ptl);
3834 * Only make newly allocated pages active. Existing pages found
3835 * in the pagecache could be !page_huge_active() if they have been
3836 * isolated for migration.
3838 if (new_page)
3839 set_page_huge_active(page);
3841 unlock_page(page);
3842 out:
3843 return ret;
3845 backout:
3846 spin_unlock(ptl);
3847 backout_unlocked:
3848 unlock_page(page);
3849 restore_reserve_on_error(h, vma, address, page);
3850 put_page(page);
3851 goto out;
3854 #ifdef CONFIG_SMP
3855 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct address_space *mapping,
3856 pgoff_t idx, unsigned long address)
3858 unsigned long key[2];
3859 u32 hash;
3861 key[0] = (unsigned long) mapping;
3862 key[1] = idx;
3864 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3866 return hash & (num_fault_mutexes - 1);
3868 #else
3870 * For uniprocesor systems we always use a single mutex, so just
3871 * return 0 and avoid the hashing overhead.
3873 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct address_space *mapping,
3874 pgoff_t idx, unsigned long address)
3876 return 0;
3878 #endif
3880 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3881 unsigned long address, unsigned int flags)
3883 pte_t *ptep, entry;
3884 spinlock_t *ptl;
3885 int ret;
3886 u32 hash;
3887 pgoff_t idx;
3888 struct page *page = NULL;
3889 struct page *pagecache_page = NULL;
3890 struct hstate *h = hstate_vma(vma);
3891 struct address_space *mapping;
3892 int need_wait_lock = 0;
3894 address &= huge_page_mask(h);
3896 ptep = huge_pte_offset(mm, address, huge_page_size(h));
3897 if (ptep) {
3898 entry = huge_ptep_get(ptep);
3899 if (unlikely(is_hugetlb_entry_migration(entry))) {
3900 migration_entry_wait_huge(vma, mm, ptep);
3901 return 0;
3902 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3903 return VM_FAULT_HWPOISON_LARGE |
3904 VM_FAULT_SET_HINDEX(hstate_index(h));
3905 } else {
3906 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3907 if (!ptep)
3908 return VM_FAULT_OOM;
3911 mapping = vma->vm_file->f_mapping;
3912 idx = vma_hugecache_offset(h, vma, address);
3915 * Serialize hugepage allocation and instantiation, so that we don't
3916 * get spurious allocation failures if two CPUs race to instantiate
3917 * the same page in the page cache.
3919 hash = hugetlb_fault_mutex_hash(h, mapping, idx, address);
3920 mutex_lock(&hugetlb_fault_mutex_table[hash]);
3922 entry = huge_ptep_get(ptep);
3923 if (huge_pte_none(entry)) {
3924 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3925 goto out_mutex;
3928 ret = 0;
3931 * entry could be a migration/hwpoison entry at this point, so this
3932 * check prevents the kernel from going below assuming that we have
3933 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3934 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3935 * handle it.
3937 if (!pte_present(entry))
3938 goto out_mutex;
3941 * If we are going to COW the mapping later, we examine the pending
3942 * reservations for this page now. This will ensure that any
3943 * allocations necessary to record that reservation occur outside the
3944 * spinlock. For private mappings, we also lookup the pagecache
3945 * page now as it is used to determine if a reservation has been
3946 * consumed.
3948 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3949 if (vma_needs_reservation(h, vma, address) < 0) {
3950 ret = VM_FAULT_OOM;
3951 goto out_mutex;
3953 /* Just decrements count, does not deallocate */
3954 vma_end_reservation(h, vma, address);
3956 if (!(vma->vm_flags & VM_MAYSHARE))
3957 pagecache_page = hugetlbfs_pagecache_page(h,
3958 vma, address);
3961 ptl = huge_pte_lock(h, mm, ptep);
3963 /* Check for a racing update before calling hugetlb_cow */
3964 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3965 goto out_ptl;
3968 * hugetlb_cow() requires page locks of pte_page(entry) and
3969 * pagecache_page, so here we need take the former one
3970 * when page != pagecache_page or !pagecache_page.
3972 page = pte_page(entry);
3973 if (page != pagecache_page)
3974 if (!trylock_page(page)) {
3975 need_wait_lock = 1;
3976 goto out_ptl;
3979 get_page(page);
3981 if (flags & FAULT_FLAG_WRITE) {
3982 if (!huge_pte_write(entry)) {
3983 ret = hugetlb_cow(mm, vma, address, ptep,
3984 pagecache_page, ptl);
3985 goto out_put_page;
3987 entry = huge_pte_mkdirty(entry);
3989 entry = pte_mkyoung(entry);
3990 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3991 flags & FAULT_FLAG_WRITE))
3992 update_mmu_cache(vma, address, ptep);
3993 out_put_page:
3994 if (page != pagecache_page)
3995 unlock_page(page);
3996 put_page(page);
3997 out_ptl:
3998 spin_unlock(ptl);
4000 if (pagecache_page) {
4001 unlock_page(pagecache_page);
4002 put_page(pagecache_page);
4004 out_mutex:
4005 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4007 * Generally it's safe to hold refcount during waiting page lock. But
4008 * here we just wait to defer the next page fault to avoid busy loop and
4009 * the page is not used after unlocked before returning from the current
4010 * page fault. So we are safe from accessing freed page, even if we wait
4011 * here without taking refcount.
4013 if (need_wait_lock)
4014 wait_on_page_locked(page);
4015 return ret;
4019 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
4020 * modifications for huge pages.
4022 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4023 pte_t *dst_pte,
4024 struct vm_area_struct *dst_vma,
4025 unsigned long dst_addr,
4026 unsigned long src_addr,
4027 struct page **pagep)
4029 struct address_space *mapping;
4030 pgoff_t idx;
4031 unsigned long size;
4032 int vm_shared = dst_vma->vm_flags & VM_SHARED;
4033 struct hstate *h = hstate_vma(dst_vma);
4034 pte_t _dst_pte;
4035 spinlock_t *ptl;
4036 int ret;
4037 struct page *page;
4039 if (!*pagep) {
4040 ret = -ENOMEM;
4041 page = alloc_huge_page(dst_vma, dst_addr, 0);
4042 if (IS_ERR(page))
4043 goto out;
4045 ret = copy_huge_page_from_user(page,
4046 (const void __user *) src_addr,
4047 pages_per_huge_page(h), false);
4049 /* fallback to copy_from_user outside mmap_sem */
4050 if (unlikely(ret)) {
4051 ret = -ENOENT;
4052 *pagep = page;
4053 /* don't free the page */
4054 goto out;
4056 } else {
4057 page = *pagep;
4058 *pagep = NULL;
4062 * The memory barrier inside __SetPageUptodate makes sure that
4063 * preceding stores to the page contents become visible before
4064 * the set_pte_at() write.
4066 __SetPageUptodate(page);
4068 mapping = dst_vma->vm_file->f_mapping;
4069 idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4072 * If shared, add to page cache
4074 if (vm_shared) {
4075 size = i_size_read(mapping->host) >> huge_page_shift(h);
4076 ret = -EFAULT;
4077 if (idx >= size)
4078 goto out_release_nounlock;
4081 * Serialization between remove_inode_hugepages() and
4082 * huge_add_to_page_cache() below happens through the
4083 * hugetlb_fault_mutex_table that here must be hold by
4084 * the caller.
4086 ret = huge_add_to_page_cache(page, mapping, idx);
4087 if (ret)
4088 goto out_release_nounlock;
4091 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4092 spin_lock(ptl);
4095 * Recheck the i_size after holding PT lock to make sure not
4096 * to leave any page mapped (as page_mapped()) beyond the end
4097 * of the i_size (remove_inode_hugepages() is strict about
4098 * enforcing that). If we bail out here, we'll also leave a
4099 * page in the radix tree in the vm_shared case beyond the end
4100 * of the i_size, but remove_inode_hugepages() will take care
4101 * of it as soon as we drop the hugetlb_fault_mutex_table.
4103 size = i_size_read(mapping->host) >> huge_page_shift(h);
4104 ret = -EFAULT;
4105 if (idx >= size)
4106 goto out_release_unlock;
4108 ret = -EEXIST;
4109 if (!huge_pte_none(huge_ptep_get(dst_pte)))
4110 goto out_release_unlock;
4112 if (vm_shared) {
4113 page_dup_rmap(page, true);
4114 } else {
4115 ClearPagePrivate(page);
4116 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4119 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4120 if (dst_vma->vm_flags & VM_WRITE)
4121 _dst_pte = huge_pte_mkdirty(_dst_pte);
4122 _dst_pte = pte_mkyoung(_dst_pte);
4124 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4126 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4127 dst_vma->vm_flags & VM_WRITE);
4128 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4130 /* No need to invalidate - it was non-present before */
4131 update_mmu_cache(dst_vma, dst_addr, dst_pte);
4133 spin_unlock(ptl);
4134 set_page_huge_active(page);
4135 if (vm_shared)
4136 unlock_page(page);
4137 ret = 0;
4138 out:
4139 return ret;
4140 out_release_unlock:
4141 spin_unlock(ptl);
4142 if (vm_shared)
4143 unlock_page(page);
4144 out_release_nounlock:
4145 put_page(page);
4146 goto out;
4149 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4150 struct page **pages, struct vm_area_struct **vmas,
4151 unsigned long *position, unsigned long *nr_pages,
4152 long i, unsigned int flags, int *nonblocking)
4154 unsigned long pfn_offset;
4155 unsigned long vaddr = *position;
4156 unsigned long remainder = *nr_pages;
4157 struct hstate *h = hstate_vma(vma);
4158 int err = -EFAULT;
4160 while (vaddr < vma->vm_end && remainder) {
4161 pte_t *pte;
4162 spinlock_t *ptl = NULL;
4163 int absent;
4164 struct page *page;
4167 * If we have a pending SIGKILL, don't keep faulting pages and
4168 * potentially allocating memory.
4170 if (unlikely(fatal_signal_pending(current))) {
4171 remainder = 0;
4172 break;
4176 * Some archs (sparc64, sh*) have multiple pte_ts to
4177 * each hugepage. We have to make sure we get the
4178 * first, for the page indexing below to work.
4180 * Note that page table lock is not held when pte is null.
4182 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4183 huge_page_size(h));
4184 if (pte)
4185 ptl = huge_pte_lock(h, mm, pte);
4186 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4189 * When coredumping, it suits get_dump_page if we just return
4190 * an error where there's an empty slot with no huge pagecache
4191 * to back it. This way, we avoid allocating a hugepage, and
4192 * the sparse dumpfile avoids allocating disk blocks, but its
4193 * huge holes still show up with zeroes where they need to be.
4195 if (absent && (flags & FOLL_DUMP) &&
4196 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4197 if (pte)
4198 spin_unlock(ptl);
4199 remainder = 0;
4200 break;
4204 * We need call hugetlb_fault for both hugepages under migration
4205 * (in which case hugetlb_fault waits for the migration,) and
4206 * hwpoisoned hugepages (in which case we need to prevent the
4207 * caller from accessing to them.) In order to do this, we use
4208 * here is_swap_pte instead of is_hugetlb_entry_migration and
4209 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4210 * both cases, and because we can't follow correct pages
4211 * directly from any kind of swap entries.
4213 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4214 ((flags & FOLL_WRITE) &&
4215 !huge_pte_write(huge_ptep_get(pte)))) {
4216 int ret;
4217 unsigned int fault_flags = 0;
4219 if (pte)
4220 spin_unlock(ptl);
4221 if (flags & FOLL_WRITE)
4222 fault_flags |= FAULT_FLAG_WRITE;
4223 if (nonblocking)
4224 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4225 if (flags & FOLL_NOWAIT)
4226 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4227 FAULT_FLAG_RETRY_NOWAIT;
4228 if (flags & FOLL_TRIED) {
4229 VM_WARN_ON_ONCE(fault_flags &
4230 FAULT_FLAG_ALLOW_RETRY);
4231 fault_flags |= FAULT_FLAG_TRIED;
4233 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4234 if (ret & VM_FAULT_ERROR) {
4235 err = vm_fault_to_errno(ret, flags);
4236 remainder = 0;
4237 break;
4239 if (ret & VM_FAULT_RETRY) {
4240 if (nonblocking)
4241 *nonblocking = 0;
4242 *nr_pages = 0;
4244 * VM_FAULT_RETRY must not return an
4245 * error, it will return zero
4246 * instead.
4248 * No need to update "position" as the
4249 * caller will not check it after
4250 * *nr_pages is set to 0.
4252 return i;
4254 continue;
4257 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4258 page = pte_page(huge_ptep_get(pte));
4261 * Instead of doing 'try_get_page()' below in the same_page
4262 * loop, just check the count once here.
4264 if (unlikely(page_count(page) <= 0)) {
4265 if (pages) {
4266 spin_unlock(ptl);
4267 remainder = 0;
4268 err = -ENOMEM;
4269 break;
4272 same_page:
4273 if (pages) {
4274 pages[i] = mem_map_offset(page, pfn_offset);
4275 get_page(pages[i]);
4278 if (vmas)
4279 vmas[i] = vma;
4281 vaddr += PAGE_SIZE;
4282 ++pfn_offset;
4283 --remainder;
4284 ++i;
4285 if (vaddr < vma->vm_end && remainder &&
4286 pfn_offset < pages_per_huge_page(h)) {
4288 * We use pfn_offset to avoid touching the pageframes
4289 * of this compound page.
4291 goto same_page;
4293 spin_unlock(ptl);
4295 *nr_pages = remainder;
4297 * setting position is actually required only if remainder is
4298 * not zero but it's faster not to add a "if (remainder)"
4299 * branch.
4301 *position = vaddr;
4303 return i ? i : err;
4306 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4308 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4309 * implement this.
4311 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4312 #endif
4314 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4315 unsigned long address, unsigned long end, pgprot_t newprot)
4317 struct mm_struct *mm = vma->vm_mm;
4318 unsigned long start = address;
4319 pte_t *ptep;
4320 pte_t pte;
4321 struct hstate *h = hstate_vma(vma);
4322 unsigned long pages = 0;
4324 BUG_ON(address >= end);
4325 flush_cache_range(vma, address, end);
4327 mmu_notifier_invalidate_range_start(mm, start, end);
4328 i_mmap_lock_write(vma->vm_file->f_mapping);
4329 for (; address < end; address += huge_page_size(h)) {
4330 spinlock_t *ptl;
4331 ptep = huge_pte_offset(mm, address, huge_page_size(h));
4332 if (!ptep)
4333 continue;
4334 ptl = huge_pte_lock(h, mm, ptep);
4335 if (huge_pmd_unshare(mm, &address, ptep)) {
4336 pages++;
4337 spin_unlock(ptl);
4338 continue;
4340 pte = huge_ptep_get(ptep);
4341 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4342 spin_unlock(ptl);
4343 continue;
4345 if (unlikely(is_hugetlb_entry_migration(pte))) {
4346 swp_entry_t entry = pte_to_swp_entry(pte);
4348 if (is_write_migration_entry(entry)) {
4349 pte_t newpte;
4351 make_migration_entry_read(&entry);
4352 newpte = swp_entry_to_pte(entry);
4353 set_huge_swap_pte_at(mm, address, ptep,
4354 newpte, huge_page_size(h));
4355 pages++;
4357 spin_unlock(ptl);
4358 continue;
4360 if (!huge_pte_none(pte)) {
4361 pte = huge_ptep_get_and_clear(mm, address, ptep);
4362 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
4363 pte = arch_make_huge_pte(pte, vma, NULL, 0);
4364 set_huge_pte_at(mm, address, ptep, pte);
4365 pages++;
4367 spin_unlock(ptl);
4370 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4371 * may have cleared our pud entry and done put_page on the page table:
4372 * once we release i_mmap_rwsem, another task can do the final put_page
4373 * and that page table be reused and filled with junk.
4375 flush_hugetlb_tlb_range(vma, start, end);
4376 mmu_notifier_invalidate_range(mm, start, end);
4377 i_mmap_unlock_write(vma->vm_file->f_mapping);
4378 mmu_notifier_invalidate_range_end(mm, start, end);
4380 return pages << h->order;
4383 int hugetlb_reserve_pages(struct inode *inode,
4384 long from, long to,
4385 struct vm_area_struct *vma,
4386 vm_flags_t vm_flags)
4388 long ret, chg;
4389 struct hstate *h = hstate_inode(inode);
4390 struct hugepage_subpool *spool = subpool_inode(inode);
4391 struct resv_map *resv_map;
4392 long gbl_reserve;
4394 /* This should never happen */
4395 if (from > to) {
4396 VM_WARN(1, "%s called with a negative range\n", __func__);
4397 return -EINVAL;
4401 * Only apply hugepage reservation if asked. At fault time, an
4402 * attempt will be made for VM_NORESERVE to allocate a page
4403 * without using reserves
4405 if (vm_flags & VM_NORESERVE)
4406 return 0;
4409 * Shared mappings base their reservation on the number of pages that
4410 * are already allocated on behalf of the file. Private mappings need
4411 * to reserve the full area even if read-only as mprotect() may be
4412 * called to make the mapping read-write. Assume !vma is a shm mapping
4414 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4415 resv_map = inode_resv_map(inode);
4417 chg = region_chg(resv_map, from, to);
4419 } else {
4420 resv_map = resv_map_alloc();
4421 if (!resv_map)
4422 return -ENOMEM;
4424 chg = to - from;
4426 set_vma_resv_map(vma, resv_map);
4427 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4430 if (chg < 0) {
4431 ret = chg;
4432 goto out_err;
4436 * There must be enough pages in the subpool for the mapping. If
4437 * the subpool has a minimum size, there may be some global
4438 * reservations already in place (gbl_reserve).
4440 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4441 if (gbl_reserve < 0) {
4442 ret = -ENOSPC;
4443 goto out_err;
4447 * Check enough hugepages are available for the reservation.
4448 * Hand the pages back to the subpool if there are not
4450 ret = hugetlb_acct_memory(h, gbl_reserve);
4451 if (ret < 0) {
4452 /* put back original number of pages, chg */
4453 (void)hugepage_subpool_put_pages(spool, chg);
4454 goto out_err;
4458 * Account for the reservations made. Shared mappings record regions
4459 * that have reservations as they are shared by multiple VMAs.
4460 * When the last VMA disappears, the region map says how much
4461 * the reservation was and the page cache tells how much of
4462 * the reservation was consumed. Private mappings are per-VMA and
4463 * only the consumed reservations are tracked. When the VMA
4464 * disappears, the original reservation is the VMA size and the
4465 * consumed reservations are stored in the map. Hence, nothing
4466 * else has to be done for private mappings here
4468 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4469 long add = region_add(resv_map, from, to);
4471 if (unlikely(chg > add)) {
4473 * pages in this range were added to the reserve
4474 * map between region_chg and region_add. This
4475 * indicates a race with alloc_huge_page. Adjust
4476 * the subpool and reserve counts modified above
4477 * based on the difference.
4479 long rsv_adjust;
4481 rsv_adjust = hugepage_subpool_put_pages(spool,
4482 chg - add);
4483 hugetlb_acct_memory(h, -rsv_adjust);
4486 return 0;
4487 out_err:
4488 if (!vma || vma->vm_flags & VM_MAYSHARE)
4489 /* Don't call region_abort if region_chg failed */
4490 if (chg >= 0)
4491 region_abort(resv_map, from, to);
4492 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4493 kref_put(&resv_map->refs, resv_map_release);
4494 return ret;
4497 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4498 long freed)
4500 struct hstate *h = hstate_inode(inode);
4501 struct resv_map *resv_map = inode_resv_map(inode);
4502 long chg = 0;
4503 struct hugepage_subpool *spool = subpool_inode(inode);
4504 long gbl_reserve;
4506 if (resv_map) {
4507 chg = region_del(resv_map, start, end);
4509 * region_del() can fail in the rare case where a region
4510 * must be split and another region descriptor can not be
4511 * allocated. If end == LONG_MAX, it will not fail.
4513 if (chg < 0)
4514 return chg;
4517 spin_lock(&inode->i_lock);
4518 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4519 spin_unlock(&inode->i_lock);
4522 * If the subpool has a minimum size, the number of global
4523 * reservations to be released may be adjusted.
4525 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4526 hugetlb_acct_memory(h, -gbl_reserve);
4528 return 0;
4531 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4532 static unsigned long page_table_shareable(struct vm_area_struct *svma,
4533 struct vm_area_struct *vma,
4534 unsigned long addr, pgoff_t idx)
4536 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4537 svma->vm_start;
4538 unsigned long sbase = saddr & PUD_MASK;
4539 unsigned long s_end = sbase + PUD_SIZE;
4541 /* Allow segments to share if only one is marked locked */
4542 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4543 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4546 * match the virtual addresses, permission and the alignment of the
4547 * page table page.
4549 if (pmd_index(addr) != pmd_index(saddr) ||
4550 vm_flags != svm_flags ||
4551 sbase < svma->vm_start || svma->vm_end < s_end)
4552 return 0;
4554 return saddr;
4557 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4559 unsigned long base = addr & PUD_MASK;
4560 unsigned long end = base + PUD_SIZE;
4563 * check on proper vm_flags and page table alignment
4565 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
4566 return true;
4567 return false;
4571 * Determine if start,end range within vma could be mapped by shared pmd.
4572 * If yes, adjust start and end to cover range associated with possible
4573 * shared pmd mappings.
4575 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4576 unsigned long *start, unsigned long *end)
4578 unsigned long check_addr = *start;
4580 if (!(vma->vm_flags & VM_MAYSHARE))
4581 return;
4583 for (check_addr = *start; check_addr < *end; check_addr += PUD_SIZE) {
4584 unsigned long a_start = check_addr & PUD_MASK;
4585 unsigned long a_end = a_start + PUD_SIZE;
4588 * If sharing is possible, adjust start/end if necessary.
4590 if (range_in_vma(vma, a_start, a_end)) {
4591 if (a_start < *start)
4592 *start = a_start;
4593 if (a_end > *end)
4594 *end = a_end;
4600 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4601 * and returns the corresponding pte. While this is not necessary for the
4602 * !shared pmd case because we can allocate the pmd later as well, it makes the
4603 * code much cleaner. pmd allocation is essential for the shared case because
4604 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4605 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4606 * bad pmd for sharing.
4608 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4610 struct vm_area_struct *vma = find_vma(mm, addr);
4611 struct address_space *mapping = vma->vm_file->f_mapping;
4612 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4613 vma->vm_pgoff;
4614 struct vm_area_struct *svma;
4615 unsigned long saddr;
4616 pte_t *spte = NULL;
4617 pte_t *pte;
4618 spinlock_t *ptl;
4620 if (!vma_shareable(vma, addr))
4621 return (pte_t *)pmd_alloc(mm, pud, addr);
4623 i_mmap_lock_write(mapping);
4624 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4625 if (svma == vma)
4626 continue;
4628 saddr = page_table_shareable(svma, vma, addr, idx);
4629 if (saddr) {
4630 spte = huge_pte_offset(svma->vm_mm, saddr,
4631 vma_mmu_pagesize(svma));
4632 if (spte) {
4633 get_page(virt_to_page(spte));
4634 break;
4639 if (!spte)
4640 goto out;
4642 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
4643 if (pud_none(*pud)) {
4644 pud_populate(mm, pud,
4645 (pmd_t *)((unsigned long)spte & PAGE_MASK));
4646 mm_inc_nr_pmds(mm);
4647 } else {
4648 put_page(virt_to_page(spte));
4650 spin_unlock(ptl);
4651 out:
4652 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4653 i_mmap_unlock_write(mapping);
4654 return pte;
4658 * unmap huge page backed by shared pte.
4660 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
4661 * indicated by page_count > 1, unmap is achieved by clearing pud and
4662 * decrementing the ref count. If count == 1, the pte page is not shared.
4664 * called with page table lock held.
4666 * returns: 1 successfully unmapped a shared pte page
4667 * 0 the underlying pte page is not shared, or it is the last user
4669 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4671 pgd_t *pgd = pgd_offset(mm, *addr);
4672 p4d_t *p4d = p4d_offset(pgd, *addr);
4673 pud_t *pud = pud_offset(p4d, *addr);
4675 BUG_ON(page_count(virt_to_page(ptep)) == 0);
4676 if (page_count(virt_to_page(ptep)) == 1)
4677 return 0;
4679 pud_clear(pud);
4680 put_page(virt_to_page(ptep));
4681 mm_dec_nr_pmds(mm);
4682 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4683 return 1;
4685 #define want_pmd_share() (1)
4686 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4687 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4689 return NULL;
4692 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4694 return 0;
4697 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4698 unsigned long *start, unsigned long *end)
4701 #define want_pmd_share() (0)
4702 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4704 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4705 pte_t *huge_pte_alloc(struct mm_struct *mm,
4706 unsigned long addr, unsigned long sz)
4708 pgd_t *pgd;
4709 p4d_t *p4d;
4710 pud_t *pud;
4711 pte_t *pte = NULL;
4713 pgd = pgd_offset(mm, addr);
4714 p4d = p4d_alloc(mm, pgd, addr);
4715 if (!p4d)
4716 return NULL;
4717 pud = pud_alloc(mm, p4d, addr);
4718 if (pud) {
4719 if (sz == PUD_SIZE) {
4720 pte = (pte_t *)pud;
4721 } else {
4722 BUG_ON(sz != PMD_SIZE);
4723 if (want_pmd_share() && pud_none(*pud))
4724 pte = huge_pmd_share(mm, addr, pud);
4725 else
4726 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4729 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
4731 return pte;
4735 * huge_pte_offset() - Walk the page table to resolve the hugepage
4736 * entry at address @addr
4738 * Return: Pointer to page table or swap entry (PUD or PMD) for
4739 * address @addr, or NULL if a p*d_none() entry is encountered and the
4740 * size @sz doesn't match the hugepage size at this level of the page
4741 * table.
4743 pte_t *huge_pte_offset(struct mm_struct *mm,
4744 unsigned long addr, unsigned long sz)
4746 pgd_t *pgd;
4747 p4d_t *p4d;
4748 pud_t *pud;
4749 pmd_t *pmd;
4751 pgd = pgd_offset(mm, addr);
4752 if (!pgd_present(*pgd))
4753 return NULL;
4754 p4d = p4d_offset(pgd, addr);
4755 if (!p4d_present(*p4d))
4756 return NULL;
4758 pud = pud_offset(p4d, addr);
4759 if (sz != PUD_SIZE && pud_none(*pud))
4760 return NULL;
4761 /* hugepage or swap? */
4762 if (pud_huge(*pud) || !pud_present(*pud))
4763 return (pte_t *)pud;
4765 pmd = pmd_offset(pud, addr);
4766 if (sz != PMD_SIZE && pmd_none(*pmd))
4767 return NULL;
4768 /* hugepage or swap? */
4769 if (pmd_huge(*pmd) || !pmd_present(*pmd))
4770 return (pte_t *)pmd;
4772 return NULL;
4775 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4778 * These functions are overwritable if your architecture needs its own
4779 * behavior.
4781 struct page * __weak
4782 follow_huge_addr(struct mm_struct *mm, unsigned long address,
4783 int write)
4785 return ERR_PTR(-EINVAL);
4788 struct page * __weak
4789 follow_huge_pd(struct vm_area_struct *vma,
4790 unsigned long address, hugepd_t hpd, int flags, int pdshift)
4792 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
4793 return NULL;
4796 struct page * __weak
4797 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4798 pmd_t *pmd, int flags)
4800 struct page *page = NULL;
4801 spinlock_t *ptl;
4802 pte_t pte;
4803 retry:
4804 ptl = pmd_lockptr(mm, pmd);
4805 spin_lock(ptl);
4807 * make sure that the address range covered by this pmd is not
4808 * unmapped from other threads.
4810 if (!pmd_huge(*pmd))
4811 goto out;
4812 pte = huge_ptep_get((pte_t *)pmd);
4813 if (pte_present(pte)) {
4814 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4815 if (flags & FOLL_GET)
4816 get_page(page);
4817 } else {
4818 if (is_hugetlb_entry_migration(pte)) {
4819 spin_unlock(ptl);
4820 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4821 goto retry;
4824 * hwpoisoned entry is treated as no_page_table in
4825 * follow_page_mask().
4828 out:
4829 spin_unlock(ptl);
4830 return page;
4833 struct page * __weak
4834 follow_huge_pud(struct mm_struct *mm, unsigned long address,
4835 pud_t *pud, int flags)
4837 if (flags & FOLL_GET)
4838 return NULL;
4840 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4843 struct page * __weak
4844 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
4846 if (flags & FOLL_GET)
4847 return NULL;
4849 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
4852 bool isolate_huge_page(struct page *page, struct list_head *list)
4854 bool ret = true;
4856 VM_BUG_ON_PAGE(!PageHead(page), page);
4857 spin_lock(&hugetlb_lock);
4858 if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4859 ret = false;
4860 goto unlock;
4862 clear_page_huge_active(page);
4863 list_move_tail(&page->lru, list);
4864 unlock:
4865 spin_unlock(&hugetlb_lock);
4866 return ret;
4869 void putback_active_hugepage(struct page *page)
4871 VM_BUG_ON_PAGE(!PageHead(page), page);
4872 spin_lock(&hugetlb_lock);
4873 set_page_huge_active(page);
4874 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4875 spin_unlock(&hugetlb_lock);
4876 put_page(page);